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Abstract: Recently, glioblastoma tumors were shown to form tumor microtubes, which are thin, long
protrusions that help the tumor grow and spread. Follow-up experiments were conducted on mice in
order to test what impact the tumor microtubes have on tumor regrowth after the partial removal of
a tumor region. The surgery was performed in isolation and along with growth-inhibiting treatments
such as a tumor microtube-inhibiting treatment and an anti-inflammatory treatment. Here, we have
proposed a partial differential equation model applicable to describe the microtube-driven regrowth
of the cancer in the lesion. We found that the model is able to replicate the main trends seen in the
experiments such as fast regrowth, larger cancer density in the lesion, and further spread into healthy
tissue. The model indicates that the dominant mechanisms of re-growth are growth-inducing wound-
healing mechanisms and the proliferative advantage from the tumor microtubes. In addition, tumor
microtubes provide orientational guidance from the untreated tissue into the lesion.
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1. Introduction

The most severe brain diseases are glioblastoma and grade 4 astrocytoma. These two classes were
identified as glioblastoma before 2021, but due to advances in molecular genetics, they have been
recently distinguished by the presence or absence of an isocitrate dehydrogenase (IDH) mutation [1].
Both of these brain cancers are extremely difficult to treat, with most treatments leading to tumor
recurrence [2,3]. Fairly recently, Osswald et al. [2] have performed mice experiments where they took
grade II–IV gliomas (IDH wild type) from human brain tumors and implanted them into mice. By
observing the growth of glioma cells in mice, Osswald et al. [2] discovered an important structure
which they named “tumor microtubes”. Tumor microtubes (TMs) describe thin, long protrusions
extending from the cell body of a cancer cell. The tumor microtubes contain cell cytoskeleton and can
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reach up to 5 times the diameter of a cell [2]. In 2017, Weil et al. [3] performed microsurgery
experiments on mice, where they removed a cylindrical lesion from the tissue, to better understand the
role of TM with respect to cancer regrowth and response to treatments. In this paper, we develop a
mathematical model that can describe the tumor growth after the following treatments: surgical
resection, surgical resection paired with targeted therapy, and surgical resection paired with an
anti-inflammatory treatment in mice [3]. We discuss these treatments in more detail below. We find
that wound-healing mechanisms such as growth signaling and the proliferative advantage inferred
from the TMs are likely the most important contributors to tumor regrowth, while the TM-induced
anisotropy helps to accelerate this process.

1.1. Tumor microtubes

Tumor microtubes (TMs) can extend up to 500 µm from the cell body and some TMs can even
exceed this length. Further, the number of TMs tends to increase as the tumor progresses [2]. For
example, on day 20 (postimplantation) most glioblastoma cells have one TM whereas on day 60
(postimplantation) most cancer cells have at least 4 TMs [2]. Moreover, TMs have been linked to aid
tumor growth, promote spatial spread, and have been shown to allow communication between
cells [2–4]. Communication between cancer cells is possible due to TMs ability to link cancer cells to
each other through connexin 43 gap junctions and the gap junctions facilitate cell communication by
allowing calcium wave propagation [3, 4]. Moreover, it has been identified that growth associated
protein-43 (GAP-43) is essential for TM formation and TM network functionality [2, 3, 5]. TMs have
also been linked to play a role in treatment resistance, where it was shown that the communication
network between cancer cells plays a significant role in aiding the repair of the tumor after treatments
such as surgery, radiotherapy, or temozolomide chemotherapy [3].

In 2017, Weil et al. [3] performed detailed mice experiments in order to test glioblastoma
treatments. Mice had one of the primary glioblastoma cell lines (S24 or T269) implanted into their
brain. The main difference between the S24 and T269 strands is that in vitro, S24 tends to form more
TMs [3]. After sufficient growth of the tumor inside the mouse brain, Weil et at. [3] performed a
surgical treatment where they resected a cylindrical volume from the tumor using a syringe with a
diameter of approximately 300 µm. Weil et al. [3] examined the behavior of the tumor for 28 days
after surgery, and found that the tumor regrows faster and denser inside the lesion. In addition to
surgery, Weil et al. [3] tested other treatments combined with surgery. One of the treatments
performed alongside surgery in [3] can be broadly categorized as targeted therapy, which involved
specifically inactivating GAP-43 using small hairpin RNA (shGAP-43) to prevent normal formation
of the TMs. Weil et al. [3] found that this was a successful treatment to delay the regrowth of the
tumor in the lesion in comparison to the control treatment (surgery). Furthermore, an
anti-inflammatory treatment with dexamethasone (DEX) was tested in [3] which was administered
daily for 14 days, starting on the day of surgery. Weil et al. [3] found that this treatment only allowed
for a transient benefit, where the tumor regrew slower on day 7 after surgery in comparison to the
control treatment (surgery), but then on day 14 there was no significant difference between the control
treatment (surgery) and the combination treatment (surgery combined with DEX).

