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Abstract: This work aims to study the role of sex disparities on the overall outcome of influenza A
disease. Therefore, the classical Susceptible-Infected-Susceptible (SIS) endemic model was extended
to include the impact of sex disparities on the overall dynamics of influenza A infection which spreads
in an open population with a varying size, and took the potential lethality of the infection. The model
was mathematically analyzed, where the equilibrium and bifurcation analyses were established. The
model was shown to undergo a backward bifurcation at R0 = 1, for certain range of the model
parameters, where R0 is the basic reproduction number of the model. The asymptotic stability
of the equilibria was numerically investigated, and the effective threshold was determined. The
differences in susceptibility, transmissibility and case fatality (of females with respect to males)
are shown to remarkably affect the disease outcomes. Simulations were performed to illustrate the
theoretical results.

Keywords: SIS model; equilibria; case fatality; backward bifurcation; effective threshold; sex and
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1. Introduction

Influenza A is a highly contagious, respiratory, infectious, viral disease and is potentially lethal.
The virus is transmitted from human to human through direct contacts (mainly by coughing, sneezing,
or close contact). The genetic materials of influenza viruses are composed of single-stranded RNA,
and frequent mistakes happen while copying themselves. Due to their high mutation rates, influenza
viruses evolve rapidly. Some of their new generations quickly adapt with the new conditions, which
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helps them succeed in causing new epidemics and (sometimes) pandemics. Therefore, influenza is
both seasonal and pandemic. Seasonal influenza infects more than one billion people annually [1].
Recently, it was estimated that seasonal influenza is associated with 294,000 to 518,000 annual
respiratory deaths [2]; according to the World Health Organization (WHO) [1], the estimation is even
larger. Moreover, Chaves et al. [3] found that influenza is associated with an increased risk of
ischemic heart disease (IHD) mortality. The authors attributed the death of about 300,000 IHD adults
of ages over 50 years old (every year and globally) to influenza. In their study, they reported a 4%
reduction in the global IHD deaths if no influenza was present [3]. Therefore, influenza A viruses do
significantly impact human health and, consequently, the global economy [4].

It is evident that sex is a risk factor to influenza incidences and outcomes, as both males and
females differ in their respones to the infection [5]. This disparity may reflect genetic and hormonal
differences between the two sexes [5]. Based on the repeated influenza outbreaks and pandemics, the
morbidity and mortality of females are significantly different from those of males [6]. The extent to
which they are different is associated with other risk factors, including age and the chronic medical
conditions from which they suffer [5, 6]. However, for the purpose of this work, we will focus on
mathematically studying the role of sex and gender risk factors on the transmission dynamics
of influenza.

Mathematical models have been extensively used to study the dynamics of influenza A infection at
both the population level [7–11] and at the cellular level [12, 13]. This study is designed to help
predict the spread of influenza A infection and to estimate its burden rather than studying the
dynamics of cellular interaction and disease progression; therefore, we focus on models that treat the
problem at the population level. In this respect, the literature shows the publication of various works
that focus on exploring the dynamics in both the absence and in the presence of influenza
interventions. For example, Casagrandi et al. [7] extended the classical SIR model by including a
fourth compartment that represented an intermediate state between the fully susceptible state (S) and
the fully protected state (R). This intermediate state is called cross-immune and is denoted by C.
Therefore, an SIRC model was developed and mathematically analyzed. This SIRC model describes
the dynamics of influenza A infection in a demographically stationary closed population in the
absence of influenza-induced mortality, with the fact that exposing cross-immune individuals to a
different strain (other than the running one) of influenza either boosts their immunity or reinfects
them. The model assumes that the natural immunity acquired by experiencing the infection decays
with time and, in consequence, R-compartment individuals move to the C-compartment. Additionally,
the model assumes that a further decay of the immunity of C-compartment individuals moves them to
the fully susceptible state. Also, motivated by spanish flu data in Australia, Samsuzzoha et al. [14]
employed two deterministic models (precisely, a Susceptible-Infected-Recovered (SEIRS) and a
Susceptible-Vaccinated-Exposed-Infected-Recovered-Susceptible (SVEIRS)) to capture the main
characteristic of influenza transmission. The authors fitted the models to the data and estimated the
parameters involved in both systems.

Other mathematical models were employed to include quarantine as a preventive intervention to
control influenza. Vivas-Barber et al. [10] focused on exploring the role of asymptomatic (mild)
infections on the long-term transmission dynamics of influenza, in the presence of a fully protective
quarantine-based intervention, by introducing a compartment (A) to denote asymptomatically
infected individuals to an extended SIQR model (here, Q denotes quarantine individuals). Therefore,
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an SAIQR model was obtained. The model assumes that the quarantine intervention is completely
perfect, while the asymptomatic individuals are capable of transmitting (although less infectious than
I-individuals) influenza to the totally susceptible individuals (S). Moreover, the model considers an
open population, but ignores the infection lethality. The authors performed a standard analysis of the
model and numerically showed (with parameter values typical to influenza) the existence of damped
oscillations that described recurring epidemics. Moreover, Erdem et al. [11] extended the SIQR
model (with perfect quarantine) to consider the fact that no quarantine program is completely perfect.
Therefore, a so-called “σ-quarantine” SIQR model was introduced and mathematically analyzed,
where σ ∈ [0, 1] denotes the effectiveness of a quarantine-based intervention program. Other models
that were used to describe the dynamics of influenza A infection include (but not limited to) those
published by Nuño et al. [15], Alexander et al. [16], and Krishnapriya et al. [17]. However, the role of
sex and gender disparities on the influenza dynamics is less explored mathematically.

The classical SIR model has been extended in a previous work to include sex and gender
disparities to describe the dynamics of a single outbreak of influenza [4]. The model was
mathematically analyzed and was employed to assess the impact of these disparities on the influenza
A disease outcomes (i.e., the basic reproduction number and the prevalence of the infection at the
endemic situation). The author further extended the model to include the impact of applying an
imperfect vaccine-based intervention strategy to contain/eliminate influenza A infection. Basically,
the author considered a demographically stationary closed population, with the assumption that both
male and female sub-populations were equally recruited solely by births. Moreover, the author
neglected the possible repeated exposure to influenza A infection as well as its lethality. However, in
this work, we consider various biologically meaningful extensions. First, we extend the classical
Susceptible-Infected-Susceptible (SIS) model to include the sex and gender disparities in an open
population, where the individuals are recruited by births as well as immigrants, where the
immigration rate is assumed to depend on the total population size and some kind of carrying
capacities. Additionally, the influenza-induced mortality is taken into account, with the assumption
that both the male and female sub-populations have different case fatalities. Therefore, the model will
be formulated and proven to be well-posed in Section 2. The equilibrium and bifurcation analyses,
where the model is shown to exhibit backward bifurcation, is presented in Section 3. Motivated by
simulations, the asymptotic stability of the endemic equilibria is presented in Section 4. The endemic
prevalence of the infection in the overall population and in each sex-structured sub-population are
given in Section 5. The paper closes with a summary and conclusion in Section 6.

2. Model formulation and well-posedness

2.1. Model description

2.1.1. Population demographic model

The total population is assumed to be structured based on the individuals’ sex and gender into males
(having subscript 1) and females (having subscript 2). Denoting the total population size at time t with
N(t), the total male (female) population is denoted by N1(t) (N2(t)), so that N(t) = N1(t) + N2(t). It
is assumed that new births occur at an average rate ν from the females; therefore, the total number of
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births at time t is νN2(t), where a proportion q0 of them are females. Moreover, the natural death rate
is assumed to be µ. Then, in the absence of infection, the demography of the closed population, is
governed by the following system of equations:

dN1(t)
dt

= (1 − q0)νN2(t) − µN1(t),

dN2(t)
dt

= q0νN2(t) − µN2(t), (2.1)

dN(t)
dt

= νN2(t) − µN(t).

If this population is assumed to be demographically stationary, in the sense that its size remains
roughly constant over time, then νN2(t) = µN(t). Furthermore, assume that more vacancies are created
due to developmental reasons so that the population becomes open and new demographic recruitments
through immigration are allowed at an average (per unit time) number of new recruitments Λ(K −
N(t))/K, where K is a kind of carrying capacity, K − N(t) represents the extended extra opportunities
(more than needed to the original population), and Λ is the maximum rate of immigration. If q2 is
the proportion of females amongst the immigrants, then the population dynamics, in the absence of
infection, is described by the following dynamical system:

dN1(t)
dt

= (1 − q2)Λ(1 − N(t)/K) + (1 − q0)µN(t) − µN1(t),

dN2(t)
dt

= q2Λ(1 − N(t)/K) + q0µN(t) − µN2(t), (2.2)

dN(t)
dt

= Λ(1 − N(t)/K).

It is noteworthy that the human carrying capacity refers to the number of people a place can
sustainably support. It mainly depends on the size of the population, the availability of resources, and
how the people use these available resources. Knowing the carrying capacity is vital for sustainable
growth without major setbacks due to environmental degradation. In practice, developed countries use
the advancement of technology to increase the carrying capacity of a place, to expand economies of
scale, and to use the natural resources in an efficient and effective way without degrading the natural
environment [18]. Therefore, pull factors are created to pave the way for immigrations. The closer the
population size is to the carrying capacity, the lower the immigration rate. This is clear in the right
hand side of system (2.2).

2.1.2. Endemic infection model

We are interested in modeling the transmission dynamics of a potentially lethal non-immunizing
respiratory infection (with special reference to influenza A) in an open population, whose size
changes over time. Therefore, both the male and female populations are assumed to split into two
mutually exclusive categories (for each) according to the individuals’ epidemiological status:
susceptible (with time-dependent size S (t)) and infected (with time-dependent size I(t)). Precisely,
the number of susceptible males and females at time t are denoted by S 1(t) and S 2(t)
respectivel, while the number of infected males and females are given by I1(t) and I2(t), respectively,
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so that N1(t) = S 1(t) + I1(t) and N2(t) = S 2(t) + I2(t). A schematic diagram for the transfer between
the subpopulation model states is shown in Figure 1, and a brief description of the model state
variables is presented in Table 1. Accordingly, new recruitments (either by births or immigrations)
are susceptible.

