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Abstract: Vaccination is an effective strategy to prevent the spread of diseases. However, hesitancy
and rejection of vaccines, particularly in childhood immunizations, pose challenges to vaccination ef-
forts. In that case, according to rational decision-making and classical utility theory, parents weigh the
costs of vaccination against the costs of not vaccinating their children. Social norms influence these
parental decision-making outcomes, deviating their decisions from rationality. Additionally, variabil-
ity in values of utilities stemming from stochasticity in parents’ perceptions over time can lead to
further deviations from rationality. In this paper, we employ independent white noises to represent
stochastic fluctuations in parental perceptions of utility functions of the decisions over time, as well
as in the disease transmission rates. This approach leads to a system of stochastic differential Eqs
of a susceptible-infected-recovered (SIR) model coupled with a stochastic replicator Eq. We explore
the dynamics of these Eqs and identify new behaviors emerging from stochastic influences. Interest-
ingly, incorporating stochasticity into the utility functions for vaccination and nonvaccination leads to
a decision-making model that reflects the bounded rationality of humans. Noise, like social norms, is
a two-sided sword that depends on the degree of bounded rationality of each group. We also perform a
stochastic optimal control as a discount to the cost of vaccination to counteract bounded rationality.

Keywords: replicator dynamics; stochastic differential equations; game theory; bounded rationality;
disease models

1. Introduction

In disease modeling, applying game theory to understand human behavior about mitigation choices
offers crucial insights into the dynamics of epidemics. Conventional methods often presuppose ra-
tional decision-making; however, as the COVID-19 pandemic has demonstrated, human behavior can
sometimes hinder public health initiatives to control the spread of the disease. Individual reactions to
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pharmaceutical interventions such as vaccination and non-pharmaceutical measures, including mask
use, are shaped by a complex mixture of factors that include social norms, misinformation, and trust in
authorities [1].

Moreover, integrating concepts from behavioral economics and psychology, such as bounded ra-
tionality and prospect theory, adds realism to these models. These theories recognize that individuals
do not always process information flawlessly or make decisions based solely on maximum utility [2].
Instead, decisions are influenced by limited cognitive resources, biases, and how information is framed.

Kermack and McKendrick (1927) initially laid the groundwork for deterministic models of epi-
demics, which have since evolved to include stochastic components [3]. In [4], a pioneer in stochastic
disease modeling was introduced using stochastic processes like birth-and-death processes. In that
study, the authors introduced stochastic elements into mathematical epidemiology, making it possible
to model the inherent randomness of disease transmission and study extinction thresholds to better un-
derstand and predict the dynamics of infectious diseases. Several researchers have studied stochastic
models of the spread of diseases in the form of stochastic differential Eqs (SDEs). SDEs incorporate
randomness directly into the model, representing various sources of uncertainty and variability in dis-
ease transmission and progression. These models have been particularly beneficial in capturing the
random nature of contact patterns and the influence of random events on the spread of infectious dis-
eases. Incorporating SDEs into epidemic modeling provides a more comprehensive understanding of
how diseases spread and how they can be controlled under uncertainty.

Allen (1994) provided foundational work on stochastic epidemic models, demonstrating how SDEs
can model demographic stochasticity and environmental variability in disease dynamics [5]. Gray et
al. (2011) extended this approach to the SIS model, exploring the existence of a stationary distribution
and derived expressions for its mean and variance [6]. Tornatore et al. (2005) investigated the stability
of a stochastic SIR system, providing insights into the conditions under which disease extinction or
persistence occurs [7]. Furthermore, Gao et al. (2019) studied a delay differential Eq SIS model with
a general non-linear incidence rate, highlighting the impact of delays and non-linearities in disease
transmission [8]. Cao et al. (2017) focused on the dynamics of an epidemic model with vaccination in
a noisy environment, emphasizing the role of stochastic effects in vaccination strategies [9]. Liu (2023)
modeled multiple transmission pathways in a scenario of waterborne pathogens using a stochastic
model, illustrating the complexity and variability in disease transmission routes [10]. See also [11] for
an introduction to stochastic epidemic models.

Researchers have continued to advance the field by exploring the effects of multiple noise sources
on infectious disease models. For example, Jian et al. (2024) examined the impact of multisource noise
on disease dynamics, offering insights into how different environmental randomness can influence dis-
ease spread [12]. Babaei et al. (2023) applied SDEs to model the COVID-19 pandemic, integrating
stochastic elements into SEIAQHR models to capture the variability and uncertainty of real-world
scenarios [13]. Similarly, Iddrisu et al. (2023) highlighted the critical role of stochasticity in under-
standing cholera epidemiology, demonstrating how SDEs can provide more accurate predictions and
inform public health interventions [14]. These contributions underscore the importance of stochastic
models in epidemiology, as they provide more realistic and flexible frameworks for predicting disease
outcomes and formulating effective public health policies.

Rational decision-making theories often disregard information processing constraints, presuming
that rational decision-makers always opt for the highest rewards without factoring in the effort or
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resources needed to determine the best action [15–17]. H.A. Simon’s bounded rationality theory ad-
dresses these deviations, suggesting that decision-makers operate under limited information process-
ing resources [18,19]. Behavioral economics experiments reveal deviations between perfectly rational
decision-makers and those constrained by bounded rationality [20].

Behavioral epidemiology has evolved in the last two decades to become a major domain in the
research of infectious diseases. The intricate interplay between human behavior and epidemiological
outcomes highlights this. Foundational contributions to the literature of behavioral epidemiology, such
as by [21–25], have shaped the understanding of the impact of behavioral responses to disease out-
breaks and their control. In particular, it gave insight into how parental vaccination decisions affect
childhood disease dynamics and public health interventions, especially with vaccine scare [26–28].
Free-riding behaviors [29], social networks [30], social learning [31], and economic incentives [32],
to name a few factors, have been shown to impact vaccination uptake and thus disease spread. Those
research findings emphasize the importance of integrating behavioral and epidemiological modeling
approaches to address challenges to disease control [25]. They demonstrate the complex interplay of
behavioral, social, cognitive, and economic factors in human behavior in general and vaccine decision-
making, in particular, which form the basis for this research.

We seek to add a building block to behavioral epidemiology advances regarding factors influencing
parental vaccination decisions, particularly rationality in the decision-making process. We extend the
work in [28], where the authors emphasized integrating social factors into behavioral responses and
infectious disease models, and [27], where the authors explored the use of prospect theory to enhance
replicator dynamics in vaccination decision making. Here, we aim to build on these models by focusing
on bounded rationality in decision-making resulting from stochasticity in the perception of the payoff

of vaccination, leading to a mutation term in the replicator dynamics. Our results contribute to under-
standing parental behavior towards childhood immunization by showing how collective deviations in
those perceptions can make disease persist. We also found that the consequences of these deviations
could be counteracted using an optimal temporal discount in the cost of vaccination.

In this paper, we derive a stochastic differential Eq of RD for vaccination [33]. The stochastic-
ity arises from the perception of the utilities of the choices and deviations from rationality. Using
stochastic game theory to model vaccine choice represents a significant step forward in capturing this
complexity. In this framework, a collective decision to vaccinate is influenced not only by personal
perceptions of risk-benefit but also by the choices made by others in their community and external but
common environmental, cultural, informational, and economic factors. These shared factors are essen-
tial for understanding collective dynamics and population-level responses under systemic uncertainty.
This interdependence of decisions, along with the inherent variability in the way individuals assess
risks and benefits under uncertainty, can also be effectively modeled as a stochastic game in which
the outcomes depend randomly on the actions of all participants [28, 34, 35]. To our knowledge, we
are the first to introduce and study a stochastic behavioral game theory model in the disease modeling
literature.

The paper is summarized as follows. In Section 2, we derive a new stochastic behavioral game
theory Eq that models vaccination versus non-vaccination choices. We pair that Eq with a stochastic
SIR model in which the transmission rate also evolves randomly. This will be followed in Section
3 by an analytical stability analysis of the model’s equilibria. We also use stochastic simulations of
stochastic differential Eqs to further study the stability of the model equilibria and corroborate some
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of the analytical results. Additionally, we use stochastic optimal control of the cost of vaccination to
counteract the effect of bounded rationality. We follow that section with a discussion and conclusion
section.

2. Materials and methods

Let (Ω,F , {Ft}t≥0,P) be a complete probability space, with filtration {Ft}t≥0, with respect to which all
Brownian motions Bi and Wi introduced in the following are defined. We use a stochastic replicator Eq
following the methods of establishing a stochastic replicator Eq in [36, 37] to guarantee the feasibility
of solutions of the stochastic RD Eq. The stochastic RD Eq models the evolution over time of strategies
or traits in a population by incorporating random fluctuations due to environmental variability or when
the population is finite. For instance, let a population have two strategies or traits, A and B, like
vaccination and non-vaccination strategies. If strategy A has a higher payoff than B, then the RD Eq’s
deterministic component would imply that the adopters of strategy A must increase. However, the
stochastic component could cause temporary increases in the adopters of strategy B, while strategy A
is more gainful and vice versa.

