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Abstract: In this work, we study the qualitative properties of a simple mathematical model that can
be applied to the reversal of antimicrobial resistance. In particular, we analyze the model from three
perspectives: ordinary differential equations (ODEs), stochastic differential equations (SDEs) driven
by Brownian motion, and fractional differential equations (FDEs) with Caputo temporal derivatives.
Finally, we address the case of Escherichia coli exposed to colistin using parameters from the literature
in order to assess the validity of the qualitative properties of the model.
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1. Introduction

Antimicrobial resistance (AMR) is a critical global health challenge that compromises the
effectiveness of antibiotics, leading to prolonged infections, increased mortality, and significant
economic burdens [1]. AMR arises when bacteria develop mechanisms to evade the action of
antibiotics, and reversing this resistance is essential to restore the efficacy of treatments [2]. The
phenomenon of AMR reversal occurs when resistant bacteria lose their resistance mechanisms, often
due to fitness costs associated with resistance. In antibiotic-free environments, sensitive bacteria may
outcompete resistant ones, leading to the dominance of sensitive populations. Mechanisms such as
reversible mutations, the loss of resistant plasmids, and the impact of fitness costs have been
well-documented as drivers of AMR reversal [3–5]. Various mathematical models have described the
dynamics of AMR, particularly in bacterial populations, both in vitro and in vivo [6, 7]. These models
provide important insights into how resistance evolves and under what conditions it can be reversed.

To enhance the understanding of AMR reversal dynamics, it is useful to consider analogies with
epidemiological processes. In epidemiology, the propagation of an infectious disease is modeled by
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categorizing individuals either susceptible, infected, or recovered (SIR). Analogously, in AMR
dynamics, sensitive bacteria can be conceptualized as susceptible, resistant bacteria as infected, and
the reversal of resistance as a recovery process. This analogy provides a framework to examine AMR
as an epidemiological process, particularly directly modeling bacterial populations, rather than in
infected patients. However, it is crucial to note that while AMR reversal can occasionally align with
this analogy, it does not invariably hold true because of the complexity of the resistance mechanisms
and bacterial ecology [8, 9].

Epidemiological models have long been an important tool for mathematical biology, starting with
the pioneering work of Kermack and McKendrick in 1927, who proposed the SIR model to describe
the spread of infectious diseases within a closed population [10]. Subsequent developments have
introduced stochastic and fractional approaches to better capture the complexities of real-world
dynamics. For instance, stochastic models incorporate randomness to account for population
variability and inherent uncertainties in disease transmission [11–15]. Fractional models extend
traditional models by incorporating fractional derivatives, which allow for the inclusion of memory
effects and non-local interactions [16]. These approaches are particularly valuable for analyzing the
stability of antimicrobial resistance (AMR) dynamics. Stability analysis is essential to understand
whether resistance will persist, decline, or be eradicated, which is analogous to predicting the
endemicity or eradication of infectious diseases. By identifying critical thresholds, such as the basic
reproduction number in epidemiological models or resistance thresholds in AMR, these models
enhance the capability of predicting the system behavior.

This study addresses AMR reversal using three modeling approaches: deterministic, stochastic, and
fractional. To examine the qualitative characteristics of the three models and compare their outcomes,
we introduce a simple mathematical model that has been adapted to explore the resistance reversal. To
the best of our knowledge, no existing study has analyzed the qualitative properties of a model for AMR
reversal from the perspectives of deterministic, stochastic, and fractional differential equations. Rather
than proposing a single mathematical model that incorporates all three frameworks, our study focuses
on comparing how the stability and long-term behavior of AMR reversal differ across these approaches.
This comparative analysis reveals that the outcomes regarding AMR extinction and persistence can
vary significantly, depending on the modeling approach employed.

We have divided this work into two main parts. First, we analyze a mathematical model of AMR
reversal deterministically, stochastically, and fractionally. Then, the qualitative properties of the model
are analyzed. More specifically, we ensured the existence and uniqueness of solutions to these models.
In addition, we ensured the invariance of the solutions within a biologically relevant set. Moreover, we
demonstrated the stability of the trivial solutions in these models. Finally, we provide the conditions
for disease extinction, disease persistence, and stationary measures in some models. In the second part,
we used assumed data from E. coli exposed to colistin to numerically validate the theoretical results .

2. Mathematical model formulation

Let S (t) denote the number of sensitive bacteria at time t, and R(t) represent the number of resistant
bacteria at time t. To formulate our mathematical model, we make the following basic assumptions,
keeping in mind that the primary focus is on exploring the deterministic, stochastic, and fractional
modeling approaches, thereby using AMR dynamics as an illustrative example, rather than going into
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biological details.

- We assume a turnover rate µ which represents that both sensitive and resistant bacteria die and
are replaced at a proportional rate, while ignoring fitness costs of resistance.

- Let β denotes the rate at which sensitive bacteria acquire plasmids through conjugation. Resistant
bacteria lose their resistance genes and revert to a sensitive state at a rate γ.

- Sensitive bacteria reduce the rate of acquiring resistance by selective pressure as the population

of the resistant bacteria increases, which is modeled by a functional response g(R) = β
R

1 + ϵR
,

where ϵ is a known constant called a saturation rate.

Consequently, our mathematical model is described by the following deterministic equations:
dS
dt
= µ(N − S ) + γR − β

R
1 + ϵR

S

dR
dt
= β

R
1 + ϵR

S − (γ + µ)R.

(2.1)

In this work, the term R+0 represents non-negative real numbers. The equations in (2.1) are coupled by
the assumption N = S (t)+R(t) for all t ∈ R+0 . Thus, we can study one equation in terms of the resistant
bacteria R(t). More precisely, we will study the following deterministc equation:

dR
dt
= β

R
1 + ϵR

(N − R) − (γ + µ)R. (2.2)

In the stochastic model, we perturb the rate β as follows:

β̂dt = βdt + σdB(t),

where σ is the rate of the stochastic perturbation and B is a Brownian motion in a probability space
(Ω,F ,P). Therefore, the stochastic differential equation takes the following form:

dR =

(
β

R
1 + ϵR

(N − R) − (γ + µ)R
)

dt + σ
R

1 + ϵR
(N − R)dB(t). (2.3)

This type of perturbation appears in [12, 13].
Finally, we introduce the fractional model, which we represent with the following fractional

differential equation:
dαR
dtα

= β
R

1 + ϵR
(N − R) − (γ + µ)R, (2.4)

where
dα

dtα
is the Caputo derivative of order α, with α ∈ (0, 1). This type of fractional model equation

can be found in [16, 17].
In this work, we define the threshold parameters that characterize the qualitative properties of (2.2)–

(2.4). The ideas for proving the qualitative properties of (2.3) were adapted from [18] and are presented
here in terms of the stochastic threshold parameter.
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3. Theoretical results

3.1. Defining thresholds

In order to facilitate the mathematical calculations of the three models (2.2)–(2.4) and make the
results easier to understand, we define certain thresholds, similar to the basic reproduction numbers
in epidemiological models, and introduce Lyapunov operators. These thresholds and operators guide
the stability and persistence of plasmid-carrying bacteria within a population in different modeling
contexts.

Table 1. Thresholds and Lyapunov operators for the three mathematical approaches
considered in our mathematical models (2.2)–(2.4).

