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Abstract: The global impact of the COVID-19 pandemic is widely recognized as a significant con-
cern, with human flow playing a crucial role in its propagation. Consequently, recent research has fo-
cused on identifying and analyzing factors that can effectively regulate human flow. However, among
the multiple factors that are expected to have an effect, few studies have investigated those that are par-
ticularly associated with human flow during the COVID-19 pandemic. In addition, few studies have
investigated how regional characteristics and the number of vaccinations for these factors affect human
flow. Furthermore, increasing the number of verified cases in countries and regions with insufficient
reports is important to generalize conclusions. Therefore, in this study, a group-level analysis was
conducted for Narashino City, Chiba Prefecture, Japan, using a human flow prediction model based on
machine learning. High-importance groups were subdivided by regional characteristics and the number
of vaccinations, and visual and correlation analyses were conducted at the factor level. The findings
indicated that tree-based models, especially LightGBM, performed better in terms of prediction. In ad-
dition, the cumulative number of vaccinated individuals and the number of newly infected individuals
are likely explanatory factors for changes in human flow. The analyses suggested a tendency to move
with respect to the number of newly infected individuals in Japan or Tokyo, rather than the number of
new infections in the area where they lived when vaccination had not started. With the implementation
of vaccination, attention to the number of newly infected individuals in their residential areas may in-
crease. However, after the spread of vaccination, the perception of infection risk may decrease. These
findings can contribute to the proposal of new measures for efficiently controlling human flows and
determining when to mitigate or reinforce specific measures.
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1. Introduction

Since the confirmation of COVID-19 in 2019, health hazards have increased [1, 2]. Social [3,
4] and economic impacts [5, 6] associated with the spread of the infection have been recognized as
global problems. Therefore, various factors related to the spread of COVID-19 infection have been
investigated to date, and corresponding preventive measures have been discussed extensively. For
example, Coccia investigated the specific conditions contributing to the spread of COVID-19 and found
that wind speed and air pollution affect the spread of COVID-19 [7–9]. Bontempi et al. found that
international trade activities are a strong factor affecting the spread of COVID-19, possibly due to
increased contact among foreigners [10, 11]. Other contributing factors to the spread of infection
include urban population density, absolute humidity [12], vaccination [13], and seasonality [14, 15].
These investigations are expected to be applied not only to the suppression of COVID-19, but also to the
preparation against the next pandemic similar to COVID-19. Therefore, it is important to investigate
and discuss these issues, although the COVID-19 pandemic is being contained.

To control the spread of infection, it is particularly important to identify the factors that influence
human flow (that is, human mobility, travel distances, and population density at any given place and
time) and to understand their detailed trends. There are four reasons for this:

• Human mobility has been reported to affect COVID-19 transmission more strongly than other fac-
tors (population density, temperature, vaccination coverage, etc.) [16], and government policies can
intervene.

• In countries and regions with well-developed public transportation systems (trains, buses, airplanes,
etc.), people can easily travel for work, entertainment, and other purposes. Thus, human mobility is
likely to have a significant impact on the spread of COVID-19 in such countries and regions [17].

• Human flow has been reported to have a strong relationship with the effective reproduction number
regardless of the first or second wave of COVID-19 [18], and therefore, a continued effect on the
control of infection can be expected.

• Human flow is also highly relevant in other infectious diseases (influenza virus and mosquito-borne
infectious diseases such as malaria and dengue fever), and the findings obtained may be widely
applicable [19].

In general, human flow is a crucial factor in the transmission of infectious diseases, which spread
rapidly with an increase in human flow. Consequently, pandemics are more likely to occur when pre-
venting and controlling infectious diseases is challenging [20]. Therefore, during the early stages of
the COVID-19 outbreak, countries implemented travel restrictions, lockdowns, and emergency dec-
larations to limit the flow of people into and out of the country. Such non-pharmaceutical interven-
tions have been reported to be effective in controlling COVID-19 transmission in many countries and
regions [21–23]. Following the development of the COVID-19 vaccine and the availability of phar-
maceutical interventions, COVID-19 vaccinations became widely available and movement restrictions
were eased. COVID-19 vaccination has been effective in reducing the risk of infection [24, 25] and
preventing serious illness and death from infection [26–28]. However, a positive correlation between
COVID-19 vaccination coverage and increased human flow has been observed worldwide [29, 30].
This has also been reported to reduce the effectiveness of COVID-19 vaccines [31, 32]. Moreover,
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approximately 30% of the population is hesitant to vaccinate, and enforcing coercive measures can
undermine democratic values and impact the socioeconomic system [33]. Therefore, it is necessary
to understand the factors that affect human flow not only when pharmaceutical interventions are not
possible but also when they are possible as managing and controlling these factors is important.

It is known that human flow is determined by a complex interplay of multiple factors. Examples
include economic factors such as income levels and prices [34], social factors such as population
composition, culture, and customs [35], environmental factors such as temperature and weather [36],
and commercial event factors such as the Olympics [37,38]. Among these, human flow in the COVID-
19 disaster is expected to be strongly influenced by political and legal factors relating to domestic and
international movement restrictions as well as by health and safety factors that indicate the prevalence
of COVID-19. Therefore, it is important to measure the effects of political and legal factors on human
flow and to elucidate the conditions for maximizing these effects. In addition, information on health
and safety factors, including statistical data, public data, public health, and infection trends, has been
disclosed to the public by the government and mass media. Clarifying the impact of such information
on human flow will be helpful for future measures to prevent the spread of infection and to resume
economic activities. That is, elucidating the effects of changes in political and legal, as well as health
and safety, factors on human flow is essential to consider future countermeasures.

In response to these issues, machine learning has been applied extensively as a human flow analysis
method for COVID-19 in recent years. For instance, Hu et al. employed generalized additive mixed
models with big data in the US to evaluate the effects of government policies on human mobility, and
discovered that such policies had limited, time-decreasing, and region-specific effects on mobility [39].
Nakamoto et al. observed that the state of emergency in Japan deterred human flow, although its effect
diminished with subsequent declarations [40]. Chakraborty et al. used regularized linear models to
forecast human mobility in the US, analyzing various factors and noting a decrease in the number of
daily trips as nine factors, including the number of newly infected individuals, median income, and
socioeconomic status, increased [41]. Additional studies indicated that travel restrictions [42] and
lockdowns [43] that were imposed early in an outbreak within a specific region can effectively regulate
the human flow.

The factors that increase or decrease human flow in a pandemic are gradually being elucidated
through machine learning. These studies are expected to be applied to control human flow during the
spread of infectious diseases, including COVID-19. However, although numerous studies have aimed
to identify information and measures that are effective in regulating human flow, research focusing on
information and measures, particularly those associated with human flow, remains limited. Further-
more, few studies have undertaken factor analysis to account for the impact of regional differences
relating to published information, such as whether it concerns residential areas close to one’s home or
areas of socioeconomic activity, including workplaces and schools. In addition, the impact of the fre-
quency of the implemented measures as well as the combined effect of these factors has seldom been
considered. Moreover, as these discussions often pertain to specific countries and regions, broader
surveys encompassing various locations are essential for generalizing the conclusions. However, con-
ducting verification at all sites is difficult in reality; therefore, it is important to increase the number of
reference cases in countries and regions with insufficient verified cases. Thus, it is necessary to conduct
research that satisfies the following three requirements: 1) Identify factors that have a particularly high
association with human flow in COVID-19. 2) Clarify how regional characteristics and differences in
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Legend
: Narashino City, Chiba, Japan
: Tokyo Station

Figure 1. The population area for which the average daily distance traveled was measured.

vaccination of these factors affect changes in human flow. 3) Conduct surveys targeting countries and
regions with insufficient verified cases.

Therefore, in this study, the average daily travel distance was defined as the human flow, with the
following three objectives: 1) Mainly political and legal factors and health and safety factors that are
expected to have a strong impact on human flow in the event of a COVID-19 disaster are analyzed
using machine learning. 2) The factors identified from the analysis results are subdivided according
to regional characteristics and vaccination, and the detailed effects are confirmed through visual and
correlation analyses. 3) Narashino City, Chiba Prefecture, Japan, is targeted as a country or region with
insufficient survey cases. The remainder of this paper is organized as follows: Section 2 provides an
overview of human flow data as the response variable; an overview of political, legal, health, and safety
factors as explanatory variables (features); and a description of the procedures for human flow analysis
using machine learning. Section 3 describes the performance evaluation of machine-learning models
and comparison results between models, and presents the results of factor analysis using machine
learning, visual analysis, and correlation analysis. Section 4 describes the results and discusses the
pros and cons of this study. Section 5 summarizes the study and discusses future prospects.