Let X(t) = (X1(t), X2(t)) be the number of vaccinators and non-vaccinators in a community of a
total size of N := X1 + X2 decision makers and let the fractions be denoted by xi = Xi/N. Since
x1 + x2 = 1, we will also use the lower case x to denote x1 whenever it does not cause confusion. Let
ui(x1, x2) =

∑2
j=1 v(si, s j)x j be the expected payoff for a decision maker adopting strategy si if randomly

and uniformly matched with a decision maker adopting strategy s j. The function v(si, s j) is the payoff

for a decision maker who adopts strategy si interacting with a decision maker adopting strategy s j.
A deviation from rationality due to external and internal factors is modeled here by adding a white

noise term to the payoff v(si, s j) giving a new payoff function v(si, s j) + νiḂi(t). The stochastic pro-
cess Ḃ(t) = (Ḃ1(t), Ḃ2(t)) is a two-dimensional white noise. Volatility νi > 0 is the magnitude of the
noise in the perceived utility. We assume here that all vaccinators and all non-vaccinators share the
same volatility ν1 and ν2, respectively. Maintaining collective population dynamics, the stochastic
RD model postulates that stochastic noise affects payoff perceptions uniformly across adopters of the
same strategy. This does not account for individual variability in the perceived payoffs. That assump-
tion reflects the influence of common external factors on risk perceptions, aligning with psychological
theories of collective decision-making under uncertainty.

The following stochastic differential Eq then gives the replicator Eq modeling behavioral dynamics,

dXi(t)
dt

= κXi(t)
(
ui (x1, x2) + νiḂi(t)

)
, (2.1)

or
dXi(t) = κXi(t)ui (x1, x2) dt + κνiXi(t)dBi(t), (2.2)

where κ > 0 is the replication rate. Applying Itô’s formula (see Lemma S2 in the Supplementary) to
the transformation x1 = X1/N, we get

dx1 = κx1x2

(
v(s1, s2) − v(s2, s1) + κν2

2x2 − κν
2
1x1

)
dt + κx1x2(ν1dB1(t) − ν2dB2(t)), (2.3)

Since ν1dB1(t) − ν2dB2(t) has the same distribution as
√
ν2

1 + ν2
2 dW(t), where dW(t) is also Gaussian
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with mean zero and variance dt, then Eq (2.3) is equivalent to:

dx1 = κx1x2

(
v(s1, s2) − v(s2, s1) + κν2

2x2 − κν
2
1x1

)
dt + κx1x2

√
ν2

1 + ν2
2 dW(t), (2.4)

Eq (2.4) guarantees that 0 ≤ x1(t) ≤ 1 for all t > 0 if 0 ≤ x1(0) ≤ 1.
We model the payoffs of vaccination to be v(s1, s2) = −ω + δ x1 and of vaccination to be v(s2, s1) =

−I + δ x2, see [28]. In terms of the vaccination choice model, κ is the social learning rate, ω is the cost
of vaccination, and δ is the group pressure. Social norms of vaccination and non-vaccination enforced
by vaccinators and non-vaccinators add δ x1 and δ x2 to the payoffs of vaccination and non-vaccination
strategies, respectively.

The noise in perceived payoff results in the introduction of a new mutation term κ2x1x2(ν2
2x2 − ν

2
1x1)

to replicator dynamics; see, e.g., [36, 38]. A mutation term induces irrational choices of a strategy
that might not be optimal. In terms of vaccination, for certain large values of ν1, the mutation term is a
bounded rational term that can cause agents to adopt the non-vaccination strategy while it has a smaller
payoff; that is v(s2, s1) < v(s1, s2).

The transmission dynamics are assumed to follow a susceptible-infected-recovered (SIR) compart-
mental model. Putting x1 = x and x2 = 1 − x in Eq (2.4) and coupling it with the SIR model yields the
system of Eqs:

dS
dt

= µ (1 − x) − β S I − µ S − σ1S I Ẇ1

dI
dt

= β S I − (µ + γ) I + σ1S I Ẇ1

dR
dt

= µ x + γ I − µR

dx
dt

= κ x (1 − x)
[
−ω + I + δ (2 x − 1) + κ

(
σ2

3 − (σ2
2 + σ2

3)x
)

+

√
σ2

2 + σ2
3 Ẇ2

]
, (2.5)

where S , I, and R are the proportion of susceptible, infected, and recovered individuals in the pop-
ulation at time t, such that S + I + R = 1. The parameter µ is the per capita birth/death rate, β is
the transmission rate, γ is the recovery rate. Recall that κ is the social learning rate, ω is the cost of
vaccination, and δ is the group pressure. The term µ(1 − x) is the recruitment rate of non-vaccinated
children to the susceptible compartment due to parental choice.

Let σ1 be the magnitude of noise in disease transmission. The last Eq in (2.5), a stochastic replicator
Eq, follows the replicator model introduced by [37], where it is shown to have solutions x between zero
and one; see above. Notice that we changed the notation ν1 to σ2 and ν2 to σ3, to be in order within the
coupled model. If σ2

2 = σ2
3 = δ

κ
then, δ (2 x − 1) + κ

(
σ2

3 − (σ2
2 + σ2

3)x
)

= 0. In this case, the collective
noise would cancel out the group pressure in the stochastic replicator Eq. Hence, it seems that bounded
rationality could nullify or counteract social norms.

Since S + I + R = 1, then the third Eq of R in Eq (2.5) is redundant, so henceforth we will consider
the model (2.5) without it and stop using the recovered compartment. Define the set of solutions for
the model in Eq (2.5) as S = {(s, i, x) ∈ R3

+ : 0 ≤ s+ i ≤ 1 and 0 ≤ x ≤ 1}. In the following subsections,
let (S (t), I(t), x(t)) be a solution of the model (2.5) with initial state (S (0), I(0), x(0)) ∈ S. The proofs
of existence, uniqueness, and boundedness of the solution of the model (2.5) are given in S1.2.
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3. Results

In this section, we discuss the different equilibria of the model in (2.5) and their stability. We note
that some specific states of the three stochastic processes S , I, and x are absorbing states. The states 0
and 1 are absorbing states for x and 0 is an absorbing state for I.

We will support the results in this section with simulations using the Milstein algorithm for the
numerical simulation of SDEs [39] implemented using Python. We will use parameter values from
[28], such as µ = 1/50 year−1, γ = 365/22 year−1, and κ = 1.69 year−1. We have to mention here
that most of the simulated processes exhibit slow mixing rates, and hence they take a very long time to
converge to equilibrium.

3.1. Model’s equilibria

The model has five equilibria of the drift term (the deterministic part) in Eq (2.5). Those five
equilibria and their existence conditions are found to be those of [28] when σ2

1 = σ2
2 = σ2

3 = 0. Three
of those are disease-free equilibria:

1. full vaccine uptake and no susceptibility, E1 ≡ (S 1, I1, x1) = (0, 0, 1) ,
2. no vaccine uptake and full susceptibility, E2 = (1, 0, 0), and
3. partial vaccine uptake and partial susceptibility, E3 ≡ (1 − x3, 0, x3), where

x3 =
κσ2

3 − δ − ω

κσ2
2 + κσ2

3 − 2δ
., (3.1)

The equilibrium E3 exists in two regions:

R3,1 =
{
(δ, ω) ∈ R2

+ : δ − κσ2
2 < ω < κσ2

3 − δ
}

and
R3,2 =

{
(δ, ω) ∈ R2

+ : κσ2
3 − δ < ω < δ − κσ2

2

}
.

The two boundaries of either region intersect at
(
κ
2 (σ2

2 + σ2
3), κ2 (σ2

3 − σ
2
2)
)
.

The other two are endemic equilibria that exist when the basic reproduction number R0 =
β

µ + γ
> 1.

They are:

1. no vaccine coverage, E4 ≡

(
1
R0
,

µ

µ + γ

(
1 −

1
R0

)
, 0

)
, and

2. partial vaccine coverage, E5 ≡

(
1
R0
,

µ

µ + γ

(
1 −

1
R0
− x5

)
, x5

)
, where

x5 =

µ

(
1 −

1
R0

)
+

(
κσ2

3 − δ − ω
)

(µ + γ)

µ +
(
κσ2

2 + κσ2
3 − 2δ

)
(µ + γ)

.

The equilibrium E5 exists in two regions

R5,1 =

{
(δ, ω) ∈ R2

+ : −κσ2
2 +

1
R0
κ(σ2

2 + σ2
3) + δ(1 −

2
R0

) < ω < −δ +
µ

µ + γ
(1 −

1
R0

) + κσ2
3

}
Mathematical Biosciences and Engineering Volume 22, Issue 2, 355–388.
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and

R5,2 =

{
(δ, ω) ∈ R2

+ : −κσ2
2 +

1
R0
κ(σ2

2 + σ2
3) + δ(1 −

2
R0

) > ω > −δ +
µ

µ + γ
(1 −

1
R0

) + κσ2
3

}

The two boundaries of either region intersect at
(
1
2

µ

µ + γ
+ κ

2 (σ2
2 + σ2

3),
1
2

µ

µ + γ
(1 − 2

R0
) + κ

2 (σ2
3 − σ

2
2)
)
.

The disease-endemic equilibria appear in the next stability analyses as types of behavior and not as
exact values. The equilibria E3 and E5 represent the partial acceptance of the vaccine. However, in the
latter, partial acceptance of the vaccine does not lead to the eradication of the disease.

