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Abstract: Bone age assessment (BAA) is a widely used clinical practice for the biological
development of adolescents. The Tanner Whitehouse (TW) method is a traditionally mainstream
method that manually extracts multiple regions of interest (ROIs) related to skeletal maturity to
infer bone age. In this paper, we propose a deep learning-based method for fully automatic ROIs
localization and BAA. The method consists of two parts: a U-net-based backbone, selected for its
strong performance in semantic segmentation, which enables precise and efficient localization without
the need for complex pre- or post-processing. This method achieves a localization precision of 99.1%
on the public RSNA dataset. Second, an InceptionResNetV2 network is utilized for feature extraction
from both the ROIs and the whole image, as it effectively captures both local and global features,
making it well-suited for bone age prediction. The BAA neural network combines the advantages of
both ROIs-based methods (TW3 method) and global feature-based methods (GP method), providing
high interpretability and accuracy. Numerical experiments demonstrate that the method achieves a
mean absolute error (MAE) of 0.38 years for males and 0.45 years for females on the public RSNA
dataset, and 0.41 years for males and 0.44 years for females on an in-house dataset, validating the
accuracy of both localization and prediction.
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1. Introduction

Bone age is a measure of skeletal maturity and a primary indicator of biological development of
adolescents. Bone age assessment (BAA) has been widely applied in clinical practice. For example,
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the difference between bone age and chronological age can be used to estimate adult height or to
evaluate the efficiency of growth. In the procedure of BAA, usually X-ray images of left hands are
taken and manually evaluated by clinicians according to some standards.

In the literature, two primary assessment methods are commonly referenced: the GP method
established by Greulich et al. [1] and the Tanner Whitehouse (TW) [2] method. The so-called GP
method is based on comparing bone features to a series of atlases representing different ages. The
closest matching templates are selected and the corresponding bone age is inferred for the target
image. This method is obviously subjective and highly depends on the experience of clinicians. With
the development of imaging, the representative atlas used in the GP method has become outdated and
cannot be easily adapted to different imaging settings and populations. The second method, known as
the TW method [2], consists of selecting multiple key bones as regions of interest (ROIs) of hand
images and evaluating the maturity level of each region. The bone age is obtained using a scoring
formula. The standard of the TW method is generally more objective and interpretable. The TW
method was further developed to the TW3 method in [3], a standard in many BAA literature.
However, the TW method requires a large amount of workload for clinicians to extract the ROIs and
score the maturity levels. The results still heavily depend on the experience and subjective judgements
of radiologists.

To reduce the clinical workload and standardize the evaluation process, many computer-assisted
methods have been proposed. BoneXpert [4] was the first widely accepted commercial BAA software
extracting 13 ROIs proposed in the TW3-RUS method [3]. The system driven by conventional image
processing techniques to evaluate the shapes of each bone in the hand images was reported that the
system has a high rejection rate when the image quality is low or the bone shapes are far from the
standard population [5]. In recent years, deep learning methods are making great success in various
tasks of computer vision, medical image analysis, and bio-medicine. Deep learning based BAA
methods have been considered in recent years [5–11].