S1(t) I1(t)

(1 − 𝑞
2)Λ(1 − 𝑁/𝐾) 𝜆1(t)

𝜇 + 𝑐1𝛾1𝜇

S2(t) I2(t)
𝜆2(t)

𝜇 + 𝑐2𝛾2𝜇

𝑞
2Λ(1 − 𝑁/𝐾)

(1	 − 𝑞0) 𝜈	𝑁2

𝑞0 𝜈	𝑁2

(1 − 𝑐1)𝛾1

(1 − 𝑐2)𝛾2

Figure 1. A schematic diagram for the transition between the various model states.

Table 1. State variables for our model.

State variable Description
S 1(t) Number of susceptible males.
I1(t) Number of infected males.
S 2(t) Number of susceptible females.
I2(t) Number of infected females.
N1(t) Total male population size.
N2(t) Total female population size.
N(t) = N1(t) + N2(t) Total population size.

Definitely, susceptible males are recruited due to births at the rate (1 − q0)µN(t) and due to
immigration at the rate (1 − q2)Λ(1 − N(t)/K), while they die naturally at the rate µ and acquire the
influenza A infection at a male force of infection λ1(t) and become infected. Infected males either die
due to the infection at the rate c1γ or recover from the infection (without acquiring immunity) and
become susceptible again at the rate (1 − c1)γ, where c1 is the male case fatality. Hence, the spread of
the infection in the male population is described by the following equations:

dS 1(t)
dt

= (1 − q2)Λ(1 − N(t)/K) + (1 − q0)µN(t) − (λ1(t) + µ)S 1(t) + (1 − c1)γ1I1(t),

dI1(t)
dt

= λ1(t)S 1(t) − (µ + γ1)I1(t). (2.3)

Similarly, susceptible females are recruited due to births at the rate q0µN(t) and due to immigration
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at the rate q2Λ(1 − N(t)/K), while they decline either due to natural death at the rate µ or due to
acquiring the infection and becoming infected and capable of transmitting the infection at an incidence
rate λ2(t). Infected females either die naturally at the rate µ or die due to the infection at the rate c2γ2,
where c2 is the infection case fatality in females and γ2 is the removal rate of infected females. They
recover without immunity at the rate (1 − c2)γ2. Therefore, the dynamics of the female population is
described by the following two differential equations:

dS 2(t)
dt

= q2Λ(1 − N(t)/K) + q0µN(t) − (λ2(t) + µ)S 2(t) + (1 − c2)γ2I2(t),

dI2(t)
dt

= λ2(t)S 2(t) − (µ + γ2)I2(t). (2.4)

2.1.3. Forces of infection and removal rates

The male and female forces of infections, λ1(t) and λ2(t), respectively, are derived in a way similar
to that shown in Safan [4]. More precisely, we denote the average number of contacts that an
individual has with other individuals in the total population by β̃. Additionally, g1 is the susceptibility
of males (which is proportional to the probability of success that a susceptible male becomes infected
due to contacts with infected males and females), while g2 is the susceptibility of females (which is
proportional to the probability that a susceptible female becomes successfully infected as a result of
contacts with infected individuals). Assume that ri j accounts for the transmissibility of influenza from
infected individuals in the population i to susceptible individuals in the population j, for all
i, j ∈ {1, 2}. Hence, the rate at which susceptible males acquire the infection λ1(t) and that at which
susceptible females acquire infection λ2(t) read as follows:

λ1(t) = g1β̃

(
r11

I1(t)
N(t)

+ r21
I2(t)
N(t)

)
and λ2(t) = g2β̃

(
r12

I1(t)
N(t)

+ r22
I2(t)
N(t)

)
. (2.5)

Furthermore, assume that the infected males transmit the infection to either males or females at the
same potential, in the sense that the effective rate at which infected males infect susceptible
males/females is equal (i.e., r11 = r12 = r1). Similarly, females transmit the infection to either males or
females at the same potential, in the sense that the effective rate at which infected females infect
susceptible males/females is equal (i.e., r21 = r22 = r2). Hence, β = g1r11β̃ = g1r1β̃ := g1β̄ accounts
for the effective contact rate at which susceptible males acquire influenza and
g2r12β̃ = g2r1β̃ = g2β̄ = (g2/g1)g1β̄ := gβ is the effective contact rate at which susceptible females
acquire the influenza virus. Here, g = g2/g1 accounts for the relative susceptibility of females with
respect to males. Hence, (2.5) reads as follows:

λ1(t) = β
(

I1(t)
N(t)

+ r
I2(t)
N(t)

)
:= λ(t) and λ2(t) = gβ

(
I1(t)
N(t)

+ r
I2(t)
N(t)

)
:= gλ(t), (2.6)

where r = r2/r1 is the relative transmissibility of females with respect to male infections.
The removal (either by recovery or due to disease-induced death) rates γ1 and γ2 are rescaled by

assuming that γ1 = γ and γ2 = aγ, where a is a dimensionless rescaling parameter which accounts for
the relative recoverability of females with respect to males. A brief description of the model parameters
is shown in Table 2.
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Table 2. Physical meaning, value, dimension and references for model parameters.

Parameters Description Value Dim. Ref.

Λ The maximum number of immigrating
individuals per unit time.

11,000 individuals/week Assumed

K Some kind of carrying capacity. 35 × 106 individuals Assumed
µ Per-capita death rate. 1/(70 × 52) Week−1 [11]
β̄ Per-capita contact rate between individuals. – Week−1 –
β Per-capita effective contact rate at which

susceptible males acquire influenza.
Computed to adapt
with the value of R0

Week−1 Assumed

γ = γ1 Per-capita removal (by recovery or disease-
induced death) rate for infected males.

7/3.38 Week−1 [4, 19]

γ2 = aγ Per-capita removal (by recovery or disease-
induced death) rate for infected females.

– Week−1 –

R0 The basic reproduction number for model. 1.525 – [4, 19]
a A rescaling parameter accounting for the

relative removability (due to recovery or
disease-induced death) of infected females with
respect to infected males.

1.1 – Assumed

q0 The proportion of female new births. 0.48 ∈ [0.45, 0.55] – Assumed
q2 The proportion of female immigrants. 0.45 ∈ [0.45, 0.55] – Assumed
g1 The susceptibility of males. – – –
g2 The susceptibility of females. – – –
g = g2/g1 Relative susceptibility of females with respect

to males.
∈ (0, 2) – Assumed

r Relative transmissibility of the infection by
females with respect to males.

∈ (0, 2) – Assumed

c1 Infection-case fatality among males. 0.007 ∈ [0, 0.1] – Assumed
c2 Infection-case fatality among females. 0.005 ∈ [0, 0.1] – Assumed

Notes: Dim. = Dimension, Ref. = References.

2.2. Overall mathematical model

Motivated by the above-detailed assumptions, the populations’ overall dynamics is described by the
following system of ordinary differential equations:

dS 1(t)
dt

= (1 − q2)Λ(1 − N(t)/K) + (1 − q0)µN(t) − (λ(t) + µ)S 1(t) + (1 − c1) γ I1(t), (2.7)

dI1(t)
dt

= λ(t)S 1(t) − (µ + γ)I1(t), (2.8)

dS 2(t)
dt

= q2Λ(1 − N(t)/K) + q0µN(t) − (gλ(t) + µ)S 2(t) + (1 − c2) a γ I2(t), (2.9)

dI2(t)
dt

= gλ(t)S 2(t) − (µ + a γ)I2(t), (2.10)
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dN(t)
dt

= Λ(1 − N(t)/K) − c1 γ I1(t) − c2 a γ I2(t), (2.11)

where

λ(t) = β
(

I1(t)
N(t)

+ r
I2(t)
N(t)

)
, (2.12)

is the male force of infection and the model is defined on the set

Ω =

{
(S 1(t), I1(t), S 2(t), I2(t),N(t))T ∈ R5

+, S 1(t) + I1(t) + S 2(t) + I2(t) = N(t), 0 ≤ N(t) ≤ K
}
. (2.13)

It is worth assuring that the letter T in (2.13) denotes a vector transpose.

2.3. Well-posedness of the model

The model is well-posed in the sense that solutions starting with the initial conditions
(S 1(0), I1(0), S 2(0), I2(0),N(0))T ∈ Ω remain in Ω for all positive times. The following proposition,
whose proof is deferred to Appendix A1, summarizes the results on the existence and uniqueness of
the above model time-dependent solutions.

Proposition 1. The set Ω is positively invariant and attracts all solutions in R5
+ . In particular, any

solution (S 1(t), I1(t), S 2(t), I2(t),N(t))T of the dynamical system (2.7)–(2.11), starting with non-negative
initial values (S 1(0), I1(0), S 2(0), I2(0),N(0))T ∈ Ω, remains in Ω for all t ≥ 0 and is unique.