TMs are able to aid with cell proliferation [2] and Weil et al. [3] showed that after surgery, nearby
cells actually extend their TMs toward the lesion along which cell nuclei can travel. These nuclei can
then begin repopulating the lesion. Weil et al. [3] also showed that glioblastoma cells can actually
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move toward the lesion, where on day 5 after surgery, more than half of the glioblastoma cells move
toward the lesion. In addition, surgery creates a wound and a wound-healing response is triggered.
Wound healing is classically a four-stage process with stages that may overlap: 1) hemostasis, 2)
inflammation, 3) cell proliferation, and 4) remodeling [6, 7]. Inflammation during a wound-healing
process has been shown to have the potential to be tumor promoting, since immune inflammatory cells
release growth factors and promote cancer cell proliferation and cancer spread [8, 9]. Moreover, an
injury may activate microglia and macrophages which aid with cancer cell survival, proliferation, and
invasion [10,11]. Hence, in addition to TMs, wound-healing mechanisms may also be promoting tumor
growth. We will use our mathematical model to investigate the significance of these processes related
to the cancer regrowth data from [3].

1.2. Modeling of brain tumors

According to the data from the World Health Organization (WHO), the incidence of brain cancer is
about 4 out of 100,000 people worldwide (www.who.int). Treatments vary widely depending on the
stage, size, and location of the cancer, and age and health of the patient [12, 13]. Most patients would
undergo surgery, followed by radiation treatment, but many other treatments such as chemotherapies,
targeted therapies, and immunotherapies, are possible too [12].

There have been a number of mathematical models proposed to model the growth and spread of
glioblastomas. One can use agent-based models to model glioblastoma dynamics to better capture
single cell behavior. For example, Gao et al. [14] have used a cellular Potts model to capture cell
structure, adhesion, and motility as well as the cell heterogeneity of glioblastoma tumors. Reaction
diffusion equations have been especially popular to model the growth dynamics for glioblastoma
tumors, as the diffusion term can be used to capture the movement of cells and the source term (in the
form of exponential or logistic growth) can be used to capture the growth dynamics of
glioblastomas [15, 16]. The simulations from these models have been shown to have good agreement
with MRI data of gliomas [15, 16], where the model in [16] can adapt to different cell movement
speeds along the white or gray matter tracts in the brain and the model proposed in [15] can use
Bayesian personalization of model parameters to better fit to patient data. These models can also be
adapted to include anatomical boundaries [17]. However, the models in [15, 16] have only employed
isotropic diffusion of the glioma cells, meaning that cells have equal probability to move in any given
direction. It has been observed that glioma cells tend to move along white matter tracts in the brain,
showing that glioma cells can have preferential movement [18]. To include preferential movement,
one can use a mechanistic model where anisotropic diffusion of cancer cells arises as a byproduct of
various mechanistic forces. For example, Colombo et al. [19] proposed a fully mechanistic model
which incorporated patient specific anisotropy from diffusion tensor imaging (DTI) data and
accounted for nutrient availability for the cancer cells. Alternatively, a fully anisotropic version of the
isotropic models described above can be formally derived in the form of transport equations [20, 21].
The anisotropic movement in the transport equation model is captured by the diffusion tensor, which
can be formulated to include patient-specific DTI by specifying the orientational distribution of tissue
fibers [21–23].

Recently, a transport equation model was proposed by Hillen et al. [24] which incorporated not
only the dynamics of glioma cells, but also the TMs. This model includes TM invasion (where the
preferential movement of the tips in the anisotropic environment is accounted for), TMs ability to
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retract and create new TMs, nuclei movement along the TMs, nuclei maturation into glioma cells, and
glioma cell division. By comparing the simulated tumor growth to the data found in Osswald et al.’s [2]
mouse experiments, they validated the model where they showed that the model is able to replicate the
trends in the data. Moreover, they showed that under certain assumptions their model can reduce to key
models found in previous studies, for example, the simple reaction diffusion model proposed by [16].

In this work, we use one of the models in [24] for the cancer cells and add a compartment for
the healthy cells to describe the experiments of Weil et al. [3]. In Figure 1, we illustrate the basic
ingredients for our tumor microtube model. Glioma cells are connected via TMs and they extend TMs
into the lesion region to guide the oriented movement. Healthy cells are also present and they compete
with the cancer cells for space as well as resources. Healthy cells also invade the lesion region at a
lower rate. We will use the model to investigate the role of directed TM invasion on cancer regrowth
inside the lesion. We expected that the oriented movement guidance of the TM was essential to repair
the lesion in a short time. We find, however, that the dominating mechanism is likely an increased
growth rate in the lesion caused by increased growth signaling from the wound-healing response as
well as the proliferative advantage from the TMs. The TM orientation is a secondary contributing
factor.

Figure 1. Sketch of the basic microtube-driven cancer invasion process. Cancer cells are
connected by tumor microtubes and extend microtubes into the lesion region. Healthy cells
compete for space and resources and grow into the lesion region at a lower rate.