Approach Threshold Lyapunov operator

Deterministic Kd
0 :=

βN
(γ + µ)

Ld :=
(
β

R
1 + ϵR

(N − R) − (γ + µ)R
) d

dR

Stochastic K s
0 :=

βN
(γ + µ)

−
σ2N2

2(γ + µ)
Ls := Ld +

1
2

(
σ2 R2

(1 + ϵR)2 (N − R)2

)
d2

dR2

Fractionary K
f

0 :=
βN

(γ + µ)
L f :=

dα

dtα

3.2. The deterministic approach

This section explores the qualitative properties of the deterministic model (2.2). Let us note that if

β
R

1 + ϵR
(N − R) − (γ + µ)R = 0,

then the equilibrium points of (2.2) are as follows:

R = 0 and R =
βN − γ − µ
β + ϵ(γ + µ)

:= ξd. (3.1)

We start by showing that (0,N) is an invariant set. More precisely, if R0 ∈ (0,N), then there exists
a unique global solution R(t; R0) of (2.2) such that R(t; R0) ∈ (0,N) for all t ∈ R+0 . For this end, we
use Lyapunov operator techniques, which are typically applied in the case of SDEs, however these
techniques can also be used in the deterministic case, where the stochastic noise is zero (see [19]).

Theorem 3.1 (Invariance). For any R0 ∈ (0,N), there exists a unique global solution of (2.2) invariant
in (0,N).

Proof:
Let R0 ∈ (0,N). Consider D := (0,N) and let b(R) := β

R
1 + ϵR

(N − R) − (γ + µ)R, for R ∈ R+. Note
that b is locally Lipschitz because it is continuously differentiable. Now, consider V : D → R defined

by: V(R) :=
1
R
+

1
N − R

and Dn :=
(1
n
,N −

1
n

)
, for n ∈ N. It is clear that V ∈ C1(D;R+0 ) and that

{Dn}n∈N ⊂ D, Dn are domains, Dn ⊂ D, Dn ↑ D such that Vn := inf
R<Dn

V(R) → ∞, as n → ∞. On the
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other hand, given R ∈ D, we have that:

LdV(R) = b(R)V ′(R)

=

(
β

R
1 + ϵR

(N − R) − (γ + µ)R
) (
−1
R2 +

1
(N − R)2

)
=
−β(N − R)
R(1 + ϵR)

+
(γ + µ)

R
+

βR
(N − R)(1 + ϵR)

−
(γ + µ)R
(N − R)2

≤
(γ + µ)

R
+
βN

(N − R)
.

Let us take c := max{γ + µ, βN}. Thus,

LdV(R) ≤ c
(

1
R
+

1
N − R

)
= cV(R).

Then, there exists a unique solution R(· ; R0) of (2.2) in R+0 such that R(t; R0) ∈ (0,N), for all t ∈ R+0 . □

Now, we prove the asymptotic stability of the equilibrium points of the deterministic model (2.2)
defined in (3.1) (see Definition .2). Intuitively, the parameter Kd

0 acts as an indicator of the system’s
dynamics, as we will see in the following theorem.

Theorem 3.2 (Asymptotic stability). If Kd
0 < 1, then R = 0 is an asymptotically stable equilibrium

point of (2.2). Moreover, if Kd
0 > 1, then R = ξd is an asymptotically stable equilibrium point of (2.2).

Proof:
First, let’s see that R = 0 is an asymptotically stable equilibrium point of (2.2). Consider δ > 0 small
enough and let D = (−δ, δ). Note that

b(R) := β
R

1 + ϵR
(N − R) − (γ + µ)R,

for R ∈ D. It is clear that b is differentiable and

b′(R) = β
1

(1 + ϵR)2 (N − R) − β
R

1 + ϵR
− (γ + µ),

for R ∈ D. Thus, b′(0) = βN − (γ + µ) < 0. By the Lyapunov linearization theorem for the
deterministic case, we have that R = 0 is an asymptotically stable equilibrium point of (2.2).
Now, let’s see that R = ξd is an asymptotically stable equilibrium point of (2.2). Let D := (0,N) and
consider V : D→ R defined by the following:

V(R) :=
ξd

N − ξd

(N
R
− 1

)
− 1 − ln

(
ξd

N − ξd

(N
R
− 1

))
.

Clearly, V ∈ C1(D;R) and V is positive definite at R = ξd. In addition, given R ∈ D, we have the
following:

LdV(R) = b(R)V ′(R)
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=

(
β

R
1 + ϵR

(N − R) − (γ + µ)R
) (
−

N2

R2

(ξd − R)
(N − ξd)(N − R)

)
=

(
β

N − R
1 + ϵR

− (γ + µ)
) (
−

N2

R
(ξd − R)
(N − ξd)

)
.

Thus, LdV(R) < 0, for R , ξd. Then, by the Lyapunov stability theorem (Theorem 4.7 in ( [20]) for
equilibrium points in the deterministic case, we have that R = ξd is an asymptotically stable equilibrium
point of (2.2). □

In the following theorem, we show that if the deterministic threshold condition Kd
0 < 1 is fulfilled,

then the population of resistant bacteria will ultimately die out. Of course, this result is stronger than
the previous one when Kd

0 < 1

Theorem 3.3 (Extinction). If Kd
0 < 1, then for any R0 ∈ (0,N), we have the following:

lim
t→∞

R(t; R0) = 0.

Proof:
Let’s show that

lim sup
t→∞

ln(R(t; R0))
t

< 0.

We already know that there exists a unique solution R(·; R0) in R+0 of (2.2) such that R(t; R0) ∈ (0,N)
for all t ∈ R+0 . Let us denote R(·; R0) by R and D := (0,N).

Now, consider the function V : D→ R defined by V(R) := ln(R). It is clear that V ∈ C1(D;R).
Let t > 0. By the chain rule and integrating from 0 to t, we have the following:∫ t

0

dV(R)
ds

(s)ds =
∫ t

0
LdV(R(s))ds.

In other words,

V(R(t)) − V(R(0)) =
∫ t

0
LdV(R(s))ds.

That is,

ln(R(t)) = ln(R0) +
∫ t

0
LdV(R(s))ds

= ln(R0) +
∫ t

0

(
β

R(s)
1 + ϵR(s)

(N − R(s)) − (γ + µ)R(s)
)

1
R(s)

ds

= ln(R0) +
∫ t

0

(
β

N − R(s)
1 + ϵR(s)

− (γ + µ)
)

ds

≤ ln(R0) + (βN − (γ + µ))t.

Then, dividing by t, we obtain the following:

ln(R(t))
t

≤
ln(R0)

t
+ βN − (γ + µ).
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Therefore,

lim sup
t→∞

ln(R(t))
t

≤ βN − (γ + µ) < 0.

Thus,
lim
t→∞

R(t) = 0.

□
In the following theorem, we state that when the deterministic threshold Kd

0 > 1, the population of
resistant bacteria will persist over time. In other words, the system described by (2.2) converges to the
non-trivial equilibrium point ξd defined in (3.1) as t → ∞.

Theorem 3.4 (Persistence). If Kd
0 > 1, then there exists ξd ∈ (0,N) such that for any R0 ∈ (0,N),

lim
t→∞

R(t; R0) = ξd, (3.2)

where ξd is the equilibrium point defined in (3.1).

Proof:
Let D := (0,N) and consider V : D→ R defined by the following:

V(R) :=
ξd

N − ξd

(N
R
− 1

)
− 1 − ln

(
ξd

N − ξd

(N
R
− 1

))
.

Clearly, V ∈ C1(D;R), V is positive definite at R = ξd, and LdV(R) < 0 for R , ξd. Additionally, we
have: V(R) → ∞ as R → 0+ and as R → N−. By the Barbashin-Krasovskii theorem (Theorem 4.2 in
[20]), R = ξd is a globally asymptotically stable equilibrium point of (2.2), meaning that lim

t→∞
R(t; R0) =

ξd for any R0 ∈ (0,N). □

3.3. The stochastic approach

In this section, we present a series of results that involve the numerical value K s
0 . The proofs

are direct modifications of the proofs in [18]. In [18], a family of stochastic differential equations is
considered, depending on a general function g(R) under certain conditions. In this article, we work with
the function g(R) = β R

1+ϵR as a particular case of [18]. We have chosen to provide intuitive commentary
on the results and to reference the work in [18] for the full proofs.

