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Abstract: In this work, we formulated a mathematical model to describe growth, acquisition of bacterial
resistance, and immune response for Helicobacter pylori (H. pylori). The qualitative analysis revealed
the existence of five equilibrium solutions: (i) An infection-free state, in which the bacterial population
and immune cells are suppressed, (ii) an endemic state only with resistant bacteria without immune cells,
(iii) an endemic state only with resistant bacteria and immune cells, (iv) an endemic state of bacterial
coexistence without immune cells, and (v) an endemic coexistence state with immune response. The
stability analysis showed that the equilibrium solutions (i) and (iv) are locally asympto tically stable,
whereas the equilibria (ii) and (iii) are unstable. We found four threshold conditions that establish the
existence and stability of equilibria, which determine when the populations of sensitive H. pylori and
resistant H. pylori are controlled or eliminated, or when the infection progresses only with resistant
bacteria or with both bacterial populations. The numerical simulations corroborated the qualitative
analysis, and provided information on the emergence of a limit cycle that breaks the stability of the
coexistence equilibrium. The results revealed that the key to controlling bacterial progression is to keep
bacterial growth thresholds below 1; this can be achieved by applying an appropriate combination of
antibiotics and correct stimulation of the immune response. Otherwise, when bacterial growth thresholds
exceed 1, the bacterial persistence scenarios mentioned above occur.
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1. Introduction

The stomach is not an organ exempt from microbial colonization despite having a hostile environment
for a bacterial form to thrive, infect, and generate tissue damage, The above has enabled us to establish
links and relationships between gastric diseases and infection by Helicobacter pylori (H pylori). Once
the infection occurs, H. pylori is established in the gastric mucus. In that medium, the pathogen makes
use of its cellular characteristics that enable it to move through the mucus, reaching the mucosa of
the gastric epithelium. Once it is adhered to the epithelial cells, it gives rise to persistent colonization.
H. pylori induces a strong immune, humoral, and cellular response in the gastric mucosa of the host,
although this does not mean that the infection is eliminated [1].

According to estimates described in [2] by 2015, a prevalence of infection by H. pylori of approxi-
mately 4.4 billion individuals was estimated worldwide. The global prevalence landscape reports high
rates in regions such as Africa at 79.1%. Moreover, Latin America and the Caribbean have a prevalence
rate is 63.4%, and Asia has a prevalence rate at 54.7%. In contrast, the prevalence of H. Pylori infection
has lower rates in regions such as North America with a rate of 37.1% and Oceania with 24.4% [2]. On
the other hand, H. pylori is also a human pathogen for which increased antibiotic resistance constitutes a
serious problem for human health. The increase in antibiotic resistance globally has led to a substantial
decrease in the efficacy of treatment against H. pylori and probably to an increased risk in the develop-
ment of complications such as peptic ulcers and gastric cancer [3]. H. pylori frequently shows different
resistance profiles; resistance to a single drug or resistance to multiple drugs. In eradication therapies that
combine some of the most common antibiotics such as clarithromycin and metroninazole, it suggests that
the main reason for the failure is resistance of H. pylori to one of the antibiotics used; clarithromycin [4].
In 2017, the World Health Organization designated clarithromycin-resistant H. pylori as a high priority
for antibiotic research and development [4]. Researchers have also observed that resistance to treat-
ments that include other drugs have been developed; metronidazole, tetracycline, fluoroquinolones and
rifamycins for which resistance has become an emerging problem although to a lesser extent [5].

A first approach towards the understanding of cellular activity inside the stomach is given through
the mathematical models proposed in [6–8], in which the digestive dynamics and the role of gastric acid
secretion are described, incorporating in some cases pharmacodynamic and pharmacokinetic aspects.
This enables researchers to study the development of diseases related to the secretion of gastric acid
and the design of therapies for their control. In the same line that describes stomach dynamics, other
mathematical models deepen the study and description of the bacterial population that has the ability
to colonize and survive in the gastric box; for example, mathematical models such as those proposed
in [9–11] are used to analyze the prevalence and persistence of infection by H. pylori in terms of a
spatial migration of the pathogen present in the mucus towards the gastric epithelium, including from
nutrient consumption by the pathogen for survival at the site of infection and from a level of immune
response activated by the host.

On the other hand, with regard to the prevelence of bacterial resistance and the use of pharmacological
therapies to counteract infections, there is a broad conceptual framework referring to studies focused
on mathematically modeling the acquisition of bacterial resistance of some pathogens in vivo when
they are exposed to antibiotic treatments. In [12] and [13] bacterial growth studied to differentiate
drug-sensitive and drug-resistant organisms under considerations, where the acquisition of resistance
occurs by antibiotic exposure and that the elimination of the pathogen by the drug differs according to its
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bacteriostatic and bactericidal action. In addition, the mathematical models presented in [14] and [15]
describe the dynamics of growth and antibiotic resistance of pathogens considering the acquisition of
resistance by means of point mutation mechanisms and by horizontal transfer of plasmids, enabling
them to predict the temporal course of the interacting bacterial populations in infectious processes. With
the same purpose of modeling the acquisition of bacterial resistance through the exchange of genetic
material between pathogens, there are also models proposed in [16] and [17], where the dynamics of
bacterial interaction, immune response, and growth of plasmids are studied, the latter is modeled through
a functional response that supposes a cellular replication of the plasmids through the generalized law of
mass action. Other mathematical models that are used to describe growth and acquisition of resistance
are formalized in the models proposed in [18] and [19], in these models, in addition to assuming
hypotheses of acquisition of bacterial resistance similar to those described by [12–16] also contemplate
together the proliferation of an immune cellular response in the individual, enabling the dynamics of
growth, development of resistance, and immune response under the effects of a pharmacological therapy.
Therefore, from the academic panorama, a high interest in using mathematical modeling tools and
concepts applied to the description and understanding of biological phenomena referred to infectious
dynamics in the human being can be evidenced.

The review of specialized literature enables us to frame the scope of our infectious modeling work
for H. pylori. On the one hand, the background shows us a series of mathematical models that are used
to theoretically describe behaviors at the cellular level that happen during an infectious course generated
by bacteria that contemplate, aspects such as: Bacterial growth, acquisition of bacterial resistance,
effectiveness of antibiotic treatments and activation, and proliferation of immune mechanisms. The
aforementioned aspects are of special interest and are integrated into the model, where we propose
to describe the infectious dynamics of H. pylori since, under them, the basic hypotheses of stomach
interaction between the host and the pathogen are raised.

On the other hand, the model we formulate is based mainly on the works [18] and [15]. In this way,
from a mathematical perspective, we analyze the qualitative dynamics of the formulated model and
compare it with the dynamics of the original models on which the main model was based. The contrast
of behaviors of the models enables us to identify the emergence of new dynamics or highlight those
that have been inherited from the base models. Therefore, the problem of interest lies in describing
the infectious persistence of H. pylori in the stomach using a mathematical model, considering the
growth of the pathogen at the site of infection, the mechanisms of acquisition of bacterial resistance,
and proliferation of the immune response by the host to describe dynamics when the infected subject
undergoes a treatment with antibiotics. The content of the work is organized as follows. In the second
section, the mathematical model is formulated. In the third and fourth sections, qualitatively analyze
of the model. In the fifth section, the numerical results are presented, in the sixth section, additional
qualitative results on the behavior of the model solutions in specific subregions of the set of biological
interest are presented through discussion. Finally, section seven, we present a general discussion of the
work together with the conclusions.

2. Model formulation

In this section, we formulate a model to describe the growth, acquisition of antibiotic resistance and
activation of an immune response, generated in the infection of a human individual with H. pylori.
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2.1. Immune response to H. Pylori infection

According to studies and clinical reports, individuals infected with H. pylori develop an ineffective
immune response to eradicate the infectious agent. For H. pylori, the inflammatory response is
manifested as an active gastritis characterized by the infiltration of leukocytes (lymphocyte T ) on the
surface of the gastric epithelium. The role of the immune system’s innate response is a key factor in
the infectious process of H. pylori as it regulates the response of lymphocyte T [1]. The regulatory
function of lymphocyte T, known as the regulatory function Th, is a differentiation on the type of
response that lymphocyte T will have at the site of infection. For differentiation of the type of response,
the antigens of the pathogen must first be recognized through macrophages (mechanism activated in
the innate response). After that recognition, there is a release of cytokines that induce the cellular
response of lymphocyte T. Depending on the type of predominant cytokines released, the regulatory
function Th of lymphocyte T can be Th-1 (T-Helper response type 1), which regulates an increase in
the pro-inflammatory response; or a Th-2 (T-Helper type 2) response that regulates an increase in the
anti-inflammatory response [20].

2.2. Fitness cost in H. Pylori

The Fitness in genetics describes the ability of an organism to reproduce with a certain genotype, that
is, represents the proportion of genes that an organism can inherit in the genes of the next generation.
The acquisition of antibiotic resistance usually leads to a loss of fitness in the bacteria which is known
as Fitness cost. However, the resistant pathogen may undergo additional mutations that offset the cost of
fitness. In the case of H. pylori specialized reports [21–23] have sought to determine the compensatory
mechanisms of antibiotic resistance in H. pylori and suggest that compensatory mutations may play an
important role in the evolution and spread of resistant genes in this bacterial population.

2.3. Description of the model

The model formulated here is an adaptation that integrates assumptions of the bacterial dynamics of
H. pylori proposed in [9, 11], as well as the terms that model and describe the growth and acquisition
of bacterial resistance and immune response proposed in [15] and [18], respectively. The model is
framed in the following assumptions: 1) H. Pylori has the ability to replicate in epithelial cells once
it manages to adhere to them. 2) The model considers an epithelial detachment of H. Pylori towards
the gastric mucus when the gastric mucosa layer is overloaded. 3) Bacterial resistance is acquired by
exposure to the antibiotic and by transfer of genetic material (conjugation) considered through mass
action kinetics. 4) Consider the immune response to H. Pylori infection through a population of T
lymphocytes (immune cells) whose regulatory function induces an anti-inflammatory response. 5)
Consider increasing the concentration of the antibiotic to reach the equilibrium serum concentration
through a rate of drug absorption.