While developing our model, we make use of a radial symmetry assumption. This allows us to use
an explicit form of anisotropy as developed in Bica et al. [25]. In general, the anisotropy term requires
complex calculations of second-order moments of spherical distributions (see [26]). The radial case
allows us to explicitly formulate anisotropy through a radial anisotropy parameter α(r). In doing this,
we combine some theoretical results of [24] and [25], and apply them to a given situation of glioma
lesion experiments of Weil et al. [3]. Our approach shows that our modeling is useful for this process.
Moreover, we use the model to consider treatments and use it to explain success or failure of the
treatments used in [3]. In future research, we can use the model to test other treatments and possibly
suggest new experiments.
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1.3. Paper outline

In Section 2, we combine the more theoretical approaches of [24] and [25] to develop a model
specifically for the experiments of Weil et al. [3], which we then parametrize in Section 2.3. In
Section 3, we present the simulation results and relate them to the experiments. We compare isotropic
versus anisotropic diffusion and consider smooth or sharp transitions of the parameter functions at the
boundary of the lesion. We also perform a sensitivity analysis. Section 4 includes the two treatments
that were used in the experiments. The first treatment is targeted therapy that reduces the formation of
tumor microtubes paired with surgery. The second treatment is an immunosuppressant treatment with
dexamethasone paired with surgery. Our model confirms the finding that inhibition of TM formation
is a more effective treatment than immune suppression. We finish with a discussion in Section 5
where we relate our results to current research, explain their significance, and suggest avenues of
further research.

2. The model

In our modeling, we assume that the biological domain is roughly radially symmetric. This enables
us to use results from Bica et al. [25] to explicitly derive the anisotropic diffusion term in a radial
symmetric case.

2.1. Radially symmetric anisotropic diffusion

Before introducing our model, we first discuss the spatial model that we will use to describe
anisotropic (and also isotropic) movement. The domain that we will work with is a two-dimensional
circle, which we call Ω. In this circle, the cells have the option to move along the radial lines,
perpendicular to them, or simply diffuse (not have any relationship to the radial lines). This movement
is sketched in Figure 2, where α(r) is a function depending on the radius, which denotes the degree of
movement along the radial lines. If α(r) > 0, then the cell moves preferentially along the radial lines
and if α(r) < 0, then the cell moves preferentially perpendicularly to the radial lines as shown in
Figure 2. In the limit α→ 1, cells move fully parallel to the radial lines and in the limit α→ −1, cells
move fully perpendicular to the radial lines. If α(r) = 0, then the movement is isotropic (i.e., cells
diffuse with no correlation to the radial lines). As in Bica et al. [25], we assume that |α(r)| ≤ 1.

To derive the model for the directed movement shown in Figure 2, Bica et al. [25] started with the
fully anisotropic diffusion equation proposed by Hillen et al. [27, 28], which is given by

ut = ∇∇ : (D(t, x)u) =
n∑

i, j=1

∂

∂xi

∂

∂x j
(Di j(t, x)u), (2.1)

with u = u(t, x) denoting the cell density, t ∈ R denoting time, x ∈ Ω denoting space, ut denoting
the rate of change of the cell density with respect to time, and D(x) is a diffusion tensor. Note that
this model is not in the standard form of a Fickian diffusion since here we consider actively moving
particles and the Fokker-Planck-type diffusion (2.1) is a more appropriate formulation [27–29].

We transform to polar coordinates (r, ϕ) by assuming no-flux boundary conditions at r = R:

∂

∂r
u(r, ϕ) = 0, for r = R,
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Figure 2. Plot of cell movement along radial lines. The orange oval denotes a cell. If
α(r) > 0, then the cell moves preferentially parallel to the radial line and if α(r) < 0, then
the cell moves preferentially perpendicular to the radial lines. The lesion is denoted by the
filled-in circle filled with blue, where R0 is its radius. The outer circle has radius R.

and assuming that the solutions are bounded at r = 0.
The diffusion tensor used by Bica et al. [25] was derived by Hillen et al. [26] from the von Mises

distribution, and the formula for the diffusion tensor is given by

D(r, ϕ) =
1 − α(r)

2
I2 + α(r)

(
cos2 ϕ sin ϕ cos ϕ

sin ϕ cos ϕ sin2 ϕ

)
, r > 0, (2.2)

in the planar polar coordinate system (r, ϕ). In (2.2), α(r) is the function describing the degree to which
cells move along the radial lines as discussed earlier. Substituting (2.2) into (2.1), Bica et al. [25]
derived the following model:

ut(t, r) =
1
2

(1 + α(r))urr +
1
2

(
2αr(r) +

1
r

(1 + 3α(r))
)

ur +
1
2

(
αrr(r) +

3
r
αr(r)

)
u

=: Φ[r, α, u], (2.3)

where r ∈ (0,R] with R being the maximum radius, and Φ[r, α, u] denotes the linear, second order
differential operator that depends on r and α(r). Note that in the isotropic case α = 0, this operator
simplifies to the standard Laplacian in polar coordinates in the radially symmetric case with diffusion
coefficient 1/2:

Φ[r, 0, u] =
1
2r

(rur)r.

The model (2.3) is a one-dimensional PDE model which is applicable to situations in Figure 2 and can
be easily solved numerically.

