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Abstract: Peritoneal dialysis (PD) is a kidney replacement therapy for patients with end-stage renal 

disease. It is becoming more popular as a result of a rising interest in home dialysis. Its effectiveness 

depends on several physiological and technical factors, which have led to the development of various 

computational models to better understand and predict PD outcomes. In this review, we traced the 

evolution of computational PD models, discussed the principles underlying these models, including 

the transport kinetics of solutes, the fluid dynamics within the peritoneal cavity, and the peritoneal 

membrane properties, and reviewed the various PD models that can be used to optimize and 

personalize PD treatment. By providing a comprehensive overview, we aim to guide both current 

clinical practice and future research into novel PD techniques such as the application of continuous 

flow and sorbent-based dialysate regeneration where mathematical modeling may offer an inexpensive 

and effective tool to optimize design of these novel techniques at a patient specific level. 

Keywords: peritoneal dialysis; mathematical modeling; solute flux; volume flux; parameter 
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1. Peritoneal dialysis 

Over 850 million people worldwide, i.e., ~1 in every 10, suffer to some degree from chronic 

kidney disease [1], among which over 3.8 million are on dialysis, either peritoneal dialysis (PD) or 

hemodialysis (HD) [2]. During PD, dialysis fluid is instilled into the abdominal cavity via a permanent 

catheter. The lining of the abdominal cavity (the peritoneum) acts as a semi-permeable membrane for 

solute and water transport. PD removes waste products from blood plasma by diffusion and convection 

across the peritoneal membrane into the dialysis fluid in the abdominal cavity (see Figure 1). Excess 

water is removed via osmosis using glucose or -less commonly- amino acids as crystalloid osmotic 

agents in the dialysis fluid and icodextrin, a mixture of glucose polymers, as colloid osmotic agent [3,4]. 

While glucose and amino acids are rapidly absorbed across the peritoneal membranes, icodextrin is 

absorbed only to a limited extent due to its large molecular weight (on average 12–20 kDa [5]) exerting 

a sustained osmotic effect suitable for sustained fluid removal during longer dwell times [3,6]. Three 

types of pores are distinguished to properly describe solute and fluid transport across the peritoneal 

membrane: Small pores, which facilitate small solute transport; large pores, which are responsible for 

movement of larger solutes such as proteins; and ultra-small pores, which enable the passage of water 

molecules [7]. Selective water transport through the latter is responsible for an initial decrease in 

dialysate sodium concentration during the early dwell phase and it may explain glucose’s osmotic 

efficacy despite its high diffusibility. Continuous ambulatory PD (CAPD) and automated PD (APD) 

are the two major modalities of PD used in routine practice. With CAPD, the dialysis fluid (1–2.5 L) 

is exchanged (drained and instilled) 3–4 times daily manually through the catheter [8]. During daytime, 

glucose-based solutions are typically used with dwells lasting 4–6 hours. During the night, a long dwell 

with an icodextrin solution is commonly used. With APD, a cycler with patient specific treatment 

parameters is connected to the abdominal catheter throughout the session (preferably at night) to 

automatically perform exchanges with (glucose-based) dialysis fluid over a period of time (usually 4–5 

per night) [9]. This is often combined with a long dwell with an icodextrin solution (14–15 h) during 

the day. Both CAPD and APD are usually conducted every day of the week. 

PD has several advantages compared to HD: it enables continuous gradual removal of waste 

(instead of intermittent HD, which is characterized by a ‘saw-tooth pattern’), does not require blood 

access, provides more patient autonomy as the treatment is performed at home, and is less expensive. 

Residual kidney function is also better preserved [10] compared to HD. However, PD has important 

shortcomings. Technique survival is limited (median 3.7 years [11]) due to recurrent peritonitis 

(inflammation of the peritoneal membrane), catheter dysfunction or membrane failure (due to exposure 

to high (harmful) dialysate glucose concentrations required for osmotic water removal), and small 

solute clearance is relatively low. Due to technique failure or low small solute clearance (with 

disappearance of residual diuresis) patients often have to switch to HD after several years [11,12].  

Despite 60 years of progress in PD, it is used only by ~11% of dialysis patients with considerable 

variations across countries, mostly due to non-medical reasons [13–15]. Strikingly, Hong Kong has 

~80% end stage kidney disease (ESKD) patients on PD to reduce expenditure [16] after an 

implementation of “PD first” policies. Mexico, Thailand, and Singapore also have high rates of PD 

due to availability of medical personnel to assist with PD. To increase PD usage, improve outcomes, 

and better personalize PD regimens, there are several novel techniques under development such as in 
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home production of peritoneal dialysate [13], novel PD solutions with improved biocompatibility and/or 

glucose-sparing, continuous flow PD [17,18], and sorbent assisted PD [19–21] (Figure 1). Glucose-

sparing strategies include the use of alternative osmotic ingredients such as (commercially available) 

icodextrin and amino acids or alternatives that are under development such as taurine, polyglycerol, 

carnitine, xylitol, and alanyl-glutamine [3,22]. Moreover, combinations of crystalloid and colloid 

osmosis (so-called bi-modal osmosis) have been explored by mixing glucose with icodextrin, This 

approach leverages rapid initial ultrafiltration provided by glucose and sustained ultrafiltration by 

icodextrin and was shown to enhance fluid removal while reducing overall glucose exposure [4,23]. A 

study by Stachowska-Pietka et al. showed that comparing glucose 2.27% and icodextrin 7.5% in a patient 

group with average transfer rate, there was a 204% increase in ultrafiltration, 3.6% increase in glucose 

and carbohydrates absorbed, 163% increase in sodium removal, 13% increase in urea removal, and 17% 

increase in creatinine removal [6]. However, potential consequences are accumulation of icodextrin 

metabolites. In addition, using icodextrin and bimodal solutions increases the sodium removal leading 

to hyponatremia [24]. Since icodextrin modeling is relatively new, it has been briefly included in Sections 

4 and 5 but has not been discussed extensively in this review. 

In continuous flow PD (CFPD), there is a continuous flow of dialysate through an inflow catheter 

and outflow catheter [17,18,25]. The continuous flow of fresh dialysate through the abdominal cavity 

maintains a large plasma–dialysate concentration gradient, increasing solute transfer across the 

peritoneal membrane. Dialysate glucose concentration can be kept nearly constant, thereby 

maintaining a constant osmotic gradient and ultrafiltration rate at lower (peak) glucose concentrations 

than in conventional PD [26], possibly slowing functional deterioration of the peritoneal membrane 

and reducing the rate of peritonitis (both associated with high glucose concentrations). Sorbent-assisted 

PD regenerates the dialysis fluid using a sorbent cartridge [19,27,28].  

 

Figure 1. Different modes of dialysis therapy techniques available for the chronic kidney 

patient. IPV = Intraperitoneal volume. 
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The development of new technologies often takes a considerable amount of time owing to the 

learning curve, ensuring transparency, ethical requirements, trial regulations et cetera [29]. The new 

(post-2020) European Union Medical Device Regulation (EU-MDR) rules related to manufacturing of 

medical devices are more stringent, leading to delays in certification. As such, there is a need to 

supplement the pre-clinical research and clinical trials with other methodologies to accelerate the 

design and manufacture and market novel PD technologies. Computational models are a revolutionary 

tool in the field of health, medicine, and life sciences due to the ease of optimization, non-intrusiveness, 

and most importantly, the interpretation of complex interdependent physical processes. They are being 

increasingly used to study the influence of biological processes in medical devices, including, for 

example, thrombogenic reaction to biomaterials [30], controlled drug release [31], and effect of 

implant surface roughness on protein adsorption [32]. Computational modeling of PD may help 

clinicians make informed decisions, such as those involving catheter placement and treatment 

optimization [33,34]. Moreover, computational modeling is often an inexpensive and effective way to 

simulate complex natural phenomena.  

In this review, we focus on computational models for PD, especially ordinary differential equation 

(ODE) models. ODE models represent homogeneous well-mixed compartmental systems that describe 

the evolution of the (solute) concentrations over time in the various compartments. In contrast, PDE 

models capture systems that are not well-mixed (accounting for catheter obstructions, recirculation, 

etc.), enabling the solute concentrations to be defined as a function of both time and space. As PDE 

models are beyond the scope of this discussion, they will not be addressed here. We follow the history 

of PD modeling to highlight the advances and remaining lacunas as well as learn which level of 

simplicity and physiological detail is necessary to reach a research aim. This review, containing general 

concepts of PD models, is specifically intended for experimental scientists or clinicians with little or 

no computational modeling experience, but who are interested in introducing modeling into their 

research practice. By providing an overview of computational models, the individual aspects of the 

models, and the scope of the model, we aim to simplify, enhance, and accelerate the integration of 

modeling into clinical practice to promote better understanding of device-patient interaction. In 

Section 6, we show an example of a scenario to illustrate how one can set up a mathematical model 

of PD using the models highlighted in this review. 

2. Compartmental models for peritoneal dialysis  

There are many types of computational models, including linear and non-linear, deterministic and 

stochastic, discrete and continuous and spatial and non-spatial ones. For general reviews on 

computational modeling we refer to Yates et al. [35], King et al. [36], and Brown et al. [37]. The most 

common design for models of PD is the compartmental model. They are simple in nature for 

physiological, kinetic and dynamic modeling. In compartmental models, the body is divided into 

theoretical compartments such as the peritoneal membrane, peritoneal cavity, and total body water 

(examples in Figure 2). The general assumption is that a tissue or organ can be represented as a 

homogeneous compartment, governed by conservation of mass and other properties of interest (e.g., 

charge). A compartmental model consists of volumes connected by fluxes of some entity. Each 

compartment can be a volume representation (in case of PD) and it characterizes the essential physics 
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and chemistry of the biological environment. The flow rates and interactions between the 

compartments are described by the parameters of the compartmental model. Some PD models use a 

single compartment model with just the peritoneal cavity and body considered to be a constant source 

of solutes [38] while some models include multiple compartments (e.g., the distributed model, [39]), 

with the peritoneal tissue, peritoneal cavity, and interstitium as different compartments. Compartment 

models are lumped models but despite their simplicity, they usually capture the underlying physical 

and biological phenomena quite well, which is why they are commonly used for PD modeling. 

 

Figure 2. Compartmental PD modeling showing compartments (optional compartments in 

dotted lines), membranes, and fluxes. 𝑉 = peritoneal compartment volume, 𝑉𝐵 = Body 

compartment volume, and 𝑐𝐷 and 𝑐𝐵 = peritoneal and body solute concentration. 