3. Equilibrium and bifurcation analysis

To analyze the equilibrium for models (2.7)–(2.11), we put the derivatives in its left hand side
equal zero and solve the resulting nonlinear algebraic system of equations, together with (2.12), in the
model-state variables. Particularly, the Eqs (2.8) and (2.10) imply that the number of infected males
and females, at equilibrium, are given respectively by the following:

I1 =
λS 1

γ + µ
and I2 =

gλS 2

aγ + µ
. (3.1)

Unless otherwise stated, in (3.1) and throughout the rest of this work, the quantities
S 1, I1, S 2, I2,N1,N2,N, and λ denote their equilibrium status. By using (3.1) in the equilibrium
equations of (2.7), (2.9), (2.11) and performing some rearrangements, we botain the following:(

µ +

(
1 −

(1 − c1)γ
γ + µ

)
λ

)
S 1

N
− (1 − q2)Λ

(
1
N

)
= (1 − q0)µ −

(1 − q2)Λ
K

, (3.2)(
µ +

(
1 −

(1 − c2)aγ
aγ + µ

)
gλ

)
S 2

N
− q2Λ

(
1
N

)
= q0µ −

q2Λ

K
, (3.3)

c1γλ

γ + µ

S 1

N
+

c2aγgλ
aγ + µ

S 2

N
− Λ

(
1
N

)
= −

Λ

K
. (3.4)

Now, we use (3.1) in (2.12) at equilibrium to obtain the following:

λ = βλ

(
1
γ + µ

·
S 1

N
+ r g

1
a γ + µ

·
S 2

N

)
. (3.5)
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3.1. Infection-free equilibrium and the basic reproduction number

Equation (3.5) implies that two cases arise: either λ = 0 or λ , 0. By (3.1), the first case implies
that I1 = 0 and I2 = 0. Thus, by (3.2)–(3.4), we get S 1 = (1 − q0)K, S 2 = q0K and N = K. Therefore,
the model has an influenza-free equilibrium E0, where

E0 =
(
S 0

1, I0
1 , S 0

2, I0
2 , N0

)T
=

(
(1 − q0)K, 0, q0K, 0, K

)T
. (3.6)

The basic reproduction number of the models (2.7)–(2.11) is computed by following the approach
shown in [20]. To this end, we consider the Eqs (2.8) and (2.10) in computing the non-negative matrix
for the new-infection term T and the non-singular matrix for the remaining transfer term Σ as follows

T =
(
(1 − q0)β (1 − q0)rβ

gq0β gq0rβ

)
and Σ =

(
γ + µ 0

0 aγ + µ

)
. (3.7)

Consequently, the basic reproduction number R0 is the spectral radius of the matrix T Σ−1.
Therefore,

R0 =
(1 − q0)β
γ + µ

+ r g
q0β

a γ + µ
. (3.8)

It is noteworthy that the basic reproduction number R0 is not influenced by the immigration
parameters q2,Λ, and K. However, it is affected by the entire population parameters q0, r, g, a, β, γ,
and µ. Definitely, R0 increases with the increase of the proportion of newborn females q0 if and only if

rg >
aγ + µ
γ + µ

:=
Dm

D f
, (3.9)

where

• Dm =
1
γ + µ

is the length of males’ infectious period, and

• D f =
1

aγ + µ
is the length of females’ infectious period.

Equation (3.9) says that the contagiousness and transmissibility of influenza A increases with the
increase of the newborn females proportion if and only if the product of the relative susceptibility and
the relative transmissibility (of females with respect to males) is higher than the ratio between the
male and female infectious periods.

The local stability analysis of the infection-free equilibrium E0 has been established based on
linearization. The analysis revealed that E0 is locally asymptotically stable if and only if R0 < 1 and
the proof of this result is deferred to in Appendix A2.

Based on the above results, we show the following proposition.

Proposition 2. Models (2.7)–(2.11) have an infection-free equilibrium, given by
E0 =

(
(1 − q0)K, 0, q0K, 0,K

)T
, which is locally asymptotically stable if and only if R0 < 1, where R0

is the basic reproduction number.
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3.2. Endemic infection equation

If λ , 0, then Eq (3.5) implies that

1 = β
(

1
γ + µ

·
S 1

N
+ r g

1
a γ + µ

·
S 2

N

)
. (3.10)

On solving the algebraic system of Eqs (3.2)–(3.4) in terms of
S 1

N
,

S 2

N
and

Λ

N
, we obtain

the following:
S 1

N
=
∆1

∆
,

S 2

N
=
∆2

∆
,

Λ

N
=
∆3

∆
, (3.11)

where

∆ = −gλ2

1 − c1̂γ

γ + µ

 (1 − c̃2aγ
aγ + µ

)
−

(1 − q2)c1γ

γ + µ

1 − c2̂aγ
aγ + µ


−µλ

(
1 −

(1 − q2c1)γ
γ + µ

+ g
(
1 −

c̃2aγ
aγ + µ

))
− µ2, (3.12)

∆1 = −(1 − q0)µ2 − gλµ
(
(1 − q0)

µ

aγ + µ
+ (1 − q2)c2

aγ
aγ + µ

)
, (3.13)

∆2 = −q0µ
2 − µλ

(
q0 −

(q0 − q2c1)γ
γ + µ

)
, (3.14)

∆3 = −µ
2Λ

K
− µλ

(
(1 − q0)µ

c1γ

γ + µ
+

(
1 − (1 − q2c1)

γ

γ + µ

)
Λ

K
+

g
((

1 − c̃2
aγ

aγ + µ

)
Λ

K
+ q0µ

c2aγ
aγ + µ

))
−gλ2

(
Λ

K

((
1 −

γ

γ + µ

) (
1 − c̃2

aγ
aγ + µ

)
+ q2

c1γ

γ + µ

(
1 −

aγ
aγ + µ

))
+q0µ

c2aγ
aγ + µ

1 − c1̂γ

γ + µ

 + (1 − q0)µ
c1γ

γ + µ

1 − c2̂aγ
aγ + µ

 , (3.15)

and
c1̂ = 1 − c1, c2̂ = 1 − c2, c̃2 = 1 − (1 − q2)c2.

A complete derivation of (3.11)–(3.15) is deferred to in Appendix A3. It is noteworthy that the
formulas in (3.11) imply that

S 1 =
∆1

∆3
Λ and S 2 =

∆2

∆3
Λ. (3.16)

By using (3.16) into (3.1), we obtain the following:

I1 =
λ

γ + µ
·
∆1

∆3
· Λ and I2 =

gλ
aγ + µ

·
∆2

∆3
· Λ. (3.17)
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Now, we substitute (3.11) into (3.10) to obtain the following:

∆ = β

(
1
γ + µ

∆1 + r g
1

a γ + µ
∆2

)
. (3.18)

By using (3.12)–(3.14) in (3.18) and rearranging the terms, we arrive at a second-degree polynomial
equation (in λ) in the following form:

F(β, λ) = A2 λ
2 + A1 µ λ + A0 µ

2 = 0, (3.19)

where

A2 = g
1 − c1̂γ

γ + µ

 (1 − c̃2
aγ

aγ + µ

)
− (1 − q2)

c1γ

γ + µ

1 − c2̂aγ
aγ + µ

 ,
A1 = 1 −

(1 − q2c1)γ
γ + µ

+ g
(
1 − c̃2

aγ
aγ + µ

)
− gβ

(
(1 − q0)µ + (1 − q2)c2aγ

(γ + µ)(aγ + µ)
+

r
aγ + µ

(
q0

(
1 −

γ

γ + µ

)
+ q2

c1γ

γ + µ

))
,

A0 = 1 − β
(
(1 − q0)
γ + µ

+ rg
q0

aγ + µ

)
= 1 − R0.

Equation (3.19) is the endemic force of the infection equation. It is quadratic in λ and may have up to
two feasible solutions. Here, the feasibility means that the solution values of λ satisfy λ ∈ [0,∞). Once
a solution of (3.19) is obtained, we substitute it in (3.13)–(3.15) and then in (3.16) and (3.17) to obtain
the corresponding equilibrium components, and consequently the corresponding equilibrium point.

3.3. Direction of bifurcation and the existence of multiple endemic equilibria

The polynomial in the left hand side of Eq (3.19) could be considered a function in the variable λ
and the parameter β, given that the other model parameters are kept fixed. Therefore, Eq (3.19) could
be seen as a bifurcation equation, with β being the bifurcation parameter. Hence, at λ = 0, there is a
bifurcation point (β0, 0) in the plane (β, λ), where

β0 =
(γ + µ)(aγ + µ)

(1 − q0)(aγ + µ) + rgq0(γ + µ)
. (3.20)

To investigate the direction of bifurcation at the bifurcation point (β0, 0), we make use of the implicit
function theorem by following the same approach shown in [21]. Consequently, we compute (and study
the sign of) the following expression:

dλ
dβ

∣∣∣∣∣∣
(β0,0)

= −
∂F/∂β
∂F/∂λ

∣∣∣∣∣∣
(β0,0)

, (3.21)

where

∂F
∂β

∣∣∣∣∣∣
(β0,0)

= −µ2
(
1 − q0

γ + µ
+ rg

q0

aγ + µ

)
< 0, (3.22)

Mathematical Biosciences and Engineering Volume 21, Issue 8, 6975–7011.



6986

∂F
∂λ

∣∣∣∣∣∣
(β0,0)

= µA1

∣∣∣∣∣∣
β=β0

. (3.23)

Thus, the model exhibits the existence of a backward bifurcation if and only if A1

∣∣∣∣
β=β0
< 0. The

following two propositions, whose proofs are deterred to in Appendixes A4 and A5, summarize the
conditions required for the existence of a backward bifurcation.

Proposition 3. Models (2.7)–(2.11) exhibit a backward bifurcation if and only if the following
condition holds:

rM1(ℓ1 − g) > M2(ℓ2 − g), (3.24)

where

M1 = q0g(γ + µ)2
(
µ + (1 − q2)c2aγ

)
, M2 = q0(1 − q2)c2aγ(γ + µ)(aγ + µ),

ℓ1 =
(1 − q0)q2c1γ(aγ + µ)

q0(γ + µ)
(
µ + (1 − q2)c2aγ

) , ℓ2 =
(1 − q0)(aγ + µ)(µ + q2c1γ)

q0(1 − q2)c2aγ(γ + µ)
. (3.25)

The following proposition presents a more specific equivalent set of inequalities to inequality (3.24).

Proposition 4. The inequality (3.24) is equivalent to either of the following two sets of inequalities
(see Figure 2):

r >
M2(ℓ2 − g)
M1(ℓ1 − g)

:= r1 and g < ℓ1, (3.26)

or

r <
M2(g − ℓ2)
M1(g − ℓ1)

:= r2 and g > ℓ2. (3.27)

Figure 2 shows the regions in the plane (g, r) for which a backward bifurcation occurs. The figure
is drawn with parameter values as shown in Table 2. The figure shows that the backward bifurcation
phenomenon ( i.e., the existence of subcritical endemic states) does possibly exist if a high enough r is
chosen (i.e., r > r1), while a small enough g is chosen (i.e., g < ℓ1) and vice versa (i.e., r < r2 &g > ℓ2),
given that the remaining parameters are kept fixed.