2.2. Our model

To describe the experiments of Weil et al. [3], we inform the choice of α(r) from the presence of
tumor microtubes (TMs). We assume, as seen in the experiments of Weil et al. [3], that TMs extend
in the direction of the lesion, i.e., in the radial direction to the center of the lesion. As cell movement
is guided by the TM, this corresponds to a choice of α(r) > 0. The value of α then describes the
sensitivity of movement to the TM orientation. Later we use 0.6 as a reasonable choice.
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We extend the spatial model for two competing populations, cancer cells and healthy cells. Let
u(t, r) ≥ 0 be the density of the glioma cells and v(t, r) ≥ 0 be the density of healthy cells, where r > 0.
The model we propose is as follows:

ut = duΦ[r, α, u] + guu
(
1 −

u + v
K

)
,

vt = dv
1
2r

(rvr)r + gvv
(
1 −

u + v
K

)
,

(2.4)

where Φ is given in (2.3).
We consider the above model on a disk of radius R > 0 with boundary conditions

ur(t,R) = vr(t,R) = 0, and lim
r→0
|u(t, r)| < ∞, lim

r→0
|v(t, r)| < ∞. (2.5)

The initial conditions will be defined later once we study specific experiments.
In (2.4), α(r) is a function describing the degree to which cells move along the radial lines as

discussed earlier. The parameters du and dv are the respective diffusion coefficients of cancer cells and
healthy cells. We use a logistic Lotka-Volterra competition term for growth and interactions where gu

and gv are the respective growth rates of cancer cells and healthy cells, and K is the carrying capacity
[30]. Notice that in the second equation for the healthy cells, the spatial term is obtained by setting
α(r) = 0, since healthy cells do not extend TMs. Essentially, in Model (2.4), we are assuming that
glioblastoma cell movement is guided by the radial lines and the healthy cells simply move by diffusing.
Both the cancer and healthy cells grow logistically where both cell types compete for the limited space
and nutrients which are capped at the carrying capacity. Note that in Model (2.4), we incorporate
the wound-healing mechanisms such as increased growth signaling and increased carrying capacity,
directly into the model parameters.

2.3. Parameterization

We take our domain Ω to be a circle with a radius of R = 600 µm. The domain Ω will have two
distinct regions: inside the lesion (including the lesion boundary) and the region outside the lesion
(see Figure 2). We call the lesion and its boundary Ωin and the region outside the lesion Ωout. The
radius for Ωin is taken to be R0 = 150 µm since the diameter of the lesion in Weil et al. [3, Figure
1] is approximately 300 µm. We assume that the interior of the lesion Ωin is homogeneous tissue.
Ωout contains blood vessels and other tissue structures, but they are not the focus of this study and we
assume they are essentially uniformly distributed.

Due to the TMs and wound-healing mechanisms, the cells growing in the lesion area will have
an advantage, therefore requiring us to distinguish between parameters in Ωin and in Ωout. Hence, to
summarize the parameters, we represent them in a tuple (· ; ·) in Table 1, where the first entry is the
parameter inside Ωin and the second entry is inside Ωout. To make it clear which parameter we are
discussing, we use the notation (p, p̄) where p denotes the parameter inside Ωin and p̄ denotes the
parameter in Ωout.

In Table 1, we choose to set the diffusion coefficients du = d̄u =
s2

p

2µp
as was done in [24] where the

factor of 1/2 comes from (2.3). This estimate is based on a typical cell speed of sp = 4.8 µm/h and a
turning rate of µp = 1.8/h, which are parameters taken from [24]. For dv, we assume that inside Ωin,
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Table 1. Summary of the parameters used. The tuple denotes parameters within and outside
the lesion. The first value contains the parameter inside the lesion, and the second value
contains the parameter outside the lesion. In the Reference row, “a” stands for assumed, and
“e” stands for estimated.

Parameter Cancer cell Healthy cell Cancer cell Healthy cell Carrying
diffusion diffusion growth rate growth rate capacity

Units µm2/h µm2/h 1/h 1/h cells/µm2

(inside;outside) (du; d̄u) (dv; d̄v) (gu; ḡu) (gv; ḡv) (K; K̄)

Values (6.4; 6.4) (3.2; 1.6) (0.018; 0.006) (0.0012; 0.0006) (0.01, 0.0018)

Reference ( [24]; [24]) (a; a) (a; e) (a; [24]) (e; e)

du = dv/2, and inside Ωout, d̄u = d̄v/4, because healthy cells move slower than cancer cells [8], and
since there is more space available inΩin, the cells can move faster. To obtain gu for cancer cells, we do
a rough estimate based on the figures given in Weil et al. [3] which we summarize here. From Figure 1
in [3] (also shown in Figure 5, bottom two rows), we see that the rough doubling time in Ωout is 5 days
based on images of day 3 and day 5 in [3]. Then using the formula growth rate = ln(2)/doubling time
[31], we get a rough growth rate of ḡu = 0.006/h in Ωout. To get the growth rate for cancer cells in
Ωin, we triple the ḡu from Ωout as cancer cells grow faster inside the lesion due to the wound-healing
and TMs. For the healthy cell growth rate, we assume that ḡv is the same as the bulk growth rate of a
glioma tumor, hence we set it to be ḡv = 0.0006/h [24]. Since the cells in Ωin have a growth advantage
due to the wound healing response, we double the growth rate in Ωin and obtain that gv = 2ḡv. We also
estimate the carrying capacity from Figure 1 in [3]. For K̄ in Ωout, based on day 0 in Figure 1 in [3], we
can roughly count how many cancer cells fit into a 150 µm × 150 µm square. We then take that estimate
as K̄ forΩout for both healthy and cancer cells. For K inΩin, we note that a glioma cell is approximately
10 µm from Figure 2 in [3] and estimate that 225 cells fit into a 150 µm × 150 µm square. From there
we obtain K in Ωin. Note that we assume a higher carrying capacity in Ωin due to wound-healing
signaling and angiogenesis, and hence cells in Ωin have more favorable growth conditions [32].