Deep learning-based BAA methods were developed along two lines: whole image-based
black-box methods and TW3-RUS ROI-based methods with interpretability. Whole image based deep
learning method consists of two phrases: preprocessing and classification. Techniques such as
denoising, rotation, and contrast enhancement in preprocessing are applied for the normalization of
the input X-ray images. The normalized images are used to train a deep neural network (DNN), such
as VGG16 [12] or the inception neural network [13]. For example, in [8], several popular DNN
models pretrained on the ImageNet and a customized convolutional neural network (CNN) employed
for BAA. In [7], a pretrained model from ImageNet and a large amount of image preprocessing steps
were applied to improve the accuracy of the network. A recent report on DNNs for BAA on the asian
population in Taiwan can be found in [14]. In general, this type can usually achieve a high accuracy,
due to the fact that the whole procedure is a black-box model, the interpretability is missing, which is
not acceptable for radiologists and patients in practice. Due to its high interpretability, TW-based
DNN methods investigated in recent literature. To mimick the diagnosis procedure of radiologists,
this line of work is usually composed of two steps. The ROIs are extracted by an object detection
network with a dataset with ROIs coordinates. The ROIs are then directly input into a network for
BAA, or used for the regression of skeletal maturity levels , if the ROIs maturity levels labels are
available. The process preserves the interpretability of TW methods and the labor of ROIs extraction.
Currently, object detection methods such as Faster R-CNN [15] are used for ROI extractions. As this
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process can not directly output satisfactory results for X-ray images due to the high similarity of
bones, some sophisticated pre-post processing methods are necessary for accurate ROIs
extractions [6]. Besides, labeling the skeletal maturity imposes additional burdens for radiologists, for
which the labels are not accessible in many datasets.

This paper introduces a novel automatic BAA method that integrates the interpretability of the
TW3 ROI-based approach with the global feature extraction of the GP method. We propose using a
U-net neural network to simultaneously locate the ROIs in the TW3-RUS method [3], which achieves
a high localization accuracy without the need for pre- or post-processing. U-net’s ability to
incorporate positional information allows precise identification of the phalanges, addressing
limitations of conventional object detection methods. By combining both the local ROI-based features
and the global features from whole images, our method achieves a high prediction accuracy without
relying on the skeletal maturity levels. The method was validated on both a public and a private
dataset, which demonstrates a improved prediction accuracy over the existing approaches that solely
rely on global or local features while maintaining the model interpretability.

The main contributions of this paper can be summarized as follows:

• Enhanced U-net Localization with Positional Awareness: Unlike conventional object detection
methods, the U-net network can accurately distinguish between the specified ROIs in the TW3-
RUS method due to its ability to incorporate positional information. This enhancement ensures
the precise identification of skeletal features, which improves the reliability of our system.
• Combination of Local and Global Features without Skeletal Maturity Levels: Our proposed

method combines both the ROI-based local features and the global features extracted from whole
images to achieve the high prediction accuracy without relying on predefined skeletal maturity
levels. This hybrid approach leverages the interpretability of the TW3-based method with the
global contextual awareness of the GP method, thus offering a balanced solution that enhances
both the accuracy and the interpretability.
• Extensive Validation on Public and Private Datasets: The proposed method is validated on the

public RSNA challenge dataset [16] and a private in-house dataset. Our method achieved a mean
absolute error (MAE) of 0.38 years for males and 0.45 years for females on the public RSNA
BAA dataset, and 0.41 years for males and 0.44 years for females on the private dataset. These
results outperform the existing methods with only global or local features, which demonstrates
the effectiveness and generalizability of our approach.

2. Methods

The fully automated ROIs localization and BAA prediction method is illustrated in Figure 1. In
the following, we present the detail of the U-net based ROIs localization and feature extraction blocks
for BAA.

2.1. ROIs localization

The idea of the TW3-RUS method [3] is to use a classification scoring algorithm based on the
ossification levels of different bones. In the TW3-RUS, thirteens bones, namely the Radius, the Ulna
and other short bones (Distal, Middel, Proximal Phalanx and Metacarpal) of the first, third and fifth
finger of the left hand are chosen to assess the skeletal maturity level.
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Figure 1. Our automatic bone age assessment model combines both ROIs and global
features.