3.1.1. Dynamical regimes of stability

Define the mean-value function Y(T ) of any function Y(t) over [0,T ] to be

Y(T ) =
1
T

∫ T

0
Y(t)dt

and let its limit be defined as
Y0 = lim

T→∞
Y(T ).

Let Y∗ = lim inf
t→∞

Y(t) and Y∗ = lim sup
t→∞

Y(t).

Next, we define modes of stability, such as exponential stability, and introduce a new mode of
stability that we call logistic stability. Logistic stability helps in studying the impermanence of dynamic
processes that take value in the unit interval [0, 1]. To our knowledge, this concept has not been used
before in dynamical system analyses.

Definition 1 (Almost Sure Exponential Stability). We say that a process Y(t) ∈ [0,∞) has an almost
sure exponentially stable equilibrium at y = 0 if for some c > 0,

lim sup
t→∞

1
t

log Y(t) ≤ −c

almost surely.

Definition 2 (Almost Sure Logistic Stability). We say that a process Y(t) ∈ [0, 1] has an almost sure
logistically stable equilibrium at y = 0 and 1 if for some c > 0,

lim
t→∞

1
t

log
Y(t)

1 − Y(t)
= (−1)y+1c

almost surely.

The unit interval represents a natural domain for many real-life phenomena, such as proportions,
probabilities, or normalized populations constrained to the unit interval [0, 1]. The concept of logis-
tic stability serves the need to characterize the transient dynamics of those types of processes as well
as their behavior in convergence towards stability. Other convergence behaviors like exponential or
asymptotic stability provide some types of convergence to equilibria. Those types may not capture
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other systems where the dynamics of the processes are bound and/or demonstrate logistic-like growth
or decay which tend to be slower than the exponential ones. In infectious disease modeling, logistic
stability could capture the impermanence of disease states within the unit interval, like prevalence,
when epidemics go through transient phenomena. Logistic stability could distinguish those transient
dynamics from other forms, emphasizing steady-state behavior. The limiting behavior of 1

t log Y(t)
1−Y(t)

can quantify the rate at which a disease dies out or persists, providing a new metric for control mea-
sures.

Define the stochastic basic reproduction number

Rs
0 :=

β

µ + γ + 1
2σ

2
1

. (3.2)

which is always smaller than or equal to R0.
First, we will study the global stability of a disease-free equilibrium. There are several cases in

which the disease-free equilibrium is stable. The first case depends on the stochastic basic reproduction
number and the magnitude of the noise in transmission.

Theorem 1. If Rs
0 < 1 and σ2

1 ≤ β or if
σ2

1

β
> max

(
1,

R0

2

)
, then a disease-free equilibrium is exponen-

tially globally stable almost surely.

Proof. We will prove the theorem in two parts, by showing that the following two inequalities hold:

(C.I) If
σ2

1

β
> max

(
1,

R0

2

)
, then

lim sup
t→∞

log I(t)
t

≤ −
β(µ + γ)
σ2

1

(
σ2

1

β
−

R0

2

)
< 0 a.s., (3.3)

(C.II) If Rs
0 < 1 and σ2

1 ≤ β, then

lim sup
t→∞

log I(t)
t

≤ −

(
µ + γ +

1
2
σ2

1

) (
1 − Rs

0
)
< 0 a.s., (3.4)

Let V(t, I) = log(I), then by Itô’s formula (see Lemma S2 in the Supplementary),

dV = d log(I) = Vtdt + VI(β S I − (µ + γ) I)dt +
1
2

(σ1S I)2VIIdt + (σ1S I)VIdW1(t)

= (β S − (µ + γ) −
1
2
σ2

1S 2)dt + σ1S dW1(t)

which by integration over the interval (0, t) gives

log(I(t)) − log(I(0)) =

∫ t

0
(β S (u) − (µ + γ) −

1
2
σ2

1

(
S (u))2

)
du + σ1

∫ t

0
S (u)dW1(u)

=

∫ t

0
β S (u)

(
1 −

σ2
1

2β
S (u)

)
du − (µ + γ)t + M(t)
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where M(t) = σ1

∫ t

0
S (u)dW1(u) is a local continuous martingale with M(0) = 0. Since

lim sup
t→∞

E
(
M(t)2

)
t

= lim sup
t→∞

σ2
1

∫ t

0
(S (u))2du

t
≤ lim sup

t→∞

σ2
1t
t

= σ2
1 < ∞, (3.5)

then by the Strong Law of Large Numbers, lim sup
t→∞

M(t)
t

= 0 almost surely, , see [40] and Lemma S3

in the Supplementary.

Now to prove (C.I), when
σ2

1

β
> max

(
1,

R0

2

)
, note that the quadratic function

f (S ) = βS
(
1 −

σ2
1

2β
S
)

=
σ2

1

2
S

(
2β
σ2

1

− S
)
, (3.6)

attains its maximum value of
β2

2σ2
1

when S =
β

σ2
1

, which is in the interval (0, 1) if σ2
1 > β, in which case

log(I(t)) − log(I(0))
t

=

∫ t

0
β S (u)

(
1 − σ2

1
2βS (u)

)
du − (µ + γ)t + M(t)

t

≤
β2

2σ2
1

− (µ + γ) +
M(t)

t

and so

lim sup
t→∞

log(I(t)) − log(I(0))
t

≤
β2

2σ2
1

− (µ + γ) a.s.

From this (C.I) follows as

lim sup
t→∞

log(I(t))
t

≤
β2

2σ2
1

− (µ + γ)

= −
β(µ + γ)
σ2

1

(
σ2

1

β
−

β

2(µ + γ)

)
= −

β(µ + γ)
σ2

1

(
σ2

1

β
−

R0

2

)
< 0 a.s.

To prove (C.II), when σ2
1 ≤ β, consider the function

f (S ) = βS
(
1 −

σ2
1

2β
S
)

=
σ2

1

2
S

(
2β
σ2

1

− S
)
, (3.7)

which attains a maximum value on the interval [0, 1] at S = 1 with maximum value

max
S∈[0,1]

f (S ) = β −
σ2

1

2
, (3.8)
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Thus,

log(I(t)) − log(I(0))
t

=

∫ t

0
β S (u)

(
1 − σ2

1
2βS (u)

)
du − (µ + γ)t + M(t)

t

≤ β −
1
2
σ2

1 − (µ + γ) +
M(t)

t

and so
lim sup

t→∞

log(I(t)) − log(I(0))
t

≤ β −
1
2
σ2

1 − (µ + γ) a.s.,

From this (C.II) follows as

lim sup
t→∞

log(I(t))
t

≤ β −
1
2
σ2

1 − (µ + γ)

= −

(
µ + γ +

1
2
σ2

1

) 1 − β

µ + γ + 1
2σ

2
1


= −

(
µ + γ +

1
2
σ2

1

) (
1 − Rs

0
)

< 0 a.s.

Theorem 1 seems to be a classic conclusion; see, e.g., [41]; but it is shown here to hold even with
the presence of a stochastic process x(t) in the first Eq. It shows that disease extinction could still be
achieved here even when R0 > 1 as long as Rs

0 < 1, see Figure 1(a). Another case in which the disease

could be eradicated while R0 > 1 is when
σ2

1

β
> max

(
1,

R0

2

)
as shown in Figure 1(b). Even when

Rs
0 > 1; or specifically, when the conditions of Theorem 1 are not satisfied, eradication of the disease

is possible through vaccination, as we will see next.
In [28], using a deterministic model, it was shown that while R0 > 1, the disease could be eradicated

as the uptake of the vaccine increases to the level of 100% when the peer pressure of the vaccination
group is greater than the cost of the vaccine (δ > ω). However, it was also shown that if the cost of
vaccination and the peer pressure of the non-vaccinating group exceed the risk of the disease (ω + δ >
µ

µ+γ
(1− 1

R0
)), parents might skip vaccination and the disease becomes endemic; see also [27]. Moreover,

both equilibria were shown to be bistable. Here, bounded rationality changes those findings in a way
that noise can impede the roles played by the cost of vaccination and peer pressure in [28]. The
following theorem shows how noises in the perceived utilities can change the vaccination selection,
and consequently the disease dynamics.

Theorem 2. If Ī(t)
t→∞
−−−→ I0, then x(t) has an almost sure logistic stable equilibrium at 0 and 1 under

the following conditions:

1. If ω + κ
σ2

2−σ
2
3

2 > max(I0 − δ, δ), then x(t)
t→∞
−−−→ 0 logistically almost surely, and

2. If ω + κ
σ2

2−σ
2
3

2 < min(I0 − δ, δ), then x(t)
t→∞
−−−→ 1 logistically almost surely, and also, I(t)

t→∞
−−−→ 0

and S (t)
t→∞
−−−→ 0 a.s. whether Rs

0 is more or less than one.
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(a) (b)

Figure 1. Simulation of susceptible S , infected I and vaccinated x, when (a) Rs
0 < 1 and

σ2
1 ≤ β at β = 31 and σ2

1 = 30 giving R0 = 1.87 and Rs
0 = .98, and (b)

σ2
1

β
> max

(
1,

R0

2

)
at β = 33.3 and σ2

1 = 50 giving R0 = 2 and Rs
0 = .8 (even when it is more than one). The

rest of the parameters are µ = 1/50 year−1, γ = 365/22 year−1, κ = 1.69 year−1, ω = .0015,
δ = .0005, σ2

2 = .0008, and σ2
3 = .0006.