It is worth mentioning that if the inequality (3.24) does not hold, then models (2.7)–(2.11) show the
existence of a forward bifurcation ( i.e., supercritical endemic states), which, in sense, means that the
model has a unique endemic equilibrium that exists if and only if β > β0, or equivalently, if and only if
R0 > 1.
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Backward bifurcation
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Backward bifurcation

Figure 2. A bifurcation diagram to explain the region of existence of forward/backward
bifurcation based on values in the plane (g, r), given that all other model parameters are kept
fixed. Simulations are done based on parameter values as shown in Table 2.

3.4. The effective threshold

𝛽 = 𝛽!𝛽 = 𝛽"

The turning point

An endemic solution, say 𝜆#

An endemic solution , say 𝜆$

𝛽		𝑎𝑥𝑖𝑠

𝜆		𝑎𝑥𝑖𝑠

The bifurcation point

Figure 3. A schematic bifurcation diagram in the plane (β, λ), in case of backward
bifurcation, is shown here. The bifurcation point occurs at β = β0, while the turning
point occurs at β = β1. The dashed curve corresponds to the endemic infection equilibrium
corresponding to the smaller root of the Eq (3.19), while the solid curve corresponds to the
endemic infection equilibrium corresponding to the higher root of the Eq (3.19). Both roots
coalesce at the turning point.
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By the effective contact rate threshold [22], we refer to a critical value of the successful contact
rate β below which the infection dies out without any effort. In case the model parameters are selected
such that the model shows only a forward bifurcation, the effective threshold is the value of β at
which the basic reproduction number R0 = 1 (i.e., β⋆ = β0). However, if the backward bifurcation
condition (3.24) holds, then two positive solutions of the quadratic equation (3.19) exist for values of
R0 < 1. In this case, both solutions closely approach each other with the decrease of the value of β
until they coalesce at the turning point, see the schematic diagram in Figure 3.

The value of β at the turning point, say β1, is the effective threshold. To derive the formula of β1,
we proceed as follows. From the implicit function theorem, the conditions for the turning point are
as follows:

F(β, λ) = 0 and
∂F
∂λ
= 0. (3.28)

The two conditions (3.28) are equivalent to the following:

A2
1 − 4 A0 A2 = 0. (3.29)

Hence, the critical rate β1 is the solution of the Eq (3.29) with respect to the contact rate β. By
performing some computations and rearranging the terms, we obtain the following:

β1 =
K2

K1
+

√(
K2

K1

)2

−
K3

K1
, (3.30)

where

K1 = g2
(
(1 − q0)
γ + µ

(
1 −

aγ
aγ + µ

(
1 −

(1 − q2)c2

1 − q0

))
+

r q0

aγ + µ

(
1 −

(
1 −

q2c1

q0

)
γ

γ + µ

))2

,

K2 = g
(
1 −

γ

γ + µ
(1 − q2c1) + g

(
1 − c̃2

aγ
aγ + µ

))( (1 − q0)
γ + µ

(
1 −

aγ
aγ + µ

(
1 −

(1 − q2)c2

1 − q0

))
+

rq0

aγ + µ

(
1 −

(
1 −

q2c1

q0

)
γ

γ + µ

) )
−2g

(
(1 − q0)
γ + µ

+
rgq0

aγ + µ

) ((
1 − c1̂

γ

γ + µ

) (
1 − c̃2

aγ
aγ + µ

)
− (1 − q2)c1

γ

γ + µ

(
1 − c2̂

aγ
aγ + µ

))
,

K3 =

(
1 −

γ

γ + µ
(1 − q2c1) + g

(
1 − c̃2

aγ
aγ + µ

))2

− 4g
(
1 − c1̂

γ

γ + µ

) (
1 − c̃2

aγ
aγ + µ

)
+ 4 (1 − q2)c1

γ

γ + µ

(
1 − c2̂

aγ
aγ + µ

)
.

In summary, we show the following proposition.

Proposition 5. The effective contact rate threshold β⋆ is given by the following:

β⋆ =

{
β0, if the condition (3.24) does not hold,
β1, if the condition (3.24) holds,

(3.31)

where β0 and β1 are defined in (3.20) and (3.30), respectively.
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As a function of the relative transmissibility parameter r, the effective contact rate threshold β⋆ is
depicted in Figure 4. The left Subfigure 4(a) corresponds to the backward bifurcation set of
inequalities (3.26), while the right Subfigure 4(b) corresponds to the inequality set (3.27). In each
subfigure, the solid curve represents β = β0 (i.e., R0 = 1), while the broken curve represents β = β1. In
the region above the solid curve, the model has a unique endemic equilibrium. However, in the region
that lies in between the solid and broken curves, the model has two endemic equilibria. Otherwise, the
model has no endemic equilibrium.
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Figure 4. The effective threshold β⋆ as a function of the relative transmissibility parameter
r. The solid curve is β⋆ = β0. Above the solid curve, the model has a unique endemic
equilibrium. The broken curve is β⋆ = β1. Between the broken and solid curves, the model
has two endemic equilibria, while below it the model has only shown the influenza-free
equilibrium, but no endemic equilibrium. The left figure, Subfigure (a), is depicted with
g = 0.1 < ℓ1, while the right Subfigure (b) is depicted with g = 1.5 > ℓ2. The values of the
remaining parameters are as shown in Table 2.

In terms of the basic reproduction number R0, the effective basic reproduction threshold R⋆0 is the
value below which the infection disappears and does not persist. In case the model shows a forward
bifurcation, this effective threshold is R⋆0 = 1. However, if the model exhibits a backward bifurcation,
the effective threshold is as follows:

R⋆0 = β1/β0 := R1
0 < 1. (3.32)

In summary, we have the following proposition.

Proposition 6. The effective basic reproduction number threshold is as follows:

R⋆0 =

{
1, if the condition (3.24) does not hold,
R1

0, if the condition (3.24) holds.
(3.33)

Mathematical Biosciences and Engineering Volume 21, Issue 8, 6975–7011.



6990

The effective basic reproduction threshold R⋆0 is drawn in the plane (r,R0) and shown in Figure 5.
Figure 5(a) shows that, for small enough values of the relative susceptibility g (of females with
respect to males), multiple endemic equilibria do exist for values of R1

0 ≤ R0 < 1 in a very narrow
region on the right of the plane (r,R0). In this case, the multiple equilibria region becomes wide with
the increase of the relative transmissibility parameter r. However, for high enough values of the
relative susceptibility parameter g, the multiple equilibria region exists on the left of the plane (r,R0)
and diminishes with the increase of r, see Figure 5(b).
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Figure 5. The plane (r,R0) is subdivided into regions according to the number of endemic
equilibria in each region. The solid curve is R0 = 1 (i.e., β = β0). Above the solid curve, the
model has a unique endemic equilibrium (UEE). The broken curve is R0 = R

1
0 = β1/β0 (i.e.,

β = β1). Between the broken and solid curves, the model has two endemic equilibria (TEE),
while below it the model has no endemic equilibrium (NEE). The Subfigure (a) is depicted
with g = 0.8 < ℓ1, while the Subfigure (b) is depicted with g = 1.5 > ℓ2. The values of the
remaining parameters are as shown in Table 2.

In case the model undergoes a backward bifurcation, it should be underlined that the effective
contact rate threshold β1 depends on the proportion of immigrating females q2. Consequently, the
effective basic reproduction number threshold R1

0 becomes influenced by any increase or decrease
in q2.

3.5. The endemic equilibria: solutions and the bifurcation curve

Motivated by the results shown in Sections 3.3 and 3.4, Eq (3.19) has two feasible solutions if the
condition (3.24) holds. The first solution is given by

λ− =
µ

2A2

(
− A1 −

√
A2

1 − 4 A0 A2

)
, (3.34)
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and exists if and only if the condition (3.24) holds together with the inequality β1 ≤ β ≤ β0. It is
worth mentioning that the inequality β1 ≤ β ≤ β0 is equivalent to R1

0 ≤ R0 ≤ 1, where R0 = β/β0 and
R1

0 = β1/β0. The other solution of Eq (3.19) is given by

λ+ =
µ

2A2

(
− A1 +

√
A2

1 − 4 A0 A2

)
, (3.35)

and exists if and only if β > β1 (i.e., if and only if R0 ≥ R
1
0).

Both solutions are depicted in the plane (R0, λ) and shown in Figure 6(a). The solution λ− is
represented by the broken curve, while the solution λ+ is represented by the solid curve. They collide
at the turning point.

However, if the backward bifurcation condition (3.24) does not hold, then the Eq (3.19) has a
unique feasible solution that definitely exists if and only if β > β0 (or equivalently, R0 > 1). This
unique solution is given by the formula (3.35) and is depicted in Subfigure 6(b).
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Figure 6. The endemic force of infection λ as a function of the basic reproduction numberR0.
The figures are produced with parameter values as shown in Table 2, except the parameters r
and g are given values as presented in the head of each subfigure. The Subfigure (a) shows the
appearance of backward bifurcation, while the Subfigure (b) shows only forward bifurcation.
Here, β0 = 1.7003, λ⋆ = 0.0163, β1 = 1.6958 and R0 = 0.9973

By using (3.34) and (3.35) within (3.13)–(3.15) and then with (3.16) and (3.17), we obtain the
corresponding equilibrium points whose formulas are determined in the following proposition.

