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Abstract: Convolutional Neural Networks (CNNs) have received substantial attention as a highly 

effective tool for analyzing medical images, notably in interpreting endoscopic images, due to their 

capacity to provide results equivalent to or exceeding those of medical specialists. This capability is 

particularly crucial in the realm of gastrointestinal disorders, where even experienced 

gastroenterologists find the automatic diagnosis of such conditions using endoscopic pictures to be a 

challenging endeavor. Currently, gastrointestinal findings in medical diagnosis are primarily 

determined by manual inspection by competent gastrointestinal endoscopists. This evaluation 

procedure is labor-intensive, time-consuming, and frequently results in high variability between 

laboratories. To address these challenges, we introduced a specialized CNN-based architecture called 

GastroFuse-Net, designed to recognize human gastrointestinal diseases from endoscopic images. 

GastroFuse-Net was developed by combining features extracted from two different CNN models with 

different numbers of layers, integrating shallow and deep representations to capture diverse aspects of 
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the abnormalities. The Kvasir dataset was used to thoroughly test the proposed deep learning model. 

This dataset contained images that were classified according to structures (cecum, z-line, pylorus), 

diseases (ulcerative colitis, esophagitis, polyps), or surgical operations (dyed resection margins, dyed 

lifted polyps). The proposed model was evaluated using various measures, including specificity, recall, 

precision, F1-score, Mathew’s Correlation Coefficient (MCC), and accuracy. The proposed model 

GastroFuse-Net exhibited exceptional performance, achieving a precision of 0.985, recall of 0.985, 

specificity of 0.984, F1-score of 0.997, MCC of 0.982, and an accuracy of 98.5%. 

Keywords: Deep learning; Convolutional Neural Network; medical image analysis; computer-aided 

diagnosis; artificial intelligence 

 

1. Introduction  

Endoscopic examinations are widely recognized as the traditional method for identifying 

gastrointestinal troubles, owing to their well-established efficacy. During an endoscopy, a patient's 

inner organs are meticulously examined to identify any underlying issues, enabling the medical team 

to determine the most effective course of treatment based on the patient’s symptoms. An endoscope, a 

bendy tube with a fixed camera at one end and a light source attached, is used in this approach. The 

camera takes pictures of the organs, that are analyzed in greater detail. Different types of endoscopy 

procedures exist, depending on the purpose of the examination of the structures being observed and 

the equipment used. Endoscopes can be introduced into the body through a surgical incision, the mouth, 

or the esophagus [1].  

The human digestive system is renowned for its diverse array of mucosal traits, presenting a broad 

spectrum of illnesses ranging from minor maladies to potentially life-threatening diseases. Given that 

there are 3.5 million reported cases and over 2.2 million deaths related to malignancies each year 

globally [2], it is essential to prioritize accurate and timely diagnosis for effective treatment and 

reducing illness and mortality rates [3,4]. Therefore, it is crucial to enhance the performance of clinical 

examinations and implement systematic screening strategies. 

Computer-assisted automatic diagnosis is a recent subject of studies that shows the potential to 

revolutionize healthcare systems and scientific practice. Within the healthcare domain, deep 

convolutional neural networks (DCNNs) constitute a promising area to explore, as they possess the 

capability to aid medical experts in turning in remarkable care on a massive scale. This has been 

substantiated via numerous studies [5–9]. A vast volume of advanced image data, coupled with 

superior algorithms, enables the effective utilization of a DCNN-based system in the identification of 

gastrointestinal lesions inside endoscopic images [10–12]. The accurate and timely identification of 

ailments holds paramount importance because it directly influences remedy planning and patient 

monitoring [13–15]. 

Over 15 years, there has been an active search amongst researchers to analyze the usage of 

computer algorithms for the purpose of detecting problems within the human gastrointestinal machine 

via the examination of endoscopic images [16–18]. Recent clinical studies have proven that deep 

learning models have promising outcomes in identifying irregularities, especially within the realm of 

gastrointestinal polyp detection [19]. Nevertheless, the diagnostic efficacy of these models is 

significantly reliant on the quantity and quality of the data at hand. 
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This research employs the Kvasir dataset [20], which incorporates 8000 endoscopic images 

meticulously annotated by proficient endoscopists. The dataset consists of 8 unique classes, containing 

anatomical landmarks, medical outcomes, and gastrointestinal endoscopic approaches. The key goal 

of this study is to design a revolutionary algorithm based on Convolutional Neural Networks (CNN) 

tailored for the automated classification of anomalies inside the gastrointestinal system across multiple 

classes. The proposed deep learning framework aspires to correctly classify endoscopic images of the 

gastrointestinal tract into various categories with minimal preprocessing and optimized augmentation 

strategies. This specialized architecture demonstrates the potential to enhance the performance of the 

multi-class classification procedure, outperforming gastroenterologists in terms of precision and 

results. The results show that the proposed deep learning-based methodology can help 

gastroenterologists in categorizing gastrointestinal problems. The following are the contributions to 

this research: 

• Designing a simple yet effective shallow CNN model with a careful choice of fewer layers to 

save computational resources and maintain competitive endoscopic images. 