The models usually employ fluid and solute mass balance equations, which are described in 

Sections 3 and 4. This depends on the type of fluid flow (static or continuous), complexity (single 

compartment or distributed), and membrane model (continuous semi-permeable membrane or 3 pore) 

to decide which and how the fluid and solute flows should be properly modeled. In case of PD, 

physiologically, the barrier is a semi-permeable peritoneal membrane. The compartments can 

exchange the fluid and solutes without any barrier or with a barrier. 

The simplest interpretation of the peritoneal membrane is a simple membrane that enables passive 

diffusion of solutes [40–42]. The diffusive flow of molecules (Js in mol/s) will be dependent on the 

concentration gradient 
d𝑐

d𝑥
 across the barrier: 

 

𝐽s  ∝
d𝑐

d𝑥
 

(1) 
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𝐽s = −𝐷𝐴
d𝑐

d𝑥
 

(2) 

where 𝐷 is the diffusion coefficient (m2 s−1), A is the effective surface area available for diffusion 

(m2), c is the concentration (mol/l), and 𝑥 is the distance across the membrane (m). The negative 

sign is because the solute flux is in the opposite direction of the concentration gradient. Integrating the 

above equation (Eqs (1) and (2)) from x = 0 to x = Δx (across the membrane), 

 
𝐽s = −𝑃𝑆 ∙ (𝑐2 − 𝑐1) 

(3) 

 

where 𝑃𝑆 =  𝐷𝐴/Δ𝑥, and 𝑐1, 𝑐2 are the concentrations on either side of the membrane, at x = 0 and 

x = Δx. 𝑐1 and 𝑐2 are usually chosen so that the sign of 𝐽𝑠 is positive when transport is directed into 

the peritoneal cavity. Eq (3) can be used to calculate the diffusive plasma clearance of a particular 

solute from c1 to c2 (Js/c1) or vice versa (Js/c2). The factor PS is known as the diffusion capacity of the 

solute species and is defined as the maximal absolute diffusive plasma clearance (when the 

concentration is zero on one side of the membrane). Many abbreviations and terms are in use for this 

parameter such as mass transfer area coefficient (MTAC), kBD etc.  

2.1 Three-pore model of peritoneal dialysis 

A perplexing thing about the peritoneal membrane is that it is a semi-permeable membrane that 

enables passage of albumin and other large proteins to a limited extent but also restricts the bulk 

movement of electrolytes [19,43–46]. In 1981, Nolph et al. stated, “It is a system that displays 

characteristics of some very large-pore radii when assessed by diffusion studies, and some very small-

pore radii when assessed by ultrafiltration and solute reflection coefficients” [47]. The reflection 

coefficient, 𝜎, describes the convective hindrance of a molecule (a value of 100% means convective 

clearance does not occur). Nolph et al. were the first to hypothesize that the peritoneal membrane is a 

heteroporous membrane with both small and large pores. Small pores with low solute permeability 

would be located in the proximal capillary and facilitate ultrafiltration due to the relatively high 

hydraulic pressure and high osmotic gradient in the proximal capillary. Toward the venous capillaries, 

the hydraulic pressure drops, and the oncotic pressure increases as a result of increased protein 

concentration caused by capillary ultrafiltration. A predominance of large “pores” in the venular 

capillaries with high permeability would facilitate diffusive solute exchange. Glucose would be more 

readily absorbed, resulting in lower osmotic pressure, and the ultrafiltration rate would be reduced at 

the venular capillaries also because of the relatively low hydrostatic and high oncotic pressure. In 

summary, most ultrafiltration would occur through the “small” pores with low hydraulic permeability 

and most solute exchange through highly permeable “large” pores (Figure 3A)). Aside from these two 

pathways, there is also a separate channel for movement of water that is inaccessible to solutes. To 

account for all three pathways, the three-pore model was developed. 

In 1991 Rippe et al. [7] proposed the three pore model (Figure 3B)). This is the most common 

representation of the peritoneal membrane. It divides the body into two compartments – the distribution 

volume (specific to each solute) and the peritoneal cavity. The solute and volume flows through the 
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different pores that are defined by the Starling and Patlak equations, respectively (explained in Eqs (4) 

and (29)). The most abundant (99% of the pore fraction) is the protein restrictive water-soluble 

pathway (15 to 36 Å), which is responsible for 90% of the hydraulic conductance. The “large pores” 

of 250 Å constitute 0.01% of the pore population and represent 8% of the hydraulic conductance, and 

the final pore fraction is the ultrasmall pores (0.99%) and is responsible for only 2% of the hydraulic 

conductance. The “small pores” correspond to the gaps between the endothelial cells and the “large 

pores” correspond to the venular interendothelial pathways. These ultrasmall pores (2.3 to 15 Å) are 

permeable only to water (reflection coefficient is unity for all solutes) and were later shown to represent 

the aquaporin (AQP-1) water channels. AQP-1 was first identified in animal biopsies one year after 

Rippe proposed its existence [48]. Yang et al. showed that knocking out the aquaporin channels in mice 

reduced the water transport by 50%, thus proving the importance of the transcellular pores in the three-

pore model [49]. The Rippe model can also predict the transport of intermediate solutes as well as 

large solutes with reasonable accuracy.  

Venturoli et al. proposed a series of two porous membranes (Figure 3C)) to model the bi-

directional clearances of macromolecules [50]. The first layer is the three-pore membrane by Rippe, 

identified as the capillary endothelium. This is followed by a second three pore membrane consisting 

mostly of large pores (95%), transcellular pores (2%), and small pores (3%), which is a lumped 

representation of extracellular interstitium. This model is able to mathematically explain the build-up 

of tracer albumin [51] seen in rats, which the one layer three pore model cannot. 

Another approach to modeling the peritoneal membrane is the distributed model by Flessner et 

al. [39] (Figure 3D)). They model the peritoneal tissue space as a tube-and-shell exchanger with a 

constant void space (blood capillary or the plasma space) and the interstitium. Water movement occurs 

throughout the tissue while solute convection occurs only across the plasma capillaries. All plasma 

capillaries are assumed to have the same shape and size, which makes this a single pore model. This 

model is also complementary to the Venturoli model [50] in that it enables calculation of accumulation 

and release of certain substances dissolved in dialysis fluid. Because of the additional modeling of the 

surrounding tissue space, the Flessner model can give insight into the mechanisms ongoing in the 

peritoneal tissue which could, for example, be useful for modeling transport of drugs being 

administered intra-peritoneally. 
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Figure 3. A) Nolph three-pore model (high permeable and low permeable pores), B) Rippe three-

pore model (distinction based on size, population and contribution to ultrafiltration), C) 

Venturoli model (two porous membrane side-by-side), and D) Flessner distributed model (tissue 

space with uniformly distributed capillaries- essentially a “single pore model” for the capillaries). 

3. Volume flow calculations 

The osmotic gradient created by a hypertonic dialysis fluid drives the flow of water from the 

plasma by osmosis, commonly referred to as ultrafiltration [52]. In APD, underestimation or 

overestimation of the ultrafiltration volume may result in setting a wrong drain volume of the 

peritoneal cavity. The use of wrong drain settings may cause discomfort to the patient and reduce the 

efficiency of the dialysis session. As such, it is important to properly calculate all the flows occurring 

during PD, i.e., the amount of net ultrafiltrate as determined by 

- the glucose concentration used in the dialysis fluid and subsequent water flow due to the 

osmotic gradient 

- the flow of dialysate into the peritoneal cavity at a certain flow rate (APD, CFPD) or by gravity 

(static dwell, CAPD) 
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- the lymphatic flow of fluid from the intraperitoneal space towards the lymphatic space 

- other physical (and patient-specific) attributes such as the condition of the peritoneal membrane, 

intraperitoneal volume and pressure and the lymphatic system of the patient etc. 

 

Figure 4. Fluid flow and solute movement across the peritoneal membrane due to 

hydrostatic pressures and osmotic gradient (see text). A high concentration glucose 

solution (red dots) is used, which means that the glucose gradient is in a different direction 

at the beginning of the dwell compared to that of other solutes and proteins (blue dots), 

which are usually in equilibrium or lower in the dialysate. The striped boxes represent the 

peritoneal membrane with three types of pores (Section 2.1). I denotes interstitial 

parameters and V denotes the plasma parameters. IN = from dialysate to blood and OUT 

= from blood to dialysate. 

There have been limited efforts to model volume change in the intraperitoneal cavity. We describe 

the different ways of estimating peritoneal volume change and the ways to obtain the parameters for 

the flux equations in further subsections. 

To describe the water flow (volume flow), the Starling equation is often used, which is essentially 

a modified version of Ohms law, Flow = Hydraulic conductance ∙ ΔPressure. The original Starling 

equation was written to describe the fluid flow from a capillary to the interstitial space [53]. This 

equation was later corroborated by Kedem and Katchalsky from a thermodynamics point of view [54]. 

As fluid builds up in the peritoneal cavity, it exerts an outward interstitial force on the peritoneal 

membrane (𝑃I, Figure 4). Due to the fluid moving into the interstitial space, the corresponding fluid 

pressure rises, and this opposing pressure is the capillary hydrostatic pressure (𝑃V , Figure 4). The 

plasma proteins exert a colloid osmotic pressure or oncotic pressure (𝜋V, Figure 4) to draw water back 

from the peritoneal cavity to the plasma (opposite to glucose). The osmotic agent in the dialysate exerts 

an outward osmotic pressure (𝜋I, Figure 4). To model the above, Eq (4) consists of two inward forces, 
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i.e., interstitial hydrostatic (𝑃I) and plasma colloid osmotic pressure (𝜋V), and two outward forces, i.e., 

hydrostatic pressure (𝑃V) and interstitial osmotic pressure (𝜋I) (see Figure 4). Here, we will also take 

into account that the peritoneal membrane is semi-permeable and will have different reflection 

coefficients for solutes of different sizes. Note that by inward or outward, we mean into or out of the 

peritoneal cavity. We refer the reader to the appendix for an overview of all notations. 

The volume flow (ml min−1) across the peritoneal membrane is thus modeled as follows:  

 
𝑑𝑉

𝑑𝑡
= 𝐽𝑣 = 𝐿𝑝𝑆[(𝑃𝐼 − 𝑃𝑉) − 𝜎(𝜋𝐼 − 𝜋𝑉)]

= 𝐿𝑝𝑆 [ ∆𝑃⏞
ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑑𝑖𝑓𝑓

−  𝜎 ∆𝜋⏟
𝑜𝑠𝑚𝑜𝑡𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑑𝑖𝑓𝑓

] 

(4) 

 

The volume in the peritoneal cavity is 𝑉, the hydraulic conductance of the peritoneal membrane 

is given by  𝐿𝑝𝑆  (ml min−1mmHg−1  ), and the reflection coefficient of the solute is given by 

𝜎 (dimensionless). I denotes interstitial parameters and V denotes the plasma parameters. We have to 

make certain modifications to Eq (4) as the fluid is not in full contact with the peritoneal membrane, 

which means that the whole membrane surface cannot be taken into account for the calculation of the 

volume flow but rather the peritoneal surface area in contact with the dialysis fluid (𝑎𝑓, fraction of the 

peritoneal surface area in use, dimensionless). This gives us the modified Starling equation (Eq (5)). 