In previous studies, Faster R-CNN has been widely used for object detection in BAA tasks.
However, as Son et al. [6] demonstrated, this approach suffers from limitations, including incorrect
predictions where multiple ROIs are identified for the same anatomical structure. To address this, Son
et al. introduced a two-step process: first locating the bones (bROI), and then localizing the specific
ROIs to ensure the accuracy, which add complexity to the workflow. In our approach, we employ
U-net [17] as the backbone network for ROIs extraction to overcome these issues. U-net was chosen
due to its strong performance in semantic segmentation tasks, which makes it highly effective
localizing small and complex anatomical structures. The network’s encoder-decoder structure with
skip connections preserves both low-level spatial details and high-level semantic information, which
is crucial for the accurate ROI extraction. Specifically, our U-net consists of five down-sampling and
five up-sampling layers, with each down-sampling layer followed by two 3x3 convolutions, ReLU
activations, and 2x2 max-pooling operations. The up-sampling layers use transposed convolutions to
upsample the feature maps, and skip connections between the corresponding layers ensure that the
fine details are preserved during reconstruction. Given an input X-ray image x and thirteen labeled
ROIs center coordinates (xi, yi), i = 1, · · · , 13, we first generate fourteen square bounding boxes
Mi, i = 1, · · · , 14 (with the thirteen channels corresponding to the thirteen ROIs and the last channel is
the residual). With the training dataset pair (x, {M}14

i=1), we apply RU-net [18], which is a variant of
U-net that incorporates a total variation regularization at the last softmax layer, to train a network. We
use the sum of mean squard error (MSE) and Dice loss [19] between the output mask and the ground
truth as our loss function. As the output mask of RU-net is not always strictly square, we recalculate
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the centroids of the former thirteen channels and regenerate 13 bounding boxes in order to obtain the
ROIs. We note that the size of the bounding box of ROIs is set as 192 × 192 for the Radius and
96 × 96 for the other phalanges. The radius was resized to the same size of the other phalanges for the
feature extraction. This process can be formulated as

[z1, · · · , z13] = F(RUnet(x, θ1)),

where x ∈ RK×K is the original image, θ1 is the parameter set of RUnet, F is the map of redrawing ROIs
z1, · · · , z13 ∈ R

k×k are the corresponding ROI images.

Figure 2. Redraw the output of the RU-net to get a normalized mask.

2.2. BAA prediction

For BAA prediction, the feature extraction block is composed of two parts. One is from the extracted
ROIs images, and the other is synthesized from the whole images.

For the ROIs, we first employ the ImageNet pretrained ResNet18 to extract the features of each ROI.
After a global average pooling, the third block feature map of each ROI is a vector of size d1 = 128.
This network will not be trained anymore. Then, these feature vectors of all 13 ROIs are input to a
transformer encoder block. In this phrase, all ROI features will learn the similarity and correlation
with each other. Finally, we will get 13 ROI output features. We can regard the transformer block as
the imitating the estimating bone mature level phrase. Finally we concatenate all ROI output features
together as the local feature with the 13 ∗ d1 dimension.

For the global feature extraction, we employ the InceptionResNetV2 architecture due to its ability
to efficiently capture both the local and global features through a combination of Inception modules
and residual connections. The Inception modules allow the network to extract multi-scale features
using parallel convolution layers with different kernel sizes (1 × 1, 3 × 3, and 5 × 5), while the residual
connections improve the gradient flow and enable a deeper network training. This is critical where both
the local details from ROIs and the global anatomical information are essential for accurate predictions.
The global feature vector size is denoted as d2. Moreover, the final stage is to concatenate features
together to a 13 ∗ d1 + d2 dimensional vector, which incorporates both advantages of the GP-method
and the TW3-method. This combination ensures that the model captures both the detailed anatomical
information from specific ROIs and the broader context from the whole image, which is essential for
accurate predictions. Beyond accuracy, this hybrid approach enhances the interpretability, which is a
critical factor in clinical applications. By explicitly using ROIs that radiologists commonly rely upon
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in manual assessments, the model mimics the clinical decision-making process. This allows clinicians
to trace predictions back to specific features, making the results more transparent and understandable.

In order to distinguish the gender, we add the learnable gender embedding to the feature, which is
similar to the position embedding in [20]. At last, we simply utilize the multi-layer perceptron (MLP)
block with two fully-connected layers to output one scalar bone age. The overall network structure is
summarized in Figure 1.