Proposition 7. The equilibrium analysis of models (2.7)–(2.11) reveals the following results on the
existence of endemic equilibria:

• If the condition (3.24) does not hold, then the model has a unique endemic equilibrium that exists
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if and only if R0 > 1 and is given by

E+ =
(
S +1 , I

+
1 , S

+
2 , I
+
2 ,N

+)T
, (3.36)

where

S +1 = Λ ·

(
∆1

∆3

) ∣∣∣∣∣∣
λ=λ+

, I+1 = Λ ·
λ+

γ + µ
·

(
∆1

∆3

) ∣∣∣∣∣∣
λ=λ+

,

S +2 = Λ ·

(
∆2

∆3

) ∣∣∣∣∣∣
λ=λ+

, I+2 = Λ ·
g λ+

a γ + µ
·

(
∆2

∆3

) ∣∣∣∣∣∣
λ=λ+

, N+ = Λ ·
(
∆

∆3

) ∣∣∣∣∣∣
λ=λ+

. (3.37)

• If the backward bifurcation condition (3.24) holds, then the model has two endemic equilibria.
One of them is in the form (3.36) and exists if β ≥ β1 (i.e., R0 ≥ R

1
0). The other one exists if

R1
0 ≤ R0 < 1 and is given by

E− =
(
S −1 , I

−
1 , S

−
2 , I
−
2 ,N

−)T
, (3.38)

where

S −1 = Λ ·

(
∆1

∆3

) ∣∣∣∣∣∣
λ=λ−

, I−1 = Λ ·
λ−

γ + µ
·

(
∆1

∆3

) ∣∣∣∣∣∣
λ=λ−

,

S −2 = Λ ·

(
∆2

∆3

) ∣∣∣∣∣∣
λ=λ−

, I−2 = Λ ·
g λ−

a γ + µ
·

(
∆2

∆3

) ∣∣∣∣∣∣
λ=λ−

, N− = Λ ·
(
∆

∆3

) ∣∣∣∣∣∣
λ=λ−

. (3.39)

• Otherwise, the model has no endemic equilibrium.

In case the model undergoes a backward bifurcation, it is worth noting that the solution λ− lies
between λ = 0 and λ = λ+. Moreover, the equilibrium point E− is unstable, while the equilibrium point
E+ is locally asymptotically stable, whenever it exists. Therefore, the curve representing the solution
λ = λ− in the plane (R0, λ) of Figure 6(a) is drawn as a broken line to distinguish it from the solid curve
representing the solution λ = λ+ that corresponds to the stable endemic equilibrium.

4. Asymptotic stability of the endemic equilibria

Due to the complicated terms in the formulas of the endemic equilibria, simulations have been
performed to study the asymptotic stability of the model’s equilibrium points. To this end, the function
ode45 in Matlab has been used to numerically solve the models (2.7)–(2.10) with various randomly
selected initial conditions chosen so that they lie in the set of definition Ω. Although the state variables
in the model represent the number of individuals, we draw the solutions in the form of proportions to
better present the results, as shown in Figures 7–9. These figures are produced with parameter values as
shown in Table 2; the parameters r and g are given the values r = 2 and g = 0.8, while the contact rate
β is chosen so that the basic reproduction number R0 takes three different values to explain different
scenarios for the fate of the trajectory solution (i.e., the attracting equilibrium point(s)). It is worth
confirming that the state variable notations in the legend of the vertical axis in Figures 7–9 denote
proportions rather than numbers.
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Figure 7. Time-dependent solution for: the proportion of susceptible males (part (a)), the
proportion of infected males (part (b)), the proportion of susceptible females (part (c)), and
the proportion of infected females (part (d)). The figure is produced with parameter values
as shown in Table 2, except r = 2 and g = 0.8, while β is chosen so that R0 = 0.8,
where no endemic equilibrium exists. In this case, the infection-free equilibrium attracts
all the solutions.

Figure 8. Time-dependent solution for: the proportion of susceptible males (part (a)), the
proportion of infected males (part (b)), the proportion of susceptible females (part (c)), and
the proportion of infected females (part (d)). The figure is produced with parameter values as
shown in Table 2, except r = 2 and g = 0.8, while β is chosen so that R0 = 0.998 ∈ (R1

0, 1),
where two endemic equilibria co-exist with the infection-free equilibrium (IFE). In this case,
the IFE and the endemic equilibrium that corresponds to the solution λ+ (defined in (3.35))
are locally stable and, therefore, they both attract the solutions.
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Figure 9. Time-dependent solution for: the proportion of susceptible males (part (a)), the
proportion of infected males (part (b)), the proportion of susceptible females (part (c)), and
the proportion of infected females (part (d)). The figure is produced with parameter values
as shown in Table 2, except r = 2 and g = 0.8, while β is chosen so that R0 = 1.3 > 1, where
a unique endemic equilibrium exists with the infection-free equilibrium (IFE). In this case,
the IFE is unstable, while the endemic equilibrium corresponds to the solution λ+ (defined
in (3.35)) is locally stable and, therefore, attracts all solutions.

Based on the chosen parameter values, the model undergoes a backward bifurcation at R0 = 1 and
the turning point occurs at the point (R1

0, λ
1) = (0.9973, 0.0163) in the plane (R0, λ). Therefore,

Figure 7 has been produced with a value of R0 = 0.8 < R1
0. In this case, no endemic equilibrium

exists, and, in consequence, the figure shows that all trajectory solutions are attracted by the
infection-free equilibrium (I1 = I2 = 0). However, the solutions are shown in Figure 8 with a value of
R0 = 0.998 ∈ (R1

0, 1). The figure shows that the solutions are attracted either by the infection-free
equilibrium (I1 = I2 = 0) or by an endemic equilibrium (i.e., I1 > 0 and I2 > 0). Finally, the model has
been solved with a value of R0 = 1.3 > 1 and the solutions are shown in Figure 9. The figure shows
that all solutions are attracted by a unique non-trivial endemic equilibrium (i.e., I1 > 0 and I2 > 0).

Motivated by the results shown in Figures 7–9, our in silico simulations show three scenarios for
the evolution of influenza infection if the model undergoes backward bifurcation at R0 = 1. The first
scenario is that both of the time-dependent proportions of infected males and infected females
eventually approach zero (i.e., their values at the influenza-free equilibrium as shown in
Figure 7(b),(d)); therefore, the infection washes out without any further efforts. This scenario is
ensured if the combination of the model parameters is chosen so that R0 < R

1
0. Another scenario is

that both of the time-dependent proportions of infected males and infected females eventually
approach a positive level (i.e., their correspondents at the endemic equilibrium as shown in
Figure 9(b),(d)); therefore, the infection persists in the population. This scenario happens if the
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combination of the model parameters used in the simulations satisfies R0 > 1. The third scenario
mixes the above-mentioned two scenarios, where some of the solutions eventually approach the
influenza-free equilibrium, while the others eventually approach an influenza endemic equilibrium (as
shown in Figure 8(b),(d)). This scenario occurs if the combination of the model parameters used to
simulate the model are chosen to satisfy R1

0 ≤ R0 ≤ 1. In the third scenario, the infection elimination
depends on the initial conditions. It is worth noting that in case the model only undergoes a forward
bifurcation, then there are only the first two scenarios.

5. The endemic prevalence of infection

In the absence of an endemic infection (i.e., λ = 0), the formulas (3.12)–(3.15) imply that

∆ = −µ2, ∆1 = −(1 − q0)µ2, ∆2 = −q0µ
2, ∆3 = −µ

2Λ

K
. (5.1)

Therefore, by (3.11) and (3.17), we obtain the subpopulation proportions

S 1

N
=

N1

N
= 1 − q0,

I1

N
= 0,

S 2

N
=

N2

N
= q0,

I2

N
= 0, (5.2)

and the total population size N = K.
However, in the presence of an endemic infection (i.e., λ , 0), the formulas (3.11)–(3.15) and (3.17)

help compute the following expressions.

• The total population size at equilibrium in the endemic situation is given by the following:

N = Λ ·
∆

∆3
. (5.3)

• The male equilibrium proportion in the endemic situation, say pm, is given by the following:

pm =
N1

N
=

(
1 +

λ

γ + µ

)
∆1

∆
. (5.4)

• The female equilibrium proportion in the endemic situation, say p f , is given by the following:

p f = 1 −
N1

N
=

N2

N
=

(
1 +

g λ
a γ + µ

)
∆2

∆
. (5.5)

• The endemic prevalence of infection in the male population, say pI1 , is given by the following:

pI1 =
I1

N1
=

λ

λ + γ + µ
. (5.6)

• The endemic prevalence of infection in the female population, say pI2 , is given by the following:

pI2 =
I2

N2
=

g λ
g λ + a γ + µ

. (5.7)
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• The endemic prevalence of infection in the overall population, say pI , is given by the following:

pI =
I1 + I2

N
=
λ

γ + µ
·
∆1

∆
+

g λ
a γ + µ

·
∆2

∆
. (5.8)

It is worth mentioning that λ is the males’ equilibrium force of infection and is(are) the feasible
solution(s) of the Eq (3.19).
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Figure 10. The graphs in the Subfigures (a) and (b) show respectively the population
size N and the endemic prevalence of infection pI at equilibrium as functions of the
basic reproduction number R0. Also, the Subfigures (c) and (d) show, respectively, the
proportion of male and female subpopulations as functions of the basic reproduction number
R0. However, the endemic prevalence of influenza infections within males and females as
functions of the basic reproduction number R0 are drawn respectively in the Subfigures (e)
and (f). The figure is produced with parameter values as shown in Table 2, except the
parameters r and g are given the values r = 0.9 and g = 0.8, 1.1, 1.5 that generate forward
bifurcation phenomenon.

Based on various values of the relative transmissibility parameter r and the relative susceptibility
parameter g selected from the different regions in the plane (g, r), the expressions in the
formulas (5.3)–(5.8) have been drawn as functions of the basic reproduction number R0 and presented
in Figures 10–13, while keeping the other parameters fixed as shown in Table 2. The values of the pair
(g, r) are shown in the head of each subfigure.