Proof. Using Itô’s formula (see Lemma S2 in the Supplementary),

d log(x(t)) = κ(1 − x(t))
[
(κσ2

3 − δ − ω) − (κσ2
2 + κσ2

3 − 2δ)x(t) + I(t) − κ
σ2

2 + σ2
3

2
(1 − x(t))

]
dt

+κ
√
σ2

2 + σ2
3(1 − x(t))dW2(t)

and similarly

d log(1 − x(t)) = −κx(t)
[
(κσ2

3 − δ − ω) − (κσ2
2 + κσ2

3 − 2δ)x(t) + I(t) + κ
σ2

2 + σ2
3

2
x(t)

]
dt

−κ
√
σ2

2 + σ2
3x(t)dW2(t).

Therefore,

d log
(

x(t)
1 − x(t)

)
= κ

(
−κ
σ2

2 − σ
2
3

2
− δ − ω + 2δx(t) + I(t)

)
dt + κ

√
σ2

2 + σ2
3dW2(t).

Since W2(t)
t

t→∞
−−−→ 0 almost surely due to the Strong Law of Large Numbers of Brownian motion, then

lim
t→∞

log
(

x(t)
1 − x(t)

)
t

= κL(x0, I0) (3.9)
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almost surely, where

L(x0, I0) := −κ
σ2

2 − σ
2
3

2
− δ − ω + 2δx0 + I0.

If x0 = 0, which is equivalent to x(t) approaches 0 almost surely, then L(x0, I0) = −κ
σ2

2−σ
2
3

2 −ω−δ+I0.

If x0 = 1 and I0 = 0, which is equivalent to x(t) approaches 1 almost surely, then L(x0, I0) = −κ
σ2

2−σ
2
3

2 −

ω + δ. The first and second values of L(x0, I0) could have opposite signs for the same parameter
values as when I0 − δ < κ

σ2
2−σ

2
3

2 + ω < δ. Therefore, x(t) approaches 0 logistically almost surely if

−κ
σ2

2−σ
2
3

2 − ω − δ + I0 < 0 and −κσ
2
2−σ

2
3

2 − ω + δ < 0. Meanwhile, x(t) approaches 1 logistically almost

surely if −κσ
2
2−σ

2
3

2 − ω + δ > 0 and −κσ
2
2−σ

2
3

2 − ω − δ + I0 > 0.

An overlap region appears in Figure 2(a) as stated in the proof of Theorem 2 when I0− δ < κ
σ2

2−σ
2
3

2 +

ω < δ. In that region, both equilibria could be stable, as the simulation demonstrates below. The
dashed region with vertical lines in Figure 2(a) is for ω+ κ

σ2
2−σ

2
3

2 > I0 − δ in which the disease-endemic
and no-vaccination equilibrium E4-type equilibrium is stable; see Figure 2(b) for a simulation of a case
in that region. Meanwhile, the dashed region with diagonal lines in Figure 2(a) is for ω + κ

σ2
2−σ

2
3

2 < δ,
in which disease-free and full-vaccination equilibrium E1 is stable; see Figure 2(c) for a simulation of
a case in that region. Again, in the common region, both E1 and E4 are stable, see below.

When σ2
2 = σ2

3 = 0, the two conditions of Theorem 2 are shown to be sufficient for the local
asymptotic stability of E4 and E1, respectively, for the deterministic model in [28]. In particular,
the latter equilibrium of the disease-free state was shown to be stable when δ > ω. However, the
magnitudes of the white noise in the utilities of both groups, σ2

2 and σ2
3, influence the opinion and

uptake of vaccination. In Figure 2(b), the disease cannot be eradicated even when δ > ω is mainly
due to the level of noise in the vaccinator group. Figure 2(c) represents a case where the conditions of
Theorem 1 are not satisfied, but disease eradication is still possible as implied by part 2 of Theorem 2.
If Rs

0 > 1, the disease could be eradicated by increasing the peer pressure of the vaccination group or

decreasing the noise in the utility of the vaccinator’s group conducing to ω + κ
σ2

2−σ
2
3

2 < δ. Notice also
that an increase in the noise of the non-vaccinator group could also increase vaccine uptake.

Achieving the goal of disease eradication in the vaccination campaign requires minimizing variabil-
ity in decision-making and promoting consistent, rational choices throughout the population. However,
that aim might not be plausible due to external factors. The noise in the perceived utility of the vacci-
nation group could increase further, exacerbating disease eradication. When the social and stochastic
external factors that influence utility functions are outside of the control of the policymaker, a policy
to change the cost of vaccination is warranted. A stochastic optimal control approach (see e.g., [42])
could provide a policy for preventing infectious diseases by finding the appropriate cost of vaccina-
tion. As such, let the control variable 0 < u(t) ≤ 1 be the degree of reduction in the cost of vaccination.
Including that function in the stochastic replicator Eq gives rise to the following Eq

dx
dt

= κx(1 − x)
[
−ω (1 − u) + I + δ(2x − 1) + κ

(
σ2

3 − (σ2
2 + σ2

3)x
)

+

√
σ2

2 + σ2
3Ẇ2(t)

]
, (3.10)

The details of the stochastic optimal control are given in S1.3. Figure 3(a) provides a simulation in
which E4 is stable. Full uptake of the vaccine and disease eradication is achieved, see Figure 3(b), with
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(a) (b)

(c)

Figure 2. (a) Parameter plane of σ2
2 versus σ2

3 based on Theorem 2. Other parameter values
are β = 100, µ = 1/50, γ = 365/22, κ = 1.69, ω = 0.1, δ = 0.5, and σ2

1 = .16. In that
case, Rs

0 = 6. (b) Simulation of the susceptible, infected, and vaccinated when σ2
2 = 1.5 and

σ2
3 = .2. The endemic equilibrium of E4 type is stable. (c) Simulation of the susceptible,

infected, and vaccinated when σ2
2 = .2 and σ2

3 = 1.5. The disease-free equilibrium of E1 type
is stable.
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an optimal control u∗(t) that reduces the cost of vaccination, see Figure 3(c). We note that the optimal
reduction started to decline smoothly after being a constant over a relatively short period of time.

(a) (b)

(c)

Figure 3. Simulation of the susceptible, infected, and vaccinated without control in (a) and
with control in (b). (c) The control u∗(t) is shown for umax = .8, T f = 150, α1 = 0, α2 = 1000,
and α3 = 100. The rest of the parameter values are β = 100, µ = 1/50, γ = 365/22, κ = 1.69,
ω = 2, δ = 0.1, σ2

1 = .01, σ2
2 = .5 and σ2

3 = 1.4. The initial values are S (0) = .9, I(0) = .1
and x(0) = .1. In that case, Rs

0 = 6.

It would be difficult to control the disease without that discount in the cost of vaccination, especially
with large noise in the vaccination group’s utility function. The reason is in two scenarios: the first
scenario is when ω + κ

σ2
2−σ

2
3

2 > I0 − δ and ω + κ
σ2

2−σ
2
3

2 > δ, in which vaccination is completely rejected

and the disease becomes endemic; see Figure 2(b). The second scenario is where ω + κ
σ2

2−σ
2
3

2 > I0 − δ

and ω + κ
σ2

2−σ
2
3

2 < δ, in which case both disease eradication and disease endemicity become stationary;
see Figure 4. In Figure 4(a) the disease dies, while in Figure 4(b) the disease persists while all the
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(a) (b)

Figure 4. Simulation of the susceptible, infected, and vaccinated when σ2
2 = .15 and σ2

3 = .2
in (a) and (b) with initial x(0) = .8. The disease-free equilibrium of E1 type and the disease
endemic equilibrium of E4 type are stable – a Bernoulli stationary distribution. The rest of
the parameter values are β = 100, µ = 1/50, γ = 365/22, κ = 1.69, ω = 0.1, δ = 0.5, and
σ2

1 = .16. In that case, Rs
0 = 6.

values of the parameters and initial conditions are the same.
As shown in Figure 4, when both parts of Theorem 2 are true, namely ω + κ

σ2
2−σ

2
3

2 > I0 − δ and

ω + κ
σ2

2−σ
2
3

2 < δ, then the bistability of both equilibria x = 0 and x = 1 (impermanence) occurs. A
further examination of the stability of both equilibria was performed using a simulation study. Figure 5
shows the proportion of times x(t) converges to 0 and to 1 in 200 stochastic simulations of the model at
different values of σ2

2 and σ2
3 with initial values x(0) = 0.1, 0.2, . . . , 0.9. The bistability region shows a

Bernoulli stationary distribution whose probabilities depend on the noises in the perceived utilities σ2
2

and σ2
3, as well as the initial acceptance of vaccination x(0). The size of the bistability region could be

seen to depend on x(0) as shown through the panels of Figure 5. We notice that as initial acceptance of
the vaccine x(0) increases, the region in which full vaccination is stable in the σ2

2 − σ
2
3 plane expands.