The overall architecture can be formulated as

ypredict = MLP([L(z1, · · · , z13),G(x)] + Egender, θ2)

where ypredict is the predicted age, L is the local feature extraction block, G is the global feature
extraction block, Egender ∈ R

13∗d1+d2 is the gender embedding vector, and θ2 is the parameter set of the
whole regression network.

Finally, we use the mean squared error (MSE) as the loss function to train θ2:

min
θ2

1
N

N∑
i=1

(
ypredict

i − ylabel
i

)2
,

where ylabel
i is the i-th labeled bone age.

3. Experiments

3.1. Datasets

The proposed method was rigorously tested using two distinct datasets: the public RSNA
challenge dataset [16] and a private dataset. This latter dataset is an assemblage of 10265
radiographic images meticulously gathered between March 2015 and October 2020. Notably, these
images were predominantly procured from local primary and middle schools, representing a
microcosm of the demographic variation within these establishments. A detailed demographic
overview of both datasets is systematically presented in Table 1.

In examining the configuration of the RSNA dataset, the training set incorporated 6502 male
specimens alongside 5427 female counterparts. Subsequently, the validation set is distinguished by
the inclusion of 749 male and 631 female samples. Additionally, a distinct set of 200 samples,
irrespective of gender categorization, has been specifically allocated for the testing phase. The RSNA
dataset ensures consistent training and testing splits, which allows for fair and reproducible
comparisons across studies using this dataset.

Building upon the method delineated in [5], we undertook a meticulous manual annotation process
identifying 13 pivotal keypoints on a subset of 481 RSNA images. These images were judiciously
selected to ensure a balanced distribution of bone age. 307 samples were designated for training, while
the remaining 174 were set aside for testing. As for the proprietary dataset, it contains a total of 1500
samples endowed with annotated coordinates. 1200 samples were allocated for the training phase, and
the residual 300 samples were exclusively utilized for testing.

The RSNA dataset, as outlined in [16], was meticulously annotated with respect to bone age by a
cohort of six experienced radiologists. For our proprietary dataset, 80% of the total data was earmarked
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for training. It translates to 3984 female samples and 4228 male samples. It is crucial to highlight that,
the chronological age is utilized as the regression outputs for this private dataset. This decision was
underpinned by the controlled nature of the cohort, which is representative of standard developmental
patterns. Consequently, in the context of this dataset, the chronological ages can be academically
interpreted as the inherent bone ages of the sampled population.

Table 1. Demographic of datasets.

Dataset
Age

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

RSNA(M) 3 25 60 90 163 180 269 262 294 295 296 297 298 299 300 301 302 303 304
RSNA(F) 4 17 68 109 106 320 435 572 563 72 732 773 609 586 164 199 57 40 /

In-house (M) / / / / / 1 355 566 742 875 919 538 422 407 392 69 2 / /

In-house (F) / / / / / / 386 472 673 808 759 467 444 471 403 97 / / /

As the images are not in the same size, we first resized all the training images to 512 × 512 for the
ROIs localization and global feature extraction. Since the contrast of the RSNA images is not uniform,
we employed the histogram equalization algorithm CLAHE [21] for the RSNA images. The clip limit
is set to 6 and the grid size is set to 8 × 8.

For the training of the first RU-net ROIs localization network, we performed ±45 degree rotations,
random scaled up and down with ratios ranged 0.5 to 0.7, random horizontal flipping for data
augmentation on RSNA dataset, in order to adapt to the changes in the size of palms and rotations.
We found that this data augmentation can greatly improve the ROIs localization accuracy of this
dataset. For our private dataset, the data augmentation process is not necessary since the localization
accuracy is already very high with our method.

For the feature extraction network, we performed random scaling between the ratio of 0.8 to 1.1; the
flipping, rotations, and translations for data augmentation to compensate different distances, positions
and angles. Some examples of augmented images from RSNA can be found in Figure 3.