Figures 10 and 11 have been produced with values of r and g such that the model undergoes a
forward bifurcation at R0 = 1. The curves in both figures correspond to the solution λ = λ+ (i.e., they
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are connected to the endemic equilibrium E+). Each figure is produced with three different values of
the pair (g, r), where r is kept fixed for the same figure, though g is allowed to change. The solid
curves are drawn with higher values of the relative susceptibility (g = 1.5 > ℓ2 = 1.2932) than in the
cases of the dotted curve (g = 0.8 < ℓ1 = 1.1888) and the broken curve (g = 1.10 < ℓ1 = 1.1888).
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Figure 11. The graphs in the Subfigures (a) and (b) show respectively the population
size N and the endemic prevalence of infection pI at equilibrium as functions of the
basic reproduction number R0. Also, the Subfigures (c) and (d) show, respectively, the
proportion of male and female subpopulations as functions of the basic reproduction number
R0. However, the endemic prevalence of influenza infections within males and females as
functions of the basic reproduction number R0 are drawn respectively in the Subfigures (e)
and (f). The figures are produced with parameter values as shown in Table 2, except the
parameters r and g are given the values r = 1.2 and g = 0.8, 1.1, 1.5 that generate forward
bifurcation phenomenon.

From a demographic perspective, it is clear that the Figure 10(a),(d) shows that higher values of
the relative susceptibility level g implies a reduction in the equilibrium total population size and the
equilibrium proportion of female subpopulation, while the contrast is remarkable for the proportion of
males at equilibrium pm as shown in the Figure 10(c). Figure 10(c),(d) shows that, in the case of a high
enough relative susceptibility level, the proportion of males pm (females p f ) at equilibrium strictly
initially increases (decreases) with an increase of R0 till reaching a maximum (minimum) and then
decreases (increases) with an increase of R0. However, contrasting qualitative behaviors of both pm

and p f are remarkable in the case of low enough relative susceptibility levels (g = 0.8 < ℓ1 = 1.1888
and g = 1.1 < ℓ1 = 1.1888).

From an epidemiological perspective, Figure 10(b),(e),(f) shows that the high relative susceptibility
of females with respect to males increases the endemic prevalence of infection in the overall population
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pI , the endemic prevalence of infection within males pI1 , and the endemic prevalence of infection
within females pI2 , respectively. These prevalences strictly increase with an increase of the basic
reproduction number R0.

It is worth explaining that even if the relative transmissibility parameter r is increased (but the model
still undergoes only forward bifurcation at R0 = 1), then the qualitative behavior doesn’t differ from
that shown in Figure 10, see Figure 11.
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Figure 12. The graphs in the Subfigures (a) and (b) show respectively the population
size N and the endemic prevalence of infection pI at equilibrium as functions of the
basic reproduction number R0. Also, the Subfigures (c) and (d) show, respectively, the
proportion of male and female subpopulations as functions of the basic reproduction number
R0. However, the endemic prevalence of influenza infections within males and females as
functions of the basic reproduction number R0 are drawn respectively in the Subfigures (e)
and (f). The figures are produced with parameter values as shown in Table 2, except the
parameters r and g are given the values r = 0.2 and g = 1.5 that generate backward
bifurcation phenomenon.

The above-described qualitative behavior is ensured as long as the males case fatality is higher than
that of the females (i.e., if c1 > c2). However, in the opposite case (i.e., if c1 < c2), this behavior is
different as shown in Figure 14, where two contrasting behaviors are remarkable for values of R0 > 1.
Definitely, for values of R0 in the right-neighbourhood of R0 = 1, the equilibrium total population size
N and the equilibrium proportion of females p f decrease with an increase of the relative susceptibility
g. However, for high enough values of R0, they increase with an increase of the relative susceptibility
parameter g. On the contrary, the endemic prevalence levels pI , pI1 , and pI2 decrease with an increase
of the relative susceptibility parameter g for values of R0 slightly above one, while they increase for
high enough values of R0. Based on values of r and g that ensure the model undergoes a backward
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bifurcation at R0 = 1, the expressions in (5.3)–(5.8) are drawn as functions of the basic reproduction
number R0 and presented in Figures 12 and 13. There are two curves for values of R0 slightly less than
one. The broken curve corresponds to the unstable endemic equilibrium (computed based on a value
of λ = λ−), while the solid one corresponds to the stable endemic equilibrium (computed based on a
value of λ = λ+), as implicated by the occurrence of a backward bifurcation. Only the solid curves are
of interest, as they represent the stable endemic equilibrium computed based on a value of the endemic
force of the infection solution λ+. Both figures show that the qualitative behavior of the functions
based on the stable endemic equilibrium remains the same as the behavior shown in Figure 10 and is
detailed in the above description. It is worth mentioning that several simulations have been performed
to explore the qualitative behavior if the females’ case fatality is higher than the males’ one. The
simulations show that the qualitative behavior of the demographic expressions N, pm, and p f is similar
to their correspondences in Figure 14, while the endemic prevalences pI , pI1 , and pI2 keep the same
behavior as in the case c1 > c2.
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Figure 13. The graphs in the Subfigures (a) and (b) show respectively the population
size N and the endemic prevalence of infection pI at equilibrium as functions of the
basic reproduction number R0. Also, the Subfigures (c) and (d) show, respectively, the
proportion of male and female subpopulations as functions of the basic reproduction number
R0. However, the endemic prevalence of influenza infections within males and females as
functions of the basic reproduction number R0 are drawn respectively in the Subfigures (e)
and (f). The figures are produced with parameter values as shown in Table 2, except
the parameters r and g are given the values r = 2 and g = 0.8 that generate backward
bifurcation phenomenon.
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Motivated by the above analysis, we come up with the following.

1) If the male’s case fatality is higher than the female’s one, then we have the following results:

• Reducing the relative susceptibility of females with respect to males reduces the endemic
prevalence of the infection in the total population and in each sex-structured subpopulation,
though it increases for both the female proportion p f and the total population size
at equilibrium.
• For high enough levels of the relative susceptibility (g > ℓ2), reducing the basic reproduction

number R0 reduces the equilibrium proportion of females until a minimum close to the right-
neighbourhood of R0 = 1 is reached, and then increases again, while the converse is true for
small levels of the relative susceptibility parameter g < ℓ1.

2) However, if the male’s case fatality is lower than the female’s one, then the two contrasting scenarios
are remarkable. For small values of R0 which lie in the right neighbourhood of R0 = 1, the above-
mentioned implications are reversed, while those implications do still work for higher values for R0.
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Figure 14. The graphs in the Subfigures (a) and (b) show respectively the population
size N and the endemic prevalence of infection pI at equilibrium as functions of the
basic reproduction number R0. Also, the Subfigures (c) and (d) show, respectively, the
proportion of male and female subpopulations as functions of the basic reproduction number
R0. However, the endemic prevalence of influenza infections within males and females as
functions of the basic reproduction number R0 are drawn respectively in the Subfigures (e)
and (f). The figures are produced with parameter values as shown in Table 2, except the
parameters c1, c2, r and g are given the values c1 = 0.005, c2 = 0.007, r = 0.9 and g = 2 that
generate forward bifurcation phenomenon.

Mathematical Biosciences and Engineering Volume 21, Issue 8, 6975–7011.



7001

6. Summary and conclusions

The dynamics of influenza A infection has been extensively explored based on mathematical
models. However, mathematical models that take the inequalities due to differences in sex and gender
into account are less investigated. Motivated by a previous work [4], a SIS model was extended and
adapted to describe the dynamics of influenza A in an open population with varying size, where the
infection lethality was taken into account. From an epidemiological perspective, the model was
adapted to consider differences in susceptibility, infectivity, infection-induced mortality (i.e., lethality
of the infection), and recoverability between males and females. However, from a demographic point
of view, the model was adapted to consider an open population with a population-size-structured
immigration rate. Additionally, the inequality of the birth ratio of females and males was included.

The model has been mathematically analyzed. Definitely, the well-posedness of the model was
shown, where the existence and uniqueness of time-dependent solutions and the positive invariance of
the model’s definition set was proven. The model’s equilibrium analysis revealed that the model has
an influenza-free equilibrium that was proven to be locally asymptotically stable if and only if R0 < 1,
where R0 is the model’s basic reproduction number. Moreover, the bifurcation analysis showed that
the model underwent a backward bifurcation at R0 = 1 for a certain space-set of the model
parameters. The conditions for the occurrence of a backward bifurcation was determined and
presented in the form of either of the two inequality sets (r > r1, g < ℓ1) or (r < r2, g > ℓ2), where
r1, r2, ℓ1 and ℓ2 were defined within the text (formulas (3.25)–(3.27)). The occurrence of a backward
bifurcation made the model’s behavior more complicated than in case of a forward bifurcation,
especially when discussing the possibility to eliminate the infection.

The mathematical implication of the backward bifurcation phenomenon in epidemic models is that
a two influenza-endemic (i.e., with positive levels of the infection’s state variables) equilibria
co-exists with the influenza-free equilibrium for values of R1

0 ≤ R0 < 1, where the endemic
equilibrium with a higher infection level (i.e., with λ = λ+) is locally asymptotically stable, while the
endemic equilibrium with a lower level of the infection (i.e., with λ = λ−) is unstable. The asymptotic
local stability of the model’s equilibrium solutions was numerically investigated.

The epidemiological implication of the existence of a backward bifurcation is that reducing the
basic reproduction number R0 to values slightly less than one is a necessary but no longer a sufficient
condition to eliminate the infection. In other words, in the case of a backward bifurcation, the value
R0 = 1 is no longer a threshold, while R0 = R

1
0 is the effective threshold (whose formula is given

in (3.32)), and strategies aiming to eliminate the infection would be based on reducing R0 to slightly
below the effective threshold value R1

0. Therefore, the minimum effort required to eliminate the
infection becomes increased [21, 23].

Our analysis showed that the proportion of female new-immigrants didn’t affect the value of the
basic reproduction number, but it affected the value of the effective basic reproduction number
threshold and its influence was associated with the value of the relative susceptibility parameter g.
However, the basic reproduction number was affected by the value of the female newborns proportion
q0 and the impact’s type was determined by the inequality (3.9).

Some demographic quantities (precisely, the total population size and proportion of male and
female subpopulations at equilibrium) and some epidemiological expressions (precisely, the endemic
prevalence of the infection in the total population, as well as in both male and female subpopulations)
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were computed and numerically investigated. The effect of changes in the relative transmissibility and
susceptibility parameters (r and g, respectively), as well as in the infection’s case fatality in both the
male and female subpopulations on these demographical and epidemiological expressions, were
numerically investigated.
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Appendix

A1. Proof of Proposition 1

To show that the model is well-posed, we first consider the N-equation in (2.11), where

dN(t)
dt

= Λ(1 − N(t)/K) − c1 γ I1(t) − c2 a γ I2(t)

≥ −

(
Λ

K
+ c1γ + c2aγ

)
N.