• Designing a deep CNN model with more layers to learn intricate patterns associated with 

various gastrointestinal conditions. This hierarchical feature learning significantly boosted the 

model’s ability to discriminate and identify complex patterns. 

• Introducing a comprehensive CNN-based architecture (called GastroFuse-Net) that combines 

knowledge from the designed shallow and deep CNN architectures in a novel way using 

feature concatenation. This method best utilizes the deep model’s proficiency in complex 

feature extraction and the shallow model’s capacity to collect wide context, producing a 

synergistic and all-encompassing classification framework. 

• Assessing the performance of the proposed models using precision, recall, F1-score, 

Mathew’s correlation coefficient (MCC), and accuracy metrics on the test dataset. These 

evaluations demonstrate the intricate balance between model complexity and performance, 

offering a comprehensive comprehension of the consequences of layer depth in CNN 

architectures for classifying gastrointestinal abnormalities. 

The remaining sections of the paper are organized in the following manner: In Section 2, we 

conduct a thorough literature analysis focusing on deep learning models employed for classifying 

gastrointestinal abnormalities using endoscopy images. In Section 3, we detail the dataset used in this 

study, outlining its characteristics and the specific preprocessing steps undertaken. Additionally, the 

proposed novel architectures tailored to the task of gastrointestinal abnormality classification have 

been explained in this section. Section 4 is dedicated to evaluating the performance of our proposed 

models based on precision, recall, F1-score, Matthew’s correlation coefficient, and accuracy. The 

research is concluded in Section 5 by summarizing the essential findings and insights derived from the 

experiments.  

2. Related work 

A number of countries are making an investment resource into AI (Artificial Intelligence) research 

right now, with an exclusive emphasis on computer vision and deep learning [21–23]. However, 

getting medical data might be complicated because of restricted availability imposed by means of 

regulatory constraints and a scarcity of human expertise needed for manually labeled training data. 

These limits make building computerized examination structures difficult. In response, distinct 
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strategies for automating the identification of anomalies inside the human gastrointestinal tract using 

machine learning and endoscopic images have been developed by the research groups. The time-

consuming nature of manually examining large sets of gastric images, necessitating professional 

knowledge, has been highlighted in recent literature reviews on gastrointestinal anomalies [24,25]. To 

tackle this trouble, it is viable to develop AI-powered diagnostic tools that may automate the 

interpretation of large endoscopic data. Existing machine learning and deep learning techniques are 

presented in the subsequent sub-sections.  

2.1. Existing machine learning techniques 

In [26], the authors proposed a methodology by hybridizing Haralick texture features and Local 

Binary Pattern visual descriptors to classify gastrointestinal abnormalities from endoscopic images. 

The researchers carried out individual training of logistic regression models for each variable and used 

an ensemble approach to make the very last prediction. This technique obtained an accuracy of 94% 

with an F1-score of 0.76 and an MCC of 0.73 on testing data. In [27], a computer-aided detection 

system was designed to reduce missed polyps during video endoscopy. In this method, color wavelet 

features from endoscopic images were used to train a Support Vector Machine (SVM) classifier. The 

obtained results demonstrated the effectiveness of this technique with an accuracy of 98.34%, 

sensitivity of 98.67%, and specificity of 98.23%. In [28], gastrointestinal abnormalities were detected 

and classified using a variety of machine learning classifiers including logistic regression, decision 

tree, naïve bayes, SVM, and random forest. Among these methods, logistic regression emerged as the 

top performer. In [24], the authors detected gastric abnormalities using an SVM classifier achieving 

an accuracy of 0.86. Another study [29] identified multiple gastrointestinal disease detection using 

Linear Discriminant Analysis (LDA) and achieved an accuracy of 0.91, precision of 0.87, recall of 

0.85, and F1-score of 0.86. 

2.2. Existing deep learning techniques 

In a study [30], the authors generated function vectors from geometric patterns extracted from 

images with the use of Inception-v3 and VGG16 networks, and the SVM classifier was trained on 

those extracted features. Their proposed technique correctly identified anomalies of the gastrointestinal 

system in endoscopic images with an MCC of 0.826. Another computational model stimulated from 

the Inception-v1 network to identify gastrointestinal issues and anatomical landmarks correctly was 

proposed [31]. The model consisted of convolutional layers of various sizes and pooling layers. The 

researchers employed an extensive range of data augmentation procedures to optimize performance. 

However, their method faced challenges in distinguishing between Dyed Lifted Polys and Dyed 

Resection Margins, in addition to discerning between classes of polyps and ulcerative colitis. 

Researchers [32] proposed a ResNet-50 architecture to facilitate the automated analysis of 

endoscopic data. This approach took into account the interrelationships among the extracted variables. 