The populations considered in the infectious dynamics of H. pylori are the bacterial population
attached to the gastric epithelium, divided into sensitive As(t) and resistant Ar(t). Moreover, the
population of lymphocyte T (immune cells) whose regulatory function induces an anti-inflammatory
immune response G(t) and the blood concentration of each antibiotic used in an eradication treatment
Ci(t); i =1,2,3 is included. The bacterial population of H. pylori (sensitive and resistant) on the gastric
epithelium is replicated following a logistic growth represented by βsAs

(
1 − As+Ar

N

)
and βrAr

(
1 − As+Ar

N

)
,
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respectively, with βs and βr such as reproduction rates and load capacity N. We assume that the fact of
acquiring resistance generates a f itness cost that is manisfested as a decrease in the reproductive rate of
resistant bacteria; therefore, βr ≤ βs. As in [24–27], we assume that the bacterial population As dies by
the action of antibiotics following a term of maximum saturation (Emax) represented by

∑3
i=1

(
q̄iCi
λ̄i+Ci

)
As,

where q̄i represents the maximum rate of elimination of sensitive bacteria of H. pylori per antibiotic
effect and λ̄i is the concentration needed for each antibiotic to reach half the maximum elimination rate.
Additionally, populations As and Ar have constant per capita mortality rates µs and µr, respectively. On
the other hand, the proportion of resistant bacteria emerging due to point mutations that the population
As suffers from antibiotic exposure is represented by

∑3
i=1 qiCiAs, where qi is the rate at which the

population As acquires resistance. As in [15, 19, 28], the proportion of resistant bacteria of H. pylori
that emerge by the horizontal exchange of plasmids is represented through a kinetics of mass action
whose term is σ̄AsAr, where σ̄ represents the conjugation rate. The saturation of the gastric epithelium
forces the bacteria of H. pylori adherent to detach and return to the mucus until the saturation are again
below the load levels of the epithelium. Therefore, the model represents the epithelial detachment
of each type of bacteria as δ̄As and δ̄Ar where δ̄ is the rate of epithelial detachment. As in [18], we
assume, through a logistic term that the proliferation of the immune response, that the recruitment
of lymphocyte T that induce an anti-inflammatory response on the gastric epithelium is represented
by βgG

(
1 − G

ω(As+Ar)

)
, where βg is the recruitment rate of immune cells and the activation capacity of

these cells is ω times the amount of bacteria present (As + Ar). The lymphocyte population T acts
on the bacterial population by eliminating them at a rate φ̄; consequently, the terms φ̄AsG and φ̄ArG
represent the bacterial proportion of H. pylori (sensitive and resistant) that is eliminated by the immune
system. We represent the increase in the concentration of each antibiotic used in eradication therapy
against H. pylori through the diffusion layer model described in [29], which states that the dissolution
of the antibiotic concentration over time occurs proportionally to the difference between the antibiotic
saturation rate K and the remaining concentration C over time t. that is, as αi(Ki −Ci) = αiKi

(
1 − Ci

Ki

)
for i = 1, 2, 3, where αi represents the constant proportionality of increase of each antibiotic and Ki

the saturation rate for the drug concentration. The schematic diagram in Figure 1 shows the dynamic
interactions of the model.

Therefore, the complete model that describes the dynamics of growth and acquisition of bacterial
resistance for H. pylori with immune response is represented by the nonlinear system of ordinary
differential equations indicated below.

dAs

dt
= βsAs

(
1 −

As + Ar

N

)
−

3∑
i=1

(
q̄iCi

λ̄i +Ci

)
As −

3∑
i=1

qiCiAs − σ̄AsAr − φ̄GAs − (µs + δ)As

dAr

dt
= βrAr

(
1 −

As + Ar

N

)
+

3∑
i=1

qiCiAs + σ̄AsAr − φ̄GAr − (µr + δ)Ar

dG
dt
= βgG

(
1 −

G
ω(As + Ar)

)
dCi

dt
= αiKi

(
1 −

Ci

Ki

)
, f or i = 1, 2, 3. (2.1)

In system (2.1), the parameters βs, βr, βg,T, q̄i, qi, σ̄, φ̄, µs, µr, δ, ω, αi, and Ki are positive for i = 1, 2, 3.
To facilitate the analysis of the model represented by the system (2.1) and reduce the number of

Mathematical Biosciences and Engineering Volume 22, Issue 1, 185–224.



190

parameters, the following variable change is introduced

s =
As

N
, r =

Ar

N
, g =

G
ωN
, ci =

Ci

Ki
f or i = 1, 2, 3. (2.2)

Figure 1. Schematic representation of the model.

In terms of the variables (2.2), system (2.1) is rewritten as

ds
dt
= βss[1 − (s + r)] −

3∑
i=1

(
q̄ici

λi + ci

)
s −

3∑
i=1

micis − σsr − φgs − (µs + δ)s

dr
dt
= βrr[1 − (s + r)] +

3∑
i=1

micis + σsr − φgr − (µr + δ)r

dg
dt
= βgg

(
1 −

g
(s + r)

)
dci

dt
= αi (1 − ci) ; i = 1, 2, 3, (2.3)

where

σ = σ̄N, φ = φ̄ωN, λi =
λ̄i

Ki
, mi = qiKi, f or i = 1, 2, 3. (2.4)

The region of biological interest of the system (2.3) is given by

Ω =
{
(s, r, g, c1, c2, c3) ∈ R6

+ : 0 ≤ s, r ≤ 1; 0 ≤ g ≤ s + r ≤ 1; 0 ≤ ci ≤ 1
}
, (2.5)

with i = 1, 2, 3. Since the vector field defined by the right side of system (2.3) is C1(Ω), by the theorem
of existence and uniqueness, we can guarantee the existence of the solution. In the following proposition,
we prove that the system is well posed, in the sense that the solutions with initial conditions in Ω remain
there for all t ≥ 0; this means that, we are going to prove that the set Ω is positively invariant.
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Lemma 2.1. The region Ω defined in (2.5) is positively invariant with respect to the system (2.3).

The proof of Lemma 2.1 is presented in A.

3. Equilibrium solutions

The equilibria of system (2.3) are given by the solutions of the following algebraic equations

βss[1 − (s + r)] −
3∑

i=1

(
q̄ici

λi + ci

)
s −

3∑
i=1

micis − σsr − φgs − (µs + δ)s = 0

βrr[1 − (s + r)] +
3∑

i=1

micis + σsr − φgs − (µr + δ)r = 0

βgg
(
1 −

g
(s + r)

)
= 0

αi (1 − ci) = 0, f or i = 1, 2, 3. (3.1)

From the last two equations of system (3.1), we have ci = 1 for i = 1, 2, 3, and g = 0 or g = s + r. First,
we will determine the equilibria of the model for the case ci = 1 (i = 1, 2, 3) and g = 0, after the case
ci = 1 (i = 1, 2, 3) and g = s + r.

3.1. Equilibrium solutions for g = 0 and ci = 1, (i = 1, 2, 3)

By replacing ci = 1 for i = 1, 2, 3 and g = 0 in (3.1), we have

βss[1 − (s + r)] −
3∑

i=1

(
q̄i

λi + 1

)
s −

3∑
i=1

mis − σsr − (µs + δ)s = 0

βrr[1 − (s + r)] +
3∑

i=1

mis + σsr − (µr + δ)r = 0. (3.2)

From the first expression of (3.2), we have s = 0 or

βs[1 − (s + r)] −
3∑

i=1

(
q̄i

λi + 1

)
−

3∑
i=1

mi − σr − (µs + δ) = 0.

For s = 0, system (3.2) is reduced to

βrr (1 − r) − (µr + δ) r = 0.

Therefore, for s = 0, the solutions of (3.2) are given by r = 0 or

r = r1, (3.3)

where r1 =
Rr−1

Rr
, being

Rr =
βr

µr + δ
. (3.4)
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The above implies the existence of the equilibrium E0 = (0, 0, 0, 1, 1, 1), and if Rr > 1, then there exists
the equilibrium E1 = (0, r1, 0, 1, 1, 1), and the threshold Rr defined in (3.4) is interpreted as the number
of bacteria produced by the fraction of resistant bacteria that detach from the gastric epithelium. Now,
for s , 0, the first equation of (3.2) is reduced to

Rs [1 − (s + r)] − Rsr
σ

βs
− 1 = 0,

or equivalently

s + r
(
1 +
σ

βs

)
=

Rs − 1
Rs
. (3.5)

where
Rs =

βs∑3
i=1

(
q̄i
λi+1 + mi

)
+ µs + δ

, (3.6)

the threshold Rs defined in (3.6) is interpreted as the number of bacteria produced by the fraction of
sensitive bacteria that survive the effects due to antibiotics, that do not present mutations by antibiotic
exposure, and that do not detach from the gastric epithelium. We observe from (3.5) that a necessary
condition to the existence of sensitve and resistent bacteria is Rs > 1. By solving for s in (3.5), we
obtain

s =
Rs − 1

Rs
− r

(
1 +
σ

βs

)
. (3.7)

From (3.7), it can be inferred that s will be positive when satisfied

r < r̄1, (3.8)

where r̄1 =
(

Rs−1
Rs

) (
1

1+ σβs

)
. From the second equation of (3.2), we obtain

−r2 +

(σβr
− 1

)
r +

3∑
i=1

mi

βr

 s + r1r = 0. (3.9)

Replacing (3.7) in (3.9), we obtain

−r2 +

(σβr
− 1

)
r +

3∑
i=1

mi

βr

 [Rs − 1
Rs

− r
(
1 +
σ

βs

)]
+ r1r = 0.