 
𝐽v = 𝐿𝑝𝑆[∆𝑃 − 𝜎𝛥𝜋]𝑎𝑓 

(5) 

In addition to the fractional peritoneal surface area in use, we can divide the volume flow among 

the various types of pores present in the peritoneal membrane. If we use the classical 3-pore model 

here, we can divide the net volume flow into flows across the ultrasmall, small, and large pores by 

multiplying their contribution to the ultrafiltration (α, dimensionless). 

 
𝐽vC = 𝐿𝑝𝑆[∆𝑃 − 𝜎𝛥𝜋] ∙ 𝑎𝑓 ∙ 𝛼C 

(6) 

 
𝐽vS = 𝐿𝑝𝑆[∆𝑃 −  𝜎∆𝜋] ∙ 𝑎𝑓 ∙ 𝛼S 

(7) 

 
𝐽𝑣L = 𝐿𝑝𝑆[∆𝑃 −  𝜎∆𝜋] ∙ 𝑎𝑓 ∙ 𝛼L 

(8) 

   

where 𝐽vC, 𝐽vS and 𝐽vL are the volume flows across the ultrasmall, small, and large pores, respectively. 

The change in volume is then calculated as a total of all the volume flows minus the net lymphatic 

flow [38], 

 
𝑑𝑉

𝑑𝑡
= 𝐽𝑣𝐶 + 𝐽𝑣𝑆 + 𝐽𝑣𝐿 − 𝐿 

(9) 

where 𝐿 is the lymphatic flow rate (ml min−1) (a sum of all lymphatic flows that drain the peritoneal 

cavity, i.e., interstitial, diaphragmatic, pelvic and omental [55]), considered to be around 0.15–0.5 ml 

min-1 (0.216–0.72 L/day). 



441 

 

Mathematical Biosciences and Engineering  Volume 22, Issue 2, 431–476. 

Öberg et al. extended Eq (9) for APD [56] and CFPD [38], 

 
𝑑𝑉

𝑑𝑡
= 𝐽𝑣𝐶 + 𝐽𝑣𝑆 + 𝐽𝑣𝐿 − 𝐿 + 𝐽𝑓𝑖𝑙𝑙 − 𝐽𝑑𝑟𝑎𝑖𝑛 

(10) 

where 𝐽fill and 𝐽drain are the fill and drain flow rates during CFPD (ml min−1).  

The initial fill volume and drain volume are in general known. The residual volume, 𝑉r, may be 

estimated from the dilution of a solute concentration (e.g., albumin, creatinine, or total protein) 

measured in the drained effluent, by measuring concentration just after instillation of a known fill 

volume Vfill [57] (Eq (11)): 

 

𝑉𝑟 =
𝑉𝑓𝑖𝑙𝑙 ∗ 𝑐0

(𝑐𝑑𝑟𝑎𝑖𝑛 − 𝑐0)
 

(11) 

where 𝑐0  is the measured concentration of the solute just after filling the peritoneal cavity (rapid 

mixing is assumed), and 𝑐drain is the concentration of the solute in the drain bag collected in the 

previous session. Knowing these volumes, the net ultrafiltration volume, UF, can be calculated as, 

 
(𝑁𝑒𝑡)𝑈𝐹 = 𝑉𝑑𝑟𝑎𝑖𝑛 + 𝑉𝑟,𝑡2 − 𝑉𝑓𝑖𝑙𝑙 − 𝑉𝑟,𝑡1 

(12) 

where 𝑡1 is the time of instillment of the dialysis fluid and 𝑡2 is the time of draining. 

Lymphatic flow may or may not be considered depending on the patient and the model. Volume 

flows are also estimated assuming that the rate of ultrafiltration is known or can be calculated [58].  

3.1. How to estimate volume flow parameters? 

Few parameters are derived from experimental observations and some are obtained from 

optimization of models. 

3.1.1 Residual Volume, 𝑉𝑟 

Residual volume, 𝑉r , is a critical factor for accurate assessments of peritoneal membrane 

parameters such as osmotic conductance to glucose (Section 3.1.4). Clinical conditions such as 

constipation, catheter position or dysfunction, intraperitoneal adhesions or changes in peritoneal cavity 

compliance can affect residual volume. The residual volume may be estimated from the dilution of a 

solute (e.g., albumin, creatinine, urea, total protein, dextran 70 or inulin [59]) after a fresh fill 

calculated with the concentrations measured in the drained effluent and in the fresh fill just after the 

instillation of a known fill volume Vfill [57] (Eq (13)): 

 

𝑉𝑟 =
𝑉𝑓𝑖𝑙𝑙 ∗ 𝑐0

(𝑐𝑑𝑟𝑎𝑖𝑛 − 𝑐0)
 

(13) 

where 𝑐0  is the measured concentration of the solute just after filling the peritoneal cavity (rapid 

mixing is assumed) and 𝑐drain is the concentration of the solute in the drained effluent. Urea and 
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creatinine-based calculations lead to an overestimation of 𝑉𝑟 and can be handled with a correction 

factor [60]. Albumin-based volumes conformed strongly with three-pore model estimates [60].  

3.1.2 Difference in hydrostatic pressure, Δ𝑃 

The hydrostatic pressure difference between the interstitium and the capillaries in most organs is 

usually around 10–17 mmHg (13.6–23.1 cm H2O) [61]. Durand et al. measured the mean 

intraperitoneal hydrostatic pressure (IPP) to be 9.56 mmHg (13 cm H2O) [62]. However, in the case of 

a static PD dwell, the pressure builds up inside the peritoneal cavity due to ultrafiltration so that 𝐼𝑃𝑃 is 

a function of time for a patient in a sitting position. Twardowski et al. derived the empirical formula 

for dependence of IPP as a function of intra-peritoneal volume as follows [63],  

 

𝛥𝑃 = 𝛥𝑃0 +
𝑉𝑡 − (𝑉𝑓𝑖𝑙𝑙 + 𝑉𝑟)

490
 

(14) 

where ∆𝑃0 is the baseline hydrostatic pressure (without dialysate), 𝑉fill, 𝑉r,  and 𝑉𝑡 are the initial fill 

volume, residual volume, and the intraperitoneal volume at time 𝑡, respectively. 𝑉fill is known (1.0–

2.5 l depending on the patient), and the residual volume 𝑉r is calculated from eq 13. The peritoneal 

volume at different times, 𝑉t, can, for example, be calculated from the dilution of radioactive 125I 

serum albumin (RISA) [64,65] during the dwell or from a direct volume recovery technique [66]. 490 

comes from the slope of the fitting equation of intra-abdominal pressure versus intra-peritoneal volume, 

as measured by Twardowski et al. [18]. 

For continuous flow PD, the hydrostatic pressure changes depend on drain and fill flow rates, and 

will generally decrease (drain) or increase (fill) in line with intra-peritoneal volume. 

3.1.3 Reflection coefficients, 𝜎 

Sieving or reflection coefficients for solutes can be determined from experiments [67,68] or from 

analytical equations such as that of Drake et al. [69] 

 

𝜎 =
16

3
𝜆2 −

20

3
𝜆3 +

7

3
𝜆4 

(15) 

where 𝜆 (dimensionless) is the ratio of the solute radius to the membrane pore radius. The reflection 

coefficients are calculated separately for different pore sizes and solutes. 

Another analytic solution widely used for the three pore model is [70], 

 

𝜎 = 1 −
(1 −

𝜆
3)
(1 − 𝜆)2[2 − (1 − 𝜆)2] 

(1 −
𝜆
3 +

2
3 𝜆

2) 
 

(16) 

Theoretically, one can also obtain the (steric) reflection coefficient from the equation by Anderson 

et al. if one knows the equilibrium concentration of the solute on both sides of the peritoneum, i.e., the 

blood plasma and the peritoneal cavity [71] 
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𝜎 = (1 − 𝛷)2 

(17) 

where 𝛷 is the equilibrium partition coefficient (dimensionless), given by 𝛷 = (
𝐶1

𝐶2
)
eqlb

 and 𝑐1 and 

𝑐2 are equilibrium concentrations on both sides of the peritoneal membrane.  

3.1.4 Osmotic conductance to glucose 

The osmotic conductance to glucose (OCG) of the peritoneal membrane is usually calculated 

from the double mini-peritoneal equilibration test (dm-PET) described by La Milia et al. [72]. OCG is 

used to measure the ability of the peritoneal membrane to transport water in response to a crystalloid 

osmotic gradient. It may hold particular value for the long-term follow-up of PD patients to evaluate 

the integrity of the peritoneal membrane over time and helps to identify patients at risk for 

encapsulating peritoneal sclerosis [73]. In the clinic, a 60 min dwell 1.5% (~83 mmol/l) glucose is 

followed by 60 min 4.25% glucose (~236 mmol/l), and the difference between the drained volume is 

used to calculate the osmotic conductance to glucose (OCG or 𝜎g𝐿𝑝𝑆, 𝑚𝑙 𝑚𝑖𝑛
−1 𝑚𝑚𝐻𝑔−1 ). 

Assuming that the initial volume flow is due to osmosis only, from Eq (5), we get 

 

𝑂𝐶𝐺 =
Δ𝐽v

Δ𝜋4.25 − Δ𝜋1.5
=

Δ𝐽v
𝑅𝑇(𝑐4.25 − 𝑐1.5)

 

(18) 

 

𝑂𝐶𝐺 ≈ 
𝑉4.25 − 𝑉1.5
100

 

(19) 

where 𝑅  is the gas constant (82 ml ∙ atm K−1 mol−1  ) and 𝑇  is the absolute temperature (K ). 

Typical values for OCG are between 0.003–0.004 𝑚𝑙 𝑚𝑖𝑛−1 𝑚𝑚𝐻𝑔−1 . Knowing the reflection 

coefficient of glucose from Eqs (15) or (16) or from experiments, 𝐿𝑝𝑆 can be calculated to be around 

0.08 ml/min per mmHg [7,74–76]. OCG may also be derived from a single dwell, as described by 

Martus et al. [61]. However, it must be noted that a high residual volume limits the reliability of OCG 

estimation [73].  

3.1.5 Fractional peritoneal surface area in contact with the dialysate, 𝑎𝑓  

Keshaviah et al. calculated the empirical relationship between fill volume and peritoneal surface 

area in contact [77,78], 

 

𝑎𝑓 =
16.18(1 − 𝑒−0.00077.𝑉)

13.3187
 

(20) 

where V is the intra-peritoneal volume and 0.00077 is an empirical constant in ml-1. 