Now, in this section explores the qualitative properties of the stochastic model (2.3). Let us note
that

β
R

1 + ϵR
(N − R) − (γ + µ)R = 0

and

σ
R

1 + ϵR
(N − R) = 0,

where the only equilibrium point of (2.3) is R = 0.
The following result is fundamental in the stochastic modeling of population systems, as it

guarantees that, the stochastic system has a unique global solution that remains within the interval
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(0,N) over time regardless of the initial condition R0 ∈ (0,N). This implies that the model is robust to
random fluctuations and ensures that the stochastic dynamics of the resistant bacterial population
neither becomes extinct in finite time nor exceeds the maximum capacity N. In other words, the
system is able to realistically model a sustained population range in the presence of randomness.

Theorem 3.5 (Invariance). For any R0 ∈ (0,N), there exists a unique global solution of the stochastic
system (2.3) that remains invariant in (0,N).

Proof:
See Theorem 2.1 in [18]. □

The following result states that if K s
0 < 1 −

σ2N2

(γ + µ)
, then, starting near extinction (R = 0), the

resistant bacterial population converges to extinction with high probability (see Definition .4).

Theorem 3.6 (Asymptotic stability). If K s
0 < 1 −

σ2N2

(γ + µ)
, then R = 0 is an asymptotically stable

equilibrium point in the probability of (2.3).

Proof:
See Theorem 2.2 in [18]. □

In the following theorem, we present sufficient conditions for the population of resistant bacteria
to converge to extinction as t → ∞. One condition that seems natural after the previous results is
that K s

0 < 1; this ensures that if we start close to the equilibrium point R = 0, then the system
will converge to 0 with a high probability. Another condition is needed to guarantee convergence to
extinction starting from any point. This condition arises from the utilized Lyapunov function, so it may
be subject to refinement. The condition is that σ2N ≤ β; this suggests a certain restriction on β, in the
sense that this parameter cannot be taken as arbitrarily small.

Theorem 3.7 (Extinction). If K s
0 < 1 and σ2N ≤ β, then for any R0 ∈ (0,N), we have the following:

P
(
lim
t→∞

R(·, t; R0) = 0
)
= 1.

Proof:
We already know that there exists a unique solution R(·, ·; R0) in R+0 of (2.3) such that
R(·, t; R0) ∈ (0,N), for all t ∈ R+0 , P-a.s. Let us denote R(·, ·; R0) by R and define D := (0,N).

Now, consider the functions V : D → R defined by V(R) := ln(R) and φ : D → R defined by

φ(R) :=
N − R
1 + R

. It is clear that V ∈ C2(D;R) and φ(R) ≤ N, for all R ∈ (0,N).

Let t > 0. By Itô’s formula (Theorem 6.2 in [21]), we have the following:

V(R(t)) − V(R(0)) =
∫ t

0
LsV(R(s)) ds +

∫ t

0
V ′(R(s))σ(R(s)) dB(s), P-a.s.
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In other words,

ln(R(t)) = ln(R0) +
∫ t

0
LsV(R(s)) ds +

∫ t

0
V ′(R(s))σ(R(s)) dB(s)

= ln(R0) +
∫ t

0

(
β

N − R(s)
1 + R(s)

− (γ + µ) −
1
2
σ2(N − R(s))2

(1 + R(s))2

)
ds

+

∫ t

0
σ

N − R(s)
1 + R(s)

dB(s)

= ln(R0) +
∫ t

0
βφ(R(s)) − (γ + µ) −

1
2
σ2φ2(R(s)) ds +

∫ t

0
σφ(R(s)) dB(s).

Now, since N ≤
β

σ2 and the function f (u) := βu − (γ + µ) −
1
2
σ2u2 is increasing for u ≤

β

σ2 , then
f (φ(R(s))) ≤ f (N), for all s ∈ [0, t]. In other words,

βφ(R(s)) − (γ + µ) −
1
2
σ2φ2(R(s)) ≤ βN − (γ + µ) −

1
2
σ2N2,

for all s ∈ [0, t]. The rest of the proof is similar to the proof of Theorem 2.3 in [18].
□

Before stating the theorem on the persistence of the bacterial population, we would like to provide
a brief intuition of the result. In this context, the quantity R(·, t; R0) represents the size of the resistant
bacterial population over time t, starting from an initial condition R0. A key objective is to understand
whether this population tends to persist over time or, on the contrary, tends to vanish.

The theorem below indicates that, under certain conditions on the system parameters (K s
0 > 1), there

exists a persistence level ξs such that the resistant bacterial population will repeatedly reach this level
over time. In other words, despite the stochastic variability in the model, we can expect the population
not only to remain above extinction thresholds but also to oscillate around ξs > 0. In summary, this
implies a tendency towards persistence rather than extinction, thus providing a measure of stability for
the resistant bacterial population under the effect of random factors.

The proof of the following theorem has subtle differences compared to the proof of Theorem 2.4 in
[18]. We will highlight these differences in the demonstration, and when the tools are fully analogous,
we will refer to [18].

Theorem 3.8. If K s
0 > 1 , then there exists ξs ∈ (0,N) such that for any R0 ∈ (0,N), the following

holds:
lim sup

t→∞
R(·, t; R0) ≥ ξs, P − a.s. (3.3)

and
lim inf

t→∞
R(·, t; R0) ≤ ξs, P − a.s. (3.4)

where ξs is given by

ξs =
σ2N − β +

√
β2 − 2σ2(γ + µ)

σ2 + ϵβ − ϵ
√
β2 − 2σ2(γ + µ)

.

In other words, the solution process R(·, · ; R0) visits the level ξs infinitely often for any R0 ∈ (0,N).
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Proof:
Let D := (0,N), and consider V : D→ R defined by V(R) := ln(R). It is clear that V ∈ C2(D;R). Note
that the stochastic Lyapunov operator applied to V is given by the following:

LsV(R) :=
β(N − R)
1 + ϵR

− (γ + µ) −
1
2
σ2(N − R)2

(1 + ϵR)2 , for all R ∈ D.

Rewriting, we have the following:

LsV(R) = βφ(R) − (γ + µ) −
1
2
σ2φ2(R), for all R ∈ D,

where φ(R) :=
N − R
1 + ϵR

. Consider the following quadratic function:

f (u) := βu − (γ + µ) −
1
2
σ2u2, for all u ∈ R.

Note that f (0) = −(γ + µ), and since K s
0 > 1, then f (N) = βN − (γ + µ)−

1
2
σ2N2 > 0. Therefore, there

exists η ∈ (0,N) such that f (η) = 0. Now, there exists a unique ξs ∈ (0,N) such that φ(ξs) = η. Thus,
0 = f (η) = f (φ(ξs)) = LsV(ξs).

Case 1. If
β

σ2 < N, since φ′(R) < 0, for all R ∈ (0,N), there exists m ∈ (0,N) such that:

- LsV is increasing in (0,m) and LsV(R) > 0, for all R ∈ (0,m).
- LsV is decreasing in (m, ξs) and LsV(R) > 0, for all R ∈ (m, ξs).
- LsV is decreasing in (ξs,N) and LsV(R) < 0, for all R ∈ (ξs,N),

where LsV(m) is the maximum value of LsV in (0,N).

Case 2. If
β

σ2 ≥ N, since φ′(R) < 0, then for all R ∈ (0,N), LsV(0+) := lim
R→0+

LsV(R) = βN − (γ +

µ) −
1
2
σ2N2 > 0 and LsV(N−) := lim

R→N−
LsV(R) = −(γ + µ) < 0 :

- LsV is decreasing in (0, ξs) and LsV(R) > 0, for all R ∈ (0, ξs).
- LsV is decreasing in (ξs,N) and LsV(R) < 0, for all R ∈ (ξs,N).