Making the products and grouping, we have

−

[
1 +

(
σ

βr
− 1

) (
1 +
σ

βs

)]
r2 +

[
r1 +

(
σ

βr
− 1

) (
Rs − 1

Rs

)
− b1

(
1 +
σ

βs

)]
r + b1

(
Rs − 1

Rs

)
= 0,

From the above we obtain the following quadratic equation Q(r) = 0, where b1 =
∑3

i=1
mi
βr

and

Q(r) = −yor2 + y1r + y2, (3.10)

where y0, y1, and y2 are constants defined by

y0 = 1 +
(
σ

βr
− 1

) (
1 +
σ

βs

)
Mathematical Biosciences and Engineering Volume 22, Issue 1, 185–224.
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y1 = r1 +

(
σ

βr
− 1

) (
Rs − 1

Rs

)
− b1

(
1 +
σ

βs

)
y2 = b1

(
Rs − 1

Rs

)
. (3.11)

Since bacterial coexistence needs Rs > 1, then the third expression of (3.11) implies that y2 > 0. Also,
by rewriting y0 as

y0 = 1 +
(
σ

βr
− 1

) (
1 +
σ

βs

)
=
σ

βrβs
(βs − βr + σ) > 0,

it is evident that y0 > 0. In this sense, if Rs > 1 the polynomial defined in (3.10) has a single positive
solution described by

r∗ =
y1 +

√
y2

1 + 4y0y2

2y0
. (3.12)

replacing (3.12) in the expression (3.7), we obtain

s∗ =
Rs − 1

Rs
− r∗

(
1 +
σ

βs

)
. (3.13)

Considering the expressions (3.12) and (3.13), we have the equilibrium E∗ = (s∗, r∗, 0, 1, 1, 1). The
following shows the conditions for the existence of E∗ in the regionΩ. Indeed, if Rs > 1, and considering
the expression (3.13), we have that 0 < s∗ + r∗ + r∗ σ

βs
< 1 from where

0 < s∗ + r∗ < 1. (3.14)

On the other hand, defining

Rσr =
1 + σ

βs

1
Rs
+ σ
βs

, (3.15)

the condition r1 < r̄1 is equivalent to Rr < Rσr , which guarantees that s∗ is positive. This result is stated
in the following lemma.

Lemma 3.1. Let Rs > 1. If Rr < Rσr then Q(r̄1) < 0.

Proof of Lemma 3.1 is presented in the B. Now, since Q(0) = y2 > 0 and Q(r̄1) < 0 follow that
r∗ < r̄1, which implies by inequality (3.8) that s∗ is positive. In this way, if Rs > 1 and Rr < Rσr then the
equilibrium E∗ ∈ Ω.

3.2. Equilibrium solutions for g = s + r and ci = 1, i = 1, 2, 3.

Now, the equilibria of system (2.3) when ci = 1 (i = 1,2,3) and g = s+ r are given by the solutions of
the system of algebraic equations provide

βss[1 − (s + r)] −
3∑

i=1

(
q̄i

λi + 1

)
s −

3∑
i=1

mis − σsr − φ(s + r)s − (µs + δ)s = 0
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βrr[1 − (s + r)] +
3∑

i=1

mis + σsr − φ(s + r)r − (µr + δ)r = 0. (3.16)

Grouping s in the first equation of system (3.16) we obtain s = 0 or

βs[1 − (s + r)] −
3∑

i=1

(
q̄i

λi + 1

)
−

3∑
i=1

mi − σr − φ(s + r) − (µs + δ) = 0. (3.17)

For s = 0, system (3.16) is reduced to βrr(1 − r) − φr2 − (µr + δ)r = 0, and grouping r in the above
equation, we obtain

r
[
−(βr + φ)r + βr − (µr + δ)

]
= 0,

From where r = 0 or

−(βr + φ)r + βr − (µr + δ) = 0. (3.18)

Therefore, for s = 0 the solutions of (3.16) are given by r = 0 or r = r2, where r2 = r1

(
1

1+ φβr

)
. The

above implies the existence of the equilibrium E0 = (0, 0, 0, 1, 1, 1), and if Rr > 1, then there exists the
equilibrium E2 = (0, r2, r2, 1, 1, 1). Now, for s , 0 the first equation of (3.16) is reduced to

Rs − Rs(s + r) −
φ

βs
Rs(s + r) −

σ

βs
Rsr − 1 = 0,

The above expression is equivalent to

sh + r
(
1 +
φ + σ

βs

)
=

Rs − 1
Rs
, (3.19)

where h =
(
1 + φ

βs

)
. From (3.19) we observe that a necessary condition for the existence of sensitive and

resistent bacteria is Rs > 1. By solving for s in (3.19), we obtain

s =
(
Rs − 1

Rs

)
1
h
− r

(
1 +
φ + σ

βs

)
1
h
. (3.20)

From (3.20) we can be inferred that s will be positive when satisfied

r <
Rs − 1

Rs

 1
1 + σ+φ

βs

 ,
or

r < r̄2, (3.21)

where r̄2 =
Rs−1

Rs

(
1

1+σ+φβs

)
. From the second equation (3.16), we obtain

−

(
βr + φ

βr + φ

)
r2 +

(
βr

βr + φ
−

1
d

)
r +

(
σ − (βr + φ)
βr + φ

)
sr + s

3∑
i=1

(
mi

βr + φ

)
= 0.
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After grouping some terms in the previous expression, we come to

−r2 +

(
Rr

d
−

1
d

)
r +

(
σ

βr + φ
− 1

)
sr + s

3∑
i=1

(
mi

βr + φ

)
= 0,

or

−r2 +

[(
σ

βr + φ
− 1

)
r + b2

]
s + r2r = 0, (3.22)

where r2 =
Rr−1

d and b2 =
∑3

i=1

(
mi
βr+φ

)
. Replacing (3.20) in (3.22) we obtain

−r2 +

[(
σ

βr + φ
− 1

)
r + b2

] [(
Rs − 1

Rs

)
1
h
− r

(
1 +
φ + σ

βs

)
1
h

]
+ r2r = 0.

Grouping and reorganizing we have

−

[
1 +

(
σ

βr + φ
− 1

) (
1 +
φ + σ

βs

)
1
h

]
r2+

[
r2 +

1
h

(
σ

βr + φ
− 1

) (
Rs − 1

Rs

)
−

b2

h

(
1 +
φ + σ

βs

)]
r+

b2

h

(
Rs − 1

Rs

)
= 0.

In this way we obtain the following quadratic equation Q̄(r) = 0 and

Q̄(r) = −v0r2 + v1r + v2, (3.23)

where v0, v1 and v2 are constants defined by

v0 = 1 +
(
σ

βr + φ
− 1

) (
1 +
φ + σ

βs

)
1
h

v1 = r2 +
1
h

(
σ

βr + φ
− 1

) (
Rs − 1

Rs

)
−

b2

h

(
1 +
φ + σ

βs

)
v2 =

b2

h

(
Rs − 1

Rs

)
. (3.24)

Since bacterial coexistence needs Rs > 1, then the third expression of (3.24) implies that v2 > 0. Also,
by rewriting v0 as

v0 = 1 +
(
σ

βr + φ
− 1

) (
1 +
φ + σ

βs

)
1
h
= 1 +

(
σ

βr + φ
− 1

) (
1 +

σ

βs + φ

)
=

σ

(βr + φ)(βs + φ)
[
βs − βr + σ

]
> 0,

it is evident that v0. In this way, if Rs > 1 the polynomial defined in (3.23) has a single positive solution
described by

r3 =
v1 +

√
v2

1 + 4v0v2

2v0
. (3.25)

Replacing (3.25) in expression (3.20), we obtain

s3 =
1
h

[
Rs − 1

Rs
− r3

(
1 +
φ + σ

βs

)]
, (3.26)
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from the expressions (3.25) and (3.26) we have

g3 =
1
h

[
Rs − 1

Rs
− r3

(
1 +
φ + σ

βs

)]
+

v1 +

√
v2

1 + 4v0v2

2v0
. (3.27)

Considering (3.25), (3.26), and (3.27), we have the equilibrium E3 = (s3, r3, s3 + r3, 1, 1, 1). The
following shows the necesary conditions for the existence of E3 in the region Ω. Indeed, if Rs > 1 and
considering the expression (3.26), we have that 0 < s3 + r3 +

1
βs

[
s3φ + r3(φ + σ)

]
< 1, so the previous

inequality implies that
0 < s3 + r3 < 1. (3.28)

On the other hand, the condition
r2 < r̄2, (3.29)

guarantees that s3 is positive. The previous result is stated in the following lemma.

Figure 2. Regions of equilibria of system (2.3). a) with 1 < Rσr < Rφr .

Lemma 3.2. Let Rs > 1. If r2 < r̄2 then Q̄(r̄2) < 0.

The proof of Lemma 3.2 is presented in the C. Since Q̄(0) = v2 > 0 and Q̄(r̄2) < 0, it follows that
r3 < r̄2, which implies by inequality (3.21) that s3 is positive, and by inequality (3.28) there exists an
equilibrium E3 of coexistence with both bacteria. Now defining

Rφr =
1

1 − r̄2

(
1 + φ

βr

) , (3.30)
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we have the following possibilities: 1) Since Rs > 1 and Rr > 1, if 0 < r̄2

(
1 + φ

βr

)
< 1, then 1 < Rφr ,

thus the condition (3.29) is equivalent to Rr < Rφr , which guarantees that s3 is positive and thus there is
equilibrium E3 in Ω. 2) If Rs > 1, Rr > 1, and r̄2

(
1 + φ

βr

)
> 1 the we have Rφr < 0; thus, the condition

(3.29) is equivalent to Rr > Rφr . Therefore, by the Lemma 3.2 and inequality (3.28) also a coexistence
equilibrium E3 of coexistence in Ω. If Rs > 1 is clear that Rφr cannot be equal to one and by how it is
defined as Rφr in (3.30) it is evident that it cannot be equal to zero either. Complementarily, if Rs > 1 and
0 < r̄2

(
1 + φ

βr

)
< 1, then Rφr > 1, and if Rs > 1 and r̄2

(
1 + φ

βr

)
> 1, then Rφr < 0. 3) If Rs > 1 and Rr ≤ 1

also r2 < r̄2, under this condition, there is an equilibrium E3. The following proposition summarizes the
conditions of existence of the equilibrium solutions of system (2.3) in the region Ω.

Figure 3. Regions of equilibria of system (2.3). b) with 1 < Rφr < Rσr .