2. Materials and methods

2.1. Sample and data

This section provides an overview of Narashino City, Chiba Prefecture, Japan, which was the target
of the study, and describes the human flow data of Narashino residents as the response variable. Fig-
ure 1 shows a map of Narashino City, located in the northwestern part of Chiba Prefecture, Japan. As
of August 31, 2023, Narashino had a population of 175,260 within a geographical area of 20.97 km2.
The city is within 30 km of Tokyo, with travel times to the Tokyo train station of approximately 45 min
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Table 1. Mean ± SD of the number of people and average daily travel distance measured by
age group.

Age group People (number/day) Average travel distance (m/day)
Teens 92 ± 47 6157 ± 748
Twenties 159 ± 77 6410 ± 568
Thirties 143 ± 67 5845 ± 596
Forties 108 ± 55 6847 ± 680
Fifties 81 ± 42 6225 ± 683
Sixties 24 ± 13 5557 ± 1167
Seventies 6 ± 3 4601 ± 2261
Unknown 394 ± 85 5265 ± 517
Total 1007 ± 355 5867 ± 1240

by train and 35 min by car. In this study, the average daily distance traveled by residents of Narashino,
Chiba, was used as the human flow data in the COVID-19 disaster. The daily distance traveled by
Narashino residents was collected using geographic information system data from smartphones and
processed. These were measured from January 1, 2021, to September 30, 2021. Table 1 presents the
mean and standard deviation of the number of people and average travel distance per day by age group.
The ages of the residents ranged from teens to seventies, with a mean age and standard deviation of
39.9 ± 20.0 years. The average daily travel distance, representing human flow for Narashino residents,
was calculated as the expected value based on the proportion of residents measured per day in each age
group and their corresponding travel distances.

2.2. Measures of variables

In this section, the features such as political and legal, as well as health and safety, factors that are
expected to have a strong impact on human flow in the COVID-19 disaster are described. The features
are presented in Table 2. The categories in Table 2 contain a summary of information and measures
reported previously as highly relevant to human flow in the COVID-19 pandemic. In the subcate-
gories (groups) column in Table 2, for each category item, information and measures augmented with
the reference date and time, numerical changes, and specific measures for regulating human flow are
described. In addition to categories that are likely to be strongly associated with human flow, the
breakdown of categories involved further subdivision into several subcategories to elucidate the state
of maximum effects. In this study, these groups were subjected to group-level analysis using machine
learning to identify groups with particularly strong associations with human flow. The subsubcategory
(factors) column in Table 2 provides detailed descriptions of the information and measures, including
temporal and spatial data for each group item. These factors were likely to exhibit a high correla-
tion given that the objective was to capture the impact of minor changes in the group items on human
flow. Therefore, owing to the potential for unstable training [44] and the bias relating to feature im-
portance [45] in machine-learning models, conducting an appropriate factor analysis is considered
challenging. Consequently, the factors were subjected to visual analysis and verified through correla-
tion analysis. The data for this analysis were sourced from the official portals of the Prime Minister’s
Office of Japan [46], the Ministry of Health, Labour and Welfare of Japan [47], the Tokyo Metropoli-
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Table 2. Explanatory variables (features).

Category Subcategory (groups)∗1 Subsubcategory (factors)∗2

Number of
newly infected individuals

Number of newly infected individuals on the
previous day

Japan
Tokyo
Chiba

Difference in the number of newly infected
individuals between the previous day and the
day before the previous day

Japan
Tokyo
Chiba

Number of deaths

Number of deaths on the previous day
Japan
Tokyo
Chiba

Difference in the number deaths between the
previous day and the day before the previous
day

Japan
Tokyo
Chiba

Number of
vaccinated individuals

Number of vaccinated individuals in Japan
on the previous day

First vaccination
Second vaccination

Cumulative number of vaccinated
individuals in Japan up to the previous day

First vaccination
Second vaccination

Government infectious
disease control measures

Presence/absence of the state of emergency
on the day

First implementation in Tokyo
Second implementation in Tokyo
Third implementation in Tokyo
First implementation in Chiba
Second implementation in Chiba

Presence/absence of priority measures to
prevent the spread of the disease on the day

First implementation in Tokyo
Second implementation in Tokyo
First implementation in Chiba

Rate of work-from-home
utilization

Rate of work-from-home utilization
on the month Tokyo

Month-end hospital bed
occupancy rate

Month-end hospital bed occupancy rate
on the month Japan

Day of the week Day of the week on the day
Sine wave of the day of the week
Cosine wave of the day of the week
Weekends & holidays

Climate conditions Climate conditions on the day
Average temperature in Funabashi
Average rainfall in Funabashi
Average wind speed in Funabashi

*1 The day of prediction was used as a reference for the current day, current month, previous day, and the day before the previous
day.

*2 The number of new infections and deaths was segmented by regions for which the information was relevant. The number of
vaccinated individuals was segmented by the number of vaccinations. Government infectious disease control measures were
segmented according to the region where the measures were implemented and the number of times they were implemented.
The day of the week information was segmented by trigonometric values to express periodicity and by weekend and holiday.
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tan Government [48], the Japan Meteorological Agency [49], and the Portal Site of Official Statistics
of Japan [50] and were processed accordingly. In addition, to evaluate the influence of each feature
equally in the analysis, it was necessary to unify the scales of all features. Therefore, standardization
with a mean of 0 and a standard deviation of 1 was applied to each feature in this study. The categories
and their subdivisions into groups and factors affecting human flow in the COVID-19 pandemic are as
follows:

• Number of newly infected individuals — A close relationship between the number of newly infected
individuals and movement of people has been confirmed for the COVID-19 disease. For example,
Watanabe and Yabu reported that a 1% increase in the number of newly infected individuals in a
prefecture in Japan was associated with a 0.027% decrease in outings in that prefecture [51]. When
comparing trends among different regions, incidence rates, which represent the number of infections
relative to the population, can be used [52]. However, simply the number of infected individuals
is more commonly recognized, because it is encountered by people more often in their daily lives.
For this reason, we do not perform transformations such as incidence rates, but adopt these numbers
as a single variable. In this study, two variables, the number of newly infected individuals on the
previous day and the difference in the number of infected individuals between the previous day and
two days before the target prediction day, are used as the group (refer to the “Groups” in Table 2
under “Number of newly infected individuals”). The factors targeted three regions to which the
information applies: “Japan,” “Tokyo,” and “Chiba” (refer to the “Factors” in Table 2 under “Number
of newly infected individuals”). The aim was to measure the impact of information on human flow
considering infectious diseases in wide and local areas by targeting the entire country, base region
for activities other than daily living (region of socioeconomic activities), and base region associated
with essential activities of everyday life (region of residence).

• Number of deaths — Previous studies have reported a close relationship between the number of
deaths and human mobility for the COVID-19 disease [53]. When analyzing the impact of fatalities,
case fatality rates (CFRs), which represent the number of deaths relative to the number of infected
individuals, can be used [54]. However, as with the “Number of newly infected individuals,” a simple
number of deaths is more commonly recognized, because it is encountered by people more often in
their daily lives. For this reason, we do not perform transformations such as CFR, but adopt these
numbers as a single variable. In this study, two variables, the number of deaths on the previous day
and the difference between the previous day and two days before the target prediction day, are used
as the group (refer to the “Groups” in Table 2 under “Number of deaths”). The factors targeted three
regions to which the information applies: “Japan,” “Tokyo,” and “Chiba” (refer to the “Factors” in
Table 2 under “Number of deaths”). The aim is the same as that for the “Number of newly infected
individuals”.

• Number of vaccinated individuals — Previous studies have reported that vaccination tends to in-
crease human mobility. For example, Liang et al. found that a 10-percentage-point (pp) increase in
vaccination coverage in 107 countries was associated with a 1.4–4.3 pp increase in mobility [32]. In
this study, two variables, the number of vaccinated individuals on the previous day and the difference
between the previous day and two days before the target prediction day, are used as the group (refer
to the “Groups” in Table 2 under “Number of vaccinated individuals”). The factors were subdivided
based on the number of vaccinations during the measurement period (refer to the “Factors” in Table 2
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under “Number of vaccinated individuals”).

• Government infectious disease control measures — Previous studies have reported that public
transportation use decreased to less than 20% of the pre-pandemic level due to the state of emer-
gency [55]. In addition, the population density index decreased by 20%, and people tended to avoid
moving to densely populated areas or moving between prefectures [56]. In this study, two groups,
the state of emergency and priority measures to prevent the spread of disease, were adopted (refer
to the “Groups” in Table 2 under “Government infectious disease control measures”). In addition,
regarding government infectious disease control measures, it has been noted that the preventive ef-
fect varies according to the region of issuance and frequency of implementation [39, 40]. Thus, to
consider the individual effects of each factor, each region was further divided according to the im-
plementation times (refer to the “Factors” in Table 2 under “Government infectious disease control
measures”).

• Rate of work-from-home utilization — Benita reported that as the number of people opting to work
from home (also called telework, remote work, or mobile work) at their discretion or those forced
to do so by their companies increases, individual activity and behavior patterns change [57]. In
this study, we employed the rate of work-from-home utilization per month in Tokyo to consider the
impact of this change on the flow of people (refer to the “Groups” and “Factors” in Table 2 under
“Rate of work-from-home utilization”).