In other words, noises are more detrimental to vaccination campaigns if initial vaccine acceptance is
low.

The following two theorems are generalizations to the disease dynamics in [28]. The following
theorem identifies the boundaries of the limiting temporal means of processes when Rs

0 > 1. It also
shows the case when the disease cannot be eradicated at a low vaccination level; namely when its
temporal mean of vaccine acceptance/uptake is below 1 − 1

Rs
0
.

Theorem 3. If Rs
0 > 1 and x̄(t) → x0, then a disease-endemic equilibrium will persist in the temporal

mean. That is

1. For all x0 ∈ [0, 1],
µ (1 − x0)
µ + β

≤ lim inf
t→∞

S̄ (t) ≤ lim sup
t→∞

S̄ (t) ≤ 1 − x0 (3.11)

and
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x(0) = 0.1 x(0) = 0.2 x(0) = 0.3
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Figure 5. Estimate of the probability P (limt→∞ x(t) = 0|x(0)) using 200 simulation runs at
T = 100, dt = 0.001 and different initial values of x(0), with parameter values β = 100,
µ = 1/50, γ = 365/22, κ = 1.69, ω = 0.1, δ = 0.5, σ2

1 = .16, and initial values S (0) = 0.4
and I(0) = 0.4.
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2. If x0 < 1 − 1
Rs

0
, then

lim inf
t→∞

Ī(t) ≥
µ

µ + γ
[1 −

1
Rs

0
− x0] (3.12)

and
lim sup

t→∞
S̄ (t) ≤

1
Rs

0
. (3.13)

Eq (3.13) holds true also when x0 ≥ 1 − 1
Rs

0
from the upper inequality in Part (1).

3. If x0 <
β

β−σ2
1
(1 − 1

Rs
0
) and β > σ2

1 then

lim sup
t→∞

Ī(t) ≤
µ

µ + γ
[

β

β − σ2
1

(1 −
1
Rs

0
) − x0]. (3.14)

Proof. Since
d(S + I)(t)

dt
= µ(1 − x(t)) − µ(S + I)(t) − γI(t)

then
S̄ (t) = 1 − φ(t) − x̄(t) − (1 +

γ

µ
)Ī(t) (3.15)

where φ(t) = 1
µt (S (t) + I(t) − S (0) − I(0)). Notice that limt→∞ φ(t) = 0 a.s. Since, S̄ (t) ≤ 1− φ(t)− x̄(t)

for all t > 0. Therefore,
lim sup

t→∞
S̄ (t) ≤ 1 − x0.

From Eq (2.5)

dS
dt

= µ (1 − x) − β S I − µ S − σ1S I Ẇ1 ≥ µ (1 − x) − (β + µ) S − σ1S I Ẇ1.

Then,
S (t) − S (0)

t
≥ µ (1 − x̄(t)) − (β + µ) S̄ (t) −

1
t

M3(t),

where M3(t) =
∫ t

0
σ1S (u) I(u) dW1(u). Notice that M3(t) is a local continuous martingale with M3(0) =

0 and E(M3(t)2) = σ2
1

∫ t

0
(S (u)I(u))2du ≤ σ2

1t. Since lim supt→∞
E(M3(t)2)

t
≤ σ2

1 < ∞, then by the

Strong Law of Large Numbers, lim supt→∞
M3(t)

t
= 0 almost surely, see [40] and Lemma S3 in the

Supplementary. But since x0 < 1, and S (t) − S (0) ≤ 1 then (3.11) follows.
To prove part (2), note that

d log(I(t))
dt

= βS (t) − (µ + γ +
1
2
σ2

1) +
1
2
σ2

1(1 − S (t)2) + σ1S Ẇ1

≥ βS (t) − (µ + γ +
1
2
σ2

1) + σ1S Ẇ1

Thus

log(I(t)) − log(I(0))
t

≥ β[1 − φ(t) − x̄(t) − (1 +
γ

µ
)Ī(t)] − (µ + γ +

1
2
σ2

1) +
1
t

M(t)
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and so

log(I(t))
t

≥
log(I(0))

t
+ β[1 − φ(t) − x̄(t) − (1 +

γ

µ
)Ī(t)] − (µ + γ +

1
2
σ2

1) +
1
t

M(t).

Thus by Lemma S4 in the Supplementary,

lim inf
t→∞

Ī(t) ≥
µ

µ + γ
[1 −

1
Rs

0
− x0]

if x0 < 1 − 1
Rs

0
. In which case, since

S̄ (t) = 1 − φ(t) − x̄(t) − (1 +
γ

µ
)Ī(t).

Then
lim sup

t→∞
S̄ (t) ≤

1
Rs

0

Notice that 1
Rs

0
> 1

R0
so it is more than its deterministic counterpart.

To prove part (3), similarly, if x0 <
β

β−σ2
1
(1 − 1

Rs
0
) and β > σ2

1 then

lim inf
t→∞

S̄ (t) ≥ 1 −
β

β − σ2
1

(1 −
1
Rs

0
)

Again,

d log(I(t)) = (β S − (µ + γ) −
1
2
σ2

1S 2)dt + σ1S dW1(t)

and by Eq (3.15)

1
t

log(I(t)) −
1
t

log(I(0)) = β S̄ (t) − (µ + γ) −
1
2
σ2

1S 2(t) +
1
t

M(t)

where M(t) = σ1

∫ t

0
S (u)dW1(u) is a local continuous martingale, with M(0) = 0, see [40] and Lemma

S3 in the Supplementary. Since, (S̄ (t))2 ≤ S 2(t), then

1
t

log(I(t)) ≤
1
t

log(I(0)) + β [1 − φ(t) − x̄(t) − (1 +
γ

µ
)Ī(t)] − (µ + γ)

−
1
2
σ2

1[1 − φ(t) − x̄(t) − (1 +
γ

µ
)Ī(t)]2 +

1
t

M(t)

≤ Ψ(t) + β [1 − x̄(t)] − (µ + γ) − β (1 +
γ

µ
)Ī(t) −

1
2
σ2

1(1 − φ(t))2

+ σ2
1(x̄(t) + (1 +

γ

µ
)Ī(t)) −

1
2
σ2

1(x̄(t) + (1 +
γ

µ
)Ī(t))2

≤ Ξ(t) − (β − σ2
1) (1 +

γ

µ
)Ī(t)

where
Ξ(t) = Ψ(t) + β [1 − x̄(t)] − (µ + γ) −

1
2
σ2

1(1 − φ(t))2 + σ2
1 x̄(t),
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and

Ψ(t) =
1
t

log(I(0)) − βφ(t) − σ2
1φ(t)(x̄(t) + (1 +

γ

µ
)Ī(t)) +

1
t

M(t).

If we show that limt→∞ Ξ(t) = β(1 − 1
Rs

0
) − (β − σ2

1)x0 a.s., then Lemma S4 in the Supplementary will
imply that

lim sup
t→∞

Ī(t) ≤
µ

µ + γ
[

β

β − σ2
1

(1 −
1
Rs

0
) − x0]

if x0 <
β

β−σ2
1
(1 − 1

Rs
0
). But limt→∞

1
t log(I(0)) = 0 a.s. and limt→∞

1
t M(t) = 0 a.s. Finally,

| − βφ(t) − σ2
1φ(t)(x̄(t) + (1 +

γ

µ
)Ī(t))| ≤ β|φ(t)| + σ2

1|φ(t)|(1 + (1 +
γ

µ
))

and limt→∞ φ(t) = 0 a.s. complete this part.

In [28], where the deterministic version of the model is studied, the partial vaccination and persis-

tence of the disease equilibrium E′5 ≡
(

1
R0
,

µ

µ + γ

(
1 −

1
R0
− x′5

)
, x′5

)
, where

x′5 =

µ

(
1 −

1
R0

)
− (δ + ω) (µ + γ)

µ − 2δ(µ + γ)

is locally asymptotically stable when

δ(1 −
2
R0

) < ω < −δ +
µ

µ + γ
(1 −

1
R0

), (3.16)

The left hand side of inequality (3.16) is equivalent to x′5 < 1− 1
R0

, the existence condition of E′5. Part 2
of Theorem 3, exhibits a similar result in which if the temporal mean of x(t) converges to x0 < 1 − 1

Rs
0
,

then the disease persists as in the deterministic model even when x0 > 0. In which case, parts 2 and 3
of Theorem 3 give

0 <
µ

µ + γ
[1 −

1
Rs

0
− x0] ≤ lim inf

t→∞
Ī(t) ≤ lim sup

t→∞
Ī(t) ≤

µ

µ + γ
[

β

β − σ2
1

(1 −
1
Rs

0
) − x0], (3.17)

Moreover, if σ2
1 = 0 while R0 > 1, then

lim
t→∞

Ī(t) =
µ

µ + γ
[1 −

1
R0
− x0], (3.18)

When x0 = 0, the disease persists in a way similar to E4.