Theorem 3.3. The equilibrium solutions of system (2.3) are given by

(1) The system (2.3) always has a bacteria-free equilibrium E0 = (0, 0, 0, 1, 1, 1) in Ω.
(2) If Rr > 1, we have the following options

(i) there exists an equilibrium without sensitive bacteria and immune response E1 =

(0, r1, 0, 1, 1, 1) in Ω.
(ii) there exists an equilibrium without sensitive bacteria but with an immune response equivalent

to bacterial persistence E2 = (0, r2, r2, 1, 1, 1) in Ω.

(3) If Rs > 1 and Rr < Rσr there exists an equilibrium in which sensitive and resistant bacteria coexist
without proliferation of the immune response E∗ = (s∗, r∗, 0, 1, 1, 1) in Ω.
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(4) If Rs > 1 and 1 < Rr < Rφr , there is an equilibrium in which sensitive and resistant bacteria coexist
along with the proliferation of the immune response. E3 = (s3, r3, g3, 1, 1, 1) in Ω.

(5) If Rs > 1 and Rr > 1 but Rφr < 0 (Rr > Rφr ), there is an equilibrium in which sensitive and resistant
bacteria coexist along with the proliferation of the immune response. E3 = (s3, r3, g3, 1, 1, 1) in Ω.

(6) If Rs > 1 and Rr ≤ 1, then there exists an equilibrium of coexistence with both bacteria and
immune response E3 = (s3, r3, g3, 1, 1, 1) in Ω.

Figure 4. Regions of equilibria of the system (2.3)c) Rφr < 0.

Figures 2–4 show the existence regions of the equilibrium of the system (2.3) according to the cases
that occur between the thresholds R∗r and Rφr .

3.3. Biological interpretation of parameters

Thresholds Rs and Rr are interpreted considering the premise of the individual reproductive success
of an organism in a population. Generally in population ecology, the measure of individual reproductive
success is assumed as the average number of new organisms that are created over the lifetime of a single
organism. In this way, when we consider the product of between the rate of bacterial reproduction βs

with the half-life time of a bacterium in population As, the individual reproductive success rate of a
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sensitive adherent bacterium of H. pylori is obtained. This reproductive success is indicated as

Ns = βs
1
µs
=
βs

µs
. (3.31)

The parameter indicated in (3.31) is interpreted as the number of new bacteria produced by a bacterium
As of H. pylori during its half-life. Similarly, when the product is taken between the rate of bacterial
reproduction βr with the half-life time of a bacterium in the population Ar, the individual reproductive
success rate of a resistant adherent bacterium of H. pylori is obtained. This reproductive success is
indicated as

Nr = βr
1
µr
=
βr

µr
. (3.32)

The parameter indicated in (3.32) is interpreted as the number of new bacteria produced by a bacterium
Ar of H. pylori during its half-life. To give meaning to the threshold Rs, it is rewritten in terms of the
individual reproductive success rate Ns. Thus,

Rs =
µs∑3

i=1

(
q̄i
λi+1 + mi

)
+ µs + δ

Ns. (3.33)

Expression (3.33) is described as the product between the individual reproductive success of a
bacterium As of H. pylori and the quotient

µs∑3
i=1

(
q̄i
λi+1 + mi

)
+ µs + δ

= 1 −

∑3
i=1

(
q̄i
λi+1 + mi

)
+ δ∑3

i=1

(
q̄i
λi+1 + mi

)
+ µs + δ

. (3.34)

In [15], a similar parameter to the expression (3.34) is defined. Thus, here we adopt a biological
interpretation in the same sense for said parameter. The difference expressed on the right side of (3.34)
can be interpreted by assuming the parameters involved in terms of percentage; in this way, the unit
represents 100% of the sensitive bacterial population, and the remaining quotient is understood as
the percentage of sensitive bacteria that detach from the gastric epithelium, die from the antibiotic
effect, and mutate due to exposure to antibiotics. Later, threshold Rs represents the number of bacteria
generated by the fraction of sensitive organisms of H. pylori that remain on the gastric epithelium, evade
the elimination action of the drug, and do not have mutations by antibiotic exposure. For threshold
Rr a biological interpretation can be made in a similar way, that is, rewrite Rr in terms of individual
reproductive success Nr, so that

Rr =
µr

µr + δ
Nr. (3.35)

Thus, the threshold Rr is described by the product between the reproductive success rate of a bacterium
Ar of H. pylori and the quotient µr

µr+δ
, latter can be rewritten as follows

µr

µr + δ
= 1 −

δ

µr + δ
, (3.36)

again assuming parameters in terms of percentages the difference described on the right side of (3.36)
represents 100% of the resistant bacterial population minus the proportion of resistant bacteria that
are detached from the gastric epithelium. Thus the above difference equals the proportion of resistant
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bacteria that do not detach from the gastric epithelium. Therefore, the threshold Rr defines the number
of bacteria generated by the fraction of resistant organisms of H. pylori that do not detach from the
gastric epithelium.

The results of Theorem 3.3 establish that:

(a) There is always a balance free of infection by H. pylori, which suggests that both sensitive and
resistant populations can be eliminated or controlled with appropriate treatment.

(b) If the average amount of bacteria generated by the fraction of resistant organisms of H. pylori
that do not detach from the gastric epithelium is greater than one (Rr > 1), then the population of
H. pylori resistant bacteria persists without lymphocyte activation T and persists in balance with
the proliferation of an immune response that is deficient.

(c) If the number of bacteria generated by the fraction of sensitive organisms of H. pylori that remain
on the gastric epithelium, evade the elimination action of the drug and do not present mutations by
antibiotic exposure is greater than one (Rs > 1)

(i) the amount of bacteria generated by the fraction of resistant organisms of H. pylori that do
not detach from the gastric epithelium is less than Rσr (Rr < Rσr ), then both types of H. pylori
bacteria coexist without activation of the immune response in the host.

(ii) the amount of bacteria generated by the fraction of resistant organisms of H. pylori that do
not detach from the gastric epithelium is greater than one but less than Rφr (1 < Rr < Rσr ), so
both types of H. pylori bacteria coexist along with the proliferation of an inefficient immune
response in the host.

(iii) the amount of bacteria generated by the fraction of resistant organisms of H. pylori that do
not detach from the gastric epithelium is greater than one (Rr > 1) but the threshold Rφr is less
than zero (Rφr < 0), so persistence occurs with both types of H. pylori bacteria in conjunction
with the proliferation of an inefficient immune response in the host.

(iv) the amount of bacteria generated by the fraction of resistant organisms of H. pylori that do not
detach from the gastric epithelium is less than or equal to one (Rr ≤ 1) so persistence occurs
with both types of H. pylori bacteria in conjunction with the proliferation of an inefficient
immune response in the host.

4. Stability of equilibrium solutions

In this section, we determine the local asymptotic stability of the equlibrium solutions of the
system (2.3). To this end, we consider the linearization ẋ = J(E)x around an equilibrium E where
x = (s, r, g, c1, c2, c3)T , and J is the jacobian of the system evaluted in E given by

J(E) =



j11(E) −(βs + σ)s −φs j14(E) j15(E) j16(E)
j21(E) j22(E) −φr m1s m2s m3s
βgg2

(s+r)2
βgg2

(s+r)2 j33(E) 0 0 0
0 0 0 −α1 0 0
0 0 0 0 −α2 0
0 0 0 0 0 −α3


. (4.1)
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with

j11(E) = βs[1 − (s + r)] − βss −
3∑

i=1

(
q̄ici

λi + ci
+ mici

)
− σr − φg − (µs + δ)

j1k(E) = s
[
−

q̄i

λi + ci
+

q̄ici

(λi + ci)2 − mi

]
; k = 4, 5, 6 e i = 1, 2, 3

j21(E) = −βrr +
3∑

i=1

mici + σr

j22(E) = βr[1 − (s + r)] − βrr + σs − φg − (µr + δ)

j33(E) = βg

(
1 −

2g
s + r

)
.

We begin by analyzing the local stability of the equilibrium E0 = (0, 0, 0, 1, 1, 1), and assume the
condition that 0 < g = s + r ≤ 1. In this way, the jacobian given (4.2) evaluated in E0 is given by

J(E0) =



j11(E0) 0 0 0 0 0∑3
i=1 mi j22(E0) 0 0 0 0
βg βg −βg 0 0 0
0 0 0 −α1 0 0
0 0 0 0 −α2 0
0 0 0 0 0 −α3


. (4.2)

with

ξ1,0 = j11(E0) =

 3∑
i=1

(
q̄i

λi + 1
+ mi

)
+ µs + δ

 (Rs − 1)

ξ2,0 = j22(E0) = (µr + δ)(Rr − 1)

From the matrix (4.2), we observe that the local stability of equilibrium E0 depends on the sign of
eigenvalues ξ1,0 y ξ2,0. In this way, ξ1,0 < 0 if and only if Rs < 1, and ξ2,0 < 0 if and only if Rr < 1. The
local stability of the equilibrium E0 is presented in the following result.

Theorem 4.1. If Rs < 1 and Rr < 1, the trivial solution E0 = (0, 0, 0, 1, 1, 1) is locally asymptotically
stable in Ω. If Rs > 1 or Rr > 1, then E0 is unstable.

Now, we analyze the local stability of the equilibrium E1. To this end, we observe that the Jacobian
given in (4.1) evaluated in E1 is given by

J(E1) =



j11(E1) 0 0 0 0 0
−βrr1 +

∑3
i=1 mi + σr1 j22(E1) −φr1 0 0 0
0 0 βg 0 0 0
0 0 0 −α1 0 0
0 0 0 0 −α2 0
0 0 0 0 0 −α3


, (4.3)
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with

j11(E1) = βs(1 − r1) − σr1 −

 3∑
i=1

(
q̄i

λi + 1
+ mi

)
+ µs + δ

 , (4.4)

and

j22(E1) = βr(1 − r1) − (µr + δ). (4.5)

The characteristic equation associated with the matrix (4.7) is expressed as (α3 + ξ)(α2 + ξ)(α1 + ξ)(ξ −
βg)P1(ξ) = 0, where P1(ξ) =

[
j11(E1) − ξ

]
[ j22(E1) − ξ] is the characteristic polynomial of the matrix

block 2 × 2

G1 =

[
j11(E1) 0

−βrr1 +
∑3

i=1 mi + σr1 j22(E1)

]
(4.6)

We observe from the characteristic equation J(E1) that one of the eigenvalues of the matrix (4.7) is
ξ = βg > 0; therefore, the equilibrium E1 is unstable. This result is summarized in the following
proposition.