• Month-end hospital bed occupancy rate — In Japan, the hospital bed occupancy rate was widely
publicized through mass media. Therefore, it is possible that this information may have influenced
human mobility. In this study, we used the hospital bed occupancy rate for infectious disease beds
in Japan at the end of each month (refer to the “Groups” and “Factors” in Table 2 under “Month-end
hospital bed occupancy rate”). When patients are admitted due to infectious diseases (for example,
a COVID-19 infection), they are recorded patients in an “infectious disease bed” even when they are
admitted to other beds.

• Day of the week — Irrespective of the COVID-19 pandemic, human migration patterns are strongly
influenced by the day of the week [58]. Therefore, we consider this information to stabilize the
learning of the prediction models. In this study, the day of the week information of the prediction
target day is used as a group (refer to the “Groups” in Table 2 under “Day of the week”), and the day
of the week information considering the periodicity, along with the information on weekends and
holidays, is used as factors (refer to the “Factors” in Table 2 under “Day of the week”). The day of
the week information considering periodicity, which is a factor, was created by performing a feature
transformation according to

Xweek(d) = cos
(

2πd
max(D)

)
, (2.1)

Yweek(d) = sin
(

2πd
max(D)

)
, (2.2)

d ∈ D, D = {0, 1, 2, 3, 4, 5, 6}, (2.3)

[59]. Here, D represents a set of sequence numbers corresponding to the day of the week, with 0 to 6
denoting Monday to Sunday, respectively. Moreover, d is a variable that represents the corresponding
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Figure 2. Procedure of the experiment.

day of the week.

• Climate conditions — Irrespective of the COVID-19 pandemic, it has been reported that tempera-
ture, rainfall, and wind speed affect human flow [60]. Therefore, we consider climate conditions to
stabilize the learning of the prediction models. Thus, climate information is used as a group (refer
to the “Groups” in Table 2 under “Climate conditions”), and temperature, rainfall, and wind speed
are used as factors (refer to the “Factors” in Table 2 under “Climate conditions”). For convenience
in data preparation, the average daily temperature, rainfall, and wind speed in Funabashi City, Chiba
Prefecture, which is adjacent to Narashino City, were used in this study.

2.3. Machine-learning models and data analysis procedures

In this section, an overview of the machine-learning models and data analysis procedures is pro-
vided in four subsections. Figure 2 illustrates our experimental procedure. Section 2.3.1 describes the
construction of prediction models for human flow using machine learning. In general, the important
features and prediction performance differ depending on the machine-learning model used. Therefore,
four prediction models were employed in this study: two linear and two tree-based models. A base-
line was also employed to confirm whether the models could capture the regularity of the response
variable from the features. Section 2.3.2 describes the evaluation functions for a comprehensive com-
parison of the prediction performance. Section 2.3.3 describes the cross-validation for evaluating the
generalization performance of the predictive models and hyperparameter optimization for capturing
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the relationship between the features and response variable during training. Section 2.3.4 describes the
calculation of grouped feature importance for the linear and tree-based models.

2.3.1. Linear models, tree-based models, and baseline

The least absolute shrinkage and selection operator (LASSO)-based methods, the group LASSO
(GL) and the sparse group LASSO (SGL), were selected as the linear models used in this study. GL
is a classical LASSO-based method that assigns a penalty to the weights of groups rather than to the
individual weights corresponding to each feature [61]. The LASSO regularization term is given by the
following equation:

LASSOreg = ||w||1, ||w||1 =
I∑

i=1

|wi|, (2.4)

where I denotes the total number of features, w denotes the weight vector corresponding to all features
used as input, wi denotes the weight coefficient for the i-th feature, | · | denotes the absolute value, and
|| · ||1 denotes the L1-norm. In the LASSO regularization term, the L1 norm, which is defined as the sum
of the absolute values of the weight coefficients, is minimized. This approach prevents the divergence
of the weight coefficients, enabling the elimination of factors that are unlikely to be strongly associated
with the response variable. The GL regularization term is expressed as follows:

GLreg =

J∑
j=1

√
p j ||w j||2, ||w j||2 =

√∑
i∈I j

w2
i , (2.5)

where J is the total number of groups, w j is the weight vector for the features in the j-th group, I j is the
set of features in the j-th group, wi is the weight coefficient for the i-th feature in the I j group, and || · ||2
is the L2-norm. p j is the size of the j-th group, and multiplying it by √p j accounts for the variability
in each group size. In the GL regularization term, the L2-norm is calculated for each group and the
sum of these norms is minimized. This approach facilitates the elimination of groups that are unlikely
to be strongly associated with the response variable. GL was implemented using the Python package
“group-lasso” (version 1.5.0). SGL is a LASSO-based method that allows not only the assignment of
a penalty to each group but also the assignment of a penalty to each individual weight [62, 63]. The
SGL regularization term is expressed as follows:

SGLreg = λ1||w||1 + λ2

J∑
j=1

√
p j ||w j||2, (2.6)

where the coefficients of λ1 and λ2 are applied as multipliers to the respective regularization terms for
LASSO and GL and then summed. This enables the calculation of feature importance for each feature
in addition to the calculation of the importance of each group. SGL was implemented using the Python
package “group-lasso” (version 1.5.0).

Random forest (RF) and light gradient boosting machine (LightGBM) were selected as the tree-
based models in this study. RF extends the bagging method, which is a type of ensemble learning
method [64] consisting of multiple trees (decision trees for classification and regression trees for re-
gression). The training of each tree utilizes subsets of data extracted from the dataset using the boot-
strap method. In addition, for each branch in the tree, only a certain number of features that are selected
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randomly, rather than the entire set, are used in training. The final output value is derived from the leaf
node of each trained tree, determined through majority voting for classification or by calculating the
mean of all outputs for regression. Introducing randomness in this manner reduces the correlation
among trees, thereby enhancing the bias and variance relative to using a singular decision tree. RF
was implemented using the Python package “scikit-learn” (version 1.0.2) [65]. LightGBM is a type of
gradient boosting decision tree that addresses the computational cost issues associated with traditional
models of this type [66]. Similar to RF, it comprises multiple trees for both classification and regres-
sion. However, unlike RF, which predicts the actual value of the response variable, LightGBM focuses
on predicting the residual between the actual target and output values. The trees are combined in series,
allowing subsequent trees to correct the data samples with large residuals identified by the preceding
tree preferentially. By leveraging the training outcomes from one tree to the next, both the training
efficiency and prediction performance are enhanced. LightGBM incorporates several computational
performance improvement techniques, including leaf-wise tree growth, histogram- and gradient-based
one-side sampling, and exclusive feature bundling (detailed information can be found in the original
paper [66]). This model was implemented using the Python package “lightgbm” (version 4.0.0).

In this study, the baseline was established as the mean of the response variable to simulate the pre-
diction performance when the association between the feature and response variable was not captured.
Comparing the outcomes of the four machine-learning models with the baseline facilitated the assess-
ment of the prediction performance and the degree to which the features that were associated with the
response variable were captured. If the prediction performance of the machine-learning model was
better than that of the baseline, it could be inferred that the model successfully captured the association
between the response variable and features to some extent.

2.3.2. Evaluation functions

In this study, the root mean square error (RMSE), coefficient of determination (R-squared: R2),
and mean absolute percentage error (MAPE) were employed as evaluation functions to compare the
prediction performance of the machine-learning models comprehensively.

RMSE is an evaluation function expressed as

RMSE =

√√
1
N

N∑
i=1

(yi − ŷi)2, (2.7)

where N is the sample size, yi is the measured value for the i-th data point, and ŷi is the predicted
value for the i-th data point. The advantage is that the least-squares error between the measured and
predicted values is multiplied by the square root. Therefore, the units of the evaluation value can be
evaluated on the same scale as the units of the actual data. It is possible to determine that the closer the
evaluation value is to 0, the better the prediction performance.

R2 is an evaluation function expressed as

R2 = 1 −
∑N

i=1(yi − ŷi)2∑N
i=1(yi − ȳ)2

, (2.8)

where N is the sample size, yi is the measured value for the i-th data point, ŷi is the predicted value for
the i-th data point, and ȳ is the average of the measured values. The denominator of the second term,
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i=1(yi− ȳ)2, represents the sum of the variations from the mean in the measured values. The numerator

of the second term,
∑N

i=1(yi− ŷi)2, represents the sum of the residuals, where the measured values cannot
be explained by the predicted values (or the machine-learning model and features). That is, the second
term indicates the ratio of the sum of the residuals that cannot be explained by the predicted values to
the sum of the variations from the mean in the measured values. Therefore, R2, where the second term
is subtracted from 1, is interpreted as the ratio of the predicted values to the variation from the mean
in the measured values. The maximum value is 1, and it is possible to determine that the closer the
evaluation value is to 1, the better the prediction performance.