For the function α(r) we use the hyperbolic tangent function given by

α(r) = β(1 + tanh(γ(ρ − r))) (2.6)

which is one of the functions for α(r) proposed in [25]. We choose it as it allows for a smooth and
gradual transition between regions. We set ρ = 150 because between the regions r ∈ (0, 150] (Ωin)
and r ∈ (150, 600] (Ωout), the degree of anisotropy changes. We reason that the closer the cells are to
the lesion, the more radially they move as evidence from [3]. In [3], they note that nearby cancer cells
tend to move toward the lesion. Hence, we set β = 0.3 which makes the upper bound of α(r) to be 0.6,
meaning that most cells inside and near Ωin move parallel to the radial lines. As the cells are further
away from the lesion, we assume they mainly move via diffusion, so α(r)→ 0 as r → R. We consider
two choices of γ; for a smooth transition we choose γ = 0.06 and for sharp transition γ = 1 in α(r)
(2.6). We plot the two possible choices of α(r) in Figure 3. We choose the maximal value of α to be
0.6 to express small variations of the TM from the radial direction. Note that for the isotropic case, we
have α(r) = 0.
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Figure 3. Plot of the smooth and sharp transitions for α(r) from (2.6) where r has the units
µm. The gray shaded region indicates the lesion in these experiments. We use β = 0.3 and
ρ = 150 for both curves. For the smooth transition, we use γ = 0.06, and for the sharp
transition, we use γ = 1 in (2.6).

For model (2.4), we use the following initial conditions:

u(0, r) = 0, v(0, r) = 0 in Ωin and u(0, r) = 0.9K, v(0, r) = 0.1K, with K = 0.0018 in Ωout (2.7)

meaning that there are no cells in the lesion, and outside the lesion, the cell density is at carrying
capacity. We assume that healthy cells make up 90% while cancer cells make up 10% of the carrying
capacity. For the numerical implementation, we simply assume the parameters inside and outside the
lesion have different values. We also tried a smooth transition for the parameters, similar to the choice
of α(r) as the hyperbolic tangent, but we observed no difference in the numerics.

3. Results

3.1. Simulation of the model

To simulate Model (2.4) with the initial conditions (2.7) and boundary conditions (2.5), we use
MATLAB’s pdepe solver which is suitable for solving parabolic and elliptic PDEs. The parameters
are shown in Table 1 and α(r) is as defined in (2.6) applicable to the “smooth” case. The time mesh
is taken to be for 0 to 672 hours with a step size of 0.2 and the radial interval is taken to be 0 to 600
with a step size of 0.2. We then obtain the 1D solutions for Days 0, 1, 3, 7, 14, 21, and 28, which are
illustrated in Figure 4. The solutions in Figure 4 were then rotated radially to obtain the visualization
in Ω as shown in the first two rows of Figure 5.

In Figure 4, we see that the cancer density u invades the lesion region Ωin as time progresses and
by Day 28, u almost grows to the carrying capacity K = 0.01 cells/µm2 which is also illustrated in
Figure 5. We chose to visualize these particular days in order to see if we could match the trends seen
in Weil et al. [3, Figure 1] (bottom two rows of Figure 5). Indeed, with these chosen parameters we are
able to replicate the general growth speed and general shape of the tumor. In Figure 5, from the bottom
two rows, it can be seen visually that on day 7 the tumor has started regrowing visually matching the
density on day 0. Here, we see a similar effect where on day 7 (in the top two rows), the density inside
the lesion starts to match the density outside the lesion. In our simulations, we see that the tumor has
grown significantly inside the lesion on day 14, which matches the observations in [3]. We note that
on this day, the tumor starts growing outside the lesioned area as well. On day 21, the tumor has more
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Figure 4. Plots of 1D solutions of Model (2.4) at particular days which illustrate the cancer
cell density u (cells/µm2) with respect to the radius r (µm). The right graph shows a close-up
view of the curves on the left. The shaded region represents Ωin. Model (2.4) was simulated
with theparameters given in Table 1, initial conditions (2.7), and boundary conditions (2.5).

than doubled in size, which can also be seen in [3]. The tumor keeps growing in size on day 28, almost
reaching the carrying capacity K = 0.01 cells/µm2 inside the lesion. On days 14, 21, and 28, we see
from Figure 4 that the cancer u not only grows inside the lesion, but outside the lesion as well, where
u progressively invades the nearby space of the lesioned area. Evidence of this is also shown in [3],
where the tumor begins growing outside the lesion as well, which is particularly evident on day 21 and
onward.