Theorem 4.2. The equilibrium solution E1 = (0, r1, 0, 1, 1, 1) of the system (2.3) is unstable in Ω.

Now, we analyze the local stability of the equilibrium E1. To this end, we observe that the Jacobian
given in (4.1) evaluated in E1 is given by

J(E1) =



j11(E1) 0 0 0 0 0
−βrr1 +

∑3
i=1 mi + σr1 j22(E1) −φr1 0 0 0
0 0 βg 0 0 0
0 0 0 −α1 0 0
0 0 0 0 −α2 0
0 0 0 0 0 −α3


, (4.7)

with

j11(E1) = βs(1 − r1) − σr1 −

 3∑
i=1

(
q̄i

λi + 1
+ mi

)
+ µs + δ

 , (4.8)

and

j22(E1) = βr(1 − r1) − (µr + δ). (4.9)

The characteristic equation associated with the matrix (4.7) is expressed as (α3 + ξ)(α2 + ξ)(α1 + ξ)(ξ −
βg)P1(ξ) = 0, where P1(ξ) =

[
j11(E1) − ξ

]
[ j22(E1) − ξ] is the characteristic polynomial of the matrix

block 2 × 2

G1 =

[
j11(E1) 0

−βrr1 +
∑3

i=1 mi + σr1 j22(E1)

]
(4.10)

We observe from the characteristic equation J(E1) that one of the eigenvalues of the matrix (4.7) is
ξ = βg > 0, therefore the equilibrium E1 is unstable. This result is summarized in the following
proposition.
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Theorem 4.3. The equilibrium solution E1 = (0, r1, 0, 1, 1, 1) of the system (2.3) is unstable in Ω.

Now, we analyze the local stability of the equlibrio E2. The Jacobian given in (4.1) evaluated in E2

is given by

J(E2) =



j11(E2) 0 0 0 0 0
−βrr2 +

∑3
i=1 mi + σr2 −βrr2 −φr2 0 0 0
βg βg −βg 0 0 0
0 0 0 −α1 0 0
0 0 0 0 −α2 0
0 0 0 0 0 α3


. (4.11)

with

j11(E2) = βs(1 − r2) −

 3∑
i=1

(
q̄1

λi + 1
+ mi

)
+ µs + δ

 − σr2 − φr2

= Λ2

(
1
d
−

Rr

d
+ r̄2

)
= Λ2(−r2 + r̄2), (4.12)

where Λ2 = βs

(
1 + σ+φ

βs

)
. The characteristic equation of (4.11) is expressed as −(α3 + ξ)(α2 + ξ)(α1 +

ξ)P3(ξ) = 0, where P3(ξ) is the characteristic polynomial of the matrix block 3 × 3

G3 =


Λ2 (−r2 + r̄2) 0 0

−βrr2 +
∑3

i=1 mi + σr2 −βrr2 −φr2

βg βg −βg

 . (4.13)

The matrix block G3 has the characteristic equation
[
Λ2 (−r2 + r̄2) − ξ

]
P4(ξ) = 0, where P4(ξ) is a

characteristic polynomial of the matrix block 2 × 2 lower right of the matrix G3

G4 =

[
−βrr2 −φr2

βg −βg

]
.

In turn, the characteristic equation of G4 is

P4(ξ) = ξ2 + η̄1ξ + η̄2 = 0, (4.14)

where η̄1 = βrr2 + βg and η̄2 = βgr2
[
βr + φ

]
. We observe that η̄1 > 0 and η̄2 > 0, by the criterion of

Routh-Hurwitz (case n = 2) it follows that the roots of (4.14) are negative or have a real negative part.
Later, the characteristic equation of J(E2) is

(α3 + ξ)(α2 + ξ)(α1 + ξ)
[
ξ − Λ2 (−r2 + r̄2)

]
(ξ2 + η̄1ξ + η̄2) = 0. (4.15)

Thus, all the roots of the polynomial (4.15) have a negative sign, except by the factor
[
ξ − Λ2 (−r2 + r̄2)

]
.

Therefore, is sufficient to examine the variation of the sign of ξ4,2 to determine the local stability of the
equilibrium E2. In this way, when

−r2 + r̄2 < 0, (4.16)

the eigenvalue ξ4,2 will be negative and the equilibrium E2 will be locally asymptotically stable. To
describe the stability of E2 in terms of thresholds Rs and Rr, we make the following considerations: 1) If
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Rr > 1 and Rs ≤ 1 it is clear that the condition (4.16) is true and therefore E2 it is locally asymptotically
stable. 2) If Rs > 1 and 1 < Rφr < Rr, where Rφr is defined in (3.30), we have r̄2 < r2, later ξ4,2 < 0 and
therefore E2 it is locally asymptotically stable. The local stability of the equilibrium E2 is summarized
in the following result.

Figure 5. Stability regions of the equilibria of system (2.3). a) with 1 < Rσr < Rφr .

Theorem 4.4. The equilibrium solution E2 = (0, r2, r2, 1, 1, 1) is locally asymptotically stable in Ω if

(1) Rr > 1 and Rs ≤ 1 or (Rs > 1 and Rφr < Rr).

The equilibrium E2 is unstable when

(2) Rs > 1 and 1 < Rr < Rφr or (Rs > 1 and Rr > 1 but Rφr < 0).

Now, we analyze the local stability of the equilibrio E3. The Jacobian given in (4.1) evaluated in E3

is given by

J(E3) =



−βss3 −(βs + σ)s3 −φs3 j14(E3) j15(E3) j16(E3)
j21(E3) j22(E3) −φr3 m1s3 m2s3 m3s3

βg βg −βg 0 0 0
0 0 0 −α1 0 0
0 0 0 0 −α2 0
0 0 0 0 0 −α3


(4.17)

with

j21(E3) = −βrr3 +

3∑
i=1

mi + σr3,
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j22(E3) = −
1
r3

 3∑
i=1

mis3 + βrr2
3

 ,
j1k(E3) = s3

[
−

q̄i

λi + 1
+

q̄i

(λi + 1)2 − mi

]
; k = 4, 5, 6 and i = 1, 2, 3.

The characteristic equation of J(E3) is determined by

−(ξ + α3)(ξ + α2)(ξ + α1)P5(ξ) = 0, (4.18)

where P5(ξ) is a characteristic polynomial of the matrix block 3 × 3

G5 =


−βss3 −(βs + σ)s3 −φs3

−βrr3 +
∑3

i=1 mi + σr3 −
1
r3

[∑3
i=1 mis3 + βrr2

3

]
−φr3

βg βg −βg

 . (4.19)

The matrix block G5 has the characteristic equation −ξ3 − a1ξ
2 − a2ξ − a3 = 0, and when replacing P5(ξ)

in (4.18), we obtain
(ξ + α3)(ξ + α2)(ξ + α1)(ξ3 + a1ξ

2 + a2ξ + a3) = 0, (4.20)

where

a1 =
s2

r3

3∑
i=1

mi + βrr3 + βss3 + βg, (4.21)

a2 = βg

 s3

r3

3∑
i=1

mi + βrr3 + βss3

 + βss3Λ3 + βgφg3 + σs3r3(βs − βr), (4.22)

a3 = βsβgs3Λ3 + βgφ

3∑
i=1

mis3

(
1 +

s3

r3

)
+ βgσs3r3(βs − βr). (4.23)

From expression (4.20), it can be seen that the eigenvalues ξ1,2 = −α3, ξ2,2 = −α2 y ξ3,2 = −α1 are
negative. To study the roots of the equation ξ3 + a1ξ

2 + a2ξ + a3 = 0 to determine the nature of the
equilibrium and stability remains. From (4.21) and (4.23), we observe that a1 as a3 are always positive.
On the other hand, when considering the term a1a2 − a3, we have

a1a2 − a3 =

 s3

r3

3∑
i=1

mi + βrr3 + βss3 + βg


βg

 s3

r3

3∑
i=1

mi + βrr3 + βss

 + βss3Λ3 + βgφg3 + σs3r3(βs − βr)


−

βsβgs3Λ3 + βgφ

3∑
i=1

mis3

(
1 +

s3

r3

)
+ βgσs3r3(βs − βr)

 ,

a1a2 − a3 =

 s3

r3

3∑
i=1

mi


[βss3Λ3 + σs3r3(βs − βr)

]
+ βg

 s3

r3

3∑
i=1

mi + βrr3 + βss3




+ βg

βgφg3 + βg

 s3

r3

3∑
i=1

mi + βrr3 + βss3
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+ (βrr3 + βss3)

βgφg3 + [βss3Λ3 + σs3r3(βs − βr)] + βg

 s3

r3

3∑
i=1

mi + βrr3 + βss3




+

 s3

r3

3∑
i=1

mi

 βgφg3 + βg[βss3Λ3 + σs3r3(βs − βr)] − βgs3

βsΛ3 + φ

3∑
i=1

mi

(
1 +

s3

r3

)
+ σr3(βs − βr)

 . (4.24)

From the last three terms of the expression (4.24), we have

 s3

r3

3∑
i=1

mi

 βgφg3 + βg[βss3Λ3 + σs3r3(βs − βr)] − βgs3

βsΛ3 + φ

3∑
i=1

mi

(
1 +

s3

r3

)
+ σr3(βs − βr)

 = 0,

thus, a1a2−a3 > 0 and by Ruth-Hurwitz’s criterion, all the roots of the equation ξ3+a1ξ
2+a3ξ+a3 = 0

are negative or have a negative real part. When returning to the characteristic equation of the matrix
J(E3)

(ξ + α3)(ξ + α2)(ξ + α1)(ξ3 + a1ξ
2 + a2ξ + a3) = 0,

we have that all roots are negative or have a real negative part always. This implies that equilibrium E3

is locally asymptotically stable. Figures 5–7 show the stability regions of the equilibrium of system
(2.3) according to the case.