Hence, by the comparison theorem, we obtain the following:

N(t) ≥ N(0) exp
(
−

(
Λ

K
+ c1γ + c2aγ

)
t
)
≥ 0 ∀ N(0) ≥ 0, (A1.1)

where N(0) is the total population size at t = 0. Additionally, we have

dN(t)
dt

= Λ(1 − N(t)/K) − c1 γ I1(t) − c2 a γ I2(t)

≤ Λ(1 − N(t)/K),

and using the comparison theorem, we obtain the following:

N(t) ≤ K
(
1 −

(
1 −

N(0)
K

)
exp

(
−
Λ

K
t
))
→ K as t → ∞. (A1.2)

Hence,

0 ≤ N(t) ≤ K, (A1.3)

i.e., N(t) is upper-bounded.
In the same manner, we may use (2.7)–(2.11) to write

dS 1(t)
dt

≥ −(λ(t) + µ)S 1(t),
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dI1(t)
dt

≥ −(µ + γ)I1(t),

dS 2

dt
≥ −(gλ(t) + µ)S 2(t),

dI2(t)
dt

≥ −(µ + a γ)I2(t),

and thereby we get

S 1(t) ≥ S 1(0) exp
(
−

∫ t

0
(λ(τ) + µ)dτ

)
≥ 0 ∀ S 1(0) ≥ 0,

I1(t) ≥ I1(0) exp (−(γ + µ)t) ≥ 0 ∀ I1(0) ≥ 0,

S 2(t) ≥ S 2(0) exp
(
−

∫ t

0
(g λ(τ) + µ)dτ

)
≥ 0 ∀ S 2(0) ≥ 0,

I2(t) ≥ I2(0) exp (−(a γ + µ)t) ≥ 0 ∀ I2(0) ≥ 0.

Now, since 0 ≤ S 1(t) + I1(t) + S 2(t) + I2(t) = N(t), and since both N(t) is upper-bounded, then
S 1(t), I1(t), S 2(t), I2(t) are all upper-bounded and non-negative for all t ≥ 0. Thus, the set Ω is
positively invariant.

To show the uniqueness of the time-dependent solutions of models (2.7)–(2.11), we note that the
right hand side of these equations are all continuous in the models state variables S 1, S 2, I1, and I2.
Moreover, it is easy to check that all partial derivatives of the functions in the right-hand side of
models (2.7)–(2.11) are also continuous in the model state variables. Therefore, they are locally
Lipschitz, and, hence, any time-depending solution starting with initial conditions in Ω is unique.

A2. Proof of the local stability of the influenza-free equilibrium E0

We apply the linearization principle to establish the local stability analysis of the influenza-free
equilibrium E0. Rather than traditionally using the S 1, I1, S 2, and I2 equations in models (2.7)–(2.11),
we consider the N1,N2, I1, and I2 equations, as S 1 = N1 − I1 and S 2 = N2 − I2. Therefore, we consider
the following model:

dN1(t)
dt

= (1 − q2)Λ
(
1 −

N1(t) + N2(t)
K

)
+ (1 − q0)µ(N1(t) + N2(t)) − µN1(t) − c1γI1 := f1(N1,N2, I1, I2),

dN2(t)
dt

= q2Λ

(
1 −

N1(t) + N2(t)
K

)
+ q0µ(N1(t) + N2(t)) − µN2(t) − c2aγI2 := f2(N1,N2, I1, I2),

dI1(t)
dt

= β

(
I1(t) + rI2(t)
N1(t) + N2(t)

)
(N1(t) − I1(t)) − (µ + γ)I1(t) := f3(N1,N2, I1, I2),

dI2(t)
dt

= gβ
(

I1(t) + rI2(t)
N1(t) + N2(t)

)
(N2(t) − I2(t)) − (µ + a γ)I2(t) := f4(N1,N2, I1, I2),

which has the following influenza-free equilibrium Ê0 =
(
(1 − q0)K, q0K, 0, 0

)T
that corresponds to

E0. The local stability of Ê0 implies the local stability of E0. The Jacobean matrix evaluated at Ê0 is a
block matrix in the following triangular form:
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J
∣∣∣∣
Ê0
=

[
A B

0 D

]
, (A2.1)

where

A =


∂ f1

∂N1

∂ f1

∂N2
∂ f2

∂N1

∂ f2

∂N2

 =
−(1 − q2)

Λ

K
− q0µ −(1 − q2)

Λ

K
+ (1 − q0)µ

−q2
Λ

K
+ q0µ −q2

Λ

K
+ q0µ − µ

 ,

B =


∂ f1

∂I1

∂ f1

∂I2
∂ f2

∂I1

∂ f2

∂I2

 =
[
−c1γ 0

0 −c2aγ

]
,

D =


∂ f3

∂I1

∂ f3

∂I2
∂ f4

∂I1

∂ f4

∂I2

 =
[
(1 − q0)β − (γ + µ) (1 − q0)rβ

gq0β q0rgβ − (µ + aγ)

]
.

It is noteworthy that the characteristic polynomial of the block triangular matrix (A2.1) is the
product of the characteristic polynomials of the matrices A and D. Therefore, the local stability of the
influenza-free equilibrium Ê0 is ensured if and only if the following conditions on the matrices A and
D hold:

det(A) > 0, Tr(A) < 0, det(D) > 0, and Tr(D) < 0. (A2.2)

To this end, we compute the following:

det(A) =
(
−(1 − q2)

Λ

K
− q0µ

) (
−q2
Λ

K
+ q0µ − µ

)
−

(
−q2
Λ

K
+ q0µ

) (
−(1 − q2)

Λ

K
+ (1 − q0)µ

)
=
Λ

K
µ > 0,

Tr(A) = −(1 − q2)
Λ

K
− q0µ − q2

Λ

K
+ q0µ − µ = −

Λ

K
− µ < 0,

det(D) =
(
(1 − q0)β − (γ + µ)

)(
q0rgβ − (µ + aγ)

)
− gq0(1 − q0)rβ2

= (γ + µ)(aγ + µ)
(
1 − β

(
1 − q0

γ + µ
+ rg

q0

aγ + µ

))
= (γ + µ)(aγ + µ) (1 − R0) ,

Tr(D) =
(
(1 − q0)β − (γ + µ)

)
+

(
q0rgβ − (µ + aγ)

)
.

It is clear that det(D) > 0 if and only if R0 < 1. However, if R0 < 1, then we have (1−q0)β < (γ+µ)
and q0rgβ < (µ + aγ), which implies that Tr(D) < 0. Thus, the condition (A2.2) holds if and only if
R0 < 1.
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A3. Derivation of the persistence-infection polynomial equation (3.19)

To derive Eq (3.19), we rewrite the algebraic system of equations (3.2)–(3.4) in the following
simple form:

B11

(S 1

N

)
+ B13

(
Λ

N

)
= E1, (A3.1)

B22

(S 2

N

)
+ B23

(
Λ

N

)
= E2, (A3.2)

B31

(S 1

N

)
+ B32

(S 2

N

)
+ B33

(
Λ

N

)
= E3, (A3.3)

where

B11 = µ + λ

(
1 −

(1 − c1)γ
γ + µ

)
, B13 = −(1 − q2), E1 = (1 − q0)µ − (1 − q2)

Λ

K
,

B22 = µ + gλ
(
1 −

(1 − c2)aγ
aγ + µ

)
, B23 = −q2, E2 = q0µ − q2

Λ

K
,

B31 =
c1γ

γ + µ
λ, B32 =

c2aγ
aγ + µ

gλ, B33 = −1, E3 = −
Λ

K
.

Now, we solve the systems (A3.1)–(A3.3) in terms of
S 1

N
,

S 2

N
, and

Λ

N
to obtain the following:

S 1

N
=
∆1

∆
,

S 2

N
=
∆2

∆
,

Λ

N
=
∆3

∆
, (A3.4)

where

∆ =

∣∣∣∣∣∣∣∣∣
B11 0 B13

0 B22 B23

B31 B32 B33

∣∣∣∣∣∣∣∣∣ = B11(B22B33 − B23B32) − B13B31B22

=

(
µ +

(
1 −

(1 − c1)γ
γ + µ

)
λ

) (
−µ −

(
1 −

(1 − c2)aγ
aγ + µ

)
gλ +

c2aγ
aγ + µ

q2gλ
)
+

c1γ

γ + µ
(1 − q2)λ

(
µ +

(
1 −

(1 − c2)aγ
aγ + µ

)
gλ

)
= −gλ2

((
1 −

(1 − c1)γ
γ + µ

) (
1 −

(1 − (1 − q2)c2)aγ
aγ + µ

)
−

(1 − q2)c1γ

γ + µ

(
1 −

(1 − c2)aγ
aγ + µ

))
− µλ

(
1 −

(1 − q2c1)γ
γ + µ

+ g
(
1 −

(1 − (1 − q2)c2)aγ
aγ + µ

))
− µ2,

= −gλ2

1 − c1̂γ

γ + µ

 (1 − c̃2
aγ

aγ + µ

)
−

(1 − q2)c1γ

γ + µ

1 − c2̂aγ
aγ + µ


Mathematical Biosciences and Engineering Volume 21, Issue 8, 6975–7011.
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− µλ

(
1 −

(1 − q2c1)γ
γ + µ

+ g
(
1 − c̃2

aγ
aγ + µ

))
− µ2, (A3.5)

where
c1̂ = 1 − c1, c2̂ = 1 − c2, c̃2 = 1 − (1 − q2)c2.