From the above observations, we believe that Model (2.4) does well in replicating the time scale of
regrowth as seen in [3]. However, due to a lack of quantitative measures, such as the u density per µm2,
we cannot validate the model further.

3.2. Isotropic and anisotropic diffusion

In this subsection, we study how the degree of anisotropy affects the model. As discussed before,
setting α(r) = 0 and its consecutive derivatives to zero in (2.3) yield a model with isotropic diffusion.
We will study if this causes any significant changes to the dynamics that are seen in Figure 5. Further, it
is of interest to examine how the degree of smoothness in the α(r) affects the dynamics. We will study
this by simulating Model (2.4) for α(r) given in (2.6) for each case of smooth and sharp transitions. In
Figure 6, we see a comparison of what occurs to the cancer cell density u for different choices of α(r)
at particular days 3, 14, and 28. For each case, we use the parameters in Table 1.

The blue curves in Figure 6 refer to the sharp α(r) case, the pink curves refer to the smooth α(r)
case, and the black curves refer to the isotropic case (α(r) ≡ 0). We see that the day 3 dynamics for u
are very similar in each case, with only slight differences. The sharp α(r) case has sharper transitions
between the cancer density within the lesion and the cancer cell density outside the lesion whereas the
transition for the smooth α(r) case is smooth between the regions. We see that the anisotropic cases
(smooth and sharp α(r)) show that the cancer cell density invades further into the lesion initially than
in the isotropic case (seen by the leading edge on the left). The isotropic case shows steady and slower
invasion into the lesion, which is also seen by the peak in the black curve on day 14. On day 14, we
see that the isotropic cases have completely invaded the interior of the lesion while the isotropic case
is still growing. On day 28, there is little difference between the cases. Further, for each case (isotropic
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N/A Day 0 Day 1 Day 3

Day 7 Day 14 Day 21 Day 28

u

Figure 5. Comparison of the simulated tumor density (first two rows) with experimental
results (last two rows). The first two rows show plots of 2D solutions of Model (2.4) at
particular days where each plot illustrates the cancer cell density u on a circle Ω. The radius
of Ω is 600 µm and x, y on the axes have units µm. Model (2.4) was simulated with the
parameters given in Table 1, initial conditions (2.7), and boundary conditions (2.5). The last
two rows show the experimental images of glioblastoma growth from Weil et al. [3]. The
dashed circle is the lesion site, in green are the glioblastoma cells, and in blue are the blood
vessels (used with permission).
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and anisotropic), we see that the cancer cells invade the healthy tissue outside the lesion at very similar
speeds. This overgrowth was also observed in the experiments in [3].

For the sharp case, we observe in the pink profiles in Figure 6 that a local peak forms near the
boundary of the lesion at r = 150. This peak would yield a ring around the bulk tumor if we were to
plot these cases in 2D. The presence of this peak is not surprising, as it was shown that the anisotropic
diffusion equation (2.1), with sharp transitions in the diffusion coefficient, can form local peaks at such
transition layers [33]. Such a ring is not observed in the experiments of [3], indicating that the smooth
transition for α(r) is a more appropriate assumption.
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Figure 6. Plots of 1D solutions of Model (2.4) at particular days which illustrate the cancer
cell density u (cells/µm2) for each α(r) choice with respect to the radius r (µm). The shaded
region illustrates Ωin. The second row shows a close-up view of the curves in the above row
to illustrate the transition region. Model (2.4) was simulated with the parameters given in
Table 1, initial conditions (2.7), and boundary conditions (2.5).

3.3. Sensitivity

In addition, we study the dynamics for each case (smooth, sharp, and isotropic α(r)) if the
parameters in Table 1 vary. The results are summarized in Table 2. We choose to examine the most
interesting variations, which are those that may affect the growth of u. For all three cases, if the
carrying capacity K is lowered but does not decrease beyond K̄, then there is no effect on the speed of
growth of u. Note that this trend still holds if K is increased. If the growth rate of cancer gu is lowered
but not lower than ḡv, then u grows slower, as expected. Similarly, if gu is increased then u grows
faster in all cases. If we set the growth rates to be the same for both the cancer cell and healthy cell
densities, then u will not grow. In this situation, the healthy cell density v is the dominant density in
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Table 2. Summary of trends from varying parameters for the three cases of α(r) (smooth,
sharp, isotropic). Note that when we write (p ↓ ; p̄), we do not decrease the parameter past
p̄, that is, p ↓ > p̄.