The fractional peritoneal surface area (𝑎𝑓, dimensionless) in contact with dialysate can also be 

obtained from stereological experiments by superimposing a grid over the CT scan of the 

peritoneum [79,80] or by magnetic resonance imaging [81]. The fractional surface area in contact 

with dialysate is an important determinant of the mass transfer coefficient of solutes. It can be improved 
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by increasing the fill volume [82], agitating the dialysate, or adding surfactants [83] but the latter has 

not been tried in humans. Eq (20) has been shown to be identical to the cube-square law for intra-

peritoneal volumes up to ~2300 ml [38]. 

3.1.6 Contribution to hydraulic conductance, 𝛼 

Fractional hydraulic conductances (α) may be estimated by fitting the experimental results to the 

model [50,78]. The usual values used in the three-pore model are given in Figure 3. 

3.1.7 Ultrafiltration rate, 𝑈𝐹𝑅 

There have been multiple ways of determining ultrafiltration rate (ml min−1) throughout the 

literature. The average ultrafiltration rate may be estimated from the drain, 𝑉drain, and fill volume, 

𝑉fill during a static dwell [58], 

 

𝑈𝐹𝑅 = 
𝑉𝑑𝑟𝑎𝑖𝑛 − 𝑉𝑓𝑖𝑙𝑙

𝑡
 

(21) 

The UF rate can also be theoretically calculated [84,85], 

 
𝑈𝐹𝑅 = 𝐿𝑝𝑆(Δ𝑃 − 𝜎Δπ) − 𝐿 

(22) 

Lymphatic flow is often considered to be constant throughout the dwell. 

The UF rate is sometimes calculated as a function of time from the interpolated intraperitoneal 

volumes [86–91], as the UFR usually decreases during a static dwell [84,92,93]. 

 

𝑈𝐹𝑅 =
𝑉𝑡+𝛥𝑡 − 𝑉𝑡

𝛥𝑡
+ 𝐿 

(23) 

A simple empirical exponential model was used by Randerson et al. to capture the time dependent 

UFR [94], 

 
𝑈𝐹𝑅 = 𝐴(1 − 𝑒−𝛽𝑡) 

(24) 

where 𝐴 is a fitting constant and 𝛽 is the time constant (a value of 0.0192 min-1 was used). 

Total ultrafiltrate volume can also be calculated from the dilution of initial dialysate albumin 

concentration, as done by Krediet et al. [95], 

 

(𝑇𝑜𝑡𝑎𝑙)𝑈𝐹 =
𝑐𝐷,0
𝑐𝐷,𝑡 

𝑉0 − 𝑉0
⏟      

𝑛𝑒𝑡 𝑡𝑟𝑎𝑛𝑠𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦 𝑈𝐹

−

(

 
𝑐𝐷,0
𝑐𝐷,𝑔

𝑉0 −
𝑐𝐷,𝑡
𝑐𝐷,𝑔

𝑉𝑡
⏟          

𝑙𝑦𝑚𝑝ℎ𝑎𝑡𝑖𝑐 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛)

  

(25) 

where 𝑐𝐷,0 and 𝑐𝐷,𝑡 are the dialysate albumin concentrations at time 0 and time 𝑡, which is the end 

of the dwell, 𝑐𝐷,𝑔 is the geometric mean of the dialysate albumin concentration, √𝑐D,0 ∗ 𝑐D,𝑡 , and 𝑉0 

and 𝑉𝑡 are the intraperitoneal volumes at time 0 and 𝑡. 
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For CFPD, Öberg et al. theoretically derived the following relation for the UF rate [38], 

 

𝑈𝐹𝑅 = 
√(𝐽𝑓𝑖𝑙𝑙 +𝑀𝑇𝐴𝐶𝑔𝑙𝑢) 2 + 4𝐽𝑓𝑖𝑙𝑙𝑈𝑚𝑎𝑥 − (𝐽𝑓𝑖𝑙𝑙 +𝑀𝑇𝐴𝐶𝑔𝑙𝑢)

2
 

(26) 

where 𝐽fill is the fill volume (ml min−1), 𝑀𝑇𝐴𝐶glu is the diffusion capacity (ml min−1), and 𝑈max 

is a function of glucose concentration ( ml min−1 ). The equation slightly overestimates the 

ultrafiltration. 

 
𝑈𝑚𝑎𝑥 = 𝑅𝑇 ∙ 𝑂𝐶𝐺 ∙ 𝑐𝑔𝑙𝑢 − 3.1 

(27) 

where 𝑅𝑇 is the product of gas constant and the temperature in degree Kelvin (𝑚𝑚𝐻𝑔 𝑚𝑚𝑜𝑙−1𝐿),  

OCG is the osmotic conductance to glucose ( 𝑚𝑙 𝑚𝑖𝑛−1𝑚𝑚𝐻𝑔−1), and 3.1 is a constant to account 

for the lymphatics, opposing forces, and hydrostatic pressure gradient for other solutes in plasma. 

Gotch also provided an empirical formula for CAPD using a dextrose solution [96], 

 
(𝑇𝑜𝑡𝑎𝑙)𝑈𝐹 = (184 + 512 ln(%𝐷)) (1 − exp(−0.02𝑡)) 

(28) 

where %𝐷  is the w/w dextrose solution (dimensionless) and 𝑡  is the time elapsed. For other 

dialysate solutions, similar curves for total UF versus time at different concentrations can be drawn to 

derive an analytical equation. The equation can then be used to determine the dialysate solution for the 

desired ultrafiltration. 

Depending on the importance of ultrafiltration in the objective of the modeling efforts, one can 

opt for the simplified UFR values such as Eqs (21) and (23) or for patient specific effects Eqs (24) and 

(28). Eqs (25) or (26) can provide UFR estimates with sufficient precision but require measuring the 

concentration of albumin at different time-points, or the estimation of OCG and diffusion capacity of 

glucose, respectively. 

4. Solute flow calculations 

Solute flow across a semipermeable peritoneal membrane occurs because of two simultaneous 

processes. The first is diffusion due to the (electro)chemical gradient between the peritoneal cavity and 

the blood plasma. Glucose and bicarbonate (and/ or lactate), which are usually present in high 

concentrations in the dialysate, move to the plasma. Other solutes such as potassium, phosphate, and 

toxins move from the plasma to the peritoneal cavity. The second is “convection” due to the water flow 

(“ultrafiltration”) that drags solutes across the membrane (from the plasma to the peritoneal cavity). 

There have been many ways of describing solute flow in the literature since small solute clearance was 

the main priority of many early PD models. In the following sections, we discuss how the solute flows 

can be calculated depending on the complexity required. In subsections, we also discuss how to obtain 

parameters for solute flow equations. 

The Patlak equation captures such a two-part transport of solutes across the thick inhomogeneous 

peritoneal membrane (see Eq (29), Figure 5) [97]. The Patlak equation is essentially an extension of 

the second equation proposed by Kedem and Katchalsky’s thermodynamics-driven volume and solute 

flux across a thin semi-permeable membrane [54]. First, there is a term that models the diffusive flux 

across the membrane due to the concentration gradient, given by Fick’s first law. The second part is 
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the convective transfer arising from ultrafiltration. 

 

𝐽𝑠 = −𝐷𝐴 
𝑑𝐶

𝑑𝑥
+ 𝐽𝑣(1 − 𝜎)𝐶 

(29) 

where 𝐷 is the diffusion coefficient (m2min−1), and 𝐴 is the effective surface area available for 

diffusion (m2 ), 𝐶  is the intramembrane concentration (mol ml−1 ), and 𝐽v  is the volume flow 

(ml min−1). 

Rearranging and integrating the ordinary differential Eq (29) gives 

 

𝐽𝑠 = 𝐽𝑣(1 − 𝜎)
𝑐𝑝 − 𝑐𝐷𝑒

−𝑃𝑒

1 − 𝑒−𝑃𝑒 
 

(30) 

 

𝑃𝑒 =
𝐽v(1 − 𝜎)

𝑀𝑇𝐴𝐶
 

(31) 

where 𝑐p and 𝑐D are the plasma and dialysate solute concentration, respectively, 𝑃𝑒 is the Péclet 

number, which is a ratio of diffusional and convectional mass transfer (dimensionless), 𝑀𝑇𝐴𝐶 is the 

diffusion capacity (“mass transfer area coefficient”) (ml min−1 ), 𝜎  is the reflection coefficient 

(dimensionless), and 𝐽v is the volume flow (ml min−1). For details of the derivation, refer to [74]. 

 

Figure 5. Schematic depiction of the solute flow due to diffusion and convection over the 

peritoneal membrane. 

There are other representations of diffusion and convection in various models. Pure diffusion 

models are sometimes used to define solute transport such as those by Leypoldt et al. and Villarroel et 

al. [42,98,99].  

 

𝑉
𝑑𝑐D
𝑑𝑡

= 𝑀𝑇𝐴𝐶 (𝑐p − 𝑐D) 

(32) 

where 𝑉 is the peritoneal dialysate volume. 

Babb et al. used the following equation to represent the solute flux [58,84] (Eq (33)), 
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𝑉
𝑑𝑐𝐷
𝑑𝑡

= 𝑀𝑇𝐴𝐶(𝑐𝑝0 − 𝑐𝐷) + 𝑆𝑖𝐶𝑜 ∙ 𝒄 ∙ 𝑈𝐹𝑅 

(33) 

where 𝑆𝑖𝐶𝑜 is the sieving or transmittance coefficient or membrane selectivity of the particular solute 

and 𝑈𝐹𝑅  is the ultrafiltration rate (ml min−1 , for calculation of parameter, see Section 3.1.7). 