Theorem 4.5. The equilibrium solution E3 = (s3, r3, s3 + r3, 1, 1, 1) is always locally asymptotically
stable in Ω.

Figure 6. Stability regions of the equilibria of system (2.3). b) with 1 < Rφr < Rσr .
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Figure 7. Stability regions of the equilibria of system (2.3). c) Rφr < 0.

5. Numerical simulations

In this section, we present some numerical simulations of system (2.3), which illustrate the pop-
ulation growth of H. pylori sensitive and resistant to antibiotic therapy, including Rifampicin (RIF),
Ciprofloxacin (CIP), and Clarithromycin (CLT), which are antibiotics used in a triple scheme to eradi-
cate the bacteria. The simulations also illustrate the activation of the host’s immune response against
this pathogen, describing the role of the immune response through lymphocyte T that have been dif-
ferentiated with a Th − 2 response that induce an eradication action of the bacteria. Globally, it is
estimated that 60% of the population is infected by this pathogen [30]. Since its discovery, there is no
single treatment for its eradication, rather, treatment therapies consist of antibiotic combinations of
common antimicrobials (clarithromycin, ciprofloxacin, metronidazole, rifapimycin, and amoxicillin)
that are generally used against other infections that affect humans though H. pylori has developed
resistance to these. The values of the parameters used in the simulations are positive constants and
were determined from a search in clinical and specialized reports on growth, elimination, and bacterial
resistance associated with H. pylori and on bacterial resistance in general (see Table 1).

The trivial equilibrium solution E0 always exists in the biological interest set. This equilibrium can
be stable only if the number of bacteria produced by the fraction of sensitive organisms of H. pylori
that escape the antibiotic effect, that do not mutate and do not detach from the gastric epithelium is less
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than one (Rs < 1), as well as the amount of bacteria produced by the fraction of resistant organisms of
H. pylori that do not detach from the gastric epithelium below the unit (Rr < 1), in any other case, the
trivial equilibrium is unstable. Figure 8 shows the numerical solution of system (2.3) when βr = 0.664,
βs = 16.66 and µs = µr = 0.37; thus; it can be observed that the population densities of sensitive and
resistant bacteria tend to be eliminated. The first, either by the antibiotic effects of the therapy or by
immune response, the second, because the population density of resistant bacteria in this case does
not exceed the threshold of persistence (Rr > 1). In addition, the immune response described by the
activation of immune cells tends to be reduced, like the population of H. pylori. In short, under the
conditions described, the system evolves biologically towards equilibrium. E0, represents, a scenario
where an equilibrium free of infection is reached.

Table 1. Bacterial resistance and immune response model parameters for H. Pylori.

Parameter Definition Value Reference

βs Reproductive rate of the population As 16.66 day−1 [11]

βr Reproductive rate of the population Ar 9.996 day−1 Hypothesis

βg Reproductive rate of immune cells G (lymphocytes T ) 0.6 day−1 [18]

N Carrying capacity of the gastric epithelium 2.1 × 103 bact [11]

ω Lymphocyte recruitment capacity T 1 cel/bact Hypothesis

q̄1 Maximum rate of elimination due to antibiotic effect c1 36 day−1 [31]

q̄2 Maximum rate of elimination due to antibiotic effect c2 36 day−1 [31]

q̄3 Maximum rate of elimination due to antibiotic effect c3 36 day−1 [31]

q1 Mutation rate due to antibiotic exposure of RIF 6.6 × 10−8 ml/(mg·day) [32]

q2 Mutation rate due to antibiotic exposure of CIP 3.8 × 10−8 ml/(mg·day) [32]

q3 Mutation rate due to antibiotic exposure of CLT 3 × 10−9ml/(mg·day) [32]

λ̄1 Antibiotic concentration when reached q̄1/2 0.00025 mg/ml [31]

λ̄2 Antibiotic concentration when reached q̄2/2 0.00025 mg/ml [31]

λ̄3 Antibiotic concentration when reached q̄i/2 0.00025 mg/ml [31]

σ̄ Mutation rate by plasmid transfer 1 × 10−5 (bact· day)−1 Hypothesis

φ̄ Rate of bacterial elimination by immune cells 6 ×10 −6 (cell· day)−1 [19]

µs Natural death rate of the population As 0.0037 day−1 [33]

µr Natural death rate of the population Ar 0.0037 day−1 [33]

δ Rate of detachment of bacteria from the gastric epithelium 0.5 day−1 [11]

α1 Constant of proportion increased concentration of RIF 0.96 [13]

α2 Constant of proportion increased concentration of CIP 0.45 Hypothesis

α2 Constant of proportion increased concentration of CLT 0.35 Hypothesis

K1 Antibiotic saturation concentration RIF 0.0012 mg/(ml·day) [34]

K2 Antibiotic saturation concentration CIP 0.0025 mg/(ml·day) [35]

K3 Antibiotic saturation concentration CLT 2.77 mg/(ml·day) [36]
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Figure 8. Temporal course of s(t), r(t), g(t), and ci(t), (i = 1, 2, 3) using the parameter values
given in Table 1. In this case, Rs = 0.16763; Rr = 0.76322; Rσr = 0.16798; Rφr = 0.16547,
which implies that solutions of the system (2.3) approach E0.
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Figure 9. Temporal course of s(t), r(t), g(t), and ci(t), (i = 1, 2, 3) using the parameter values
given in Table 1. In this case, Rs = 0.16825; Rr = 19.786; Rσr = 0.16842; Rφr = 0.16835,
which implies that solutions of the system (2.3) approach E2.

Mathematical Biosciences and Engineering Volume 22, Issue 1, 185–224.



211

0 2 4 6 8 10 12 14 16 18 20

Time (days)

0

0.1

0.2

0.3

0.4

0.5

0.6

P
op

ul
at

io
n 

de
ns

ity

s(t)

0 2 4 6 8 10 12 14 16 18 20

Time (days)

0

0.05

0.1

0.15

0.2

P
op

ul
at

io
n 

de
ns

ity

r(t)

0 2 4 6 8 10 12 14 16 18 20

Time (days)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
op

ul
at

io
n 

de
ns

ity

g(t)

0 2 4 6 8 10 12 14 16 18 20

Time (days)

0

0.2

0.4

0.6

0.8

1

co
nc

en
tr

at
io

n

RIF
CIP
CLT

Figure 10. Temporal course of s(t), r(t), g(t), and ci(t), (i = 1, 2, 3) using the parameter
values given in Table 1. In this case, Rs = 1.1109; Rr = 11.844; Rσr = 1.1108; Rφr = −34.642,
which implies that solutions of system (2.3) approach E3.
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Figure 11. Temporal course of s(t), r(t), g(t), and ci(t), (i = 1, 2, 3) using the parameter
values given in Table 1. In this case, s(t), r(t) and g(t) are periodic solutions. Thresholds are
Rs = 3.1285; Rr = 19.853; Rσr = 1.0209; Rφr = −0.23528.
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On the other hand, the equilibrium E2 exists when the persistence threshold Rr satisfies that Rr > 1.
The numerical solution presented in Figure 9 represents, according to the value of the thresholds Rs

and Rr respectively, that the time evolution of system (2.3), in this case, occurs towards the equilibrium
solution E2. This equilibrium solution can be stable under two scenarios: The first when the number of
bacteria produced by the fraction of sensitive organisms of H. pylori that escape the antibiotic effect,
that do not mutate and do not detach from the gastric epithelium is less than or equal to one (Rs ≤ 1)
and the amount of bacteria produced by the fraction of resistant bacteria that do not prey on the gastric
epithelium is greater than one (Rr > 1), as seen in the Figure 9. The second stability scenario can
occur when the number of bacteria produced by the fraction of sensitive organisms of H. pylori that
escape the antibiotic effect, that do not mutate, and that do not detach from the gastric epithelium is
greater than one (Rs > 1) and the amount of bacteria produced by the fraction of resistant bacteria that
do not detach from the gastric epithelium exceeds the threshold Rφr (Rφr < Rr). In these scenarios, it
can be evidenced that the population density of H. pylori sensitive tends to be eliminated either as a
consequence of eradication therapy or by the immune response, whereas, the resistant population of the
pathogen experiences growth from the beginning to a maximum limit that is equaled with the level of
immune response in the host.

Numerical simulations enable us to observe an interesting behavior in the stability of equilibrium
E3 within the region of biological interest Ω. Local qualitative analysis indicated that equilibrium
E3, when it exists, is locally stable, and this equilibrium solution has the particularity that it emerges
when equilibrium E2 loses stability or equilibrium E2 does not exist in Ω. In Figure 10 numerical
solution illustrates one of the scenarios of coexistence with both bacteria of H. pylori that can emerge,
in this case, according to the thresholds because the equilibrium E2 loses local stability. However, the
simulations of system (2.3) show numerical evidence that the equilibrium E3 can emerge in Ω but the
trajectories seem to approach a limit cycle that generates periodic solutions. When system parameters
(2.3) are set to certain numeric values but the carrying capacity of the gastric epithelium increases
to N = 2.1× 108, a coexistence equilibrium emerges E3 according to the thresholds: Rs = 3.1285,
Rr = 19.853, Rσr = 1.0209 y Rφr = −0.23528. However, the simulations give evidence that the stability
of the equilibrium is broken, and the numerical solutions that are generated have periodic behavior. (see
Figure 11). When evaluating the numerical approximation of equilibrium E3 generated by the values
of the parameters produced by the periodic solutions of the Figure 11 in the Jacobian matrix (4.1), we
observe numerical evidence that all the proper values of this matrix J(E3) have a negative real part
corroborating the local qualitative analysis in which it was determined that the mere existence of E3 in
Ω is sufficient to be locally stable. Additionally the non-appearance of proper values with no real part or
of a pair of pure conjugated imaginaries, it also shows numerically that the change in system dynamics
(2.3) (arising of periodic solutions) it does not occur by a Hopf type bifurcation, leaving an interesting
question from the mathematical point of view about the nature of the bifurcation that is occurring in the
system.