When Rs
0 > 1 some non-deterministic limits of the system occur under the condition that

σ2
1

β
<

R0

2
;

see, e.g., [43]. Even when σ2
1 = 0 and R0 > 1, in view of Eq (3.18), disease prevalence still fluctuates;

see Figure 6(a). The following theorem provides boundaries for those stochastic fluctuations.
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Theorem 4. If Rs
0 > 1, and

σ2
1

β
<

R0

2
, then

1. lim inft→∞ S (t) ≤ sd ≤ lim supt→∞ S (t) ≤ 1 − x∗ a.s.
2. lim inft→∞ I(t) ≤ (1 − sd − x∗)

µ

µ+γ
a.s.

3. (1 − sd − x∗) µ

µ+γ
≤ lim supt→∞ I(t) ≤ (1 − sd) a.s.

where sd := 1
R0

2

1+

√
1−

2σ2
1

βR0

≥ 1
R0

. Note that the first part implies that x∗ ≤ 1 − sd.

Proof. Since,

d log(I(t)) = (−
1
2
σ2

1S 2(t) + βS (t) − (µ + γ))dt + σ1S dW1(t).

Let φ(z) = −1
2σ

2
1z2 + βz − (µ + γ), which has one zero sd between zero and one if and only if σ2

1
β
<

R0

2
and Rs

0 > 1. The function φ(z) can have a peak at z∗ =
β

σ2
1

such that sd < z∗ ≤ 1 if and only if β ≤ σ2
1.

Since φ(z) is increasing for z < z∗ then there exists ε > 0 such that φ(z) is increasing for z < sd + ε.
Thus, φ(z) < φ(sd − ε) < 0 for z < sd − ε.

Assume that lim supt→∞ S (t) < sd − ε on a set Ω1 with positive probability, and so 0 ≤ S (u) <
sd − ε < 1 for all u > t0(ω) for each ω ∈ Ω1. Thus, φ(S (u)) < φ(sd − ε) < 0 for all u > t0(ω) for each
ω ∈ Ω1. Then, lim supt→∞

log(I(t))
t ≤ φ(sd − ε) < 0 with positive probability. That means limt→∞ Ī(t) = 0

with positive probability, but that would contradict Theorem 3 part (2).
Now, assume that lim inft→∞ S (t) > sd + ε on a set Ω2 with positive probability, and so sd + ε ≤

S (u) ≤ 1 for all u > t0(ω) for each ω ∈ Ω2. Thus, φ(S (u)) > φ(sd + ε) > 0 for all u > t0(ω) for each
ω ∈ Ω2. Then, lim inft→∞

log(I(t))
t ≥ φ(sd + ε) > 0 with positive probability. But that would contradict

with that log(I(t))
t < 0 for all t since I(t) ≤ 1. Thus, part (1) follows.

Again, since

d(S + I)
dt

= µ(1 − x) − µ(S + I) − γI

then

S (t) + I(t) = e−µt(S (0) + I(0)) + 1 − e−µt
∫ t

0
µeµsx(s)ds −

γ

µ
e−µt

∫ t

0
µeµsI(s)ds,

Therefore, by the generalized L’Hôpital rule (see Supplementary)

lim sup
t→∞

S (t) ≤ 1 − lim inf
t→∞

x(t) − (1 +
γ

µ
) lim inf

t→∞
I(t),

and so
lim inf

t→∞
I(t) ≤ (1 − sd − x∗)

µ

µ + γ
,

Also, by the generalized L’Hôpital rule (see Supplementary)

lim inf
t→∞

S (t) ≥ 1 − lim sup
t→∞

x(t) − (1 +
γ

µ
) lim sup

t→∞
I(t),
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and so
lim sup

t→∞
I(t) ≥ (1 − sd − x∗)

µ

µ + γ
,

if x∗ = lim supt→∞ x(t) < 1. Since,
S (t) + I(t) ≤ 1

for all t > 0, then
lim sup

t→∞
I(t) ≤ 1 − sd,

Note that sd ↓
1

R0
as σ1 → 0+. Figure 6(a) shows a simulation of one instance of the case where

σ2
1 = 0 and Rs

0 = R0 = 6, in which the proportion of infected fluctuates due to the stochastic nature of
vaccine uptake. In that case, S ∗ = S ∗ = 1

R0
. Figure 6(b) illustrates the case where σ2

1 > 0 and Rs
0 = 4.33

with sd = .168 demarcating S ∗ and S ∗. In both panels of Figure 6, I∗ and I∗ have the boundaries given
by Theorem 4 in one simulation instance. See also Figure S1.

Notice that if x∗ = 1, then x∗ must also be equal to one, and in that case I → 0 and S → 0 a.s. If
x∗ = 0, then 1 − sd is a divider of the I∗ and I∗. Moreover, if x∗ < 1 − sd, then lim supt→∞ I(t) > 0
and so lim inft→∞ I(t) > 0 or otherwise limt→∞ I(t) = 0 since 0 is an absorbing state for I. Note that
sd is always greater than or equal to 1

R0
and are equal when σ2

1 = 0. We can infer that 1 − sd is a
stochastic herd immunity threshold HIT s. Interestingly, HIT s is less than or equal to the deterministic
herd immunity threshold 1 − 1

R0
.

(a) (b)

Figure 6. Simulation of the susceptible, infected, and vaccinated with the limits in Theorem
4. The disease endemic equilibrium E5 type is stable when (a) σ2

1 = 0 in which case Rs
0 =

R0 = 6 and (b) σ2
1 = 13 in which case Rs

0 = 4.33. The rest of the parameter values are
β = 100, µ = 1/50, γ = 365/22, κ = 1.69, ω = .0004, δ = 0.00005, σ2

2 = .0008, and
σ2

3 = .0006.

Note that simulating an almost sure result requires a large number of simulation runs in which the
proportion of those simulation runs revealing the result is almost one. Also, we estimated the limit
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supremum and infimum by long-term simulations in which the cumulative maximum and minimum
values of the time-reverse of the process are found to become stable. We notice that they reach stability
over a period of time but lose that stability in the last period of the simulation run, since the maximum
and minimum are found over a small period of time at the end of the simulation.

The following theorem shows that the limiting temporal variability for fluctuations around levels
less than or equal to the equilibria is affected by the noise in the stochastic replicator dynamics repre-
senting the parental behavior.

Theorem 5. Let (S e, Ie, xe) be an equilibrium of E5 type in which xe , 0, 1. If 1
2

2µ+γ

β
σ2

1Ie < µ and
δ < 1

4kσ2, where σ2 = σ2
2 + σ2

3, then

lim sup
t→∞

1
t

∫ t

0


S (u) −

µ

µ − 1
2

2µ+γ

β
σ2

1Ie

S e


2

+ (I(u) − Ie)2 + (x(u) − xe)2

 du ≤

1
m

 µ2S 2
e

µ − 1
2

2µ+γ

β
σ2

1Ie

+
1
2
µκσ2xe(1 − xe) + µxe + µS e(1 − S e)

 ,
almost surely, where m = min(µ − 1

2
2µ+γ

β
σ2

1Ie, µ + γ, µ
(

1
2kσ2 − 2δ

)
).

Proof. Let a = κσ2
3 − δ − ω and b = κσ2 − 2δ. Notice that we can write a = bxe − Ie and I + a − bx =

(I−Ie)−b(x−xe) since Ie, xe are zeros of the drift in the stochastic replicator Eq. Consider the following
three non-negative functions:

V1 = −xe log
x
xe
− (1 − xe) log

1 − x
1 − xe

,

V2 =
1
2

(S − S e + I − Ie)2 ,

V3 = I − Ie − Ie log
I
Ie
.

(Note: V1 is the relative entropy.) Thus, Itô formula (see Lemma S2 in the Supplementary) implies

dV1 = [κ (x − xe) (I + a − bx)] +
1
2

k2σ2(x − xe)2 +
1
2

k2σ2xe(1 − xe)dt + kσ(x − xe)dW2

=

[
k (x − xe) (I − Ie) + k

(
1
2

kσ2 − b
)

(x − xe)2 +
1
2

k2σ2xe(1 − xe)
]

dt + kσ (x − xe) dW2

Moreover,
dV2 = (S − S e + I − Ie)[µ(1 − x) − µS − (µ + γ)I]dt

but since µ = µxe + µS e + (µ + γ)Ie where S e, Ie, xe are zeros of drift of the first Eq in (2.5), then

dV2 = ((S − S e) + (I − Ie)) [−µ(x − xe) − µ(S − S e) − (µ + γ)(I − Ie)]
= −µ(S − S e)2 − (µ + γ)(I − Ie)2 − µ(S − S e)(x − xe) − (2µ + γ)(I − Ie)(S − S e) − µ(x − xe)(I − Ie).

Finally,

dV3 =

[
β(I − Ie)(S − S e) +

1
2
σ2

1IeS 2
]

dt + σ1S (I − Ie)dW1
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Now, let us introduce the non-negative function

V =
µ

k
V1 + V2 +

2µ + γ

β
V3.

Thus,

dV =

[
−µ(S − S e)2 − (µ + γ)(I − Ie)2 − µ

(
1
2

kσ2 − 2δ
)

(x − xe)2 − µ(S − S e)(x − xe)

+
1
2

2µ + γ

β
σ2

1IeS 2 +
1
2
µκσ2xe(1 − xe)

]
dt +

2µ + γ

β
σ1S (I − Ie)dW1 + µσ(x − xe)dW2.