Different interpretations of 𝒄 (mol ml-1) are reported in the literature: 

𝒄 = 𝑐𝑝  when UF is considered from only one direction [58,100] or UF 

is large [84] 

𝒄 = (1 − 𝑓)𝑐𝑝 + 𝑓𝑐𝐷  when 𝒄  is considered as the intramembrane solute 

concentration [40,85,94] 

𝒄 =
𝑐𝑝 + 𝑐𝐷

2
 

when UF is low [84] 

here, 𝑓 is a function of the Péclet number, which is a ratio of convection to diffusion, given by  

 

𝑓 =
1

𝑃𝑒
−

1

𝑒𝑃𝑒 − 1
 

(34) 

Graff and Fugleberg et al. compared six models of the peritoneal solute transport of urea, 

creatinine, glucose, potassium, and phosphate [86–91], using Eq (35)  

 

𝑉
𝑑𝑐D
𝑑𝑡

= (𝑀𝑇𝐴𝐶(𝑓𝑐𝑡 ∙ 𝑐p − 𝑐D)⏟              
𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑒

+ 𝑆𝑖𝐶𝑜 ∙ 𝑈𝐹 ∙ 𝒄⏟        
𝑁𝑜𝑛−𝑙𝑦𝑚𝑝ℎ𝑎𝑡𝑖𝑐

− 𝐿 ∙ 𝐶∗⏟  
𝑙𝑦𝑚𝑝ℎ𝑎𝑡𝑖𝑐

) 

(35) 

where 𝑓𝑐𝑡 is the equilibrium ratio for solute concentration in dialysate and plasma concentration (
𝐶D

𝐶p
), 

𝑆𝑖𝐶𝑜 is the sieving coefficient, 𝒄  is the intramembrane solute concentration to account for the non-

lymphatic convective transfer across the peritoneal membrane, and 𝐶∗  is the concentration in the 

lymph vessels, which depends on the direction of the lymphatic flow (𝐶∗ = 𝑐D  if flow is from 

peritoneal cavity to lymph (vessels) or else 𝐶∗ = 𝑐p ). They found that glucose transport is purely 

diffusive while lymphatic flow was important in urea and creatinine transport. Non-lymphatic 

convective transport is important for urea, creatinine, potassium, phosphate, and sodium with a sieving 

coefficient close to 1 (all molecules passing through). Their models showcase that one general model 

cannot be applied across all body solutes but differs depending on the size, concentration, and 

diffusivity of solutes. 

The lymphatic flow is denoted by 𝐿 . Other studies that have included lymphatics flow are 

Waniewski et al. [101], who show that MTAC values are underestimated for total protein if lymphatic 

flow is neglected (Eq (36)). 

 

𝑉
𝑑𝑐𝐷
𝑑𝑡

= (𝑀𝑇𝐴𝐶(𝑐𝑝 − 𝑐𝐷) + (𝑈𝐹𝑅 + 𝐿)[(1 − 𝑓)𝑐𝑝 + 𝑓𝑐𝐷] − 𝐿𝑐𝐷) 

(36) 

The fitting constant 𝑓 is usually to be fitted for all solutes separately, but an assumption of 0.5 
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works for most small solutes excluding sodium [92]. 

So far, we have mainly discussed compartmental ODE models. Some efforts have included PDE 

descriptions of the PD process. For example, multi-compartment models such as those by Flessner et 

al. [39,102], consider the mass transfer from the capillaries into the surrounding peritoneal tissue and 

lymphatics to be contributors for solute flux in the peritoneal cavity. 

 

 𝑑𝑉𝑐𝐷
𝑑𝑡

= (𝑎𝑓 ∙ 𝑆 ∙
𝐷𝑡
𝜏
∙
𝜕𝑐𝑡
𝜕𝑥
|
𝑥=0⏟            

𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

−  𝑟𝐽𝑣′ (𝑎𝑓 ∙ 𝑆)𝑐𝑡|𝑥=0⏟            
𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛

)− 𝐿𝑐𝑝 

(37) 

where 𝑎𝑓 is the fractional peritoneal surface area in contact with the fluid (Section 3.1.5), 𝑐𝑡 is the 

concentration of the solute in the surrounding tissue, 𝑆 is the surface area of the peritoneal membrane 

(m2) and, 𝐷𝑡 is the diffusion coefficient in the tissue (m2min−1), 𝜏 is the tortuosity (dimensionless), 

𝑟 is the retardation factor (dimensionless), 𝐿 is the lymphatic flow rate (ml min−1), 𝑐𝑝 Is the blood 

plasma concentration (mol ml−1 ), and 𝐽𝑣′  is the local volume flux at distance 𝑥  into the tissue 

(ml m−2min−1). 

 
𝐽v
′ |𝑥 = (𝐽v𝑎𝑥𝑡 − 𝐽v𝑎𝑥)/(𝑎𝑓 ∙ 𝑆) 

(38) 

where 𝑎 is the capillary surface area per unit tissue (m−1) and 𝑥𝑡  is the thickness of the tissue (m). 

The distributed model is used to study fluid absorption and swelling of peritoneal tissue during 

peritoneal dwell [102,103]. Spatial models can also be utilized to monitor the penetration of 

medications, such as chemotherapeutics, administered into the peritoneal cavity. Other spatial models 

can be found in [104,105]. 

Gotch added the drain flow rate (= 𝐽𝑓𝑖𝑙𝑙 + 𝑈𝐹𝑅) to derive the solute flux into the peritoneal cavity 

for single pass CFPD as [96] (Eq (39)), 

 

𝑉
d𝑐𝐷
d𝑡

= (𝑀𝑇𝐴𝐶(𝑐p − 𝑐D) + 𝑈𝐹 ∙  𝑆𝑖𝐶𝑜 ∙ (0.67𝑐p + 0.33𝑐D) − (𝐽fill + 𝑈𝐹𝑅)𝑐D) 

(39) 

Öberg et al. used the three-pore model for both volume and solute flux for CFPD [38]. Volume 

fluxes are represented in Eqs (6)–(8). Using the volume flux and Patlak equation (Eq (30)), they 

calculated the solute fluxes as Eq (40), 

 

𝑉
d𝑐D
d𝑡

=  𝐽sS + 𝐽sL − 𝑐𝐷(𝐽vC + 𝐽vS + 𝐽vL + 𝐽fill) + 𝑐D0𝐽fill 

(40) 

where 𝐽sS and 𝐽sL are the solute fluxes over the small and large pores (solute flux over the ultrasmall 

pores is non-existent).  

Icodextrin is a mixture of different dextrin molecule fractions (molecular weight ranging from 

12–20 kDa). Briefly, for icodextrin modeling, an additional term is added that refers to the hydrolysis 

of the higher molecular weight icodextrin fraction, caused by the enzyme 𝛼-amylase. 
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𝑉
d𝑐D
d𝑡

=  𝐽sS + 𝐽sL + ∑ 𝑟𝑖
𝑗
𝑉𝑐𝐷,𝑎𝑚𝑦𝑙𝑎𝑠𝑒 . 𝑐𝐷,𝐼𝑐𝑜𝑗

𝑗=1,2,…,7

 

(41) 

where 𝑟𝑖
𝑗
  is the appearance rate of icodextrin fraction 𝑖  due to hydrolysis of fraction 𝑗 

(𝑚𝑙 𝑈−1𝑚𝑖𝑛−1 ), 𝑐𝐷,𝑎𝑚𝑦𝑙𝑎𝑠𝑒   is the amount of amylase (U), and 𝑐𝐷,𝐼𝑐𝑜𝑗   is the fraction 𝑗  of 

icodextrin [6,106]. 1 unit (U) is the amount of enzyme that catalyzes the reaction of 1 µmol of 

substrate per minute.  

From Eq (30), 

 

𝐽𝑠𝑆 = 𝐽𝑣𝑆(1 − 𝜎)
𝑐𝑝 − 𝑐𝐷𝑒

−𝑃𝑒,𝑆

1 − 𝑒−𝑃𝑒,𝑆 
 

(42) 

 

𝐽𝑠𝐿 = 𝐽𝑣𝐿(1 − 𝜎)
𝑐𝑝 − 𝑐𝐷𝑒

−𝑃𝑒,𝐿

1 − 𝑒−𝑃𝑒,𝐿 
 

(43) 

where 𝑃𝑒 is calculated from Eq (31). 

𝐽vC, 𝐽vS, and 𝐽vL are the volume fluxes over the three types of pores, 𝐽fill is the fill flow rate and 

𝑐D0 is the solute concentration in the fresh dialysate.   

4.1 How to calculate the solute flow parameters 

After calculating the volume flow, one can use it to calculate the solute flux. Standard peritoneal 

permeability analysis (SPA) is a standardized tool used to assess the membrane transport properties 

of a specific patient. These assessments are then used to determine the PD prescription for the 

specific patient [107]. For a SPA test, a static dwell is used with regular dialysate sampling and blood 

sampling [108]. 

4.1.1 Diffusion Coefficient, 𝐷 

The diffusion coefficient, 𝐷  (m2s−1 ) can be calculated for charged and uncharged particles 

through liquid flow at low flow rates, 

 

𝐷 =
𝜇kB𝑇

𝑞
 

(44) 

 

𝐷 =
kB𝑇

6π𝜂𝑟s
 

(45) 

where 𝜇  is the electric mobility of the solute (
m2

Vs
) , 𝑘𝐵  is the Boltzmann constant (Joule, J per 
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Kelvin), 𝑇  is the temperature (K ), 𝑞  is the charge of the solute (Coulomb), 𝜂  is the dynamic 

viscosity (Pa ∙ s), and 𝑟s is the solute radius (m). Equation (44) is for charged solutes and Eq (45) is 

for uncharged solutes. 

4.1.2 Mass transfer area coefficients, 𝑀𝑇𝐴𝐶 

The capacity for diffusion MTAC (ml min−1 ) is the maximal diffusive clearance and can be 

calculated from 

 

𝑀𝑇𝐴𝐶 = 𝐷
𝐴0
∆𝑥

𝐴

𝐴0
 

(46) 

where A0/Δx is the unrestricted surface area to diffusion length ratio (in cm). Typically, a patient with 

an average peritoneal solute transfer rate has an A0/Δx of 25,000 cm, whereas a value < 16,000 cm or > 

40,000 cm may indicate slow- and fast peritoneal transport, respectively. The factor A/A0 represents 

the diffusive hindrance factor and is usually estimated using the equation by Mason, Wendt, and 

Bresler [70], as follows 

 
𝐴

𝐴0
=

(1 − 𝜆)9/2

1 −  0.3956𝜆 +  1.0616𝜆2
 

(47) 

 

where λ is the solute to membrane pore radius ratio. MTAC may also be estimated from experimental 

data [92,100,109] 

 

𝑀𝑇𝐴𝐶 =
𝑉𝑡
𝑡
ln
𝑉0
1−𝑓
(𝑐𝑝 − 𝑐𝐷,0)

𝑉𝑡
1−𝑓
(𝑐𝑝 − 𝑐𝐷,𝑡)

 

(48) 

where 𝑉𝑡 and 𝑉0 is the intraperitoneal volume at time 𝑡 and 0, 𝑓 is from Eq (34) and 𝑐𝐷,0 and 

𝑐𝐷,𝑡 is the dialysate solute concentration at time 0 and t, respectively, and 𝑐𝑝 is the plasma solute 

concentration. 