The rest of the proof is similar to proof of Theorem 2.4 of [18]. □

The following theorem establishes the stationary distribution of the solution R of the stochastic
system (2.3). This allows us to ensure that the stochastic model exhibits a stable and predictable
behavior over the long term under certain conditions. Therefore, as the system evolves, the distribution
of resistant bacteria will stabilize to a unique stationary distribution.

Theorem 3.9 (Stationary distribution). If K s
0 > 1 , then µ∞(·) is the unique stationary distribution

associated with the solution R of (2.3).

Proof:
See Theorem 2.5 in [18] □.
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3.4. The fractionary approach

Finally, in this section explores the qualitative properties of the fractionary model (2.4). Let us note

that if β
R

1 + ϵR
(N − R) − (γ + µ)R = 0, then the equilibrium points of (2.4) are as follows:

R = 0 and R =
βN − γ − µ
β + ϵ(γ + µ)

:= ξ f . (3.5)

We start showing that (0,K f
0 ) is an invariant set. In this case, the invariance is more restrictive, since

the fractional model has more limitations.

Theorem 3.10 (Invariance). For any R0 ∈ (0,K f
0 ), there exists a unique global solution of (2.4)

invariant in (0,K f
0 ).

Proof:
Let R0 ∈

(
0,K f

0
)

and define b(R) := β
R

1 + ϵR
(N − R) − (γ + µ)R, for R ∈ R+.

First, let us show that there exists a unique global positive solution of (2.4). Since b is locally Lipschitz,
there exists a unique local maximal solution R(·; R0, α) : [0,T f ) → R, where T f is the fractional

explosion time. Since R0 ∈ R
+, there exists n0 ∈ N such that

1
n0
< R0.

Now, we define the following sequence of stopping times:

Tn := inf
{
t ∈ [0,T f ) : R(t; R0, α) <

(1
n
, n

)}
, for n > n0.

It is clear that {Tn}n≥n0 is an increasing sequence. Moreover,

T∞ := lim
n→∞

Tn = inf
{
t ∈ [0,T f ) : R(t; R0, α) < (0,∞)

}
.

Let us show that T∞ = ∞. Suppose that T∞ < ∞; then, there exists T ∈ R+ such that T∞ ≤ T.
Moreover, there exists n1 ∈ N, with n1 > n0 such that Tn ≤ T. On the other hand, consider the function
V : R+ → R defined by the following:

V(R) := R − 1 − ln(R).

Given R ∈ R+, by property Lemma 3.1 of [22], we have the following:

L f V(R) ≤
(
1 −

1
R

)dαR
dtα

=
(
1 −

1
R

)(
β

R
1 + ϵR

(N − R) − (γ + µ)R
)

= β(N − R) − (γ + µ)R −
β(N − R)
1 + ϵR

+ (γ + µ)

≤ βN + β + γ + µ.

Let c := βN + β + γ + µ. Thus, for all R ∈ R+, L f V(R) ≤ c. Applying the fractional integral to both
sides from 0 to T ∧ Tn, for n ∈ N, with n > n0, we have the following:

V(R(T ∧ Tn)) ≤ V(R0) +
cTα

Γ(α + 1)
.
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Now, for all n ∈ N, n > n1, we have T ∧ Tn = Tn and V(R(T ∧ Tn)) = V(R(Tn)).
Note that:

V(R(Tn)) =
(1
n
− 1 − ln

(1
n

))
∧

(
n − 1 − ln(n)

)
;

hence, (1
n
− 1 − ln

(1
n

))
∧

(
n − 1 − ln(n)

)
≤ V(R0) +

cTα

Γ(α + 1)
.

Then, as n→ ∞, we have the following:

V(R0) +
cTα

Γ(α + 1)
= ∞.

This is a contradiction, since the expression V(R0) +
cTα

Γ(α + 1)
is finite.

Now, let us show that R(t; R0, α) ∈ (0,N), for all t ∈ R+0 . Let us denote this solution by R.
Let t ∈ R+. Note that:

dαR
dtα

(t) = β
R(t)

1 + ϵR(t)
(N − R(t)) − (γ + µ)R(t)

≤ βN − (γ + µ)R(t)

Solving the inequality, we have the following:

R(t) ≤
(
R0 − K

f
0

)
Eα(−(γ + µ)tα) +K f

0 ,

where Eα is the Mittag-Leffler function of parameter α defined in [23]. Since 0 ≤ Eα(−(γ + µ)tα) ≤ 1
and R0 − K

f
0 < 0, then

R(t) < K f
0 .

□

Theorem 3.11 (Asymptotic stability). If K f
0 < 1, then R = 0 is an asymptotically stable equilibrium

point of (2.4). Moreover, if K f
0 > 1, then R = ξ f is an asymptotically stable equilibrium point of (2.4).

Proof:
First, let us show that R = 0 is an asymptotically stable equilibrium point of (2.4). Consider δ > 0
sufficiently small and let D = (−δ, δ). Note that

b(R) := β
R

1 + ϵR
(N − R) − (γ + µ)R,

for R ∈ D. It is clear that b is differentiable and

b′(R) = β
1

(1 + ϵR)2 (N − R) − β
R

1 + ϵR
− (γ + µ),

for R ∈ D. Thus, b′(0) = βN − (γ + µ) < 0. By the fractional Lyapunov linearization theorem
(Theorem 2 in [24]), we have that R = 0 is an asymptotically stable equilibrium point of (2.4).

Now, let us show that R = ξ f is an asymptotically stable equilibrium point of (2.4). Consider δ > 0
sufficiently small and let D = (ξ f − δ, ξ f + δ). Thus,
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b′(ξ f ) = β
1

(1 + ϵξ f )2 (N − ξ f ) − β
ξ f

1 + ϵξ f
− (γ + µ) < 0.

By the fractional Lyapunov linearization theorem (Theorem 2 in [24]), we have that R = ξ f is an
asymptotically stable equilibrium point of (2.4). □

Theorem 3.12 (Extinction). If K f
0 < 1, then for any R0 ∈ (0,K f

0 ), we have the following

lim
t→∞

R(t; R0, α) = 0.

Proof:
Let D := [0,K f

0 ] and consider V : D→ R defined by the following:

V(R) :=
R2

2
, for R ∈ D.

Clearly, V ∈ C1(D;R) and V are positive definite at R = 0. Additionally, given R ∈ D, using the
Lemma 2.1 of [22], we have the following:

L f V(R) ≤
dαR
dtα

= β
R

1 + ϵR
(N − R) − (γ + µ)R

= R
(β(N − R)

1 + ϵR
− (γ + µ)

)
= R

(β + ϵ(γ + µ))
1 + ϵR

(ξ f − R)

= −R
(β + ϵ(γ + µ))

1 + ϵR
(|ξ f | + R).

Thus, L f V(R) ≤ 0 for all R ∈ D; and moreover,

A := {R ∈ D : L f V(R) = 0} = {0}.

Then, by the fractional LaSalle theorem (Lemma 4.6 in [25]), we have that R = 0 is a globally
asymptotically stable equilibrium point of (2.4). Then, lim

t→∞
R(t; R0, α) = 0 for any R0 ∈ (0,K f

0 ).
□

Theorem 3.13 (Persistence). IfK f
0 > 1 and

βN − γ − µ
βN

−
β

γ + µ
< ϵ < 1, then there exists ξ f ∈ (0,K f

0 )

such that for any R0 ∈ (0,K f
0 ),

lim
t→∞

R(t; R0, α) = ξ f , (3.6)

where ξ f is the equilibrium point defined in (3.1).
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Proof:
Let D := [0,K f

0 ] and consider V : D→ R defined by the following:

V(R) := R − ξ f − ξ f ln
(

R
ξ f

)
, for R ∈ D,R , 0, and V(0) = 1.