MAPE is an evaluation function expressed as

MAPE =
100
N

N∑
i=1

∣∣∣∣∣yi − ŷi

yi

∣∣∣∣∣ , (2.9)

where N is the sample size, yi is the measured value for the i-th data point, and ŷi is the predicted value
for the i-th data point. The advantage is that the prediction error divided by the measured value is
multiplied by the absolute value and 100. Therefore, the prediction error relative to the measured value
can be evaluated as a positive percentage. Because a smaller error percentage is desirable, the closer it
is to zero, the better the prediction performance.

2.3.3. Cross-validation and hyperparameter optimization

In this study, K-fold cross-validation (CV) was applied when training the four machine-learning
models. Two types of CV were performed simultaneously: CV on the training and test data, and CV
on the training and validation data. The CV on the training and test data was performed to evaluate the
generalization performance of the prediction models. The CV on the training and validation data was
used to perform hyperparameter optimization based on the validation error minimization, as described
below. In this case, the dataset was first randomly shuffled to eliminate bias. Subsequently, K = 10
was employed as the number of dataset partitions, and the original dataset was divided in a training:test
ratio of 9:1. In addition, the training data were re-split in a training:validation ratio of 9:1. Therefore,
when CV on the training and test data was run once, one prediction model was built for the training
and test data, whereas 10 models were built for the validation data. Because the CV on the training
and test data was run 10 times, the final evaluation value was the output from 10 prediction models
for the training and test data, and 100 for the validation data. The generalization performance of the
prediction models constructed using the given hyperparameters and different datasets was evaluated
comprehensively by calculating the summary statistics of these output values.

Hyperparameter optimization based on minimizing the validation error was performed to enhance
the ability of the machine-learning models to capture the features of the dataset. Bayesian optimiza-
tion was used as the optimization algorithm and RMSE was used as the optimization metric. In GL,
the regularization parameter, which determines the strength of the regularization term, was targeted
for optimization, with the maximum number of training iterations set to 100,000. In SGL, the two
regularization parameters that determine the strength of the LASSO and GL regularization terms were
targeted for optimization, with a maximum of 80,000 training iterations. In RF, the optimization cov-
ered six parameters: the number of trees to be constructed, data splitting criteria, maximum depth of
the tree, minimum sample size for a split, minimum sample size for a leaf node, and penalty for tree
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complexity. In LightGBM, the nine parameters targeted for optimization were the number of trees
to be constructed, final number of leaf nodes, maximum tree depth, minimum sample size for a leaf
node, L1 regularization coefficient, L2 regularization coefficient, fraction of data randomly sampled
for tree construction, frequency of bagging, and fraction of features used for tree construction. These
hyperparameters were optimized using Optuna [67]. For other hyperparameters, the default values of
the Python package for each of the machine-learning models described in Section 2.3.1 were used.

2.3.4. Grouped feature importance

This section describes the evaluation method for the grouped feature importance using a trained
machine-learning model. Extensions of the LASSO model were used as linear machine-learning mod-
els. It was therefore possible to evaluate the feature importance of the groups by referring to the weight
coefficients obtained after training the model. For tree-based models, although the importance of each
feature can be calculated separately, the feature importance of a group cannot be determined. There-
fore, the grouped permutation feature importance (GPFI) [68] was adopted for the tree-based models in
this study. GPFI calculates the feature importance for groups by shuffling feature values in group units
and evaluating them using a trained machine-learning model. In particular, the pre- and post-shuffle
datasets are used as input into a trained machine-learning model, and the evaluation values for each
are computed. Subsequently, the difference between the two evaluation values is computed and set as
the feature importance for that group. The larger the difference between the two values, the greater the
dependence on the group, enabling it to be determined as an important group. Conversely, the smaller
the difference between the two values, the lower the dependence on the group, making it unimportant.

The feature importance for groups is likely to vary depending on the training data. In this study, the
feature importance for groups was computed in each CV iteration. By computing the summary statis-
tics of these values, the variability in the feature importance depending on the dataset was considered.
Moreover, to enable an intuitive judgment of feature importance, the feature importance for the groups
was normalized to have a maximum value of 1 and minimum value of 0.

3. Results

• We confirm that all prediction models were properly trained. For this purpose, we assessed the
possibility of overfitting by referencing the RMSE, which was used as an optimization index for
hyperparameter optimization. Boxplots of the RMSE for the training, validation, and test data for
each prediction model are shown in Figure 3. In general, for a given sample size, employing high-
capacity machine-learning models and/or data featuring high dimensionality can lead to overfitting,
thereby impairing the ability of the model to generalize to new, unseen data effectively. In such a
case, there may be a large discrepancy between the evaluation values of the training and validation
data or between the validation and test data. In addition, the evaluation value of the validation
data is much worse than that of the training data, and the evaluation value of the test data is much
worse than that of the validation data. Based on the above, with a focus on GL and SGL, which
are the linear models in Figure 3, it was confirmed that the interquartile ranges of the evaluation
values in the training, validation, and test data almost overlapped. Thus, it is considered that the
linear models were not likely to exhibit overfitting and that they were properly trained. Next, with a
focus on RF and LightGBM, which are the tree-based models shown in Figure 3, it was confirmed
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Figure 3. Boxplots of RMSE: the evaluation value of each machine-learning model obtained
from K-fold CV.

that the interquartile ranges of the training and validation data partially overlapped. In addition,
the interquartile ranges of the evaluation values in the validation and test data overlapped widely.
Therefore, it can be concluded that there was a slight tendency for the tree-based models to fit the
training data; however, this tendency is considered minor. Furthermore, the wide overlap between
the interquartile ranges of the validation and test data suggests that the tree-based models exhibited
good generalization performance for unknown data. These results suggest that the tree-based models
were unlikely to suffer from overfitting, indicating that the training was conducted appropriately.
Following this, the mean (median) ± standard deviation of RMSE, R2, and MAPE for the baseline,
GL, RF, SGL, and LightGBM models are shown in Table 3. First, we focus on all evaluation values
for the baseline and each prediction model in Table 3. The mean and median of RMSE, R2, and
MAPE for all prediction models were superior to those of the baseline, regardless of the training,
validation, or test data. This suggests that the linear and tree-based models could capture patterns
that explain human flow from the given features. Next, we focus on the GL, RF, SGL, and LightGBM
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Table 3. Mean (median) ± SD of prediction scores for each machine-learning model.

Evaluation function∗1 Prediction model Mean (median) ± SD
Training∗2 Validation∗3 Test∗4

RMSE

Baseline 312 (311) ± 6.7 312 (303) ± 68.6 315 (330) ± 59.0
GL 269 (270) ± 6.3 289 (290) ± 55.3 290 (284) ± 63.3
RF 244 (246) ± 5.0 280 (276) ± 48.0 275 (262) ± 54.5
SGL 269 (270) ± 7.4 289 (290) ± 55.7 291 (287) ± 63.0
LightGBM 207 (209) ± 8.7 244 (239) ± 45.8 268 (258) ± 62.7

R2

Baseline .000 (.000) ± .000 .000 (.000) ± .000 .000 (.000) ± .000
GL .620 (.619) ± .014 .488 (.526) ± .163 .496 (.523) ± .212
RF .686 (.683) ± .010 .503 (.585) ± .218 .553 (.599) ± .186
SGL .618 (.619) ± .016 .489 (.526) ± .164 .494 (.517) ± .212
LightGBM .774 (.771) ± .020 .626 (.683) ± .150 .565 (.628) ± .207

MAPE

Baseline .057 (.057) ± .001 .057 (.056) ± .014 .057 (.058) ± .012
GL .036 (.036) ± .001 .040 (.039) ± .007 .040 (.038) ± .008
RF .033 (.033) ± .001 .038 (.038) ± .007 .038 (.035) ± .008
SGL .036 (.036) ± .001 .040 (.039) ± .007 .040 (.039) ± .008
LightGBM .028 (.028) ± .001 .034 (.033) ± .006 .037 (.036) ± .008

*1 An RMSE close to 0 indicates better prediction performance. An R2 close to 1 indicates better prediction
performance. A MAPE close to 0 indicates better prediction performance.

*2 The Training column shows the summary statistics of RMSE, R2, and MAPE for the training data used in
the 10 prediction models constructed by K-fold CV in training/test with respect to each machine-learning
model.

*3 The Validation column shows the summary statistics of RMSE, R2, and MAPE for the validation data used
in the 100 prediction models constructed by K-fold CV in training/test and training/validation with respect
to each machine-learning model.

*4 The Test column shows the summary statistics of RMSE, R2, and MAPE for the test data used in the 10
prediction models constructed by K-fold CV in training/test with respect to each machine-learning model.

models in Table 3. In the training, validation, and test data, the mean and median values of RMSE,
R2, and MAPE of the tree-based models were superior to those of the linear models. Among the
tree-based models, LightGBM had the best mean and median RMSE, R2, and MAPE for the training,
validation, and test data.