6. Qualitative dynamics of the model on specific subregions of Ω

Qualitative analysis of the model reveals the existence of equilibrium solutions in two scenarios; The
first is where the immune response is suppressed, and the second is where an activation of immune
cells occurs. Under a scenario of suppression of the immune response, qualitative analysis shows
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the existence of a balance free of bacteria or infection, E0. Additionally, when the immune response
is inactivated, there are two balances of persistence, one with resistant bacteria E1, and another of
coexistence with both bacterial populations E∗. These latter balances have the particularity of being
unstable in the region Ω. On the other hand, in a scenario where the immune response is not totally
suppressed, the study of the model characterizes two equilibria of infectious persistence of H. pylori;
one where the level of immune response finds an equilibrium with the population density of resistant
bacteria of H. pylori E2, and another where bacteria coexist by evading the response of immune cells
that are activated E3. Bacterial coexistence of H. pylori can emerge because bacterial persistence
E2 ceases to exist in Ω or because this same equilibrium loses its local stability, these are sufficient
conditions for this solution to be locally stable.

6.1. Qualitative behavior when s = 0 and ci = 1, 2, 3

Another infectious scenario that enables the model to be studied is generated when s = 0 and ci = 1
(i = 1, 2, 3). Under these conditions, system (2.3) is reduced to the planar system

dr
dt
= βrr(1 − r) − φr2 − (µr + δ)r

dg
dt
= βgg

(
1 −

g
r

)
, (6.1)

defined in the subregion

Ω2 = {(0, r, g, 1, 1, 1) ∈ R6
+; 0 < g ≤ r ≤ 1} ⊂ Ω. (6.2)

The planar system (6.1) enables us to describe the interaction of resistant bacteria of H. pylori and
immune cells (lymphocyte T ) in a scenario where antibiotic saturation in the blood has been reached,
and the immune response has not been suppressed, so that the elimination of the bacterial population
occurs either by the effect of the drug (sensitive bacteria) or by the activated immune response (resistant
bacteria). The qualitative analysis of the system (6.1) is described in the following propositions.

Theorem 6.1. For 0 < r0 = g0 < 1, if βr(1 − r0) > φr0 + (µr + δ), then the region Ω2 is positively
invariant by the system (6.1).

Proof. It is easy to verify that the vector field of (6.1) restricted to ∂Ω2, and does not point to the exterior
of Ω2.

Theorem 6.2. If Rr > 1, the planar system (6.1) has a single equilibrium of persistence E2 =

(0, r2, r2, 1, 1, 1) in Ω2.

Proof. It follows from the characterization of system equilibriums (2.3) for the case g = s+ r with s = 0
y ci = 1 (i = 1, 2, 3) presented in the Section 3.2.

Theorem 6.3. Equilibrium E2 = (0, r2, r2, 1, 1, 1) ∈ Ω2 of the planar system (6.1) is locally asymptoti-
cally stable.

Proof. It follows from the linearization of the system (6.1) around a hyperbolic equilibrium solution E,
which is determined by

ẋ = J(E)x,
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where x = (r, g)T and the Jacobian matrix of the system is determined as

J(E) =
 (βr + φ)(−2r + r2) 0

0 βg

(
1 − 2g

r

)  . (6.3)

Theorem 6.4. System (6.1) defined in region Ω2 it has no periodic orbits.

Proof. Region Ω2 is simply connected. Defining Φ(r, g) = 1
rg for r > 0, and g > 0 it is clear that Φ(r, g)

is C1(Ω2). On the other hand, it is not difficult to verify that

∇ ·
[
Φ(r, g)X(r, g)

]
, 0,

where X(r, g) is the right side of the system (6.1). Then, by Dulac’s criterion, it follows that there are no
periodic solutions for system (6.1) in Ω2.

The qualitative results presented above allow us to identify a subregion of Ω invariant by the system
(6.1) that is not on the border of Ω. On this subregion, there are no periodic solutions, and there is a
single equilibrium of persistence only with resistant bacteria of H. pylori E2, which is always locally
stable. In contrast, when the solution E2 is at Ω −Ω2 it can have locally stable and unstable behaviors
(see Section 4). From proposition 6.3, we interpret biologically that, under the conditions described
above, it is possible to have a scenario of infectious persistence of H. pylori where the immune response
of the host is not suppressed; however, despite being active, it is evaded or is not strong enough to
control bacterial progression. In addition, antibiotic treatment cannot control or eliminate the population
of the pathogen. The clinical literature on infection and immune response against H. pylori describes
some strategies of the pathogen involved in the evasion of the immune response [37, 38], which play a
role in favor of the pathogen and allow it to go unnoticed on the host’s defenses, generating an infectious
persistence. These strategies depend on other factors and variables that are not related in the model
formulated here, which represents a limitation when delving into the biological interpretation of the
scenarios predicted by the model with these characteristics, leaving aspects to be considered in future
research.

7. Discussion and conclusions

In this article, we adapted and formulated a mathematical model from the antibiotic resistance models
of [18] and [15], and applied to the dynamics of bacterial growth and immune response of H. pylori.
The infectious dynamics between sensitive and resistant bacteria of the pathogen, immune cells, and
antibiotics were explored and described under the assumption that bacterial resistance develops through
two mechanisms: Mutations by antibiotic exposure and plasmid transfer. The qualitative analysis of
the model revealed the existence of equilibrium solutions in two scenarios: The first was where the
immune response is suppressed, and the second was where an activation of immune cells occurs. In a
scenario of suppression of the immune response, the existence of a balance free of bacteria or infection
E0 was shown. Additionally, in this scenario, there were also two equilibriums of persistence; One
with only resistant bacteria E1 and another of coexistence with both bacterial populations E∗. On the
other hand, in a scenario where the immune response was not suppressed, there were two balances
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of infectious persistence of H. pylori; one where the level of immune response found a balance with
the population density of resistant bacteria E2, and another where bacteria coexisted by evading the
response of immune cells that were activated E3.

We found four thresholds that determine the existence and stability of these equilibriums: Rs, Rr,
Rσr , and Rφr . Threshold Rs represents the number of bacteria generated by the fraction of sensitive
organisms of H. pylori that are kept on the gastric epithelium, and do not present mutations and escape
the antibiotic action. Similarly, the threshold Rr represents the amount of bacteria generated by the
fraction of resistant organisms of H. pylori that do not detach from the gastric epithelium. On the
other hand, thresholds Rσr and Rφr control the progression of infection when sensitive and resistant
bacteria of H. pylori coexist in scenarios with suppression and non-suppression of the immune response,
respectively.

When Rs < 1 and Rr < 1, the solutions approximate the bacteria-free equilibrium, which indicates
that the populations of H. pylori sensitive and resistant are eliminated by a pharmacological effect
(ideal choice of antibiotic therapy) and by the activation of G (lymphocyte T ). As manifested in [15] an
interpretation of the above result can be described as follows: When H. pylori bacteria that survive both
antibiotic treatment and immune system response cannot continue with their reproductive processes,
then the infection will be controlled or eliminated. Equilibrium solutions where the immune response is
suppressed, E1 and E∗ are unstable in Ω; however, when Rr > 1 and Rr < Rσr on the border subregion,
Ω1, solutions approach the balance of infectious persistence only of resistant bacteria E1, and when
Rs > 1 and Rr < Rσr , on this same region, the solutions are approaching equilibrium E∗. If Rr > 1 and
Rs ≤ 1 or (Rs > 1 and Rr < Rφr ) sensitive bacteria are eliminated by immune cells or by the antibiotic,
infectious persistence is generated only by the H. pylori resistant population, and the immune response
is leveled with the population density of the pathogen. In the above scenario, the solutions approach
equilibrium E2. When equilibrium E2 loses its local stability or does not exist inΩ, a balance of bacterial
coexistence emerges E3 with both types of bacteria of H. pylori.

The numerical simulations presented in Figures 8–10, were made using data from the Table 1, and
we can observe that they corroborate the scenarios predicted by the model. In addition, numerical
simulations such as the one presented in the Figure 11 give numerical evidence of the occurrence
of a bifurcation that generates periodic solutions when the equilibrium of coexistence emerges E3.
The numerical description of the proper values of J(E3) provides information on the non-appearance
of null proper values or a pair of pure conjugated imaginaries when the emergence of periodic so-
lutions is observed numerically, suggest that the change in system dynamics (2.3) is not of a hopf
bifurcation nature.

When we compared the results of the qualitative analysis of system (2.3) regarding the results of
the model described in [18], both models have an infection-free equilibrium; however, in our case,
this can be locally stable. In both models, equilibrium solutions are obtained with suppression of the
immune response and without suppression of it. In [18] the equilibriums without immune response are
unstable, in our model they are unstable inside Ω; on the border, there is a region where they can be
very stable. In [18], the equilibrium of persistence with bacterial coexistence that does not suppress the
immune response is globally stable, and in our model, we have numerical information of a change in
stability that would indicate that the orbits of the system approach a cycle limit which would rule out a
globlally stable behavior. From the comparison respect to the results of the model described in [15]
we observed that both models haven equilibria in a scenario free of infection, showing persistence
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only with resistant bacteria and persistence with coexistence. The differences lie in the emergence of
coexistence equilibrium; in [15], persistence with both types of bacteria emerges when the scenario of
infectious persistence with resistant bacteria becomes unstable. Thus, equilibrium of coexistence can
break its local stability by making periodic solutions emerge that are theoretically characterized with the
occurrence of a Hopf type. In our model, bacterial coexistence emerges in two ways: The first similar to
that described in [15], i.e., the persistence of resistant bacteria becomes unstable, but it can also emerge
because this persistence of resistant bacteria does not occur within Ω. In addition, in our model, the
numerical evidence of the change of dynamics in the equilibrium solution E3 suggests not to be Hopf
in nature.