Clearly, V ∈ C1(D − {0};R) and V is positive definite at R = ξ f . Additionally, given R ∈ D − {0}, using
the Lemma 3.1 of [22], we have the following:

L f V(R) ≤
(
1 −
ξ f

R

)dαR
dtα

=
(
1 −
ξ f

R

) (
β

R
1 + ϵR

(N − R) − (γ + µ)R
)

= (R − ξ f )
(β(N − R)

1 + ϵR
− (γ + µ)

)
=

(R − ξ f )(β + ϵ(γ + µ))
1 + ϵR

(ξ f − R)

= −
(R − ξ f )2(β + ϵ(γ + µ))

1 + ϵR
.

Thus, L f V(R) ≤ 0 for all R ∈ D − {0}; and moreover,

A := {R ∈ D − {0} : L f V(R) = 0} = {ξ f }.

Then, by the fractional LaSalle theorem (Lemma 4.6 in [25]), we have that R = ξ f is a globally
asymptotically stable equilibrium point of (2.4). Then, lim

t→∞
R(t; R0, α) = ξ f for any R0 ∈ (0,K f

0 ).
□

4. Numerical simulations

Our three proposed approaches, (2.2)–(2.4), can be numerically validated, using data from various
real-world epidemiological phenomena that align with our hypotheses. However, we have represented
the phenomenon of AMR, specifically focusing on the resistance of Escherichia coli to colistin.
Although this particular case serves as a representative study to explore our mathematical framework,
it does not fully capture the complexities inherent in the AMR dynamics.

Colistin has been the final option for treating multidrug-resistant gram-negative bacteria (MDR-
GNB), and it is also extensively used in veterinary practice [26]. The recent discovery of plasmid-
mediated colistin resistance, exemplified by the mcr-1 gene in E. coli, has raised concerns regarding
its use in food-producing animals and its potential to accelerate the spread of resistance. Studies have
called for a reassessment of colistin usage and dosing in animal husbandry to safeguard its effectiveness
in human healthcare [27,28]. The reversibility of AMR, especially for colistin, has been demonstrated
in laboratory experiments using E. coli that carry the mcr-1 gene [29]. Under colistin-free conditions,
there is a significant reduction in antibiotic resistance genes due to the elimination of MDR plasmids.
This suggests that the high fitness costs associated with mobile genetic elements, such as plasmids,
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make resistance unstable, and consequently, strict antibiotic control can help reverse resistance driven
by these genes [29]. Other studies have also demonstrated that E. coli adapts to prolonged antimicrobial
exposure through the genetic regulation of porins and efflux pumps, which are crucial for bacterial
resistance. Therefore, both transcriptional and post-translational regulation of membrane proteins are
essential for the physiological adaptation of gram-negative bacteria to antibiotic stress [30].

We begin with a population of N = 106 bacteria and consider two initial conditions: R(0) = N − 1
(indicating that almost all bacteria are resistant) to demonstrate extinction (or clearance of bacteria)
and R(0) = 1 (where almost all bacteria are susceptible) to illustrate persistence. Under stressful
conditions, the turnover rate of E. coli (µ) is typically significantly lower than that under optimal
conditions because of the adverse factors that affect bacterial growth. In our study, we assumed a
natural turnover rate of µ = 0.1, which imply that the bacterial population doubles or clears
approximately every 10 days. The population-dependent rate of R-plasmid transfer through
conjugation β for E. coli under colistin exposure was derived from observational data in [29], where it
was suggested that a susceptible bacterium acquires an R-plasmid approximately every two days. The
rate of R-plasmid loss was estimated to be within the range of [0, 2], thus indicating that resistant
bacteria may lose plasmids every 12 hours (γ = 2), or never lose them (γ = 0). The saturation
parameter 1/ϵ, which represents the number of resistant bacteria at which plasmid transfer becomes
less efficient due to competition between sensitive and resistant bacteria, was assumed to be equal to
the total population N (ϵ = 1/N = 10−6).

Finally, considering that AMR largely stems from an evolutionary process in which bacteria
gradually adapt to their environment under antibiotic stress [31], it is possible to capture AMR
dynamics by highlighting the influence of historical exposure in the presence of the fitness costs
associated with plasmids. This suggests that the resistance characteristics of E. coli are not only
dependent on current conditions, but are also heavily influenced by their previous exposure to
antibiotics (selective pressure) and the presence of plasmids. For α ∈ (0, 1), when α is closer to zero,
the influence of the past states becomes more pronounced, indicating that the previous antibiotic
pressures significantly contribute to the current state of resistance. Table 2 shows the values used for
the validation experiments.

Table 2. Parameters involved in the mathematical model (2.1): Description, dimension and
values.

Parameter Description Dimension Value
N Constant population Population 106

µ Turnover rate of bacteria Time−1 0.1
γ Rate of R–plasmids loss Time−1 [0, 2]
β Rate of R-plasmid acquisition through conjugation (Population × Time)−1 5×10−7

ϵ Saturation rate Population−1 10−6

σ Random perturbation for the parameter β Population−1 × Time−1/2 [10−7, 5×10−6]
α Order of the fractional derivative Dimensionless (0,1)

Figure 1 illustrates the extinction scenarios for antibiotic-resistant bacteria for the three different
modeling approaches (deterministic, fractional, and stochastic). These scenarios were evaluated for
varying values of the plasmid loss rate γ. In each of these plots, it can be observed that the resistant
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bacterial populations tended to decline over time, provided that the threshold K0 parameters remained
below 1. In the deterministic and fractional models, the extinction of resistant bacteria occurs at a faster
rate as γ increases from 1 to 2. This behavior suggests a strong correlation between the plasmid loss rate
and the speed of bacterial extinction, with higher values of γ leading to a more rapid approach toward
zero population levels for resistant strains. While exhibiting a more erratic pattern due to inherent
randomness, the stochastic model, also shows a trend toward the extinction of resistant bacteria when
the critical threshold K s

0 remains below 1. This threshold condition indicates that the resistant bacteria
cannot sustain their population over time, the reinforcing the consistency of the extinction behavior
across all three modeling approaches under these conditions.
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Figure 1. Extinction scenario for the three modeling approaches at different values of the
plasmid loss rate γ and R(0) = N − 1. The remaining parameters used in the numerical
simulation are listed in Table 2. For the stochastic case, the perturbation parameter was
σ = 10−6. For the fractional case, the derivative order was α = 0.7.

Figure 2 illustrates the persistence scenario for resistant bacteria using the three modeling
approaches. This condition, K0 > 1, signifies that the resistant population can sustain itself over time,
thereby avoiding a clearance. In each model, as the plasmid loss rate γ increased within the range of
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0–1, resistant bacteria exhibited a stable persistence level. This indicates that lower values of γ
promoted plasmid retention, thereby supporting the maintenance of antibiotic resistance within the
bacterial population. Notably, for values of γ near one, the population of resistant bacteria approached
a steady-state level early on and remained nearly constant over extended time periods. This
steady-state persistence across all three models suggests that, when K0 > 1 and γ ≤ 1, the conditions
facilitate a resilient resistant population capable of persisting over time.
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Figure 2. Persistence scenario for the three modeling approaches at different values of the
plasmid loss rate γ and R(0) = 1. The remaining parameters used in the numerical simulation
are listed in Table 2. For the stochastic case, the perturbation parameter was σ = 10−6. For
the fractional case, the derivative order was α = 0.7.