• Among the four machine-learning models, LightGBM exhibited the best prediction performance.
This suggests that LightGBM is superior to other machine-learning models in capturing critical
information relating to the response variable from features. Accordingly, factor analysis was con-
ducted to examine the impact on human flow for each group based on the group feature importance
of LightGBM. The summary statistics of the group feature importance for each iteration of the K-
fold CV are shown in Table 4. Normalization within the range of [0, 1] was applied to each iteration
to highlight the differences in feature importance. In this study, the open interval between A and B is
denoted by (A, B) and the closed interval is denoted by [A, B]. First, focusing on the mean values of
the feature importance displayed in Table 4, it is observed that for all groups the mean was greater
than 0. When the importance of a feature that has no impact on the prediction was set to 0, the nor-
malized values for it resulted in both a mean and standard deviation of 0.000. These results suggest
that all groups had a degree of association with human flow during the COVID-19 epidemic, albeit
small. However, for state-of-emergency and priority measures to prevent the spread of disease, as
shown in Table 4, the mean was nearly zero. Next, focusing on ranking based on the mean values of
the group feature importance in Table 4, we identified the cumulative number of vaccinated individ-
uals as the primary contributor to human flow. The climate conditions were selected as the second
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Table 4. Summary statistics for feature importance at the group level with [0, 1] normaliza-
tion applied to each iteration of cross-validation and group rankings based on the mean value
of feature importance.

Groups∗1 Mean∗2 SD∗2 Ranking∗3

Number of newly infected individuals on the previous day .257 .144 4

Difference in the number of newly infected individuals be-
tween the previous day and the day before the previous day

.021 .018 9

Number of deaths on the previous day .087 .056 6

Difference in the number deaths between the previous day and
the day before the previous day

.022 .016 8

Number of vaccinated individuals in Japan on the previous day .354 .330 3

Cumulative number of vaccinated individuals in Japan up to
the previous day

.929 .226 1

Presence/absence of the state of emergency on the day .002 .002 11

Presence/absence of priority measures to prevent the spread of
disease on the day

.002 .003 11

Rate of work-from-home utilization on the month .025 .035 7

Month-end hospital bed occupancy rate on the month .004 .006 10

Day of the week on the day .252 .089 5

Climate conditions on the day .586 .291 2
*1 The day of prediction was used as a reference for the current day, current month, previous day, and the day before the

previous day.
*2 When the feature importance was set to 0 to imply no effect on prediction, applying normalization, both the mean and

standard deviation were 0.000.
*3 Ranking were based on the mean value of feature importance.

most important group, followed by the number of vaccinated individuals, number of newly infected
individuals, and day of the week. Excluding the climate conditions and day of the week, which were
added to stabilize the learning of each prediction model, groups with strong associations to human
flow during the COVID-19 pandemic were the cumulative number of vaccinated individuals, number
of vaccinated individuals, and number of newly infected individuals. However, Table 4 shows that
the number of vaccinated individuals had the highest standard deviation among all groups, indicating
that the stability of this group was low. Conversely, the number of newly infected individuals and
cumulative number of vaccinated individuals had small standard deviations from the mean, suggest-
ing that they could stably capture the trends in human flow. Therefore, it is highly likely that the
number of newly infected individuals and cumulative number of vaccinated individuals had a strong
and stable influence on human flow during the COVID-19 pandemic.
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Figure 4. Scatter plots of the normalized number of newly infected individuals in Japan,
normalized cumulative number of vaccinated individuals broken down by the number of
vaccinations, and normalized average daily distance traveled.

• The number of newly infected individuals and cumulative number of vaccinated individuals had a
strong and stable effect on human flow in the COVID-19 disaster. A visual analysis using scatter
plots is presented to capture these detailed trends, which are subdivided into the factors listed in
Table 2. Figure 4 shows scatter plots of the number of newly infected individuals by region (in this
figure, Japan), cumulative number of vaccinated individuals subdivided by the number of vaccina-
tions, and human flow of Narashino residents. For uniformity, all values were normalized using [0,
1] scaling. Focusing on Figure 4, it was confirmed that the human flow tended to be low when the
normalized cumulative number of vaccinated individuals was 0, regardless of the number of vacci-
nations. Conversely, when the normalized cumulative number of vaccinated individuals was greater
than 0, the human flow also tended to increase. In addition, there may be a difference in the hu-
man flow trend in relation to the increase or decrease in the normalized number of newly infected
individuals before and after the maximum normalized number of newly infected individuals (see
the dashed line in Figure 4). In particular, the human flow tended to increase after the peak com-
pared to before the peak, as the normalized number of newly infected individuals decreased. These
trends are also confirmed by scatter plots consisting of the normalized number of newly infected
individuals in the Tokyo and Chiba Prefectures (see Figure A2 in the Appendix). To analyze these
trends in further detail, the segments were divided according to the cumulative number of vaccinated
individuals. The correlation between the number of newly infected individuals and human flow in
each segment was then confirmed. The three segments are as follows: the normalized cumulative
number of vaccinated individuals = 0 (segment A); the normalized cumulative number of vaccinated
individuals > 0 but below the threshold value (segment B); and the normalized cumulative number
of vaccinated individuals > the threshold value but below 1 (segment C). The threshold value refers
to the cumulative number of vaccinated individuals when the normalized number of newly infected
individuals is at its maximum in the respective scatter plots. For example, the normalized cumulative
number of vaccinated individuals at the first vaccination dose was 0.737 and the normalized cumula-
tive number of vaccinated individuals at the second vaccination dose was 0.681 when the number of
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Figure 5. Scatter plots, correlations, and adjusted p-values of the normalized number of the
newly infected individuals in Japan, normalized average daily distance traveled broken down
by the number of vaccinations, and normalized cumulative number of vaccinated individuals
by segment (left: segment A, middle: segment B, right: segment C).

newly infected individuals in Japan reached its maximum (see the dashed line in Figure 4). Scatter
plots of the number of newly infected individuals in Japan and human flow, divided into segments
according to the above, and their correlation coefficients r are presented in Figure 5 (those consisting
of the number of newly infected individuals in Tokyo and Chiba Prefecture are shown in Figure A2
in the Appendix). All values were normalized to a scale of [0, 1] to ensure uniformity. In addition,
to determine the significance of the correlation coefficients in this study, a test of no correlation was
conducted with the null hypothesis being “correlation coefficient is 0” and the alternative hypothesis
being “correlation coefficient is not 0.” The significance level was set to α = 0.05. Furthermore,
the Benjamini–Hochberg (BH) method, which is a multiple testing correction, was applied to ad-
dress the problem of multiplicity, in which the probability of an error of the first kind (false positive)
increases with repeated multiple times. The p-values adjusted using the BH method are shown in
Figure 5 (the adjusted p-values for Tokyo and Chiba are shown in Figure A2 in the Appendix). We
focus on the correlation coefficients r and adjusted p-values for each segment in Figure 5. For the
first vaccination, in the upper left of segment A in Figure 5, the correlation coefficient was −0.502,
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(a) First vaccination
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(b) Second vaccination

Figure 6. Scatter plots, correlations, and adjusted p-values between the normalized num-
ber of newly infected individuals in Japan (left), Tokyo (center), and Chiba (right) and the
normalized average daily distance traveled when the cumulative number of vaccinated indi-
viduals was 0.

with an adjusted p-value of 1.26×10−3. For the second vaccination, in the lower left of segment A in
Figure 5, the correlation coefficient was −0.623 and the adjusted p-value was 1.97×10−7. Therefore,
the number of newly infected individuals and human flow may be negatively correlated in segment
A, rather than uncorrelated. In contrast, in segment B, in the center of Figure 5, the correlation co-
efficient was −0.021 for the first vaccination and −0.105 for the second vaccination, with adjusted
p-values of 0.819 and 0.252, respectively. Thus, the possibility that the relationship between the
number of newly infected individuals and human flow was independent was confirmed. Segment C,
on the right side of Figure 5, had a correlation coefficient of −0.220, showing a stronger negative
correlation than segment B. However, the adjusted p-value of 0.252 confirms the possibility that the
relationship between the number of newly infected individuals and human flow was independent.
Similar trends were also observed in Tokyo and Chiba. However, for the first vaccination of seg-
ment A in Chiba, the adjusted p-value was 5.01× 10−2, confirming that the relationship between the
number of newly infected individuals and human flow was statistically uncorrelated (Figure A2(b),
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upper left in the Appendix).