But, since −µ(S − S e)(x − xe) ≤ µS ex + µS xe ≤ µS e + µxe, while

−µ(S − S e)2 +
1
2

2µ + γ

β
σ2

1IeS 2 = −(µ−
1
2

2µ + γ

β
σ2

1Ie)

S − µ

µ − 1
2

2µ+γ

β
σ2

1Ie

S e


2

+
µ2S 2

e

µ − 1
2

2µ+γ

β
σ2

1Ie

− µS 2
e ,

then

LV ≤ −(µ + γ)(I − Ie)2 − µ

(
1
2

kσ2 − 2δ
)

(x − xe)2

− (µ −
1
2

2µ + γ

β
σ2

1Ie)

S − µ

µ − 1
2

2µ+γ

β
σ2

1Ie

S e


2

+
µ2S 2

e

µ − 1
2

2µ+γ

β
σ2

1Ie

+
1
2
µκσ2xe(1 − xe) + µxe + µS e(1 − S e)

Now, if dV ≤ ( f (S e, Ie, xe) − g(S , I, x))dt + σ(S , I, x)dWt for some positive functions V, f , g, then

0 ≤ V(S (t), I(t), x(t)) ≤ V(S (0), I(0), x(0)) +

∫ t

0
( f (S e, Ie, xe) − g(S , I, x))du +

∫ t

0
σ(S , I, x)dWu

almost surely. But then

1
t

∫ t

0
g(S , I, x)du ≤

1
t
V(S (0), I(0), x(0)) + f (S e, Ie, xe) +

1
t

∫ t

0
σ(S , I, x)dWu.

Thus,

lim sup
t→∞

1
t

∫ t

0
g(S , I, x)du ≤ f (S e, Ie, xe)

almost surely and the result follows.

If σ2
1 = 0, as in Figure 6(a), then

lim sup
t→∞

1
t

∫ t

0

[
(S (u) − S e)2 + (I(u) − Ie)2 + (x(u) − xe)2

]
du ≤

1
min(1, 1

2kσ2 − 2δ)

[
1
2
κσ2xe(1 − xe) + xe + S e

]
,

almost surely.
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4. Discussion

In this paper, we introduced a novel model of stochastic replicator dynamics (RD), from stochastic
game theory, to depict human choice with noise in their perceived utility function. Including white
noise in the utility function serves as a way to model irrationality and stochastic deviations from the
classical rational utility. Introducing the white noise to the perceived utilities of both groups gives
rise to a mutation term in the drift (deterministic) component in the stochastic RD. The mutation term
depicts irrational human choices in which they explore other, possibly non-optimal, behaviors. In
addition, the stochastic component of the RD reflects the unpredictable nature of human behavior and
the various biases and constraints that influence decision-making. Thus, adding stochastic deviations
from the classical rational utility aligns more closely with the bounded rationality framework. To our
knowledge, this is the first time that parental choice of vaccination for their children has been modeled
using stochastic replicator dynamics to describe their bounded rationality. See also [27, 44, 45] for
other deterministic models of bounded rationality.

We also included noise in disease transmission to investigate its effect on vaccination decision-
making. Although the latter has been investigated in the literature, this is the first time that the coupled
system of stochastic differential Eqs of SIR and RD has been studied. The coupling takes place as
the stochastic process of the proportion of infected children appears in the utility functions and as the
stochastic process of the vaccine uptake appears in the first Eq of the stochastic SIR. The model shows
new dynamics that generalize to those investigated in [28].

The presence of stochastic noise in the perceived utilities has no effect on the disease transmission
if the stochastic basic reproduction number is less than one and the noise in the disease transmission
is small enough. But when those conditions change, stochastic noise in perceived utility can affect the
dynamical behavior of the disease due to the difference in the magnitude of that noise in the vaccinator
and non-vaccinator parents in a way that can counter peer pressure. The larger the magnitude of that
noise in the vaccintor’s perceived utility, the more the likelihood that parents will not vaccinate their
children, and vice versa for non-vaccinators. A clear and consistent view of the utility of vaccinators
is required to achieve disease eradication when the disease has a large stochastic basic reproduction
number. Disease eradication becomes uncertain when both magnitudes of noises approach the same
value. It also depends on the initial acceptance of the vaccine.

We noticed here the emergence of new stochastic herd immunity thresholds that are less than the
deterministic one. If vaccination uptake is lower than those new thresholds, then the disease will
persist.

The effect of stochasticity on vaccine acceptance and disease eradication could be controlled
through a stochastic optimal control. A discount in the cost of vaccination, including but not lim-
ited to ease of access to a safe vaccination as well as lowering its price, can achieve full coverage of
the vaccine. That is true even when epidemiological, social, and cognitive parameters induce disease
persistence. It is shown here that an optimal discount is not required for the full period and could be
gradually eased up. The optimal control policy takes into account that vaccination efforts have practical
and resource-related bounds such as finite resources and supply.

Although the underlying model attempts to capture the population-level effects of shared or sys-
tematic uncertainties, it does not account for heterogeneity in the individual’s perceptions of payoffs.
The assumption of shared or systematic stochasticity aligns with situations in which systemic external
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influences, e.g., environmental, cultural, informational, and economical, dominate the individual differ-
ences, especially in tightly connected or homogeneous populations. It may be less applicable to diverse
populations with significant individual variability, which emphasizes the need for models that balance
collective and individual-level influences on disease spread. Future work in stochastic modeling of
decision-making in behavioral epidemiology should extend itself to incorporating individual-specific
(occasional) stochasticity, which would allow for the exploration of diverse behaviors and richer dy-
namics at both individual and population levels.

In our simulations, where time is measured in years, the proportions of the susceptible, infected,
and vaccine acceptors sometimes take a long time to converge to equilibrium under certain parameter
settings. This slow convergence reflects the slow mixing dynamics of the system. In future work, it is
warranted to find or estimate parameter values that reflect the empirically observed behavior of these
variables in real life.

5. Conclusions

Adopting stochastic game theory in epidemiological modeling assists in understanding how diseases
spread and in forecasting and managing public responses to health crises. This approach provides
a more nuanced view of vaccine uptake through human behavior and its impact on public health,
establishing behavior management as an essential element of contemporary disease control strategies.
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S1. Supplementary

In the Supplementary, we will present some important definitions, lemmas, and propositions, some
of which can be found in the literature. The rest are proven here.

S1.1. Definitions and supporting lemmas

Lemma S1. The generalized L’Hôpital rule [46]

lim inf
t→∞

f ′(t)
g′(t)

≤ lim inf
t→∞

f (t)
g(t)
≤ lim sup

t→∞

f (t)
g(t)
≤ lim sup

t→∞

f ′(t)
g′(t)

(S1)

Let (Ω,F , {Ft}t≥0,P) be a complete probability space with filtration {Ft}t≥0 with respect to which all
of the stochastic processes introduced in the following are defined.

Lemma S2 (Itô’s formula). Let the one-dimensional stochastic differential Eq

dX(t) = µtdt + σtdW(t)

If f (t, x) is a twice-differentiable scalar function, then

d f (t, X(t)) =

(
∂ f
∂t

+ µt
∂ f
∂x

+
σ2

t

2
∂2 f
∂x2

)
dt + σt

∂ f
∂x

dW(t)

A d-dimensional stochastic differential Eq

dX(t) = F(t, X(t))dt + G(t, X(t))dW(t)

where the function F(t, x) = ( fi(t, x))1≤i≤d is a d × 1 vector defined on [0,∞] × Rd and G(t, x) =(
gi, j(t, x)

)
1≤i≤d,1≤ j≤n

is a d × n vector defined on [0,∞] × Rd are both locally Lipschitz functions in x.

Let W(t) be an n− dimensional Brownian motion. Let V be a function in C1,2([0,∞] × Rd, [0,∞)) and
let the differential operator L be defined by

LV(t, x) =
∂V(t, x)
∂t

+ F(t, x)T DV(t, x) +
1
2

Trace(G(t, x)T H(t, x)G(t, x))

where DV(t, x) =
∂V(t, x)
∂x

is the gradient of V(t, x) and H(t, x) =
∂2V(t, x)
∂x2 is the Hessian matrix of

V(t, x). Itô’s formula for X(t) and such function V states that

dV(t, X(t)) = LV(t, X(t))dt + DV(t, X(t))TG(t, X(t))dW(t)

for t ≥ 0.
The following lemma can be found in [40].

Lemma S3. Let {Mt : t ≥ 0} be a real-valued continuous local martingale with respect to {Ft}t≥0 such
that M0 = 0. If lim supt→∞

E(M2
t )

t < ∞ then limt→∞
Mt
t = 0 a.s.

The following lemma is an extension to the lemmas that were introduced in the Supplementary
of [47]. It is new to our knowledge.
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Lemma S4. Consider a function f ∈ C([0,∞) × Ω, (0,∞)). Let a(t) be a sequence such that

limt→∞
a(t)

t
= a a.s. and let a and b be two positive constants such that

log( f (t)) ≥ (≤) a(t) − b
∫ t

0
f (s)ds

for all t ≥ 0 a.s. Then

lim inf
t→∞

(lim sup
t→∞

)
1
t

∫ t

0
f (s)ds ≥ (≤)

a
b

a.s.