The qualitative results presented in this paper showed predictive scenarios related to the infectious
course of H. pylori in the stomach according to some results described in clinical and laboratory studies.
First, the model highlights the possibility of a scenario in which the bacterial population of H. pylori can
acquire bacterial resistance but cannot reproduce so that the infection can be controlled or eliminated
(equilibrium E0). In this sense, the model suggested the possibility of finding an adequate combination
between proliferation of immunological mechanisms (T cells) and administration of antibiotics that
are effective in treating the infection. Additionally, the model established biological scenarios that
can be differentiated according to whether the host’s immune response is suppressed (equilibrium E1

and E∗) or not (equilibrium E2 and E3), and generating an infectious persistence only with a resistant
population or through a bacterial coexistence. Being more specific, the clinical evidence suggests that, in
an infectious process of H. pylori, this pathogen can induce a low activity of T lymphocytes, which leads
to a suppression of the immune response so that the only mechanism to fight the infection is through
antimicrobial treatment, but when the population acquires resistance, this is not successful. The equilibria
of the model that reflect the previous scenario (equilibrium E1 and E∗ in the subregion Ω1) show the
possibility that H. pylori bacteria acquire resistance while reproducing, inducing a low regulation of
immune mechanisms that can be interpreted as a suppression of the immune response causing bacterial
persistence. On the other hand, specialized studies also give evidence that H. pylori has mechanisms
that when deployed generate an evasion of immune activity, resulting in immunological proliferation
that is not efficient. The equilibria of the model that reflect the previous scenario (equilibrium E2 and
E3 in the Ω region) show the possibility that H. pylori bacteria can acquire resistance, and reproduce
and despite having an activation and proliferation of immune response, this is not effective. In summary,
the model has enabled us to explore and consider certain hypotheses that have come close to describing
the infectious phenomenon from the variables and parameters defined in it.

Our work leaves some questions that enable us to perform future research. For example, from the
mathematical point of view, we can study and theoretically characterize the nature of the bifurcation that
occurs in the system when the equilibrium of coexistence emerges E3. We can also perform research
from a perspective related to the infectious process, antibiotic resistance to H. pylori, and the immune
response of the host. Moreover, the model considers basic aspects of this phenomenon in the future, so
is possible to add more specific variables and parameters that are involved with the immune response
deployed in the infection against this pathogen.
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Appendix

A. Proof of Lemma 2.1

Proof. By adding the first two equations of the system (2.3), we obtain

ds
dt
+

dr
dt
= (βss + βrr) [1 − (s + r)] −

3∑
i=1

(
q̄ici

λi + ci

)
s − φg(s + r) − (µs + δ)s − (µr + δ)r. (A.1)

From the Eq (A.1), we have
ds
dt
+

dr
dt
≤ (βss + βrr) [1 − (s + r)] . (A.2)

Since it was assumed that βr ≤ βs, it follows that

ds
dt
+

dr
dt
≤ (βss + βrr) [1 − (s + r)] ≤ (βss + βsr) [1 − (s + r)] .

or
d
dt

(s + r) ≤ βs (s + r) [1 − (s + r)] . (A.3)

The solution for s + r in Eq (A.3) is

s(t) + r(t) =
(s(0) + r(0))eβst

(1 − (s(0) + r(0))) + (s(0) + r(0))eβst
, (A.4)

when 0 ≤ s(0) + r(0) ≤ 1, we have

0 ≤ s + r ≤
(s(0) + r(0))eβst

(1 − (s(0) + r(0))) + (s(0) + r(0))eβst
≤ 1. (A.5)

Expression (A.5) enables us to determine that solutions for s + r satisfy 0 ≤ s(t) + r(t) ≤ 1 for
everything t ≥ 0. Additionally, the solutions of the last three equations of (2.3) are obtained through
integration, and the solution ci(t) is expressed as

ci(t) = 1 − Mie−αit, f or i = 1, 2, 3. (A.6)

Evaluating (A.6) for t = 0, we have to ci(0) = 1 − Mie−αi(0) for i = 1, 2, 3; thus, the value of the
constant will be Mi = 1 − ci(0), f or i = 1, 2, 3. Replacing Mi in the solution (A.6), we obtain

ci(t) = 1 − [1 − ci(0)] e−αit, f or i = 1, 2, 3, (A.7)

where ci(0) satisfies 0 ≤ ci(0) ≤ 1. Later, Equation (A.7) concludes that 0 ≤ ci(t) ≤ 1 for all t ≥ 0.
Complementarily, to find the solution of the third equation of (2.3), we assume (s + r) as a constant

value, so the solution for g is

g(t) = (s + r)
keβgt

1 + keβgt , (A.8)

evaluating (A.8) for t = 0 we have
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g(0) = (s + r)
keβg(0)

1 + keβg(0) , (A.9)

where the value of the constant is k = g(0)
(s+r)−g(0) , so the expression (A.9) is rewritten as

g(t) = (s + r)
eβgt

((s + r) − g(0)) + g(0)eβgt . (A.10)

We demonstrate that if 0 ≤ s(0)+ r(0) ≤ 1 then 0 ≤ s+ r ≤ 1 for t ≥ 0, so when 0 ≤ g(0) ≤ s+ r ≤ 1,
con t ≥ 0 we have

0 ≤ (s + r)
eβgt

((s + r) − g(0)) + g(0)eβgt ≤ s + r ≤ 1, (A.11)

from the expression (A.11) it follows that the function g(t) satisfies

0 ≤ g ≤ s + r ≤ 1, t ≥ 0.

Last, the vector field defined by (2.3) to the border of Ω, is when an initial condition is taken x0 ∈ ∂Ω,
so the solution ϕt(x0) does not contain points for the exterior of Ω. In this way, any solution that starts
in the region of biological interest remains in Ω for t ≥ 0. Thus, the region is well defined and positively
invariant by the system (2.3).

B. Proof of Lemma 3.1

Proof. Inequality Rr < Rσr is equivalent to −r̄1 + r1 < 0, and replacing r̄1 in the previous inequality, we
have

−
Rs − 1

Rs

(
1 + σ

βs

) + r1 < 0. (B.1)

Adding the terms
(

Rs−1
Rs

) (
σ
βr
− 1

)
− b1

(
1 + σ

βs

)
in both sides of the inequality (B.1) and rearranging, we

obtain

−

(
Rs − 1

Rs

) (
σ

βr
− 1

)
−

 Rs − 1

Rs

(
1 + σ

βs

) +
(
Rs − 1

Rs

) (
σ

βr
− 1

)
+ r1 + b1

(
1 +
φ + σ

βs

)
< −b1

(
1 +
σ

βs

)
.

Grouping

−

 Rs − 1

Rs

(
1 + σ

βs

)
[(
σ

βr
− 1

) (
1 +
σ

βs

)
+ 1

]
+ r1 +

(
Rs − 1

Rs

) (
σ

βr
− 1

)
− b1

(
1 +
σ

βs

)
< −b1

(
1 +
σ

βs

)
.

Replacing the coefficients of (3.11) in the previous inequality, we have

−y0r̄1 + y1 < −b1

(
1 +
σ

βs

)
. (B.2)
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Note that the right side of inequality (B.2) can be expressed as

−b1

(
1 +
σ

βs

)
= −

b1
1

1+ σβs

(
Rs−1

Rs

)(
Rs−1

Rs

) ,
or

−b1

(
1 +
σ

βs

)
= −

y2

r̄1
. (B.3)

Replacing (B.3) in inequality (B.2), we obtain −y0r̄1 + y1 < −
y2
r̄1

, and rearranging the previous inequality
follows that

−y0(r̄1)2 + y1r̄1 + y2 < 0.

The left member of the above inequality corresponds to the polynomial Q(r) evaluated in r̄1, so
Q(r̄1) < 0.

C. Proof of Lemma 3.2

Proof. When 0 < r̄2

(
1 + φ

βs

)
< 1, the inequality Rr < Rφr is equivalent to

−r̄2 + r2 < 0. (C.1)

Replacing r̄2 in the previus inequality, we have

−
Rs − 1

Rs

(
1 + φ+σ

βs

) + r2 < 0. (C.2)

Adding the terms
1
h

(
Rs − 1

Rs

) (
σ

βr + φ
− 1

)
−

b2

h

(
1 +
φ + σ

βs

)
, (C.3)

in both sides of the inequality (C.1,) we obtain[
1
h

(
Rs − 1

Rs

) (
σ

βr + φ
− 1

)
−

b2

h

(
1 +
φ + σ

βs

)]
−

Rs − 1

Rs

(
1 + φ+σ

βs

) + r2

−

[
1
h

(
Rs − 1

Rs

) (
σ

βr + φ
− 1

)
−

b2

h

(
1 +
φ + σ

βs

)]
< 0.

Rearranging

−
1
h

(
Rs − 1

Rs

) (
σ

βr + φ
− 1

)
−

 Rs − 1

Rs

(
1 + φ+σ

βs

) + 1
h

(
Rs − 1

Rs

) (
σ

βrφ
− 1

)
+ r2 +

b2

h

(
1 +
φ + σ

βs

)
< −

b2

h

(
1 +
φ + σ

βs

)
.
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Grouping Rs − 1

Rs

(
1 + φ+σ

βs

)
[
−

1
h

(
σ

βr + φ
− 1

) (
1 +
φ + σ

βs

)
− 1

]
+ r2 +

1
h

(
Rs − 1

Rs

) (
σ

βrφ
− 1

)
−

b2

h

(
1 +
φ + σ

βs

)
< −

b2

h

(
1 +
φ + σ

βs

)
.

Raplacing in the coefficients of (3.24) in the previus inequality, we have

−v0r̄2 + v1 < −
b2

h

(
1 +
φ + σ

βs

)
. (C.4)

Noting that the right side of inequality (C.1) can be expressed as

−
b2

h

(
1 +
φ + σ

βs

)
= −

b2
h
1

1+ φ+σβs

(
Rs−1

Rs

)(
Rs−1

Rs

) ,
or

−
b2

h

(
1 +
φ + σ

βs

)
= −

v2

r̄2
. (C.5)

Replacing (C.5) in inequality (C.4), we obtain −v0r̄2 + v1 < −
v2
r̄2

. Rearranging the previus inequality
provides

−v0(r̄2)2 + v1r̄2 + v2 < 0.

The left member of the above inequality corresponds to the polynomial Q̄(r) evaluated in r̄2, so
Q̄(r̄2) < 0.
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