• We investigate how differences in the number of newly infected individuals by region and the number
of vaccinations influence human flow. Figure 6 shows scatter plots of the number of newly infected
individuals by region and human flow, as well as the correlation coefficients, under the situation in
segment A where vaccination had not started. First, we focus on the difference in the number of
vaccinations. Comparing Figure 6(a),(b), it is confirmed that the correlation coefficient was stronger
in the negative direction for the second vaccination than for the first in all regions. We examined
whether there was a significant difference in the correlation coefficients owing to differences in the
number of vaccinations. For each region, a test of the difference between independent correlation
coefficients based on the z-distribution was conducted, where the null hypothesis was “no difference
in correlation coefficients” and the alternative hypothesis was “there is a difference in correlation
coefficients.” The significance level was set to α = 0.05. Furthermore, the BH method was ap-
plied to address the multiplicity problem. The adjusted p-values were 0.194 for Japan, 0.194 for
Tokyo, and 0.194 for Chiba. Therefore, there was no significant difference in the correlation coeffi-
cients between the number of newly infected individuals and human flow according to the number of
vaccinations in all regions. Next, we focus on the differences in the number of newly infected indi-
viduals by region. Regarding the first vaccination in Figure 6(a), it was confirmed that the correlation
coefficient between the human flow in Narashino City and number of newly infected individuals in
Japan was −0.502, that in Tokyo was −0.479, and that in Chiba was −0.344. Focusing on the second
vaccination in Figure 6(b), it was confirmed that the correlation coefficient between the human flow
in Narashino City and number of newly infected individuals in Japan was −0.623, that in Tokyo
was −0.597, and that in Chiba was −0.502. Therefore, in the situation where vaccination had not
yet begun, the negative correlation with human flow was greater for the number of newly infected
individuals in major regions such as Tokyo and Japan than in Chiba, where Narashino residents live.
It was necessary to confirm whether there were significant differences in the correlation coefficients
between regions. For each number of vaccinations, a test of the difference between the independent
correlation coefficients based on the z-distribution was conducted, where the null hypothesis was
“no difference in correlation coefficients” and the alternative hypothesis was “there is a difference in
correlation coefficients.” The significance level was set to α = 0.05. Furthermore, the BH method
was applied to address the multiplicity problem. The adjusted p-values for the first vaccination were
0.443 for Japan and Tokyo, 0.330 for Japan and Chiba, and 0.330 for Tokyo and Chiba. The adjusted
p-values for the second vaccination were 0.443 for Japan and Tokyo, 0.330 for Japan and Chiba, and
0.330 for Tokyo and Chiba. Thus, we confirmed that there were no significant differences between
the correlation coefficients of the number of newly infected individuals by region and human flow,
regardless of the number of vaccinations.

4. Discussion

4.1. Explanation of results

Table 5 shows the results obtained from this study.

(i). All machine-learning models were properly trained with a low probability of overfitting. In ad-
dition, it was confirmed that the tree-based models scored better than the linear models for all
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Table 5. Summary of the results of this study.

(i). All predictive models were found to learn adequately, with negligible possibility of over-
learning. It was also confirmed that LightGBM had the best prediction performance in terms
of all evaluation functions, RMSE, R2, and MAPE.

(ii). The groups in Table 2 influence human flow in the COVID-19 pandemic, but the contribution
of the government infectious disease control measures was confirmed to be relatively low.
The results also suggest that the cumulative number of vaccinated individuals and number of
newly infected individuals may have a stable and strong influence on the increase or decrease
in human flow.

(iii). Before and after the cumulative number of vaccinated individuals is zero, the trends in human
flow differ. Similarly, these trends also differ before and after the peak in the number of
newly infected individuals. The statistical results show that there is a correlation between
the number of newly infected individuals and human flow in each region when the first and
second vaccinations had not started (p < 0.05) (however, it was suggested that there may be
no correlation between the number of newly infected individuals and human flow in Chiba
when the first vaccination had not started (p ≧ 0.05)).

(iv). The negative correlation coefficients between the number of newly infected individuals and
human flow in each region were larger for the second vaccination than that for the first vac-
cination under conditions in which vaccination had not started (however, the difference in the
correlation coefficients for the vaccination frequency was not significant (p ≧ 0.05)).

(v). The negative correlation between the number of newly infected individuals and human flow
was higher in major regions such as Tokyo and Japan than in Chiba, where people live (how-
ever, there was no significant difference between the correlation coefficients of the number of
newly infected persons and human flow by region (p ≧ 0.05)).

three evaluation functions (RMSE, R2, and MAPE) among the five prediction models, including
the baseline. This may be owing to the ability of tree-based models to capture the interactions
among input variables and the nonlinear relationships between the features and response vari-
able. Tree-based models can effectively learn how other features influence the response variable
when a feature has a particular value. Even when the influence involves nonlinearity, the pattern
of influence can be learned. The features in this study had complex interactions, and there were
likely to be nonlinear relationships between the features and response variable. However, the
linear models employed in this study were unable to capture the interactions between the input
variables and nonlinear relationships effectively. This may explain why the prediction perfor-
mance of the tree-based models was better than that of the linear models. Among the tree-based
models, LightGBM was found to have the best prediction performance. The superior prediction
performance of LightGBM over RF is likely attributable to the differences in the model char-
acteristics. The prediction errors of machine-learning models have biases and variances. Bias

Mathematical Biosciences and Engineering Volume 21, Issue 8, 6936–6974.



6957

represents the difference between the true and predicted values. The implication is that the lower
the bias, the better the capturing of the association between the response variable and features of
a given dataset. Variance represents the scatter in the predicted values. The implication is that
the lower the variance, the better the capturing of the association between the response variable
and features common to a wide range of data, not only a specific dataset. In general, there is a
trade-off between bias and variance, and it is crucial to find models in which both parameters are
small [69]. RF combines multiple independent weak learners in parallel, where their predicted
values undergo majority voting (for classification) or averaging (for regression) to determine the
final outcome. This approach implies high generalization performance as it integrates the col-
lective decisions of weak learners, thereby making RF a model that excels in reducing variance
rather than bias. In contrast, LightGBM constructs decision trees with dependent relationships
in series, training by adjusting the sample based on residuals by the preceding decision tree in
the subsequent tree. This method, which focuses on individual samples, suggests that Light-
GBM is adept at reducing bias rather than variance. Therefore, although LightGBM tended
to have a higher standard deviation of prediction scores than RF, its lower mean indicates bet-
ter performance. Previous studies have reported that LightGBM outperforms RF in regression
prediction in various fields [70–72].

(ii). The importance of group features, focusing on LightGBM, which demonstrated the best predic-
tion performance, was confirmed. Table 2 shows that all groups had an impact on human flow
in the event of a COVID-19 disaster. However, government infectious disease control measures
contributed little to the prediction of human flow. This outcome is likely owing to a diminishing
response to each intervention [73], changes in human flow resulting from alterations in requests
and orders [74], and an increase in risk-compensatory behavior following the enforcement of
regulations [75]. The results of this study support these claims and further show the possibility
of their significant influence. By contrast, the cumulative number of vaccinated individuals and
number of newly infected individuals were found to have a potentially stable and strong impact
on human flow. The Peltzman effect, which refers to the phenomenon in which safety mea-
sures decrease an individual’s perception of risk, leading to potentially riskier decisions [76], is
a probable explanation for the emphasis on the numbers of vaccinated and newly infected indi-
viduals. Previous studies reported an increase in the Peltzman effect with vaccinations during
the COVID-19 outbreak [32,77,78]. The existence of a stochastic trend and periodicity has also
been reported in which the number of newly infected individuals increases as human mobility in-
creases, while people tend to curb their movements in response to an increase in newly infected
individuals [79]. Therefore, it is possible that the Peltzman effect of the COVID-19 pandemic
was influenced by a decrease in the understanding of infection risk owing to an increase in the
cumulative number of vaccinated individuals and a change in the understanding of infection risk
owing to cycles of increase and decrease in the number of newly infected individuals. These
results are consistent with those reported in previous studies, and are considered highly valid.

(iii). The visual analysis qualitatively confirmed that there was a difference in the trend of human
flow between the times when the cumulative number of vaccinated individuals was 0 and when
it was higher than 0, as well as before and after reaching the maximum number of newly in-
fected individuals. The correlation analysis quantitatively investigated this trend and found that
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the number of newly infected individuals and human flow were not “no correlation” when the
cumulative number of vaccinated individuals was 0 (segment A), indicating the possibility of
a negative correlation. In addition, we confirmed that the relationship between the number of
newly infected individuals and human flow can indicate no correlation in the range where the cu-
mulative number of vaccinated individuals was greater than 0 and the number of newly infected
individuals reached the maximum (segment B). Furthermore, in the range beyond that (segment
C), a stronger negative correlation between the number of newly infected individuals and hu-
man flow was observed compared with that in segment B. However, the correlation between
the number of newly infected individuals and human flow was found to be insignificant. This
suggests that the Peltzman effect in the COVID-19 pandemic may be closely related to human
flow. In segment A, the cumulative number of vaccinated individuals was 0, which means that
the perception of infection risk owing to an increase in the number of new infections was high.
In segment B, the increase in the cumulative number of vaccinated individuals was considered
to reduce the perception of infection risk owing to the increase in the number of newly infected
individuals. In segment C, an infectious explosion was experienced. However, the further in-
crease in the cumulative number of vaccinated individuals may have prevented an increase in
the perception of infection risk owing to the number of newly infected individuals. These results
seem to support the claim of a Peltzman effect induced by vaccination and the number of newly
infected individuals. In segment A, people were aware of the risk of infection, and movement
restrictions appeared to be working effectively. In contrast, vaccination had commenced dur-
ing segments B and C. However, people may have been less conscious of the risk of infection,
as they determined their daily travel distance, regardless of the number of newly infected indi-
viduals. Kwon and Koylu reported that the correlation between COVID-19 infection rates and
human mobility weakens over time [80]. In addition, they attributed this to changes in disease
control measures, risk perception, and individual behavior, which vary spatially and temporally.
Serisier et al. reported an increased tendency to interact with individuals outside the home and
to utilize non-essential stores and services within 14 days after receiving the first COVID-19
vaccination, compared with the period before vaccination in England and Wales [81]. Andrejko
et al. reported that COVID-19 vaccination within households was associated with increased
social contact outside the home for both vaccinated adults and their unvaccinated children [82].
In this study, these trends were confirmed, and the Peltzman effect associated with the interac-
tion between vaccination and the number of newly infected individuals was identified as a new
possible cause.