Figure 3 presents a comparison between the deterministic and stochastic models for different
values of the white noise intensity σ. In these simulations, the plasmid loss rate was set to γ = 2 with
an initial condition of R(0) = N − 1 for the extinction case, and γ = 0 with R(0) = 1 for the
persistence case. The plots reveal how the stochastic noise intensity σ influences the extinction and
persistence behaviors in the stochastic model compared with the deterministic model. As the value of
σ increases, the stochastic model exhibits greater fluctuations, reflecting the impact of random
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perturbations on bacterial population dynamics. This variability contrasts with the deterministic
model, which follows a smooth trajectory toward either extinction or persistence, depending on the
initial conditions and plasmid loss rate. Specifically, under the extinction condition (γ = 2,
R(0) = N − 1), the stochastic model shows a more erratic decline in resistant bacteria as σ increases,
thus suggesting that a higher noise intensity accelerates fluctuations toward extinction. Conversely, in
the persistence case (γ = 0, R(0) = 1), the stochastic model demonstrated sustained fluctuations
around a stable population level. Here, increasing the noise intensity σ introduces variability, but does
not prevent the resistant population from persisting. These results indicate that stochastic fluctuations
modulated by σ can significantly alter the dynamics of the resistant bacteria. Higher noise levels
amplify random effects, thus leading to more pronounced deviations from the deterministic model
outcomes, particularly affecting the stability of bacterial populations under both extinction and
persistence conditions. In the stochastic case, the expression:

K s
0 :=

βN
(γ + µ)

−
σ2N2

2(γ + µ)

shows that K s
0 depends on σ2 when the rest of the parameters are fixed. Note that when σ2 is equal to

zero, we have K s
0 = K

d
0 , and K s

0 decreases as a function of σ2. For this reason, it is clear that a
deterministic extinction implies a stochastic extinction, and a stochastic persistence implies a
deterministic persistence.
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Figure 3. Deterministic and stochastic comparison for different values of the stochastic
perturbation rate. Here the plasmids loss rate is γ = 2 and R(0) = N − 1 for extinction, and
γ = 0 and R(0) = 1 for persistence.

In Figure 4, the fractional model is analyzed for different values of the fractional derivative order α.
The simulations were conducted with γ = 1.5 and an initial condition of R(0) = N−1 for the extinction
scenario, and with γ = 0.2 and R(0) = 1 for the persistence case. The results show that as the order
α of the fractional derivative increases, both the extinction and persistence behaviors in the fractional
model become more pronounced. Specifically, in the extinction case, larger values of α led to a more
rapid approach to zero for the resistant bacterial population. This suggests that a higher order of the
fractional derivative accelerates the population decline by amplifying the memory effects inherent in
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the fractional systems. This reflects how the system’s extended memory dynamically integrates past
interactions, such as historical antibiotic usage or environmental pressures. These enhanced memory
effects make the population more responsive to cumulative changes, thus intensifying the rate of decline
as adverse factors compound over time. Conversely, in the persistence case, increasing α results in a
faster stabilization at the persistence level. This stabilization implies that higher values of α facilitate
more efficient regulation of the population dynamics, thus allowing the resistant bacteria to reach a
steady state more quickly. This behavior is characteristic of fractional models, where memory effects
become more pronounced as α increases, thus leading to a faster stabilization in response to lower
plasmid loss rates.

The histograms in Figure 5 provide an approximation of the stationary distribution associated with
the stochastic model (2.3). This stationary distribution corresponds to the probability measure induced
by R∞ := limt→∞ R(t; ·). Notably, this probability measure is independent of the initial condition.
Moreover, if the system begins (t = 0) with this probability measure, it then remains the same for all
t > 0, thus reflecting its invariance over time.
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Figure 4. Fractional approach for different values of the order of the derivative α. Here, the
plasmids loss rate γ = 1.5 and R(0) = N − 1 for extinction, and γ = 0.2 and R(0) = 1 for
persistence.

5. Discussion

This study addressed antimicrobial resistance (AMR) reversal using three distinct modeling
approaches: deterministic, stochastic, and fractional. By proposing a simplified epidemiological
model hypothetically adapted to represent this phenomenon, this study aimed to analyze the
qualitative properties of these approaches and compare their outcomes. Although the model provided
an interesting framework for exploring AMR reversal, it did not incorporate all the complex dynamics
that underlie the resistance reversal process. This mathematical exercise offered useful outputs to the
strengths and limitations of each modeling perspective in capturing the phenomenon.

The results obtained from the analysis in this study showed that all three models (deterministic,
stochastic, and fractional) are well posed, satisfying the conditions of existence, uniqueness, and
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(a) γ = 0 (b) γ = 0.1

(c) γ = 0.2 (d) γ = 0.3

(e) γ = 0.4

Figure 5. Stationary mean (histograms) of the stochastic model for different values of γ
associated with the persistence of resistant bacteria. The parameter values used are those
from Table 2. Additionally, σ = 10−7 and the initial condition R(0) = N − 1. Here, when γ
increases, the mean of the stationary distribution shifts to the left.
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invariance within its the domain, and (0,N) refers to the number of resistant bacteria contained in the
population, thus providing the model with coherence and biological relevance. For each of these
models, three thresholds Kd

0 ,K
s
0 , and K f

0 , were identified as structurally similar to the basic
reproduction number characteristic of epidemiological models. It was demonstrated that, if these
thresholds are less than one, then the asymptotic stability of the trivial equilibrium point R = 0 is
guaranteed. In the stochastic model, the condition K s

0 < 1 also implies that the trivial equilibrium is
stable in probability. In contrast, when these thresholds are greater than one, both the deterministic
and fractional models guarantee the asymptotic stability of the nontrivial equilibrium point.

In relation to the phenomenon of extinction (bacterial clearance), it should be noted that the
modeling in the deterministic and fractional cases is similar. The stochastic model was more detailed
and presented more scenarios. The existence of the stationary measure in the stochastic case provides
a probabilistic framework that allows for a better understanding of the evolution of AMR.

To validate the theoretical models, our numerical experiments focused on the AMR of Escherichia
coli to colistin, a last-resort antibiotic for infections caused by multidrug-resistant gram-negative
bacteria (MDR-GNB). By analyzing the extinction and persistence of resistant bacteria in relation to
different plasmid loss rates (γ) and the intensity of stochastic noise (σ), we observed that the
threshold parameter K ·0 is critical to determine whether a resistant population goes extinct or persists.
When K ·0 < 1 and γ increase, plasmid loss becomes more frequent and accelerates the extinction of
resistant bacteria, as the cost of maintaining the plasmid outweighs the adaptive benefits. In contrast,
under persistent conditions (K ·0 > 1 and γ ≤ 1), bacteria manage to maintain the plasmid, thus
showing early stabilization in both deterministic and fractional models, as well as a persistent level of
resistance in the stochastic model, even with small fluctuations. This suggests that plasmid retention
is key to maintaining resistance in an environment with continuous antibiotic exposure, where a lower
plasmid loss rate allows resistance to persist over time.

Furthermore, by incorporating the memory of prior exposure to antibiotics (evolutionary pressure)
through the fractional approach, represented by the parameter α, it was observed that higher values
of α intensified the response of the bacterial population. In the extinction case, high values of α
facilitate a more rapid decline in the resistant population due to memory effects in the system, which
reinforces the response to plasmid loss pressure. In the case of persistence, high values of α allow
for a more efficient and rapid stabilization of the resistant population, thus demonstrating that the
history of antibiotic exposure and the regulation of resistance genes (such as the reduction of porins or
increased expression of efflux pumps) have an accumulating and relevant effect on bacterial adaptation.
These findings highlight the importance of biological memory in AMR, as the adaptation of E. coli to
antibiotic stress is not solely dependent on the current conditions, but is strongly influenced by the
history of prior exposure, thus implying that antibiotic control strategies could leverage this effect to
reverse resistance in bacterial populations.