Keshaviah et al. compared different functions for MTAC and found that the parabolic and negative 

exponential functions for urea, creatinine, and glucose best fit the dialysate volume profile [77], 

 
𝑀𝑇𝐴𝐶 = 𝑎1 + 𝑎2𝑉 + 𝑎3𝑉

2 
(49) 

 
𝑀𝑇𝐴𝐶 = 𝑎1[1.0 − exp(𝑎2𝑉)] 

(50) 

where 𝑎1, 𝑎2, 𝑎3 are fitting constants that are different for each of the three solutes. 

4.1.3 Sieving coefficients, 𝑆𝑖𝐶𝑜 

The sieving coefficient, 𝑆𝑖𝐶𝑜  (dimensionless), is usually fitted in a model [58,86–91], 

microscopy study [110] or calculated from experimental observations such as the formula derived by 

Chen et al. [67], 
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𝑆𝑖𝐶𝑜 =
1

𝑐p
(
𝑐D,𝑡 𝑉𝑡 + 𝑐D,𝑔 𝐶𝑙albumin − 𝑐D,0𝑉0

𝑉UF
) 

(51) 

where 𝑉𝑡 and 𝑉0 is the intraperitoneal volume at time 𝑡 and 0, respectively, 𝑐D,0 and 𝑐D,𝑡 are the 

dialysate solute concentration at time 0 and t, respectively, and 𝑐p is the plasma solute concentration, 

𝑉UF is the net ultrafiltration volume, and 𝐶𝑙albumin is the clearance of albumin. 

Rippe et al. also calculated the sieving coefficient incorporating hematocrit [111], 

 

𝑆𝑖𝐶𝑜 = 1 − (
𝑐𝑡
𝑐∗
{1 − [

(1 − 𝐻0)(1 − 𝑐0/𝑐𝑡)

1 − 𝐻0/𝐻𝑡
]}) 

(52) 

where 𝐻0, 𝐻𝑡 are the initial and final hematocrit and 𝑐0, 𝑐𝑡, and 𝑐∗ are the initial, final and average 

plasma proteins concentrations. 

It can also be simply calculated from the reflection coefficients calculated in Section 3.1.3, 

 
𝑆𝑖𝐶𝑜 = 1 − 𝜎 

(53) 

5. Summary of models for peritoneal dialysis 

In this section, we provide a comprehensive look at the different models of PD that have been 

developed throughout the years (1966–2019) (Figure 6). We looked for publications that mentioned 

“kinetic modeling”, “mathematical model”, “computational model” with “peritoneal dialysis”. In total, 

we found 26 distinct models of PD. We have mentioned what kind of compartments were considered 

along with what were the main aim/hypotheses of the modeling effort. Modeling was used as a tool to 

establish the efficiency of a PD model (5 out of 26) [38,41,78,94,112] while four models were designed 

to understand the fundamentals of solute and volume transport [42,58,98,113]. We have also 

characterized the types of transport processes were included in the volume and solute transport 

equations of the model. Three of the 26 models were purely diffusive [41,42,112] while other models 

(23 out of 26) included convection and diffusion into the surrounding tissue [83,114,115]. Some 

models were generalized for any type of solute [38,84,115] while some were prepared for specific 

solutes only [86–91,99]. Different PD modalities can be found in [7,38,51,78,93,116], and models for 

glucose-sparring solutions are in [6,106,117]. Table 1 shows a consecutive overview of 26 PD models 

that have been published, and figure 6 shows the evolution of PD models. Depending on the solute(s) 

or drug and which part of the PD process one is interested in, one can choose any of these models.  

 

Figure 6. Evolution of PD models starting from the 1960s. 
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Table 1. Overview of various PD models with different interpretations of volume and solute flux, types of compartments, and PD mode. 

Some models were developed specifically for a particular type of solute while others can be generalized to other solutes. 

Model Purpose Type of PD Method Volume 

flux 

Solute flux Solute 

included 

Compartment Model 

developed 

Ref. 

Kallen 

(1966) 

To determine PD 

efficacy in different 

body sizes by 

modeling 

Static dwell Modeling Osmotic 

gradient 

Diffusion Urea Body, Peritoneal 

cavity 

Nomogram [41] 

Miller et 

al. (1966) 

To determine the most 

efficient mode of APD 

through clinical 

studies 

Intermittent, 

Intermittent 

Recirculating, 

Continuous, 

Continuous 

recirculating, 

Rapid intermittent, 

Continuous 

compound dialysis 

Modeling + 

Clinical (n = 

14) 

- Diffusion Urea, 

Creatinine, 

Uric acid 

Body, Peritoneal 

cavity 

Algebraic [112] 

Henderso

n et al. 

(1969) 

To make a 

mathematical model of 

peritoneal solute 

transport by diffusion 

Static dwell Modeling + 

Clinical (n = 

6) 

- Diffusion Inulin, Urea 

 

Blood, Peritoneal 

cavity 

ODE [42] 
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Babb et 

al. (1973) 

To develop a bi-

directional mass 

transfer model for 

solutes  

Static dwell Modeling + 

Clinical (n = 

3) 

Ultra-

filtration 

(constant) 

Diffusion, 

Convection 

Urea, 

Creatinine, 

Uric acid, 

Sucrose, 

Vitamin 

B12, Inulin 

Capillary blood, 

Peritoneal cavity 

ODE 

 

[58] 

Villarroel 

et al. 

(1977) 

To characterize solute 

clearances for 

different types of PD 

with modeling 

Intermittent PD, 

CFPD 

Modeling Outgoing 

flow rate 

Diffusion 

(intermittent), 

Diffusion + 

convection 

(continuous) 

Urea 

 

Blood, Peritoneal 

cavity 

Algebraic  [99] 

Randerso

n et al. 

(1980) 

To determine whether 

a two-pool or three-

pool model represents 

solute transfer in 

CAPD 

CAPD Modeling + 

Clinical (n = 

15) 

No flux Diffusion, 

Convection, 

Metabolic 

generation, 

Residual renal 

clearance 

Urea, 

Creatinine, 

Vitamin 

B12 

Body + Peritoneal 

cavity (Urea, 

Creatinine), 

Extracellular 

compartment + 

intracellular 

compartment + 

Peritoneal cavity 

(B12) 

ODE [94] 

Garred et 

al. (1983) 

To develop a model for 

mass transfer in CAPD 

CAPD Modeling Ultrafiltrat

ion 

(constant) 

Diffusion, 

Convection 

Urea, 

Creatinine, 

Vitamin 

B12 

Blood, Peritoneal 

cavity 

ODE [100

] 
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Flessner 

et al. 

(1985) 

To develop a model of 

peritoneal transport 

that includes diffusion 

and convection into 

the surrounding tissue 

Static dwell Modeling Osmotic 

gradient, 

Ultrafiltrat

ion, 

Lymphatic

s 

Diffusion, 

Convection 

Sucrose Peritoneal cavity, 

Peritoneal tissue, 

Distribution 

volume, Body 

exchange 

compartment 

PDE [39] 

Krediet et 

al. (1986) 

To determine MTAC 

for different solutes by 

a first order kinetic 

model of solute mass 

transfer 

CAPD Modeling + 

Clinical (n = 

11) 

Ultrafiltrat

ion 

(constant) 

Diffusion, 

Convection 

Urea, 

Lactate, 

Creatinine, 

Glucose, 

Kanamycin, 

Inulin 

Blood, Peritoneal 

cavity 

ODE [109

] 

Jaffrin et 

al. (1987) 

To determine the 

peritoneal solute 

concentration and 

volume variation in 

CAPD using a one-

pool model varying 

dwell time and glucose 

concentration 

CAPD Modeling Osmotic 

gradient 

Diffusion, 

Convection 

Solute 

independent 

Blood, Peritoneal 

cavity 

ODE [84] 
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Mactier et 

al. (1988) 

To determine the 

impact of peritoneal 

cavity lymphatic 

absorption on 

ultrafiltration and 

solute clearances 

CAPD Modeling + 

Clinical (n = 

10) 

Ultrafiltrat

ion, 

Lymphatic

s 

- Creatinine, 

Glucose 

- Algebraic [113] 

Leypoldt 

et al. 

(1988) 

To distinguish 

between indicator 

dilution volume and 

true dialysate volume 

Static dwell Modeling + 

experiment 

(rabbit, n = 

9) 

- Diffusion, 

Lymphatics 

Creatinine Blood, 

Lymphatics, 

Peritoneal tissue 

ODE [98] 

Vonesh et 

al. (1991) 

To use modeling as a 

tool to predict fluid 

and mass removal and 

guide selection of PD 

type for patients 

CCPD, Tidal PD Modeling + 

Clinical (n = 

5, different 

PD types) 

Osmotic 

gradient, 

Lymphatic

s 

Diffusion, 

Convection 

Urea, 

Creatinine, 

Glucose, 

𝛽2  micro-

globulin 

Body, Peritoneal 

cavity 

ODE [85] 

Waniews

ki et al. 

(1991) 

To simplify Garred 

model [100] for small 

solute transport 

Static dwell Modeling + 

clinical 

studies (n = 

21) 

Ultrafiltrat

ion 

(constant) 

Diffusion, 

Convection 

Urea, 

Creatinine, 

Glucose, 

Potassium, 

Sodium, 

Protein 

Blood, Peritoneal 

cavity 

Algebraic [92] 
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Rippe 

(1991) 

To develop a new 

model for CAPD 

assuming the 

peritoneal membrane 

is mainly composed of 

three types of pores 

(TPM) 

CAPD Modeling Ultrafiltrat

ion, 

Lymphatic

s 

Diffusion, 

Convection 

Glucose, 

Urea, 

Sodium, 

Albumin, 

Phosphate, 

𝛽2  microglo

bulin 

Body, Peritoneal 

Cavity 

ODE [7] 

Waniews

ki et al. 

(1992) 

To develop simple 

membrane models for 

diffusive and 

convective solute 

transport 

Static dwell Modeling + 

Clinical (n = 

20) 

Ultrafiltrat

ion 

Diffusion, 

Convection 

Urea, 

Creatinine, 

Sodium, 

Potassium, 

Glucose, 

Total 

protein 

Body, Peritoneal 

cavity 

ODE [118] 

Graff and 

Fugleberg 

(1994) 

To determine the best 

solute transport 

mechanism for 

different solutes  

Static dwell Modeling + 

Clinical (n = 

21 to 26) 

Ultrafiltrat

ion, 

Lymphatic

s 

Diffusion, 

Convection 

(non-

lymphatic and 

lymphatic) 

Urea, 

Glucose, 

Phosphate, 

Creatinine, 

Potassium, 

Sodium 

Body, Peritoneal 

Cavity 

ODE 

 

[86–

91] 

Gotch 

(2002) 

To develop a kinetic 

model of CFPD 

Single pass CFPD Modeling Ultrafiltrat

ion 

Diffusion, 

Convection 

Urea Body, Peritoneal 

cavity, (External 

Dialyser) 

ODE, 

Empirical 

[96] 
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Akonur et 

al. (2010) 

To use TPM for 

optimization of drain 

phase in static dwell 

Static dwell Modeling Ultrafiltrat

ion, 

Lymphatic

s, Biphasic 

equation 

for drain 

Diffusion, 

Convection, 

Lymphatics 

Urea Body, Peritoneal 

Cavity 

ODE [119] 

Akonur et 

al. (2015) 

To modify TPM to 

include α-amylase 

activity in icodextrin 

kinetics 

Static dwell Modeling Ultrafiltrat

ion, 

Lymphatic

s 

Diffusion, 

Convection, 

Lymphatics, 

First order 

degradation 

of higher 

weight 

fractions of 

icodextrin 

Icodextrin Body, Peritoneal 

Cavity 

ODE [106

] 

Oberg et 

al. (2017) 

To extend classic TPM 

to include the fill and 

drain phases of dwell. 