∆1 =

∣∣∣∣∣∣∣∣∣
E1 0 B13

E2 B22 B23

E3 B32 B33

∣∣∣∣∣∣∣∣∣ = E1(B22B33 − B23B32) − B13(E2B32 − E3B22)

=

(
(1 − q0)µ − (1 − q2)

Λ

K

) (
−µ − gλ

(
1 −

(1 − c2)aγ
aγ + µ

)
+

c2aγ
aγ + µ

q2gλ
)

+(1 − q2)
(
Λ

K

(
µ + gλ

(
1 −

(1 − c2)aγ
aγ + µ

))
−

(
q0µ −

q2Λ

K

)
c2aγ

aγ + µ
gλ

)
=

(
(1 − q0)µ − (1 − q2)

Λ

K

) (
−µ − gλ

(
1 − (1 − (1 − q2)c2)

aγ
aγ + µ

))
+(1 − q2)

(
−µ
Λ

K
− gλ

(
Λ

K
+ q0c2µ

aγ
aγ + µ

−

((
1 − (1 − q2)c2

)Λ
K

)
aγ

aγ + µ

))
= −(1 − q0)µ2 − gλ

(
(1 − q0)µ − (1 − q0)µ

(
1 − (1 − q2)c2

) aγ
aγ + µ

+ (1 − q2)c2q0µ
aγ

aγ + µ

)
= −(1 − q0)µ2 − gλµ

(
1 − q0 −

(
1 − (1 − q2)c2 − q0 + q0(1 − q2)c2 − q0(1 − q2)c2

)) aγ
aγ + µ

= −(1 − q0)µ2 − gλµ
(
(1 − q0) − (1 − q0)

aγ
aγ + µ

+ (1 − q2)c2
aγ

aγ + µ

)
= −(1 − q0)µ2 − gλµ

(
(1 − q0)

µ

aγ + µ
+ (1 − q2)c2

aγ
aγ + µ

)
, (A3.6)

∆2 =

∣∣∣∣∣∣∣∣∣
B11 E1 B13

0 E2 B23

B31 E3 B33

∣∣∣∣∣∣∣∣∣ = B11

(
E2B33 − E3B23

)
+ B31

(
E1B23 − E2B13

)
=

(
µ + λ

(
1 −

(1 − c1)γ
γ + µ

)) (
−q0µ + q2

Λ

K
− q2
Λ

K

)
+

c1γ

γ + µ
λ

(
−q2(1 − q0)µ + q2(1 − q2)

Λ

K
+ (1 − q2)q0µ − (1 − q2)q2

Λ

K

)
= −q0µ

2 + µλ

(
(q0 − q2)

c1γ

γ + µ
− q0 + q0

(1 − c1)γ
γ + µ

)
= −q0µ

2 + µλ

(
−q0 +

(q0 − q2c1)γ
γ + µ

)
, (A3.7)
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∆3 =

∣∣∣∣∣∣∣∣∣∣
B11 0 E1

0 B22 E2

B31 B32 E3

∣∣∣∣∣∣∣∣∣∣ = B11

(
E3B22 − E2B32

)
− E1B22B31

=

(
µ +

(
1 −

(1 − c1)γ
γ + µ

)
λ

) (
−

(
µ +

(
1 −

(1 − c2)aγ
aγ + µ

)
gλ

)
Λ

K
−

(
q0µ − q2

Λ

K

)
c2aγ

aγ + µ
gλ

)
−

(
(1 − q0)µ − (1 − q2)

Λ

K

) (
µ +

(
1 −

(1 − c2)aγ
aγ + µ

)
gλ

)
c1γ

γ + µ
λ

=

(
µ +

(
1 −

(1 − c1)γ
γ + µ

)
λ

) (
−µ
Λ

K
− gλ

((
1 −

(
1 − (1 − q2)c2

) aγ
aγ + µ

)
Λ

K
+ q0µ

c2aγ
aγ + µ

))
−

(
(1 − q0)µ − (1 − q2)

Λ

K

) (
µλ +

(
1 −

(1 − c2)aγ
aγ + µ

)
gλ2

)
c1γ

γ + µ

= −µ2Λ

K
− µλ

(
(1 − q0)µ

c1γ

γ + µ
+

(
1 − (1 − q2c1)

γ

γ + µ

)
Λ

K
+

g
((

1 − (1 − (1 − q2)c2)
aγ

aγ + µ

)
Λ

K
+ q0µ

c2aγ
aγ + µ

))
−gλ2

(
Λ

K

((
1 −

(1 − c1)γ
γ + µ

) (
1 −

(
1 − (1 − q2)c2

) aγ
aγ + µ

)
− (1 − q2)c1

γ

γ + µ

(
1 −

(1 − c2)aγ
aγ + µ

))
+q0µ

c2aγ
aγ + µ

(
1 −

(1 − c1)γ
γ + µ

)
+ (1 − q0)µ

c1γ

γ + µ

(
1 −

(1 − c2)aγ
aγ + µ

))
= −µ2Λ

K
− µλ

(
(1 − q0)µ

c1γ

γ + µ
+

(
1 − (1 − q2c1)

γ

γ + µ

)
Λ

K
+ g

((
1 − c̃2

aγ
aγ + µ

)
Λ

K
+ q0µ

c2aγ
aγ + µ

))
−gλ2

(
Λ

K

((
1 −

γ

γ + µ

) (
1 − c̃2

aγ
aγ + µ

)
+ q2

c1γ

γ + µ

(
1 −

aγ
aγ + µ

))
+ q0µ

c2aγ
aγ + µ

(
1 −

c1̂γ

γ + µ

)
+(1 − q0)µ

c1γ

γ + µ

(
1 −

c2̂aγ
aγ + µ

))
. (A3.8)

A4. Proof of Proposition 3

To prove Proposition 3, we make use of the formulas (3.21)–(3.23). They imply that our model
exhibits a backward bifurcation if and only if A1

∣∣∣∣
β=β0
< 0. Now, we have the following:

A1

∣∣∣∣
β=β0

= 1 + g −
(1 − q2)c1γ

γ + µ
−

(1 − c1)γ
γ + µ

−
gaγ

(
1 − (1 − q2)c2

)
aγ + µ

−g
(

(1 − q0)µ
aγ + µ

+
(1 − q2)c2aγ

aγ + µ

)
aγ + µ

(1 − q0)(aγ + µ) + rgq0(γ + µ)

+
rg(γ + µ)

(1 − q0)(aγ + µ) + rgq0(γ + µ)

(
−q0 +

(q0 − q2c1)γ
γ + µ

)

= 1 + g −
(1 − q2c1)γ
γ + µ

−
gaγ

(
1 − (1 − q2)c2

)
aγ + µ

−
g
(
(1 − q0)µ + (1 − q2)c2aγ + rq0µ + rq2c1γ

)
(1 − q0)(aγ + µ) + rgq0(γ + µ)

=
µ + q2c1γ

γ + µ
+

g
(
µ + (1 − q2)c2aγ

)
aγ + µ

−
g
(
(1 − q0)µ + (1 − q2)c2aγ + r

(
q0µ + q2c1γ

))
(1 − q0)(aγ + µ) + rgq0(γ + µ)

=
(aγ + µ)(µ + q2c1γ) + g(γ + µ)

(
µ + (1 − q2)c2aγ

)
(γ + µ)(aγ + µ)

−
g
(
(1 − q0)µ + (1 − q2)c2aγ + r

(
q0µ + q2c1γ

))
(1 − q0)(aγ + µ) + rgq0(γ + µ)

.
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Hence, A1

∣∣∣∣
β=β0
< 0 if and only if

g(γ + µ)(aγ + µ)
(
(1 − q0)µ + (1 − q2)c2aγ + r

(
q0µ + q2c1γ

))
>(

(1 − q0)(aγ + µ) + rgq0(γ + µ)
)(

(aγ + µ)(µ + q2c1γ) + g(γ + µ)
(
µ + (1 − q2)c2aγ

))
,

i.e.,

rg(γ + µ)
(
(1 − q0)q2c1γ(aγ + µ) − gq0(γ + µ)

(
µ + (1 − q2)c2aγ

))
>

(1 − q0)(aγ + µ)2(µ + q2c1γ) + (1 − q0)(aγ + µ)(1 − q2)c2aγg(γ + µ) − (1 − q2)c2aγg(γ + µ)(aγ + µ),

i.e.,

rgq0(γ + µ)2
(
µ + (1 − q2)c2aγ

)  (1 − q0)q2c1γ(aγ + µ)

q0(γ + µ)
(
µ + (1 − q2)c2aγ

) − g

 >
q0(1 − q2)c2aγ(γ + µ)(aγ + µ)

(
(1 − q0)(aγ + µ)(µ + q2c1γ)

q0(1 − q2)c2aγ(γ + µ)
− g

)
,

i.e.,
rM1(ℓ1 − g) > M2(ℓ2 − g), (A4.1)

where

M1 = q0g(γ + µ)2
(
µ + (1 − q2)c2aγ

)
,

M2 = q0(1 − q2)c2aγ(γ + µ)(aγ + µ),

ℓ1 =
(1 − q0)q2c1γ(aγ + µ)

q0(γ + µ)
(
µ + (1 − q2)c2aγ

) ,
ℓ2 =

(1 − q0)(aγ + µ)(µ + q2c1γ)
q0(1 − q2)c2aγ(γ + µ)

.

A5. Proof of Proposition 4

To prove Proposition 4, we notice that the numerator of ℓ1 is less than the numerator of ℓ2, while
the denominator of ℓ1 is bigger than the denominator of ℓ2. Therefore, ℓ2 > ℓ1. Hence, (ℓ1 − g) and
(ℓ2 − g) have the same sign (either negative or positive) if and only if either g < min(ℓ1, ℓ2) = ℓ1 or
g > max(ℓ1, ℓ2) = ℓ2. Therefore, the inequality (A4.1) holds if either g < ℓ1 or g > ℓ2. In the first case,
we obtain the following condition:

r >
M2(ℓ2 − g)
M1(ℓ1 − g)

and g < ℓ1,
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while in the second case, we obtain the following condition:

r <
M2(g − ℓ2)
M1(g − ℓ1)

and g > ℓ2.

This completes the proof.
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