(iv). The correlation coefficients suggest that in segment A, the negative correlation coefficients be-
tween the number of newly infected individuals and human flow in each region tended to be
higher for the second vaccination than that for the first. However, a test of the difference be-
tween the independent correlation coefficients based on the z-distribution showed no significant
differences in the correlation coefficients based on the number of vaccinations. Therefore, it is
highly likely that the correlation coefficients between the first and second vaccinations were sta-
tistically equivalent in each region. For Chiba, the correlation coefficient between the number of
newly infected individuals and human flow was statistically uncorrelated when the first vaccina-
tion had not started. However, the correlation coefficient between the number of newly infected
individuals and human flow was statistically significant when the second round of vaccination
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had not started. This suggests that people’s awareness of the risk of infection may differ before
and after vaccination. In particular, it is possible that the perception of infection risk in terms of
the number of newly infected individuals in the respective area was improved by vaccination.
This phenomenon is likely attributable to the early dissemination of information by the Min-
istry of Health, Labour and Welfare of Japan and the mass media regarding the necessity of the
second vaccination to achieve a significant preventive effect against infection [83]. It was also
communicated that antibody formation takes approximately one to two weeks, during which the
incidence rate mirrors that in unvaccinated individuals. It is thought that these statements in-
creased awareness of the risk of infection. Therefore, it is believed that fewer people were bold
enough to take action after the first vaccination, and attention to the number of newly infected
individuals in their living locations increased.

(v). The correlation coefficients between regions suggested that, in situations where vaccination had
not yet begun, people tended to refer to the number of newly infected individuals in the capital,
Tokyo, or Japan as a whole, rather than in their home region. However, a test of the difference
between the independent correlation coefficients based on the z-distribution showed no signif-
icant differences in the correlation coefficients between regions. Therefore, it is highly likely
that the correlation coefficients between regions, such as those between Japan and Tokyo and
between Tokyo and Chiba, were statistically equivalent, regardless of the number of vaccina-
tions. However, in the case of the first vaccination dose, the relationship between the number
of newly infected individuals in Japan and Tokyo and human flow was not statistically shown
to be no correlation (see left and center in Figure 6(a)). By contrast, the relationship between
the number of newly infected individuals and human flow in Chiba was statistically no corre-
lation (see right in Figure 6(a)). Thus, it is suggested that in situations where vaccination had
not commenced, human flow may have been determined based on the number of newly infected
individuals not living in their residential area, but rather in the capital city of Tokyo or across
Japan as a whole. It is generally believed that people who go out in a situation where infectious
diseases are spreading make decisions based on the number of newly infected individuals in an
area close to their residence. However, in this study, Narashino citizens referred to the number
of newly infected individuals in Tokyo and Japan rather than in Chiba, which is contrary to the
general assumption. This is likely related to the locations and broadcast areas of key stations
in Japan. The five key stations in Japan are Nippon Television Network Corporation [84], TV
Asahi Corporation [85], TBS HOLDINGS, INC. [86], TV TOKYO Corporation [87], and Fuji
Television Network, Inc. [88]. Their headquarters are located in Tokyo, the capital of Japan, and
their broadcast areas cover the entire country. Thus, information related to the number of newly
infected individuals sourced from the mass media often covers all of Japan or Tokyo, the capital
of Japan, and the headquarters of key stations. Therefore, it is thought that not only Narashino
residents, but also people all over Japan, were in a situation where they often saw the number
of newly infected individuals in Japan and Tokyo. Thus, the human flow of Narashino citizens
was more strongly influenced by the number of newly infected individuals in Japan and Tokyo
than by the number of newly infected individuals in Chiba. If this is correct, these behaviors
are likely to cause an increase in the number of newly infected individuals and economic losses
before the start of vaccination. For example, if the number of newly infected individuals is high
in Chiba but low across Japan and Tokyo, it is likely to lead to an increase in the number of
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Table 6. SWOT matrix for this study.

Strengths
The analysis has been conducted with maximum consideration of the characteristics of the dataset, and the reliability
of the results has been sufficiently enhanced. Facts reported in previous studies are emphasized, and the importance of
factors is presented. In addition, we have presented the differences in human flow with respect to the vaccination status,
depending on the number of vaccinations and regional characteristics of the number of newly infected individuals.

Weaknesses
No statistically significant differences in the correlation coefficients were obtained for differences in trends in the human
flow by region and number of vaccinations.

Opportunities
The results of this study are consistent with those reported in previous studies, indicating a high degree of validity. It is
expected that the hypotheses obtained in this study will be validated in the future.

Threats
Future social advances may make the results and interpretations of this study inapplicable.

newly infected individuals at their place of residence owing to increased daily travel, despite the
relatively higher risk of infection. Conversely, if the number of newly infected individuals is
high in Japan and Tokyo but low across Chiba, daily travels are suppressed despite the relatively
low risk of infection in the living centers, and economic losses are likely to occur in the living
centers. Therefore, in situations in which vaccination has not yet begun, it may be important to
provide information on the number of newly infected individuals in each region, in addition to
information on the number of newly infected individuals nationally and in the capital, to control
infection and for economic benefit.

4.2. SWOT analysis of this study

Table 6 shows the pros and cons of this study as a SWOT matrix.

• Strengths — Among the factors in previous studies identified as being closely related to human
flow in the COVID-19 pandemic, this study identifies the factors of particular importance. This
was realized by comparing machine-learning models with different algorithms and factor analyzing
the model that achieved the best prediction performance. In addition, standardization, grouping,
cross-validation, and hyperparameter optimization were applied to these predictive models. In other
words, we believe that the analysis has taken into account the dataset’s characteristics to the highest
extent possible, and that the confidence in the results has been sufficiently increased. The results
obtained from this study are a major contribution to the existing knowledge in that they verify the
findings reported in previous studies. In addition, the newly presented differences in the importance
of the factors and trends in human flow by region and number of vaccinations are considered to be
useful for the future development of infectious disease control measures.

• Weaknesses — In this study, no statistically significant differences in the correlation coefficients
were obtained for differences in trends in the vaccination statuses among regions and among vacci-
nation frequencies. Therefore, we believe that strong assertions should be avoided from this study
because it is not possible at this time to make any definitive statements about these results. In other
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words, it should be noted that these results and interpretations only provide new hypotheses.

• Opportunities — Compared to the early days of the COVID-19 outbreak, data availability has
improved and statistical methods, including machine learning, have been developed. Accordingly,
several findings on COVID-19 have been reported, strengthening the scientific evidence for the ef-
fectiveness of policies and public health measures. The results of this study are consistent with many
of these reports, and we believe that they have demonstrated a high degree of validity. We believe
that these developments will continue to realize significant progress in the future. Therefore, new
technologies and datasets may allow for more in-depth discussions. We believe that the hypotheses
obtained in this study can be tested and solved in the future.

• Threats — The results and interpretation depend on the input variables and machine-learning model
used. Therefore, depending on the variables and algorithms considered, there may be discrepancies
in the results and interpretations. In addition, changes in the social, economic, and technological
environment may cause changes in the assumptions in previous studies. Specifically, changes in
social values and behaviors, policies, and technological innovations are noted. Future social progress
including these factors may render the results and interpretations of this study inapplicable.

5. Conclusions, limitations and prospects

In this study, machine learning was used to analyze political and legal factors as well as health and
safety factors that are expected to have a strong impact on human flow in the COVID-19 pandemic.
Next, the cumulative number of vaccinated individuals and number of newly infected individuals were
subdivided by regional characteristics and the number of vaccinations to investigate the detailed impact
on human flow through visual and correlational analyses. As a result, the following four possibilities
were suggested:

(i). There are complex interactions among the input variables (number of newly infected individu-
als, number of deaths, number of vaccinated individuals, government infectious disease control
measures, rate of work-from-home utilization, month-end hospital bed occupancy rate, day of
the week, and climate conditions) employed in this study, and nonlinear relationships exist be-
tween these variables and human flows. Tree-based models can take these into account, and
LightGBM can effectively reduce bias, thus achieving good forecasting performance.