In a recent work [33], NASNet, Inception-v4, and Inception-ResNet-v2 architectures have been used 

to identify anatomical landmarks and detect sick tissue inside the human gastrointestinal system. 

Preprocessing techniques were additionally used to improve the quality of the images, resulting in an 

MCC of 0.93. An attention-based model was introduced in a separate study [34] to divide endoscopic 

images into four categories. During the subsequent phase of this study, an anomaly identification 
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methodology was employed to discern atypical types inside the initial stage. Researchers [35] 

presented a series of picture preparation procedures, which are then followed by the implementation 

of the EWT (Empirical Wavelet Transform). The decomposed images were then used as input for the 

proposed CNN model for disease classification at two levels. The results indicated an accuracy of 

96.65% and MCC of 0.9298 in the first level of classification. In the second level of classification, 

94.25% accuracy and 0.810 MCC was achieved. Researchers [36] presented the classification of 

gastrointestinal tract disorders using different transfer learning models. The best results were achieved 

using EfficientNetB0 with 98.01% accuracy, a precision of 98%, and a recall of 98%. 

We present the GastroFuse-Net model, a new CNN-based architecture designed specifically for 

automatically classifying anomalies in the gastrointestinal system. This model is innovative and differs 

from previous studies. GastroFuse-Net combines the knowledge from both shallow and deep CNN 

architectures by merging their features through concatenation. This innovative strategy maximizes the 

deep model’s ability to extract intricate features and the shallow model’s capability to capture extensive 

context. The objective is to address the constraints identified in previous research, such as difficulties in 

differentiating between distinct gastrointestinal categories and enhancing the overall accuracy of 

classification. GastroFuse-Net effectively combines the advantages of shallow and deep models to 

provide a more complete and synergistic approach to classifying gastrointestinal abnormalities. 

3. Material and methods 

A deep learning-based solution has been proposed in this study for the automatic diagnosis of 

gastrointestinal abnormalities using deep learning. The proposed methodology carried out for this 

research is shown in Figure 1. Details of each block have been discussed in the sub-sections below.   

3.1. Dataset description 

The dataset utilized in this investigation was acquired from the Kvasir dataset [20]. There are eight 

distinct types of images stored in the Kvasir Database with 1000 images belonging to each category. 

Additional classifications of these photos include three for anatomical landmarks, three for 

pathological stages, and two for lesion eradication. To classify anatomical features, we have the 

pylorus, the z-line, and the cecum. The pylorus is the area of anatomy that spans the gap between the 

small intestine’s first segment and the stomach. The z-line represents the anatomical boundary, where 

the esophagus transitions into the stomach. Examining this particular landmark holds significance in 

disease identification, as the manifestation of Esophagitis is commonly observed at this site. The cecum 

serves as the initial segment of the large intestine, and the achievement of reaching this anatomical 

marker is regarded as the culmination of a colonoscopy procedure. Esophagitis, polyps, and ulcerative 

colitis are the three disease-related conditions. Esophagitis is a medical condition characterized by 

inflammation of the esophagus, leading to the development of a mucosal rupture at the z-line. 

Ulcerative colitis is a pathological condition characterized by inflammation of the colon, specifically 

the large intestine. Polyps are aberrant growths that develop within the large intestine and can 

potentially progress into a precancerous state. Each of these categories represents a crucial aspect that 

a gastroenterologist examines during an endoscopic procedure. Two distinct categories are associated 

with the excision of lesions, namely dyed-lifted polyps and dyed resection margins. 
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Figure 1. Proposed Methodology. 

A dye is used for polyp removal to enhance the visibility of the polyp, and a procedure called 

“lifting” is used to separate polyps from the surrounding tissue. Before removing a polyp, images are 

taken of it that have been dyed and lifted, and afterward, the resection margins are stained. The dataset 

exhibits a range of image resolutions from 720x576 pixels to 1920x1072 pixels. Figure 2 displays 

image samples for each class in the dataset. Before training the model, the dataset was partitioned into 

three sets: Training, Test set, and Validation set. A total of 80% of the data were devoted to the training 

set, while the remaining 20% were reserved for the test set. A subset containing 10% was allocated for 
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validation among the total training samples. Table 1 provides the distribution of sample sizes across 

different classes within each data set. 

Table 1. Dataset description with Train, Test and Validation Splits. 