Proof. We will prove the ”≥” part and the ”≤” follows using the same approach. Let g(t) := b f (t) and
so the inequality becomes

log(g(t)) ≥ (≤) a(t) + log(b) −
∫ t

0
g(s)ds.

Let limt→∞
a(t)

t
= a a.s. hence for arbitrary ε > 0 but small enough so that there exists Ωε ∈ F with

P(Ωε) ≥ 1 − ε and 0 < a − ε ≤
a(t)

t
(ω) ≤ a + ε for all t ≥ t0(ω) for each ω ∈ Ωε . Let G(t) =

∫ t

0
g(s)ds

for all t ≥ 0, then dG(t) = g(t)dt and

G(t) ≥ a(t) + log(b) − log(g(t))

for all t ≥ 0. Therefore,

deG(t) = eG(t)g(t)dt ≥ ea(t)+log(b)−log(g(t))g(t)dt = bea(t)dt

and ea(t) ≥ e(a−ε)t on Ωε . Thus, for t > t0

G(t) ≥ log(eG(t0) +
b

(a − ε)
[e(a−ε)t − e(a−ε)t0])

Hence, by L’Hôpital rule (see Lemma S1)

lim inf
n→∞

G(t)
t
≥ a − ε

and so

lim inf
t→∞

1
t

∫ t

0
f (s)ds ≥

a − ε
b

on Ωε

for arbitrary ε > 0, thus

lim inf
t→∞

1
t

∫ t

0
f (s)ds ≥

a
b

a.s.
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S1.2. Existence, uniqueness, and boundedness

Here, we will prove the positive invariance of the solution set, S = {(s, i, x) ∈ R3
+ : 0 ≤ s + i ≤

1 and 0 ≤ x ≤ 1}. It is not straightforward since the drift and volatility in the stochastic Eqs are locally
Lipschitz continuous but not growing linearly. That might cause a blow-up in the solutions of the
stochastic differential Eqs.

Lemma S5. If model (2.5) has initial state (S (0), I(0), x(0)) ∈ S, then the model has a unique solution
(S (t), I(t), x(t)) ∈ S for all t ≥ 0 with probability one.

Proof. All of the relationships in this theorem are true point-wise. By construction of the stochastic
replicator Eq 0 ≤ x(t) ≤ 1 for all t > 0 if 0 ≤ x(0) ≤ 1. Also, d(S +I+R) = 0, thus if 0 ≤ S (0)+I(0) ≤ 1
and

d(S + I)(t)
dt

= µ(1 − x(t)) − µ(S + I)(t) − γI(t)

≤ µ(1 − x(t)) − µ(S + I)(t)
≤ µ − µ(S + I)(t)

for all t > 0. Thus, for any t > 0,

S (t) + I(t) ≤ (S (0) + I(0)) e−µt + 1 − e−µt ≤ 1.

On the other hand,
d(S + I)(t)

dt
= µ(1 − x(t)) − µ(S + I)(t) − γI(t)

≥ µ(1 − x(t)) − (µ + γ)(S + I)(t)
≥ −(µ + γ)(S + I)(t)

for all t > 0. Thus, for any t > 0,

S (t) + I(t) ≥ (S (0) + I(0)) e−(µ+γ)t ≥ 0.

The processes S , I, and x are positive bounded processes. Moreover, they have bounded limits are
shown in the following proposition.

Proposition S1. If the initial state of the model (2.5) is such that (S (0), I(0), x(0)) ∈ S, then the
following inequality always holds true.

1 − x∗ −
γ

µ
I∗ ≤ S ∗ + I∗ ≤ S ∗ + I∗ ≤ 1 − x∗ −

γ

µ
I∗ a.s. (S2)

Proof. Since
d(S + I)(t)

dt
= µ(1 − x(t)) − µ(S + I)(t) − γI(t) (S3)

then

S (t) + I(t) = e−µt(S (0) + I(0)) + 1 − e−µt
∫ t

0
µeµsx(s)ds −

γ

µ
e−µt

∫ t

0
µeµsI(s)ds. (S4)

Inequality (S2) follows from using Lemma S5 and the generalized L’Hôpital rule (see inequality (S1)

in the Supplementary) applied to the terms e−µt
∫ t

0
eµsx(s)ds and e−µt

∫ t

0
eµsI(s)ds.
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S1.3. Stochastic optimal control problem to achieve vaccine acceptance

For convenience, we define the vector y(t) = [S (t), I(t), x(t)]>. The system can be re-written as the
SDE vector form

dy(t) = f (y(t), u(t))dt + g(y(t))dW(t),

with initial condition y(0) = [S (0), I(0), x(0)]> = y0 where the functions f and g are vectors with the
following components

f1(y(t), u(t)) = µ(1 − x) − βS I − µS ,

f2(y(t), u(t)) = βS I − (µ + γ)I,

f3(y(t), u(t)) = κx(1 − x)
[
−ω (1 − u) + I + δ(2x − 1) + κ

(
σ2

3 − (σ2
2 + σ2

3)x
)]
,

and
g1(y(t)) = −σ1S I,

g2(y(t)) = σ1S I,

g3(y(t)) = κ
√
σ2

2 + σ2
3 x(1 − x),

respectively. We consider the quadratic cost functional:

J(u) = −E

[∫ T f

0

(
α1S (t) + α2I(t) +

α3

2
u2(t)

)
dt

]
.

for some constants α1, α2, α3 ≥ 0. The goal is to find an optimal control u∗(t) such that J(u) ≤ J(u∗),
for all u ∈ U, where the set of admissible controls is U = {u(t) : u(t) ∈ [0, umax], for all t ∈ (0,T f ]} for
some 0 ≤ umax < 1, and T f is the termination time.

To use the stochastic maximum principle, we define Hamiltonian H(y, u, p, q) by

H(y, u, p, q) = −l(y, u) + 〈 f (y, u), p〉 + 〈g(y), q〉

where 〈u, v〉 =
∑n

i=1 uivi is the Euclidean inner product and l(y, u) = α1S + α2I + α3
2 u2, while p =

[p1, p2, p3]> is the adjoint vector of costates and q = [q1, q2, q3]> are costates volatilities. Hence, the
associated Hamiltonian is given by

H = −α1S − α2I −
α3

2
u2

+ p1 (µ(1 − x) − βS I − µS ) + p2 (βS I − (µ + γ)I)

+ p3

(
κx(1 − x)

[
−ω (1 − u) + I + δ(2x − 1) + κ

(
σ2

3 − (σ2
2 + σ2

3)x
)])

+ q1 (−σ1S I) + q2 (σ1S I) + q3

(
κ
√
σ2

2 + σ2
3 x(1 − x)

)
.

(S5)

According to the stochastic maximum principle,

H(y∗, u∗, p, q) = max
u∈U

H(y∗, u, p, q)

where the optimal states satisfy

dy∗(t) =
∂H(y∗, u∗, p, q)

∂p
dt + g(y∗(t))dW(t),
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with the backward stochastic differential Eqs of the costates

dp(t) = −
∂H(y∗, u∗, p, q)

∂y
dt + q(t)dW(t),

where u∗ solves

∂H(y∗, u, p, q)
∂u

= 0,

and exists since H is concave in u. Thus, the optimal control is given by

u∗ = max
{

0,min
{
κω

α3
p3x∗(1 − x∗), umax

}}
. (S6)

The function p3(t) is found by solving the system of backward stochastic differential Eqs (BSDEs)
given by

dp1(t) =
[
α1 + p1

(
βI + µ − 2σ2

1S I2
)
− p2

(
βI + 2σ2

1S I2
)]

dt − σ1 p1S IdW1(t), (S7)

dp2(t) =
[
α2 + p1(βS − 2σ2

1S 2I) − p2

(
βS − (µ + γ) + 2σ2

1S 2I
)
− κp3x(1 − x)

]
dt + σ1 p2S IdW1(t),

(S8)

dp3(t) =
[
µp1 − κp3

(
(1 − 2x)

(
−ω (1 − u) + I + δ(2x − 1) + κ

(
σ2

3 − (σ2
2 + σ2

3)x
))

+
(
2δ − κ(σ2

2 + σ2
3)
)

x(1 − x) + 2κ(σ2
2 + σ2

3)x(1 − x) (1 − 2x)
)]

dt

+ κ
√
σ2

2 + σ2
3 p3x(1 − x)dW2(t), (S9)

such that pi(T f ) = 0 for i = 1, 2, 3. While x∗(t) solves Eq (3.10) at u∗(t) given by (S6). Including the
reduction of susceptible in the objective function results in a longer reduction in the vaccination cost
than when excluded from the objective.
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S1.4. More simulations

(a) (b)

(c)

Figure S1. Simulation of the susceptible, infected, and vaccinated with the limits in Theorem
4 with σ2

2 = .01 in (a), σ2
2 = .04 in (b), and σ2

2 = 1 in (c). The disease endemic equilibrium E4

type is stable in which case Rs
0 = 2.4. The rest of the parameter values are β = .3, µ = 1/50,

γ = .1, κ = .5, ω = .1, δ = .1, σ2
1 = .01, and σ2

3 = .01.
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