APD Modeling Ultrafiltrat

ion, 

Lymphatic

s 

Diffusion, 

Convection, 

Lymphatics 

Glucose, 

Urea, 

Sodium, 

Phosphate, 

𝛽2 microglo

bulin, 

Creatinine, 

Total 

protein 

Body, Peritoneal 

Cavity 

ODE [56] 
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Oberg et 

al. (2019) 

To extend TPM for 

CFPD and determine 

the ultrafiltration rate 

CFPD Modeling Ultrafiltrat

ion, 

Lymphatic

s 

Diffusion, 

Convection, 

Lymphatics 

Glucose, 

Urea, 

Sodium, 

Phosphate, 

𝛽2  microglo

bulin, 

Creatinine, 

Total 

protein 

Body, Peritoneal 

Cavity 

ODE [38] 

Lee et al. 

(2020) 

To model steady 

(glucose) 

concentration PD 

(SCPD) with 

continuous glucose 

infusion  

SCPD Modeling Ultrafiltrat

ion, 

Lymphatic

s 

Diffusion, 

Convection, 

Lymphatics, 

Infusion of 

glucose 

Glucose, 

Urea, 

Sodium, 

Creatinine, 

Total 

Protein  

Body, Peritoneal 

Cavity 

ODE [120

] 

Wolf et al. 

(2021) 

To extend TPM to 

determine acid-base 

kinetics during PD 

Static dwell Modeling Ultrafiltrat

ion, 

Lymphatic

s 

Diffusion, 

Convection, 

Lymphatics, 

CO2 

conversion to 

bicarbonate 

Glucose, 

Urea, 

Sodium, 

Phosphate, 

Total 

protein, 

Lactate, 

Bicarbonate

, Calcium, 

Magnesium 

Body, Peritoneal 

Cavity 

ODE [121

] 
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Stachows

ka-Pietka 

et al. 

(2023) 

To modify TPM to 

include α-amylase 

activity in icodextrin 

kinetics 

Static dwell Modeling + 

Clinical (n = 

11) 

Ultrafiltrat

ion, 

Lymphatic

s 

Diffusion, 

Convection, 

Lymphatics, 

First order 

kinetics of 

icodextrin 

hydrolysis 

including α-

amylase 

concentration 

Glucose, 

Creatinine, 

Icodextrin 

Body, Peritoneal 

Cavity 

ODE [117] 

Hartinger 

et al. 

(2023) 

To make a population 

pharmacokinetic 

model of vancomycin 

Static dwell Modeling + 

Clinical (n = 

41) 

- First order 

clearance 

Vancomycin Peritoneal cavity, 

one and two-

compartment 

models for rest of 

the body 

PK [122

] 

ODE, Ordinary differential equations (Assume that the compartment is homogeneously mixed); PDE, Partial differential equations (distribution 

within the compartment is important); MTAC, Mass transfer are area coefficient; TPM, Three-pore model; PK, Pharmacokinetic model (series of 

ODE to describe the rates of drug absorption, distribution, metabolism and elimination to predict  drug concentration changes over time); PD, 

Peritoneal Dialysis; APD, Automated PD; CFPD, Continuous flow PD; CAPD, Continuous Ambulatory PD; CCPD, Continuous cycling PD.
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6. Test case for developing a mathematical model of PD 

Many PD-related questions can be answered with mathematical modeling, for example:  

- What is the optimal glucose concentration for PD, balancing ultrafiltration (volume and 

efficiency) versus adverse effects (e.g., increased peritonitis risk)? 

- What is the influence of two catheters vs one single lumen catheter on solute clearance in 

continuous flow vs tidal PD? 

- How does the intraperitoneal dialysate volume affect solute clearance in CAPD or CFPD? 

- Which flow rates are ideal in CFPD? 

- What is the clearance of a particular solute/drug for a particular PD modality (CAPD, APD, or 

CFPD)? 

- How does tidal PD with partial drainage of the solution, leaving a residual volume in the 

peritoneal cavity, affect solute clearance as compared to complete drainage? 

In Table 2, we demonstrate how we can create and implement our mathematical model if we know 

which research question we want to answer, what experimental data or literature data we possess, and 

what kind of math is necessary for the model. With the realized model, we can then play with the 

parameters to determine an optimal treatment scenario for the patient, as we can analyze both the short-

term and long-term effects of a session. 

Table 2. A stepwise approach to design a mathematical model from scratch. An example 

scenario explains how, with the objective and preliminary data specified, one can further 

build an existing model to answer a particular PD-related question. ‘Drug’ in this example 

can be replaced with any endogeneous solute that is removed by PD. 

  Steps to creating a mathematical 

model 

Example scenario 

1 

IN
P

U
T

 

Clearly specify the problem  What is the clearance of drug X is given to 

the patient via PD? What is the influence of 

drug X on solute clearance? 

2 Which data are available? The concentration of solutes (𝑐𝐷) and drug 

(𝑐𝑑𝑟𝑢𝑔) in the fluid, device flow rates (𝐽𝑓𝑖𝑙𝑙 , 

𝐽𝑑𝑟𝑎𝑖𝑛 ), distribution volume and intra-

peritoneal volume, diffusion capacities of the 

solutes and drug (𝑀𝑇𝐴𝐶). 𝑀𝑇𝐴𝐶 values can 

be obtained from studies like [123], where 

they analyze the transport of model 

compounds according to weight, acidity, 

partition coefficient (𝛷  , see Section 3.1.3). 

Note that an increase in MTAC should be 

taken into account for CFPD (several-fold 

increase may occur) 

3 Are lymphatics involved in 

removal of this drug? 

Depending on the answer, one can put the 

lymphatic flow rate, 𝐿 = 0 for the ones that 
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do not have lymphatics involved at all. 

Certain drugs might inhibit solute transport to 

blood but encourage lymphatic transport 

[124,125]. 

4 Is the drug removed primarily by 

diffusion (as is glucose) or also via 

convection? 

There are many studies for drug clearance by 

peritoneal membrane, especially antibiotics 

and chemotherapy drugs [126,127]. Dedrick 

et al. designed a pharmacokinetic model of 

drug clearance by the peritoneal membrane to 

select the one better suited for a clinical trial 

[128]. Having an idea of the removal kinetics 

would help to choose between a diffusion 

only model [41,112] or convection + 

diffusion model [38,96].  

5 Is the solute clearance inhibited by 

the drug X? 

Studies show that drugs like furosemide or 

ACE inhibitors might inhibit solute transport 

across the peritoneal membrane [129,130]. 

This can be modeled by a reduced 𝑀𝑇𝐴𝐶 

for the solute in question. 

6 Does the drug penetrate the 

surrounding tissue? 

Dedrick et al. have shown in their model that 

for slowly reacting drugs there can be surface 

penetration up to (𝐷/𝑘)0.5,  where 𝐷  is the 

diffusivity of the drug and 𝑘  is the rate 

constrant of drug removal from tissue [131].  

If significant, it might be necessary to use the 

Flessner model [115]. 

7 Is it a static dwell or continuous 

flow model? 

Static dwell model such as [89,92,98] or 

continuous flow model like [78,96,109] 

could be chosen. 

8 Are time series data of the 

dialysate solute concentration 

available? 

If yes, the model that is chosen in the steps 3–

7 could be fitted to obtain the correct 𝑀𝑇𝐴𝐶 

value or other previously assumed 

parameters. If no, with the PD effluent, one 

can estimate the average 𝑀𝑇𝐴𝐶  during a 

particular session. Note that, in both cases, 

average 𝑀𝑇𝐴𝐶  is most often estimated as 

the parameter that decreases during the dwell 

time [77]. 

9 OUTPUT Can clearance be calculated? With a precise parameter set, clearance of 

drug X and other solutes can be calculated in 

any time range for a specific patient. 
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7. Discussion 

In this review, we give an overview of the physical principles that govern peritoneal dialysis and 

summarize the essential (differential) equations for volume and solute flux that are required to model 

peritoneal dialysis. These models are sometimes based on simple principles and parameters are lumped 

together to study a compartmentalized version of the body [41,58,86–91], while other models are very 

complex and require many parameters to capture the physical processes in depth [38,102,115]. In this 

review, we chose to focus more on the time dimensional models, and thus a spatial model discussion 

is out of scope. However, spatial models can be found in [39,83,103–105,114,115]. We have also not 

included other glucose-sparring solutions that have been modelled, and valuable information on this 

can be found in [6,106,117]. We also list different ways the in which various simulation parameters 

are obtained. Most often, parameters are derived directly from patient data (effective peritoneal surface 

area, dialysate clearance, etc.), some of the parameters are derived from analytical formulae (reflection 

coefficient, hydrostatic, and osmotic pressure difference), others are derived from the model itself 

(ultrafiltration, pore contribution to ultrafiltration, and fractional hydraulic conductance), and some 

parameters may be fitted to obtain the best (patient-specific) interpretation of the dialysate and plasma 

solute concentration. Each model can be modified to fit the required patient data and get outputs such 

as ultrafiltration rate, mass transfer area coefficients, and residual volumes. From Eqs (15) and (16), 

we do not see a significant difference in the estimation of sieving coefficients (Supplementary Figure 1). 

This underlines the fact that multiple studies have been done to converge on the most optimal values 

of reflection coefficients. However, we must note that reflection coefficients and thus, sieving 

coefficients may differ with prolonged exposure of the membrane to glucose and glucose-degradation 

products. This highlights a critical gap in the literature, necessitating further investigation to refine 

these parameters for enhanced model accuracy. 