Figure 3. Data augmentation by rotation and scaling.

The weights of Inception-ResNet-v2 for the global feature were obtained by a pretrainning on
ImageNet. This choice was based on the recognition that models pretrained on the large dataset
ImageNet, often provide a robust starting point for further fine-tuning on specialized tasks. For the
local feature extraction blocks and RU-net, the parameters of the CNN were initialized by the
Kaiming initialization, which is a default setting in Pytorch.
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We chose Adam as the optimizer with the hyperparameter β1 = 0.9 and β2 = 0.999 in both the
localization and regression parts. The initial learning rates were set as 10−4. RU-net was trained with
400 epochs and a batch size of 4 for the regression network, the total epochs number was set as 200
and the batch size was set to 16.

3.2. Results

We conducted a comprehensive validation of the localization accuracy of our proposed RU-net unit.
Following the established localization criteria outlined in previous works such as Son et al. [6], Koitka
et al. [5], and Everingham et al. [22], we utilized two well-established metrics, namely success rate and
precision, to thoroughly evaluate the performance of our localization approach. Both of these metrics
are widely recognized in the domain of localization. By utilizing such metrics, we aimed to offer a
nuanced and detailed evaluation of our approach in comparison to the existing methodologies in the
literature.

The success rate was determined based on stringent conditions, where all 13 ROIs were required
to be accurately recognized, and the intersection over union (IoU) between each ground truth ROI
and the corresponding predicted mask had to exceed 0.5. On the other hand, the precision rate was
evaluated by considering the probability of accurate detection for each bone, accounting for potential
discrepancies between the ground truth and predicted results.

In Table 2, we present a comprehensive comparison of the localization accuracy reported in the
relevant literature, with a particular emphasis on the studies by Son et al. [6] and Koitka et al. [5]. These
comparative evaluations span a range of diverse datasets, which encompass both the aforementioned
studies and our methodology. Our U-net based approach demonstrates a commendably high accuracy
in localizing the ROIs, as evidenced by the comparative results. This heightened accuracy is further
underscored by the comparative metrics delineated in the table.

Table 2. ROIs localization accuracy comparison.

Method Dataset Success rate precision
Son et al. [6] In-house 98.4 –
Koitkaa et al. [5] RSNA – 99.0

Proposed
In-house 98.7 99.3
RSNA 96.5 99.1

To assess the BAA error, we use the mean absolute error (MAE), which is a standard metric
commonly employed in the literature. This metric quantifies the absolute discrepancies between the
predicted age and the labelled age, which provides an effective measure of the accuracy and reliability
of BAA prediction models. The metric is

MAE =
1
N

N∑
i=1

∣∣∣ypredict
i − ylabel

i

∣∣∣ .
In Table 3, we present the MAE results reported in relevant literature, showcasing findings from

different datasets, including In-house, RSNA, or Digital Hand-Atlas [23], and model types, including
whole image-based and/or ROI-based approaches. In our study, we report the mean MAE separately
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for each gender, as our model was trained on gender-specific data. When comparing our work with
other methods, we strive to align with the datasets used in prior studies as closely as possible. For the
RSNA dataset, we strictly followed the predefined splits between the training, validation, and testing
sets to ensure a fair comparison. However, for other datasets—especially private datasets—reproducing
identical experimental setups may not always be feasible due to the limited access to the same data. In
such cases, we base our comparisons on the reported metrics and methodologies in the original works.

Our approach, which combines ROIs and whole image information, demonstrates the lowest MAE
compared to other similar experimental settings. Notably, our findings are consistent with the results
reported in [5], where a similar MAE of 0.38 was achieved using ensemble filtering techniques for the
testing results, as stated by the authors.