The results of this study provide an important basis for the qualitative analysis of SIS-type
mathematical models in general and set the stage for future research aimed at applying these findings
to broader and more complex epidemiological studies. Despite the relevance of these results, this
study has some limitations. First, one of the most important limitations is the assumption of a
constant population, whereas in a realistic scenario, these bacteria can grow or decline depending on

the environmental conditions and other factors. Second, the function g(R) =
R

1 + ϵR
is a functional

response adapted from the literature and may not specifically represent the transfer (acquisition and
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loss) of plasmids. Nevertheless, it was proposed in [18] a general formulation for the stochastic case.
However, without significant challenges, similar results can be obtained with function h, which

possess the properties determined in [18]. Third, the simplification of the model regarding the
environmental conditions and population structure. In our approach, we assumed a homogeneous
bacterial population and constant external conditions such as nutrient availability and antibiotic
pressure. However, in real-world scenarios, factors such as environmental heterogeneity, competition
between different bacterial strains, and fluctuations in antibiotic exposure can significantly influence
the resistance dynamics. Including these factors in the model could offer a more detailed perspective
and allow for a better representation of the complex interactions in bacterial systems exposed to
antibiotics.

This study raises open questions for future research. A key area is the explicit calculation of the
mean and variance of the stationary measure in the stochastic model (2.3). The other is to identify the
specific conditions under which R = 0 becomes an unstable equilibrium point in the probability.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The authors would like to express their sincere gratitude to the anonymous reviewers for their
thoughtful and constructive feedback, which significantly contributed to improving the quality of this
manuscript. This research was partially supported by the Project 2023-58830 from the University of
Antioquia.

Conflict of interest

The authors declare there is no conflicts of interest.

References

1. M. A. Salam, M. Y. Al-Amin, M. T. Salam, J. S. Pawar, N. Akhter, A. A. Rabaan, et al.,
Antimicrobial resistance: a growing serious threat for global public health, Healthcare, 11 (2023),
1946. https://doi.org/10.3390/healthcare11131946

2. A. H. Holmes, L. S. P. Moore, A. Sundsfjord, M. Steinbakk, S. Regmi, A. Karkey, et al.,
Understanding the mechanisms and drivers of antimicrobial resistance, Lancet, 387 (2016), 176–
187. https://doi.org/10.1016/S0140-6736(15)00473-0

3. D. I. Andersson, D. Hughes, Persistence of antibiotic resistance in bacterial populations, FEMS
Microbiol. Rev., 35 (2011), 901–911. https://doi.org/10.1111/j.1574-6976.2011.00356.x

4. W. R. Morrow, E. A. Frazier, W. T. Mahle, T. O. Harville, S. E. Pye, K. R. Knecht, et al., Rapid
reduction in donor-specific anti-human leukocyte antigen antibodies and reversal of antibody-
mediated rejection with bortezomib in pediatric heart transplant patients, Transplantation, 93
(2012), 319–324. https://doi.org/10.1097/TP.0b013e318240cd4b

Mathematical Biosciences and Engineering Volume 22, Issue 2, 389–414.

https://dx.doi.org/https://doi.org/10.3390/healthcare11131946
https://dx.doi.org/https://doi.org/10.1016/S0140-6736(15)00473-0
https://dx.doi.org/https://doi.org/10.1111/j.1574-6976.2011.00356.x
https://dx.doi.org/https://doi.org/10.1097/TP.0b013e318240cd4b


411

5. C. L. Moo, S. K. Yang, K. Yusoff, M. Ajat, W. Thomas, A. Abushelaibi, et al., Mechanisms
of antimicrobial resistance (AMR) and alternative approaches to overcome AMR, Curr. Drug
Discovery Technol., 17 (2020), 430–447. https://doi.org/10.2174/1389200221666200204124414

6. A. J. Lopatkin, H. R. Meredith, J. K. Srimani, C. Pfeiffer, R. Durrett, L. You, Persistence
and reversal of plasmid-mediated antibiotic resistance, Nat. Commun., 8 (2017), 1689.
https://doi.org/10.1038/s41467-017-01763-6

7. D. I. Andersson, D. Hughes, Antibiotic resistance and its cost: Is it possible to reverse resistance?,
Nat. Rev. Microbiol., 8 (2010), 260–271. https://doi.org/10.1038/nrmicro2319

8. E. Peterson, P. Kaur, Antibiotic resistance mechanisms in bacteria: Relationships between
resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens,
Front. Microbiol., 9 (2018), 2928. https://doi.org/10.3389/fmicb.2018.02928

9. M. J. Bottery, J. W. Pitchford, V. P. Friman, Ecology and evolution of antimicrobial resistance in
bacterial communities, ISME J., 15 (2021), 939–948. https://doi.org/10.1038/s41396-020-00820-
4

10. W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Pro.
R. Soc. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118

11. Q. Lu, Stability of SIRS system with random perturbations, Phys. A Stat. Mech. Appl., 388 (2009),
3677–3686. https://doi.org/10.1016/j.physa.2009.05.021

12. E. Tornatore, S. M. Buccellato, P. Vetro, Stability of a stochastic SIR system, Phys. A Stat. Mech.
Appl., 354 (2005), 111–126. https://doi.org/10.1016/j.physa.2005.02.051

13. A. Gray, D. Greenhalgh, L. Hu, X. Mao, J. Pan, A stochastic differential equation SIS epidemic
model, SIAM J. Appl. Math., 71 (2011), 876–902. https://doi.org/10.1137/10081856X

14. R. Rifhat, Q. Ge, Z. Teng, The dynamical behaviors in a stochastic SIS
epidemic model with nonlinear incidence, Math. Biosci., 325 (2020), 108362.
https://doi.org/10.1016/j.mbs.2020.108362

15. C. Xu, Global threshold dynamics of a stochastic differential equation SIS model, J. Math. Anal.
Appl., 447 (2017), 736–757. https://doi.org/10.1016/j.jmaa.2016.10.077

16. A. Mouaouine, A. Boukhouima, K. Hattaf, N. Yousfi, A fractional order SIR epidemic model with
nonlinear incidence rate, Adv. Differ. Equations, 2018 (2018), 1–9. https://doi.org/10.1186/s13662-
018-1835-2

17. Y. Guo, The stability of the positive solution for a fractional SIR model, Int. J. Biomath., 10
(2017), 1750014. https://doi.org/10.1142/S1793524517500141

18. J. S. Builes, C. F. Coletti, L. A. Valencia, A stochastic differential equation
approach for an SIS model with non-linear incidence rate, preprint, arXiv:2404.13469.
https://doi.org/10.48550/arXiv.2404.13469

19. R. Khasminskii, Stochastic stability of differential equations, Springer Sci. Business Media, 66
(2011).

20. M. Hassan, Nonlinear Systems, Prentice Hall, 3rd edition, 2002.

21. X. Mao, Stochastic Differential Equations and Applications, 2nd edition, Horwood Publishing,
Chichester, UK, 2008.

Mathematical Biosciences and Engineering Volume 22, Issue 2, 389–414.

https://dx.doi.org/https://doi.org/10.2174/1389200221666200204124414
https://dx.doi.org/https://doi.org/10.1038/s41467-017-01763-6
https://dx.doi.org/https://doi.org/10.1038/nrmicro2319
https://dx.doi.org/https://doi.org/10.3389/fmicb.2018.02928
https://dx.doi.org/https://doi.org/10.1038/s41396-020-00820-4
https://dx.doi.org/https://doi.org/10.1038/s41396-020-00820-4
https://dx.doi.org/https://doi.org/10.1098/rspa.1927.0118
https://dx.doi.org/https://doi.org/10.1016/j.physa.2009.05.021
https://dx.doi.org/https://doi.org/10.1016/j.physa.2005.02.051
https://dx.doi.org/https://doi.org/10.1137/10081856X
https://dx.doi.org/https://doi.org/10.1016/j.mbs.2020.108362
https://dx.doi.org/https://doi.org/10.1016/j.jmaa.2016.10.077
https://dx.doi.org/https://doi.org/10.1186/s13662-018-1835-2
https://dx.doi.org/https://doi.org/10.1186/s13662-018-1835-2
https://dx.doi.org/https://doi.org/10.1142/S1793524517500141
https://dx.doi.org/https://doi.org/10.48550/arXiv.2404.13469


412

22. C. Vargas-De-León, Volterra-type Lyapunov functions for fractional-order
epidemic systems, Commun. Nonlinear Sci. Numer. Simul., 24 (2015), 75–85.
https://doi.org/10.1016/j.cnsns.2014.12.013

23. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential
equations, Elsevier, Amsterdam, 2006.