α(r) (du; d̄u) (dv; d̄v) (gu; ḡu) (gv; ḡv) (K; K̄) Result in Ωin

Isotropic - - - - (K ↓ ; K̄) u grows at the same pace

Isotropic - - (gu ↓ ; ḡu) - - u grows much slower

Isotropic - - (ḡv; ḡv) (ḡv; ḡv) - u does not grow

Isotropic - (dv ↑ ; d̄v ↑) - - - u grows at the same pace

Smooth - - - - (K ↓ ; K̄) u grows at the same pace

Smooth - - (gu ↓ ; ḡu) - - u grows much slower

Smooth - - (ḡv; ḡv) (ḡv; ḡv) - u does not grow

Smooth - (dv ↑ ; d̄v ↑) - - - u grows at the same pace

Sharp - - - - (K ↓ ; K̄) u grows at the same pace

Sharp - - (gu ↓ ; ḡu) - - u grows much slower

Sharp - - (ḡv; ḡv) (ḡv; ḡv) - u does not grow

Sharp - (dv ↑ ; d̄v ↑) - - - u grows at the same pace

both regions (Ωin and Ωout). Finally, increasing the diffusion of v, does not impact the growth of u
significantly. Note that for this study, the changes in parameters were significant, and were not small
perturbations that we will explore when performing the sensitivity analysis in the following section.
We did this analysis to see if there were any significant changes in the dynamics between the cases
when varying parameters. After performing this analysis, we see that the three cases (smooth, sharp,
and isotropic α(r)) have very similar overall dynamics, where the anisotropy accelerates the regrowth
initially.

3.4. Sensitivity analysis

We perform a sensitivity analysis following the procedure outlined in [34]. Note that we adapt
the sensitivity analysis for ODEs to PDEs by fixing a representative spatial point inside the lesion
(r = 20). The sensitivity indices S u

p for the cancer cell density u and given parameter p is summarized
in Figure 7. The sensitivity indices were calculated numerically for a fixed location inside the lesion
r = 20 µm at time 28 days according to the relative change [34]:

S u
p ≈

up+△p(28, 20) − up(28, 20)
△p

p
up(28, 20)

, (3.1)

where p is the parameter of interest, △p is 1% of the p value, up(28, 20) is the solution with default
parameters p at location r = 20 and t = 28, and up+△p is the solution with a slightly increased parameter
value. We see in Figure 7 that the parameters that have the greatest impact in affecting the cancer cell
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Figure 7. Summary of the sensitivity indices for the cancer cell density u. The parameters in
the image refer to the parameters in Ωin, where β is used in α(r) (2.6).

density are the cancer growth rate gu and carrying capacity K. This is not surprising as increasing
the growth rate allows for the cancer cell density to grow faster, and increasing the carrying capacity
allows for the cancer cell density to grow larger. Increasing the growth rate of the healthy cell density
gu and increasing the diffusion constant of the healthy cell density du have a minor negative effect on
the growth of the cancer cell density. This is as expected, since faster growing healthy cell density can
populate more space decreasing the cancer cell density, and increasing the diffusion constant allows
for the healthy cell density to spread more, thereby decreasing the space available for the cancer cells.
The sensitivity analysis reveals that increasing the degree of anisotropy (increasing β in α(r)) slightly
decreases the growth of the cancer cell density. This means that moving via isotropic diffusion is
slightly more advantageous in increasing cancer cell density. This is what we see in Figure 6, where
the isotropic movement of cancer cell density has a more concentrated core. Negative sensitivity to
du can be explained by noting that higher diffusion will cause more cancer cells to move out from the
lesion area Ωin and those cells lose the additional growth benefit Ωin provides.

4. Treatment

Here, we test two treatments in combination with surgery as was done in [3]. The first is a targeted
therapy which was performed by injecting a small hairpin RNA (shGAP-43) to inhibit TM formation
(by inhibiting GAP-43). We apply this treatment by reducing the growth rate of the cancer cells by 50%
in the lesion, and we reduce the value of α(r) by 75% in Ωin because targeted therapy targets the TMs
reducing their ability to form, and therefore hindering directed motion and cancer cell proliferation
within the lesion. We see the results of this treatment in Figure 8 (middle row). Note that the colorbar
differs from that of Figure 5, in order to see the smaller densities easier. For the targeted therapy
treatment, we see that the cancer cell density grows significantly slower than the control, which is
expected since the growth rate is much smaller. The same effect was seen in Figure 3 in [3] and we are
able to recreate the dynamics for this treatment.

The other treatment we test is the anti-inflammatory treatment with dexamethasone (DEX) [3].
DEX is a glucocorticoid (GC) which binds to the GC-receptor (GR) of the cells and deactivates NF-
κB [35–37]. NF-κB is essential for the homeostasis of the immune system and lower levels of NF-κB
lead to reduced immune response [36]. However, the immune suppression is not permanent and several
resistance mechanism are known [38, 39]. For example, in leukemia, it was shown [38] that immune
cells exposed to GC reduce the expression of GR over time, consequently becoming less sensitive to
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Figure 8. Illustration of different treatments where the colorbar shows the cancer cell density
u (cells/µm2). In each figure, x and y have units µm. In row 1, Model (2.4) is simulated with
the control parameters in Table 1. In row 2, targeted therapy with shGAP-43 is simulated
(2.4), and in row 3, the anti-inflammation treatment is simulated by using (2.4) and the
parameters outlined in Section 4. For days 3, 7, 14, the colorbar on the left applies and
for day 28, the colorbar on the right applies in order to show changes in the densities more
clearly.
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Figure 9. Plot of (4.1). The horizontal axis is time, which is measured in days, and the
vertical axis is the parameter values. ax denotes the value of the parameter under DEX
treatment and px denotes the base value in Table 1.

glucocorticoids.
We employ the following sigmoidal curve to describe how the model parameters return to their base

values as treatment resistance sets in. We define

sx(t) =
px − ax

1 + e−4(t−t∗) + ax, (4.1)

where the sub-index x stands for either x = gu, gv, or K, i.e., the two growth rates and the carrying
capacity. Here px denotes the base value in Table 1 and ax is the value of the parameter under DEX
treatment. The time t∗ = 3.5 is set to describe the onset of resistance between 3 and 4 days, which was
the best choice to describe the experimental observations. See Figure 9 for an illustration of (4.1).