Our method’s superior performance can be attributed to the synergistic utilization of ROIs and
whole image information, which enables comprehensive and accurate predictions. By leveraging
gender-specific data during the model training process, we are able to capture and account for the
potential anatomical differences between genders, which enhances the prediction accuracy. It is worth
mentioning that our study’s findings align with the current literature, which underscores the
importance of incorporating both local and global features in medical image analysis tasks.

Table 3. MAE comparison.

Method DataSet Model type MAE (M/F)
Lee et al. [7] In-house Whole image 0.82/0.93 (RMSE)
Son et al. [6] In-house ROIs 0.46
Chen et al. [24] In-house Whole image 0.46
Iglovikov et al. [10] RSNA Whole image 0.51
Lee et al. [25] RSNA Whole image 0.53
Koitkaa et al. [5] RSNA ROIs 0.38
Spampinato et al. [8] Digital Hand-Atlas [23] Whole image 0.79
Simukayi et al. [26] Digital Hand-Atlas Whole image 0.54
Toan et al. [27] Digital Hand-Atlas ROIs 0.59
Zhou et al. [28] Digital Hand-Atlas ROIs 0.72
Tong et al. [29] Digital Hand-Atlas Whole image 0.55

Proposed

In-house Whole image 0.45
In house Whole image + ROIs 0.41
RSNA Whole image 0.44
RSNA Whole image + ROIs 0.38

3.3. Discussion: Model performance across age groups

The evaluation of the model’s performance across different age groups for the RSNA dataset, as
illustrated in Figure 4, reveals variations in the MAE on age and gender. These differences highlight
the potential shortcomings of the model in certain age brackets.
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Figure 4. Mean Absolute Error (MAE) distribution across different age groups for male and
female.

The MAE distribution for males shows a fairly stable performance for most age groups, with errors
generally remaining below 0.4 for the majority of age groups. However, a notable spike occurs in
the 18-19 age group, where the error exceeds 1.4, which indicates a significant drop in the predictive
accuracy for this particular cohort. This suggests that the model struggles with older male individuals,
mainly due to the limited training data for this age group. Another small spike is observed in the 2-3
age range, which indicates the model may also have difficulties with predicting the outcomes accurately
for very young children.

In contrast, the MAE distribution for females shows a different trend, with the highest errors
occurring in the younger age groups, particularly from 4-5 years, where the MAE peaks around 0.6.
The error decreases in subsequent age groups, which indicates the improved accuracy as the age
increases, while there are smaller peaks in the 8-9 and 12-13 age groups. This suggests that the
model’s performance is less stable in predicting the outcomes for younger females. These fluctuations
could indicate that certain age-specific features for females are not well-represented in the model,
which leads to inconsistent predictions.

The observed performance variations across age groups may be attributed to the following factors:

• Data Distribution Imbalance: Poor generalization in certain age groups may result from
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underrepresentation in the training data. Insufficient samples for very young children or older
individuals limit the model’s ability to learn relevant patterns leading to higher errors.
• Insufficient Capture of Age-Specific Features: The increased MAE for males aged 18-19 and

females aged 4-5 suggests that the model may not fully capture age-specific features. Adolescents
exhibit a greater variability in health and behavior, while younger children may require specialized
feature sets not present in the model.

These challenges underscore the importance of addressing data imbalance and incorporating
relevant age-specific features through regularization techniques or balanced sampling strategies to
improve model performance across all age groups.

4. Conclusions

In this paper, we proposed a fully automated method that combines the strengths of the GP and TW3
methods. By employing a U-net-based ROIs localization approach, the system reduces the clinicians’
workload while maintaining the high interpretability and accuracy. Our method was validated on both
public and in-house datasets, showing superior performance in terms of the localization precision and
the MAE error compared to existing methods.

The method can streamline clinical workflows by automating BAA, reducing the assessment
variability, and enabling faster and reliable diagnoses. This may facilitate earlier and more accurate
detection of growth disorders. Although the method is robust across different datasets, future work
should investigate the effects of image resolution and demographic variability to further enhance the
generalizability in clinical practice.
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