The human body is a complex system, which makes it difficult to model. Modeling its various 

parts should eventually lead us to understand the whole. Over the years, PD models have generally 

included more and more transport processes. The first PD models were purely diffusive which is 

representative of small molecular transport such as that of urea and creatinine [41,42,112]. As the 

importance of middle-sized molecules became appreciated, convection was added to the models, as 

this is an important route to eliminate these compounds [58,99]. Lymphatic absorption [38,96] and 

peritoneal tissue surface area [115] have since been added to the models. As per the new ISPD 

guidelines, ultrafiltration is a crucial parameter to determine the efficacy of a PD treatment [132]. Thus, 

we see that recent models are also trying to model time-dependent ultrafiltration in patients [38]. This 

requires rigorous evaluations and comparisons of ultrafiltration rates. In Section 3.1.7, we discuss 

multiple ways to obtain ultrafiltration rate and which efforts can be made to make the best estimate. 

With an increase in computational power and physical understanding, the model complexity can 

be increased to create a better picture of the underlying mechanisms in the patient’s peritoneal cavity. 

Herein lies a caveat. The increased complexity makes the model space hyper-parameterized. Thus, 

finding efficient parameter combinations that satisfy physiological relations is difficult to achieve 

without multiple assumptions. This can be achieved by fitting parameters to clinical data (for example, 

in [133], Stachowska-Pietka et al. fitted 16 parameters while assuming 9 parameters to be fixed) and 

calibrating the model in a different scenario (they showed that the predictions of interstitial 

concentration of mannitol in rat abdominal wall were in agreement with experiments [133]). Future 

models can be improved to include metabolism of glucose in the peritoneum, and vascular 



463 

Mathematical Biosciences and Engineering  Volume 22, Issue 2, 431–476. 

inflammation [134] and how these affect the peritoneal membrane, positioning of catheters in patients 

and cellular contributions to the solute clearances (for example for glucose [135]). Future PD models 

can also be made spatial (using for example partial differential equations) to understand the spatial 

influence of flow and the solute gradient. How does the continuous flow change the boundary layer of 

the peritoneal membrane? What happens to the residual volume? What fraction of recirculation occurs 

just at the tip of the catheter? Can patient-reported outcome measures be linked to PD (efficacy) 

parameters? Partial differential equation modeling (used for space localisation) of the peritoneal cavity 

may help us answer these questions. Agent based modeling (ABM) can also be helpful in this aspect. 

ABM models take into account different agents (e.g., patient characteristics, residual kidney function, 

smoking, dietary habits, transport status, sex, weight, and osmotic agent, etc.) to assess the problem 

and make decisions based on a complex behavioral pattern. ABM models have already been used to 

determine the optimum treatment pathway for HD patients based on patients’, nephrologists’, and 

surgeons’ attributes [136]. From recent developments in PD, we definitely see that patient 

membrane characteristics and preferences play a huge role in managing the patient. Efforts have 

already been made in the past to suggest the best mode of PD treatment for different patient 

characteristics [38,85,99,112,137] but more work needs to be done on personalizing a single PD mode 

based on the sex, age, weight, peritoneal characteristics, and residual kidney function of the patient. 

Nevertheless, there are many aspects that a virtual PD system cannot cover, such as catheter 

dysfunction and nonadherence to medication.  

We can picture the growth of mathematical modeling of PD in two complementary directions: 

Fundamental understanding and personalization. More technical components can be introduced to the 

existing models, and parameters can be analyzed to facilitate a faster understanding of the new devices 

and optimize them before market entry. One aspect that has been little explored is to employ 

computational modeling to evaluate different bio-compatible osmotic agents replacing glucose to 

avoid the adverse effects of glucose and glucose by-products in PD patients. Recent advances in 

modeling includes using PD models to create virtual clinical trials and personalize treatments specific 

to the patient with the help of their clinicians. 

Virtual Patients 

The interest in virtual patients is growing, as we have seen with PBPK (physiologically based 

pharmacokinetic) and PKPD (pharmacokinetic and pharmacodynamic) modeling studies becoming 

mandatory in drug studies [138,139,140]. Similarly, in silico modeling could become essential to 

medical device development. To realize this, we need digital patient twins. Enabling the use of a virtual 

platform to test and develop medical devices, would reduce risk and regulatory burden. The FDA also 

has directed funds towards the establishment of computational modeling as a regulatory tool [141]. A 

growing virtual database (including patients and animals) could mean that with a computational model, 

we could identify the risk groups and drug side effects, reduce animal testing, and establish safe protocols. 

Complexity of PD devices 

Currently, there are several CFPD devices under development using continuous sorbent-based 

dialysate regeneration (preclinical or clinical developmental phase) [142,143]. To realize these devices 

in mathematical terms, future work needs to focus on adding flow through a sorbent chamber. There 

needs to be an evaluation of dead volume- and recirculation-related loss of efficiency in the system 

due to application of rapid flow cycling via a single lumen catheter. Considering all the potential 
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parameter settings, which likely influence each other, investigating all parameter combinations is very 

time consuming, requiring large clinical trials, with many resources and tremendous planning [144]. 

Computational modeling can help in rapid optimization and avoid unnecessary scenario testing 

through careful calibration and validation. 

Personalization 

Other problems with clinical trials include the lack of randomization of patients (inclusivity in 

terms of sex, age, etc.), difficulty in studying long term effects (due to patient drop out e.g., due to 

kidney transplantation), lack of blinding, the learning curve (an already existing system may be easier 

to handle), and general reluctance (by both doctors and patients) to try new technologies [29]. Chronic 

kidney disease patients also use various medications, which may interfere with the efficiency of the 

PD session. With mathematical modeling, we can optimize PD treatments [56,145] and conduct virtual 

PD trials with an inclusive patient spread (age, sex, stage of renal disease, transport parameters, intra-

abdominal volume, etc.) and study the short- and long-term effects of different modes of PD. Moreover, 

PD prescription models such as PatientOnLine [34,146] and PD ADEQUEST [147,148], developed to 

optimize and personalize PD prescription, have also been validated in multicentre studies. However, 

the focus of these prescription models is on optimizing the dialysis dose and ultrafiltration and not on 

patient quality of life. Incorporation of more patient specific factors [149–151] into the model may 

further personalize PD prescription and contribute to patient well-being.  

8. Conclusions 

In silico modeling is a powerful tool that can be used to understand gaps in knowledge of both 

new and old PD devices and facilitates their quick and efficient transition from in vitro to in vivo to 

patient care. In this review, we looked at the different modeling approaches explored through the years 

to model PD and the essential components in a PD compartmental model. We are optimistic that a joint 

effort of computational modelers and clinicians can help in the technical improvement of PD 

technology and in personalizing PD treatment to ensure a higher quality of life for patients. 
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Acronyms 

ACE: Angiotensin-Converting Enzyme 

APD: Automated Peritoneal Dialysis 

AQP1: Aquaporin-1 

CAPD: Continuous Ambulatory Peritoneal Dialysis 

CFPD: Continuous Flow Peritoneal Dialysis 

CCPD: Continuous Cycling Peritoneal Dialysis 

CT: Computed Tomography 

ESKD: End-Stage Kidney Disease 

HD: Hemodialysis 

IPV: Intraperitoneal Volume 

MTAC: Mass Transfer Area Coefficients 

OCG: Osmotic Conductance to Glucose 

ODE: Ordinary Differential Equation 

PDE: Partial Differential Equation 

PD: Peritoneal Dialysis 

PK: Pharmacokinetic Model 

SAPD: Standard Automated Peritoneal Dialysis 

SPA: Standard Peritoneal Assessment 

TPM: Three-Pore Model 

UF: Ultrafiltration Volume 

UFR: Ultrafiltration Rate 

Glossary  

A = fitting constant for exponential decrease of UF over time (dimensionless) 

𝑎𝑓  = Fraction of peritoneal membrane in contact with fluid (dimensionless); 𝑎𝑓 = 16.18 ∗

1−𝑒−0.00077∗𝑉

13.3187
  [78] 

𝑐D = dialysate solute concentration (mmol/l or mmol/m3), proteins are displayed in g/L or g/dL. 

𝑐drain = drain solute concentration (mmol/l) 

𝑐p = peripheral vein plasma water solute concentration (mmol/l), proteins are displayed in g/L or g/dL. 

𝒄 = intramembrane solute concentration (mmol/l) 

𝐷 = diffusion coefficient (dimensionless) 

𝑓 = function of Pe (dimensionless) 

𝑓𝑐𝑡 = equilibrium 𝑐𝑝/𝑐𝐷 (dimensionless) 

𝐽drain = drain flow rate (l/min)  

𝐽fill = fill flow rate (l/min)  

𝐽v = volume flux (l/min) 

𝐽s = solute flux (mmol/min) 
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𝐾 = permeability coefficient (dimensionless) 

𝐿 = lymphatic flow (l/min) 

𝐿𝑝 = hydraulic conductivity (l/(min.cm2.mmHg)) 

𝑀𝑇𝐴𝐶 = mass transfer area coefficients (ml/min or m3/min) 

𝑃 = hydrostatic pressure (mmHg) 

𝑃𝑒 = Peclet number (dimensionless) to determine the importance of convection over diffusion 

𝑟 = retardation factor (dimensionless) 

𝑆 = peritoneal surface area (m2) 

𝑆𝑖𝐶𝑜 = sieving coefficient (dimensionless) 

𝑡 = time of session (hr) 

𝑈𝐹𝑅 = ultrafiltration rate (l/min) 

𝑉 = intraperitoneal volume (l) 

𝑉𝑟 = residual volume (l) 

𝑉𝑓𝑖𝑙𝑙 = initial fill volume (l) 

𝑉𝑑𝑟𝑎𝑖𝑛 = drain volume (l) 

𝑊 = body weight (kg) 

Greek symbols 

𝛼 = contribution to ultrafiltration coefficient (dimensionless); for ultrasmall pores 𝛼𝐶 = 0.02, small 

pores 𝛼𝑆 = 0.9 and for large pores 𝛼𝐿= 0.08 

𝛽 = time constant for exponential decrease of UF over time (dimensionless) 

𝜆 = solute radius/membrane pore radius (dimensionless) 

𝜎 = reflection coefficient (dimensionless); calculated for different solutes.  

𝜋 = oncotic pressure (mmHg) 

Φ = equilibrium partition coefficient (dimensionless) 

𝜏 = tortuosity factor (dimensionless) 

Subscripts 

𝑔𝑙𝑢 = glucose 

𝑡 = at time t 

𝑓𝑖𝑙𝑙  = filling the peritoneal cavity at time 0 (static dwell) or during the session (CFPD, APD) 

𝑑𝑟𝑎𝑖𝑛 = drain of the peritoneal cavity after (static dwell) or during the dwell (CFPD, APD) 

𝑠 = solute flux 

𝑣 = volume flux 

𝐶 = ultrasmall pores 

𝑆 = small pores 

𝐿 = large pores 

𝑟 = residual 
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