In sK(t), we set aK = 0.0018 = K̄ while pK = 0.01 = K. For the growth rates gu and gv, we assume
that both are initially reduced by 50% inside the lesion. Hence agu = gu/2, p = gu and a = gv/2, p = gv

with gu and gv from Table 1.
The model we use inside Ωin during the DEX treatment is

ut = duΦ[r, α, u] + sgu(t)u
(
1 −

u + v
sK(t)

)
,

vt = dvvrr +
dv

r
vr + sgv(t)v

(
1 −

u + v
sK(t)

)
,

(4.2)

whereas model (2.4) is unchanged in Ωout. Note that (4.1) could be replaced by any other sigmoid
function with very similar results.

The simulations for the DEX treatment are shown in the third row of Figure 8. We can see that the
cancer cell density is lower on day 7 than in the control, on day 14, it begins to catch up, and by day
28, it is at the same level as the control. In the corresponding Figure 4 in [3], they report that there is
no significant difference between the control and the DEX treated tumor after 14 days.

5. Discussion

In this study, we have proposed a mathematical model that applies to the mice experiments
conducted by Weil et al. [3] after surgery of glioblastoma tumors. We find that the model is able to
replicate the dynamics of glioma tumor growth and spread after surgery. Our model heavily simplifies
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the wound-healing mechanisms as well as TM dynamics, which serve to elevate the proliferation rates
of cells and carrying capacity within the lesion site. The simulations show that the tumor grows back
faster and denser within the lesion site matching the observations seen in Weil et al. [3]. This shows
that the wound-healing processes and the proliferative advantage from the TMs are potentially the key
to explaining the faster and denser regrowth that was observed experimentally.

Our model uses an anisotropic model proposed by Bica et al. [25] in order to account for the
potential directed motion of brain cancer cells. We found that anisotropic movement speeds up the
regrowth when compared to the isotropic case. However, with the available measurements, we find
that isotropic as well as anisotropic diffusion can explain the data well.

We tested the combined treatments: surgery with targeted therapy (shGAP-43) and surgery with an
anti-inflammatory treatment (DEX). Due to a lack of data, we kept the addition in the model simple
where treatments predominately affect the growth and carrying capacity parameters. Our model was
able to generally match the trends seen in the treatment experiments of Weil et al. [3], where the
targeted therapy matches the experimental data well but the anti-inflammatory treatment is not quite
able to match the speed of regrowth that is seen in the experiments. We find that the treatments that are
able to significantly reduce the proliferation rate of cancer cells as well as the carrying capacity for a
prolonged period of time are most effective at delaying the growth of the tumor. The targeted therapy
treatment performs much better than the anti-inflammatory treatment as it is able to significantly reduce
the proliferation rate of cancer cells by inhibiting the TMs whereas the anti-inflammatory treatment
only provides a transient benefit. In future studies, it would be of interest to test other treatments
numerically. For example, we could study the outcome if chemotherapy or radiotherapy treatment are
combined with surgery or with a targeted therapy treatment. Adding chemotherapy and radiotherapy
treatments into Model (2.4) is straightforward through extra treatment terms [40, 41].

Model (2.4) can also be used to describe the initial growth of a tumor or tumor invasions as done
in [24]. We note that Model (2.4) can be extended to include more aggressive competition between
cell types, as follows:

ut = duΦ[r, α, u] + guu
(
1 −

u + v
K

)
− c1uv,

vt = dv
1
r

(rvr)r + gvv
(
1 −

u + v
K

)
− c2uv,

(5.1)

where c1 is the fitness rate of healthy cells and c2 is the fitness rate of cancer cells. That is, if c1 is
higher than c2, then healthy cells are more fit than the cancer cells and therefore, more easily grow in
the domain (and vise versa). We analyzed Model (5.1) but we found that Model (2.4) is sufficient at
explaining the results of Weil et al.’s [3] experiments.

Our study has several limitations. We assumed that the domain outside the lesion site is
homogeneous, where blood vessels are ignored. It is possible that the cancer cells would prefer to
grow near the blood vessels to have easier access to nutrients which could explain the asymmetrical
tumors that are seen in the experimental images. Further, we did not include a full immune response
into the model. In order to obtain biologically realistic parameters for the model extension, more data
needs to be collected, in particular, the movement and activity of immune cells. If more data is
available, more accurate effects of treatments could be incorporated into the model. Further, more
complicated interactions between healthy and cancer cells could be studied, such as the competition
for nutrients. We refrained from putting in extra processes in order to keep the model simple and to
study the main processes.
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