Class Name Total Images in the dataset Train Set Augmented Train Set Validation Set Test Set 

Ceum 1000 720 5760 80 200 

Pylorus 1000 720 5760 80 200 

Z-line 1000 720 5760 80 200 

Esophagitis 1000 720 5760 80 200 

Ulcerative Colitis 1000 720 5760 80 200 

Polyps 1000 720 5760 80 200 

Dyed Lifted Polyps 1000 720 5760 80 200 

Dyed Resection Margins 1000 720 5760 80 200 

Total Images 8000 5760 46,080 640 1600 

 

Figure 2. Sample Images from the dataset: (a) Cecum, (b) Pylorus, (c) Z-line, (d) 

Esophagitis, (e) Ulcerative Colitis, (f) Polyps, (g) Dyed Lifted Polyps, and (h) Dyed 

Resection Margins 

3.2. Data pre-processing 

Effective data preparation is crucial for enhancing the efficiency of machine learning and 

computer vision applications that depend on visual input. Image normalization and scaling are essential 

stages in this procedure. Image normalization transforms pixel values into a standardized scale from 0 
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to 1. Normalization is performed to ensure consistent intensity levels across all pictures. This stage is 

critical because it reduces the potential dominance of some images, that could arise from their more 

extensive pixel range, during the training process. 

Moreover, the normalization procedure is essential in promoting convergence throughout the 

training of a model. After normalizing the images, they were uniformly reduced to dimensions of 256 

by 256 pixels. Image scaling guarantees the standardization of the input size for the model. Resizing 

helps decrease computational complexity, hence improving the model’s capacity to learn more 

efficiently from the given data. Using the methods of image normalization and scaling to a size of 256 

by 256, the preprocessed dataset is efficiently optimized for subsequent machine-learning tasks. 

3.3. Data augmentation 

Data augmentation techniques are applied to the images within the training set for each class to 

address the problems associated with data insufficiency and overfitting, raising the training set’s image 

count effectively as a result. Regarding the proficient and accurate implementation of data 

augmentation, many data transformations have been employed, including vertical and horizontal 

flipping, rotation at angles of 30, 45, and 60 degrees in a clockwise direction, a shear range of 0.2 

factor, cropping by a factor of 0.2, and adjusting brightness by a value of 0.2. During the training 

process, on-the-fly image augmentation operations were performed. All the data transformations were 

employed simultaneously for the images to diversify the augmented dataset comprehensively while 

preserving the original image integrity and variability. The method of enhancing images has been 

achieved via the OpenCV library. Figure 3 depicts the visual representations of the original and 

augmented images pertaining to the Ulcerative Colitis and Polyps classes. 

 

Figure 3. Sample Data Transformations on Training Set. 

3.4. Proposed CNN-based architectures 

We proposed a CNN-based architecture for identifying gastrointestinal abnormalities, a 

challenging task even for experienced gastroenterologists. Initially, two CNN-based architectures are 

presented, namely deep CNN and shallow CNN. These networks are designed to capture different 

aspects of the input gastrointestinal images and are independently trained on the dataset.  

Deep CNN is responsible for capturing intricate features and learning hierarchical representations 

of the input images. It is composed of four convolutional blocks as shown in Figure 4(a). Three 

convolutional layers and a max-pooling layer make up each block. Convolutional layers are used for 
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feature extraction and its operation is given by Eq (1).  

               𝑍[𝑖, 𝑗] = ∑ ∑ 𝑋[𝑖 + 𝑚, 𝑗 + 𝑛]. 𝑊[𝑚, 𝑛] + 𝑏𝐹−1
𝑛=0

𝐹−1
𝑚=0                 (1) 

where Z[i, j] is the output feature map as position (i, j), X is the input layer, W is the convolutional filter, F 

is the filter size and b is the bias term. Convolutional layers pose a challenge due to the generation of a 

large number of neurons. To address this issue, CNN models employ pooling layers. These layers aggregate 

groups of pixels into a single representative pixel. Specifically, max pooling layers identify sets of pixels 

and replace them with the maximum value within that set, as described in Eq (2). 

             𝑃𝑚𝑎𝑥(𝑖. 𝑗) = 𝑚𝑎𝑥𝑚,𝑛𝑋[((𝑖 − 1)𝑠 + 𝑚, (𝑗 − 1)𝑠 + 𝑛)]              (2) 

where Pmax(i.j) represents the output of maxpooling operation at position (i, j) and s is the stride. Also, 

a batch normalization layer is applied after each convolutional layer to improve training stability and 

convergence. Mathematically, batch normalization is given by Eqs (3) and (4): 

                               𝑋̂𝑖,𝑗 =
𝑋𝑖,𝑗−𝜇

√𝜎2+𝜖
                           (3) 

                               𝑌𝑖,𝑗 = γ𝑋̂𝑖,𝑗 + 𝛽                             (4) 

where 𝑋̂𝑖,𝑗  is the normalized output, 𝑋𝑖,𝑗  is the input, 𝜇  is the mean, 𝜎2  is the variance, 𝜖  is a 

small constant for numerical stability, γ  is a learnable scale parameter, 𝛽  is a learnable shift 

parameter, and 𝑌𝑖,𝑗 is the final output after batch normalization. Batch normalization ensures that the 

input to subsequent layers is normalized, facilitating more stable and efficient training of deep CNNs. 

As shown in Figure 4(a), the filter size is increased by a multiple of 2 in each block, starting with 32 

filters and a 3x3 kernel size in the first block doubling the number of filters in subsequent blocks. 