(ii). Previous studies have reported that the effects of the state-of-emergency and priority measures to
prevent the spread of the disease weaken with repeated interventions, and that the implementa-
tion of regulations increases risk-compensating behavior [73–75]. In this study, the contribution
of government measures against infectious diseases was found to be almost zero (see Table 4),
which supports previous findings and newly presents the possibility that their impact is signifi-
cant. In addition, as a reason why the cumulative number of vaccinated individuals and number
of newly infected individuals are highly related to human flow, it was suggested that there is a
close relationship between human flow and the Peltzman effect.

(iii). The Peltzman effect may reduce the perception of infection risk even when people experience
an increase in infections after vaccination.
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(iv). Vaccination may improve people’s perception of the risk of infection in their residential areas.
This may be due to the influence of the government’s and mass media’s calls for vaccination and
on the perception of infection risk.

(v). Before the start of vaccination, the daily travel distance may be determined by the number of
newly infected individuals in the nation or in the capital. This may be related to the fact that
the key station in Japan is located in Tokyo, the capital of Japan, and the broadcasting area is
nationwide. These behaviors may cause an increase in the number of newly infected individuals
and economic losses in the residential areas before the start of vaccination.

In this study, factors with a particularly high association with human flow were identified in the
COVID-19 pandemic. In addition, the impact of the regional characteristics of these factors and differ-
ent effects of the number of vaccinations on human flow were elucidated. Our findings support those
of previous studies and provide new insights. The government infectious disease control measures
against COVID-19 may have a smaller impact than that of the other factors. In addition, the Peltzman
effect, which is caused by the interaction between the number of newly infected individuals and cumu-
lative number of vaccinated individuals, may have a significant impact on the change in human flow.
Therefore, it is important to review government policies to effectively control the Peltzman effect in
future infectious disease control measures. However, it is important to establish a system to voluntarily
suppress mobility, and to avoid suppressing the Peltzman effect by strictly enforced policies. Watanabe
and Yabu suggested that the provision of appropriate information to encourage people to change their
behavior is more important in controlling the spread of the novel coronavirus than strong and legally
binding measures [51]. Moreover, Coccia reported that high levels of strict restriction policies may not
be effective measures in controlling the spread and adverse effects of the pandemic. It has been sug-
gested that the average number of confirmed cases and fatality rates associated with COVID-19 tend
to be lower in less-restricted countries [33, 89]. Possible mechanisms to voluntarily control mobility
include vaccination at appropriate times and cooperation of the mass media. Based on the findings
of this study, awareness of COVID-19 can be maintained at a high level by reviewing the timing of
vaccination. Lee et al. reported an increase in short-distance travel by private vehicles during the pan-
demic [90]. However, the mass media can provide the number of newly infected persons throughout
Japan and outside the capital city, so that appropriate information on the place of residence can be
ascertained. These are parts of the uncoerced suppression of the Peltzman effect, which allows the
public to accurately judge the risk of infection. As a result, it is expected that the control of human
flow and economic loss will be realized. However, the existence of a good government is a prerequisite
for such a realization [91–93]. In many countries, pandemic preparedness is not sufficient, and there
is still room for improvement [94]. Therefore, it is important to design long-term prevention strategies
for the next pandemic in anticipation of a future epidemic of an infectious disease similar to COVID-
19 [95,96]. During the COVID-19 pandemic and in the presence of new pandemics as well, designing
effective policy responses to mitigate the impact of the initial spread phase is one of the fundamental
problems [97]. The findings of this study may contribute to solving this problem. However, this study
has four limitations:

• The groups in Table 2 were assumed to be independent of one another. Normally, when there is a
possible correlation among features, it is necessary to exclude or compress the features by feature
selection or other means in advance. This study aimed to clarify not only the disclosed information
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on COVID-19 and the effects of implemented measures, but also the effects of the regional char-
acteristics and number of vaccinations. Therefore, it was necessary to use features with possible
correlations. By calculating the feature importance by group, we attempted to stabilize the learning
of prediction models and reduce the bias in the group feature importance. However, the analysis
was performed under the condition that the bias was not completely eliminated and that it had some
negative effects.

• The cause-and-effect assumption was that human flow varies according to the groups in Table 2. In
the real world, the features and response variable in this study are thought to affect one another in
complexity. However, it is challenging to conduct an analysis after unraveling all of these factors.
Therefore, the results obtained in this study are trends that are confirmed when limited to these
assumptions and do not necessarily correspond to trends in the real world.

• The analysis was limited to the factors in Table 2, despite the existence of countless factors that
affect human flow in the COVID-19 pandemic. To conduct a more comprehensive factor analysis
in predicting human flow, it is considered necessary to add factors that may have even a slight
influence on human flow to the verification target. However, it is difficult to conduct an analysis that
considers all of these factors. This is because there are factors that make it difficult to satisfy the
quality and quantity of data available for the study adequately owing to the fact that real data were
used for the analysis. In addition, the sample size must be much larger than the features for proper
use of machine-learning models. Thus, this study employed 32 factors for which the data were
reliable and could be analyzed with the available sample size. However, to achieve higher prediction
performance and conduct a factor analysis that is closer to the real world, it is necessary to increase
both the number of features and sample size [98]. This is recognized as a future challenge.

• The results obtained from the analysis may be biased toward a specific population because the anal-
ysis was limited to Narashino City, Japan. Further verification for many countries and locations is
necessary for a generalized discussion. In the future, it will be necessary to determine whether these
results are specific to Japan or if similar trends are observed in other countries and locations, and to
identify any commonalities.

To complement these limitations, future studies should first focus on enhancing data collection,
including samples and features. Second, the results and hypotheses obtained in this study need to
be examined in further detail by employing different modeling approaches. Specific methods that
can be considered include regime switching model approaches [99], multivariate adaptive regression
splines [100], fuzzy-regression approaches [101, 102], and closed-loop supply chain networks [103]
that take into account uncertainty. These methods are applied in various analyses, including the
characteristics of pandemic peaks and troughs [104], analyzing factors that influence vaccine percep-
tion [105], evaluating the causal impact of COVID-19 vaccination on the reduction of preventive health
behaviors [106], and designing optimal delivery and retrieval of medical equipment while accounting
for the uncertainties caused by COVID-19 [107]. The application of these mathematical methods is
expected to provide new insights in health care during various infectious diseases.
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(a) Normalized number of newly infected individuals in Tokyo
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(b) Normalized number of newly infected individuals in Chiba

Figure A1. Scatter plots of the normalized number of newly infected individuals by region,
normalized cumulative number of vaccinated individuals by the number of vaccinations, and
normalized average daily distance traveled.
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(a) Normalized number of newly infected individuals in Tokyo
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(b) Normalized number of newly infected individuals in Chiba

Figure A2. Scatter plots, correlations, and adjusted p-values of the normalized number of
newly infected individuals, normalized average daily distance traveled by the number of
vaccinations, and normalized cumulative number of vaccinated individuals by segment (left:
segment A, middle: segment B, right: segment C).
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Figure A1(a) shows scatter plots consisting of the number of newly infected individuals in Tokyo,
cumulative number of vaccinated individuals subdivided by the number of vaccinations, and human
flow of Narashino residents. Figure A1(b) shows scatter plots of similar data for Chiba. In addition,
scatter plots of the number of newly infected individuals in Tokyo and human flow divided into seg-
ments A, B, and C, along with their correlation coefficients r and adjusted p-values, are shown in
Figure A2(a). Scatter plots of the number of newly infected individuals in Chiba and human flow
divided into segments A, B, and C, along with their correlation coefficients r and adjusted p-values,
are shown in Figure A2(b). For uniformity, all values were normalized using [0, 1] scaling. The three
segments were the normalized cumulative number of vaccinated individuals = 0 (segment A), the nor-
malized cumulative number of vaccinated individuals > 0 but below the threshold value (segment B),
and the normalized cumulative number of vaccinated individuals > the threshold value but below 1
(segment C). The threshold value refers to the cumulative number of vaccinated individuals when the
normalized number of newly infected individuals is at its maximum in the respective scatter plots. The
normalized cumulative number of vaccinated individuals at the first vaccination dose was 0.696 and
the normalized cumulative number of vaccinated individuals at the second vaccination dose was 0.624
when the number of newly infected individuals in Tokyo was at its maximum (see the dashed line in
Figure A1(a)). The normalized cumulative number of vaccinated individuals at the first vaccination
dose was 0.737 and the normalized cumulative number of vaccinated individuals at the second vacci-
nation dose was 0.681 when the number of newly infected individuals in Chiba reached its maximum
(see the dashed line in Figure A1(b)).
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