24. D. Matignon, Stability results for fractional differential equations with applications to control
processing, Comput. Eng. Syst. Appl., 2 (1996), 963.

25. J. Huo, H. Zhao, L. Zhu, The effect of vaccines on backward bifurcation in a
fractional order HIV model, Nonlinear Anal. Real World Appl., 28 (2015), 38–53.
https://doi.org/10.1016/j.nonrwa.2015.05.014

26. M. Mendelson, A. Brink, J. Gouws, N. Mbelle, V. Naidoo, T. Pople, et al., The One Health
stewardship of colistin as an antibiotic of last resort for human health in South Africa, Lancet
Infect. Dis., 18 (2018), e288–e294. https://doi.org/10.1016/S1473-3099(18)30349-6

27. M. Rhouma, F. Beaudry, A. Letellier, Resistance to colistin: What is the fate for
this antibiotic in pig production?, Int. J. Antimicrob. Agents, 48 (2016), 119–126.
https://doi.org/10.1016/j.ijantimicag.2016.04.014

28. M. J. Goyes-Baca, M. R. Sacon-Espinoza, F. X. Poveda-Paredes, Management of the health care
system in Ecuador to confront the antimicrobial resistance, Revista Inf. Cientı́fica, 102 (2023),
Epub 18-Ene-2023. https://doi.org/10.34257/RIC102.01

29. J. Wu, X. Dong, L. Zhang, Y. Lin, K. Yang, Reversing antibiotic resistance
caused by mobile resistance genes of high fitness cost, Msphere, 6 (2021), e00356.
https://doi.org/10.1128/msphere.01128-20

30. M. Viveiros, M. Dupont, L. Rodrigues, I. Couto, A. Davin-Regli, M. Martins, et al., Antibiotic
stress, genetic response and altered permeability of E. coli, PloS One, 2 (2007), e365.
https://doi.org/10.1371/journal.pone.0000365

31. F. Baquero, J. L. Martinez, V. F. Lanza, J. Rodrı́guez-Beltrán, J. C. Galán, A. San Millán, et al.,
Evolutionary pathways and trajectories in antibiotic resistance, Clin. Microbiol. Rev., 34 (2021).
https://doi.org/10.1128/CMR.00050-19

Appendix

Stability

Definition .1. Equilibrium point of an ordinary differential equation.
Consider the ordinary differential equation:

dx
dt
= b(x), (A.1)

where b is a continuous function on a non-empty interval I ⊂ R, and let ξ ∈ I. We say that ξ is an
equilibrium point of (A.1), or that ξ is a trivial solution of (A.1), if and only if b(ξ) = 0.

Definition .2. Stability of an equilibrium point of an ordinary differential equation.
Let ξ be an equilibrium point of (A.1). We say that:
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1) ξ is a stable equilibrium point of (A.1) if and only if for every ϵ > 0, there exists δ > 0 such that
for all x0 ∈ I, with |x0 − ξ| < δ, we have:

|x(t; x0) − ξ| < ϵ, for all t ∈ R+0 .

Otherwise, we say that ξ is an unstable equilibrium point of (A.1).
2) ξ is an asymptotically stable equilibrium point of (A.1) if and only if ξ is a stable equilibrium

point of (A.1) and there exists δ > 0 such that for all x0 ∈ I with |x0 − ξ| < δ, we have:

lim
t→∞

x(t; x0) = ξ.

3) ξ is a globally asymptotically stable equilibrium point of (A.1) if and only if ξ is a stable
equilibrium point of (A.1) and for all x0 ∈ I, we have:

lim
t→∞

x(t; x0) = ξ.

Here, x(t; x0) represents the global solution x of (A.1) that starts at x0 at time t.

Definition .3. Equilibrium point of a stochastic differential equation.
Consider the stochastic differential equation:

dX = b(X) dt + σ(X) dB(t), (A.2)

where b and σ are continuous functions on an interval I ⊂ R, B is a Brownian motion on a probability
space (Ω,F ,P), and let ξ ∈ I. We say that ξ is an equilibrium point of (A.2), or that ξ is a trivial
solution of (A.2), if and only if b(ξ) = σ(ξ) = 0.

Definition .4. Stability of an equilibrium point of a stochastic differential equation.
Let ξ be an equilibrium point of (A.2). We say that:

1) ξ is a stable equilibrium point in probability of (A.2) if and only if for every ϵ > 0 and r ∈ (0, 1)
there exists a δ > 0 such that for all x0 ∈ I, |x0 − ξ| < δ, it holds that

P
(
|X(·, t; x0) − ξ| < ϵ, for all t ∈ R+0

)
≥ 1 − r.

In the contrary case, we say that ξ is an unstable equilibrium point of (A.2).
2) ξ is an asymptotically stable equilibrium point in probability of (A.2) if and only if ξ is a stable

equilibrium point in probability of (A.2) and for every r ∈ (0, 1) there exists a δ > 0 such that for
all x0 ∈ I, |x0 − ξ| < δ, it holds that

P
(

lim
t→∞

X(·, t; x0) = ξ
)
≥ 1 − r.

3) ξ is a globally asymptotically stable equilibrium point in probability of (A.2) if and only if ξ is a
stable equilibrium point in probability of (A.2) and for all x0 ∈ I, it holds that

P
(

lim
t→∞

X(·, t; x0) = ξ
)
= 1.

Where X(·, t; x0) represents the global solution X of (A.2) that starts at x0 at time t.
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Definition .5. Equilibrium point of a fractional differential equation.
Consider the fractional differential equation:

dαx
dtα
= b(x), (A.3)

where b is a continuous function on a non-empty interval I of R, α ∈ (0, 1), and let ξ ∈ I.We say that ξ
is an equilibrium point of (A.3) or that ξ is a trivial solution of (A.3) if and only if b(ξ) = 0.

Definition .6. Stability of an equilibrium point of a fractional differential equation.
Let ξ be an equilibrium point of (A.3). We say that:

1) ξ is a stable equilibrium point of (A.3) if and only if for every ϵ > 0, there exists a δ > 0 such that
for every x0 ∈ I, |x0 − ξ| < δ, it holds that

|x(t; x0, α) − ξ| < ϵ, for all t ∈ R+0 .

Otherwise, we say that ξ is an unstable equilibrium point of (A.3).
2) ξ is an asymptotically stable equilibrium point of (A.3) if and only if ξ is a stable equilibrium

point of (A.3) and there exists δ > 0 such that for every x0 ∈ I, |x0 − ξ| < δ, it holds that

lim
t→∞

x(t; x0, α) = ξ.

3) ξ is a globally asymptotically stable equilibrium point of (A.3) if and only if ξ is a stable
equilibrium point of (A.3) and for every x0 ∈ I, it holds that

lim
t→∞

x(t; x0, α) = ξ.

where x(t; x0, α) represents the global solution x of (A.3) that starts at x0 at time t.
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