Following the four convolutional blocks, a global average pooling layer is applied to obtain a fixed-

length feature vector. The global average pooling layer computes the average value of each feature 

map across the entire spatial dimensions. Mathematically, for a given feature map 𝑋̅ with dimensions 

H X W X C, the global average pooling operation is defined by Eq (5): 

                         𝑌𝑐 =
1

𝐻 𝑋 𝑊 
∑ ∑ 𝑋𝑖,𝑗,𝑐

𝑊
𝑗=1

𝐻
𝑖=1                           (5) 

The vector obtained from global average pooling layer is fed into a fully connected network of 

two dense layers. The first dense layer has 256 neurons, and the second dense layer has eight neurons, 

representing each class of gastrointestinal abnormality. This fully connected network is responsible for 

performing the final classification.  

On the other hand, as shown in Figure 4(b), the shallow CNN focuses on extracting more local 

and low-level features from the input images. It consists of three convolutional blocks, each containing 

two convolutional layers followed by a max-pooling layer. To prevent overfitting, a dropout layer is 

applied after each max-pooling layer. The dropout layer introduces regularization during training by 

randomly deactivating a fraction of neurons, and it is given by Eq (6). 
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               𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑥) =  {
𝑥 𝑋 

1

1−𝑝
,     𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝 

0,             𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝
              (6) 

where p is the dropout probability, and the layer randomly sets a fraction of input values to zero during 

each forward pass. The kernel size for each convolutional layer is set to 3x3, and the number of filters 

increases from 32 in the first block to 64 in the second block and then to 86 in the third block, as shown 

in Figure 4(b).  

 

Figure 4. Proposed architecture of GastroFuse-Net consisting of (a) Deep Convolutional 

Neural Network (Deep CNN) and (b) Shallow Convolutional Neural Network (Shallow CNN). 

After obtaining results from two networks, we performed feature fusion by concatenating the 

extracted features from both networks to leverage the complementary characteristics of the deep and 

shallow CNNs. Specifically, features from the penultimate layer of the deep CNN were extracted and 
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concatenated with the corresponding features from the shallow CNN. This process combines the high-

level semantic information learned by the deep CNN with the local and low-level details captured by 

the shallow CNN. After feature fusion, the combined feature set was classified using an artificial neural 

network, resulting in a novel architecture called GastroFuse-Net. Its integrated feature representation 

enables the model to exploit richer features, enhancing its ability to differentiate between 

gastrointestinal abnormalities. The formal definition of GastroFuse-Net is given by Algorithm 1. 

 

Algorithm 1: GastroFuse-Net  

1: Begin:  

2: Load and preprocess the dataset: 

  Load Kvasir dataset with 8000 images and their corresponding labels 

  Preprocess the Dataset (normalize, resize, and augment) 

  Split the dataset into Train, Test and Validation data 

3: Data Augmentation: 

  Apply data tranformations (rotation, flip, sheer range, and brightness) on train data 

4: Define deep CNN and shallow CNN architecture 

  Define architecture for deep CNN 

  Include convolutional, max-pooling, and batch normalization layers 

  Define architecture for shallow CNN 

  Include convolutional layers, max-pooling, dropout for regularization. 

5: Feature fusion using Gastro-FuseNet 

  Extract penultimate layer outputs from both Deep CNN and Shallow CNN 

  Concatenate features to obtain fused feature representation 

  Create an Artificial Neural Network (ANN) for final classification. 

6: Training GastroFuse-Net 

  Initialize hyperparameters, epochs, and batch size. 

  for epoch in range(total_epochs): 

   Initialize an empty list to store fused features and corresponding labels. 

   for batch in training_batches: 

    Load batch of preprocessed images and labels. 

    Extract features from Deep CNN and Shallow CNN 

    Concatenate features to get fused features. 

    Append fused features and labels to the list. 

   Convert the list to NumPy arrays. 

   Train GastroFuse-Net using the fused features and labels 

  End Tranining Loop 

7:  Evaluate Performance 

  Evaluate the trained GastroFuse-Net on the Test set. 

  Generate confusion matrix to analyze model predictions. 

  Calculate accuracy, precision, recall, specificity, F1-score, and MCC. 

8: End 
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3.5. Experimental setup 

The proposed network for classifying gastrointestinal abnormalities was trained using the 

backpropagation method with the gradient descent algorithm to optimize biases and weights. The 

convolutional layers were applied with ReLU activation function for introducing non-linearity and 

capturing complex patterns, while softmax was used for multi-class classification in the output layer. 

The Adam optimizer with a fixed learning rate of 1e-3 was employed for 50 epochs with 32 batch size. 

The categorical cross-entropy loss function was used for training to minimize dissimilarity between 

predicted probabilities and actual labels. Categorical cross entropy is given by Eq (7):  

                           𝐿(𝑦, 𝑦̂) = − ∑ 𝑦𝑖. log (𝑦̂𝑖)𝑖                         (7) 

where y represents the true label and  𝑦̂ represents the predicted label and the sum is taken over all 

classes. A validation set was utilized to optimize the hyperparameters, adjusting learning rate, batch 

size, and other relevant parameters for best performance. The implementation of experiments was done 

using Keras and TensorFlow on an NVIDIA GeForce GTX 1080 graphics card for computational power. 

The finalized model’s performance was evaluated on a separate test set which provided a fair assessment 

of the model’s ability to generalize and classify gastrointestinal abnormalities on unseen data. 

3.6. Performance metrics 

Different performance criteria have been used to evaluate how well a model can identify 

gastrointestinal problems from endoscopic pictures. The model’s predictions are broken down in depth 

in the confusion matrix that has been obtained, which is the first achievement. The matrix enables the 

generation of other indicators for performance, and it offers insights into the types of errors generated 

by models and by displaying true positives, true negatives, false positives, and false negatives.  

The confusion matrix was used to construct some indicators for performance which incorporates 

Matthews Correlation Coefficient (MCC), accuracy, precision, recall, and specificity. By dividing the 

total number of correctly classified cases by the size of the test set, accuracy can be understood as the 

overall correctness of the predictions. The formula of accuracy is given by Eq (8). 

                        𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                          (8)  

where TP, TN, FP and FN are true positives, true negatives, false positives and false negatives obtained 

from the confusion matrix. Moreover, accuracy may not be adequate when dealing with imbalanced 

datasets or classes of varying importance. By calculating the accurate percentage for predicted positive 

instances relative to all instances predicted as positive, precision measures the model’s capacity to 

prevent false positives. Precision is given by Eq (9). 

                            𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                            (9) 

Similarly, recall determines how effectively the model can detect positive instances by 

determining what positive examples percentage are true positives. Recall is given by Eq (10). 
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                            𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                              (10) 

When dealing with imbalanced datasets or trying to lessen false positives and negatives, the F1 score 

is a good balanced measure because it combines recall and accuracy. The F1-score is given by Eq (11). 

                         𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                     (11) 

To evaluate the model’s accuracy for avoiding false positives in the negative class, specificity was 

used in addition to recall. Specificity is given by Eq (12) 

                            𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                          (12) 

Finally, when it comes to classification problems, Matthews Correlation Coefficient (MCC) shows 

a balanced performance metric that takes all four metrics into account. MCC is given by Eq (13). 

                     𝑀𝐶𝐶 =
𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
                  (13) 

4. Results and discussions 

In this section, the performance of the proposed architectures is discussed. Accuracy plots, loss 

plots and confusion matrix along with other performance parameters for each model are presented in 

subsequent sections.  

4.1. Performance of shallow CNN 

The variations in accuracy and loss over 50 epochs during the training of the proposed shallow 

CNN is shown in Figures 5(a) and 5(b), respectively. It can be seen in these figures that there are 

continuously increasing and decreasing fluctuations in both training and validation accuracy and loss. 

Despite these fluctuations, an overall positive trend of increasing accuracy and decreasing loss 

indicates that the model is learning and improving over time.  

The confusion matrix obtained on the test data set from Shallow CNN is shown in Figure 6 and the 

performance metrics obtained from it for each class are presented in Table 2. The results demonstrate that 

the model achieved an impressive overall accuracy of 90.3%, indicating its proficiency in correctly 

classifying most samples. Notably, the model performed exceptionally well in accurately identifying 

samples from the Cecum and Pylorus classes. However, some misclassifications were observed where 

samples from these classes were incorrectly categorized as either Polyps or Ulcerative Colitis. 

Additionally, the classes Dyed Lifted Polyps and Dyed Resection Margins were frequently 

misclassified interchangeably. Furthermore, the class Z-line showed a considerable number of 

misclassifications, predominantly being classified as Esophagitis. These findings emphasize the 

model’s strengths in distinguishing certain classes effectively. However, it also highlights areas, where 

the model may require further improvement, especially in differentiating between classes that share 

similar features.  
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(a)                              (b) 

Figure 5. Plots obtained while training of Shallow CNN (a) Accuracy Plot and, (b) Loss Plot. 

 

Figure 6. Confusion matrix of the Shallow CNN model. 

Table 2. Performance Parameters obtained using Shallow CNN. 

Class Name Precision Recall F1-score Specificity MCC 

Dyed Lifted Polyps 0.891 0.900 0.895 0.984 0.880 

Dyed Resection Margins 0.927 0.900 0.913 0.990 0.901 

Esophagitis 0.865 0.900 0.882 0.980 0.865 

Cecum 0.942 0.905 0.923 0.992 0.913 

Pylorus 0.989 0.895 0.939 0.998 0.933 

Z-line 0.873 0.900 0.886 0.981 0.870 

Polyps 0.833 0.900 0.865 0.974 0.846 

Ulcerative Colitis 0.895 0.900 0.897 0.985 0.883 

Average 0.902 0.900 0.900 0.986 0.886 
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4.2. Performance of Deep CNN 

Figures 7(a) and 7(b) illustrate the changes in accuracy and loss during the training of a deep CNN 

model over 50 epochs. A notable observation is that the deep CNN model exhibits much lower training 

and validation accuracy and loss fluctuations than the previously evaluated shallow CNN model. 

However, it is worth noting that after approximately ten epochs, the validation loss and training loss 

seem to plateau, showing minor fluctuations around a similar value. This observation suggests that the 

model might have reached a saturation point where further training does not significantly improve its 

performance. Hence, this could indicate that additional model enhancement techniques could be 

explored to achieve even better results. 

 

(a)                               (b) 

Figure 7. Plots obtained while training of Deep CNN (a) Accuracy Plot and, (b) Loss Plot. 

 

Figure 8. Confusion matrix of Deep CNN model. 

The confusion matrix of the deep CNN model and its corresponding performance metrics are 

presented in Table 3 and Figure 8, demonstrating its impressive classification performance. The deep 

CNN model improved significantly, correctly classifying 96.2% of the samples compared to the 
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shallow CNN. Analyzing the confusion matrix, we observe that, similar to the shallow CNN, the class 

“Z-line” has been misclassified as “Esophagitis”. However, the number of misclassified samples has 

reduced, indicating the deep CNN’s enhanced ability to discriminate between these classes. 

Additionally, while some instances of “Dyed Resection Margins” were misclassified as “Dyed Lifted 

Polyps”, the frequency of misclassifications is lower than in the shallow CNN model. The considerable 

accuracy gain achieved by the deep CNN model and its reduced misclassification errors indicate its 

superior performance in handling complex patterns and improving overall class separability. 

Table 3. Performance Parameters were obtained using Deep CNN. 

Class Name Precision Recall F1-score Specificity MCC 

Dyed Lifted Polyps 0.955 0.960 0.957 0.993 0.951 

Dyed Resection Margins 0.979 0.960 0.969 0.997 0.965 

Esophagitis 0.927 0.960 0.943 0.989 0.935 

Cecum 0.989 0.960 0.974 0.998 0.971 

Pylorus 0.990 0.990 0.990 0.998 0.988 

Z-line 0.949 0.930 0.939 0.992 0.930 

Polyps 0.936 0.960 0.948 0.990 0.940 

Ulcerative Colitis 0.955 0.960 0.957 0.993 0.951 

Average 0.960 0.960 0.960 0.994 0.954 

4.3. Performance of GastroFuse-Net 

Figures 9(a) and 9(b) show the change in accuracy and loss during training of GastroFuse-Net. The 

results demonstrate a smooth and steady progression of accuracy, with a maximum training accuracy of 

99.9% and a validation accuracy of 82.4%, which indicates that the model effectively learned from the 

combined features and achieved remarkable accuracy, surpassing the individual networks. Moreover, the 

training loss for GastroFuse-Net showed a significant decrease to 0.0342, while the validation loss 

decreased to 0.235. This decline in loss signifies that the model has gained a better understanding of the 

underlying patterns in the data, reinforcing its ability to make precise predictions. 

The confusion matrix and performance metrics obtained for GastroFuse-Net, as shown in Figure 10 

and Table 4, reveal its improved performance, correctly classifying 98.5% of the samples, surpassing the 

accuracy achieved by both Deep and Shallow CNN models. However, some challenges persist, 

particularly in distinguishing between the Polyps and Ulcerative Colitis classes, where a few samples 

are misclassified interchangeably. Additionally, there were three instances, where samples of 

Esophagitis were incorrectly predicted as Z-line class. Furthermore, minimal misclassifications were 

observed between the Dyed Lifted Polyps and Dyes Resection Margins classes. Despite these minor 

misclassifications, GastroFuse-Net demonstrates significant progress in accurately classifying most 

samples, showcasing its potential for enhanced performance over individual CNN models. These 

findings underscore the effectiveness of feature fusion in improving classification accuracy and 

highlight the importance of further addressing specific misclassification patterns to enhance the 

model’s capabilities. 
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(a)                                     (b) 

Figure 9. Plots obtained while training of GastroFuse-Net (a) Accuracy Plot and, (b) Loss Plot. 

 

Figure 10. Confusion matrix of GastroFuse-Net. 

Table 4. Performance Parameters of GastroFuse-Net. 

Class Name Precision Recall F1-score Specificity MCC 

Dyed Lifted Polyps 0.985 0.985 0.985 0.997 0.982 

Dyed Resection Margins 0.985 0.985 0.985 0.997 0.982 

Esophagitis 0.985 0.985 0.985 0.997 0.982 

Cecum 1.000 0.985 0.992 1.000 0.991 

Pylorus 1.000 0.990 0.995 1.000 0.994 

Z-line 0.975 0.985 0.980 0.996 0.977 

Polyps 0.975 0.980 0.977 0.996 0.974 

Ulcerative Colitis 0.975 0.985 0.980 0.996 0.977 

Average 0.985 0.985 0.984 0.997 0.982 
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4.4. Comparison with the state-of-the-art 

The proposed model has been compared with the state-of-the-art shown in Table 5. The 

proposed model achieved the highest precision of 0.98, recall of 0.98, F1-score of 0.99, specificity of 

1.00, MCC of 0.98, and accuracy of 0.985 as compared to the other models in the literature.  

Table 5. State-of-the-art comparison of the proposed model. 

Reference Precision Recall F1-score Specificity MCC Accuracy 

[30] 0.8475 0.84 0.8475 0.97 0.82 0.96 

[20] 0.82 0.82 0.82 0.97 0.80 0.95 

[37] 0.97 0.97 0.97 - - 0.973 

[32] 0.89 0.89 0.89 0.99 0.87 0.984 

[38] 0.96 0.96 0.96 - - 0.96 

[39] - - - - - 0.97 

[15] 0.94 - 0.93 - - 0.94 

[35] - - - - 0.9298 0.96 

[36] 0.98 0.98 - - - 0.9801 

Proposed Shallow CNN 0.902 0.900 0.900 0.986 0.886 0.903 

Proposed Deep CNN 0.960 0.960 0.960 0.994 0.954 0.962 

Proposed GastroFuse-Net 0.985 0.985 0.984 0.997 0.982 0.985 

5. Discussions 

The results obtained demonstrate that the proposed models are effective in the classification of 

gastrointestinal abnormalities. It is worth noting that GastroFuse-Net achieved a substantially higher 

accuracy rate of 98.5% than both Deep CNN and Shallow CNN. The comparison of the performance 

parameters obtained for each proposed model is shown in Figure 11. It can be seen in this figure that 

with feature fusion in GastroFuse-Net, the capability of the model to classify the images increased. 

For the shallow CNN model, accuracy of 0.9, MCC of 0.89, F1-score of 0.9, and specificity of 0.98. 

recall of 0.9 and precision of 0.9 are achieved. By increasing layers in the Deep CNN model, accuracy 

increased to 0.96, MCC to 0.95, F1-score to 0.96, specificity to 0.99, recall to 0.96 and precision to 

0.96. However, when the combined features of both models were fused in GastroFuse-Net, the best 

results were obtained with accuracy increasing to 0.985, MCC increased to 0.98, F1-score increased 

to 0.9, specificity to 1.00, recall to 0.98 and precision increased to 0.99.  

It is worth mentioning that GastroFuse-Net demonstrated an exceptional capacity to differentiate 

between classes, as indicated by its elevated precision, recall, and specificity. The enhanced 

performance of GastroFuse-Net can be explained by the strategic concatenation of features, which 

effectively merges the advantageous attributes of shallow and deep models. The Shallow CNN 

exhibited competence in comprehending broad contexts, whereas the Deep CNN demonstrated an 

exceptional performance in extracting intricate features.  

Furthermore, a runtime analysis showing the amount of time needed to train each suggested model 

is given in Table 6. The Deep CNN model had a training duration of 22,926.2 seconds (about 6.4 hours), 

the Shallow CNN model took around 10,383.4 seconds (approximately 2.88 hours), and GastroFuse-

Net had a training time of roughly 16,028.1 seconds (approximately 4.45 hours). Although GastroFuse-
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Net demonstrated improved performance, it reached this level of accuracy within a training duration that 

falls between the more time-consuming Deep CNN model and the quicker Shallow CNN model. This 

highlights efficacy of GastroFuse-Net as it provides a convincing trade-off between excellent classification 

accuracy and comparatively short training times in contrast to Deep CNN and Shallow CNN. 

 

 

Figure 11. Performance comparison of the proposed models. 

Table 6. Run Time analysis of different proposed models. 

Model Name Time taken to train the model 

Deep CNN 22,926.2 s 

Shallow CNN 10,383.4 s 

GastroFuse-Net 16,028.1 s 

6. Conclusions 

Deep learning has demonstrated its efficacy as a beneficial tool for analyzing medical images in 

gastroenterology. Medical practitioners frequently depend on their specialized knowledge and years of 

practice to analyze images, resulting in subjective assessments and possible delays in diagnosing. Deep 

learning systems can address these constraints by offering unbiased and efficient categorizations of 

gastrointestinal disorders from endoscopic images.  

Prompt and specific diagnosis is critical in medical practice, as it could substantially affect patient 

results. Mistakes in diagnosis can result in misguided treatments and extended hospital stays. 

Employing computer-aided diagnosis algorithms can lower the load of gastroenterologists and mitigate 

the ability for misdiagnosis. Accurate identification of gastrointestinal ailments, inclusive of colon 

cancer and polyps, is mainly essential because of their great effect on world health. 

The GastroFuse-Net is a data-driven deep convolutional neural network (DCNN) method developed 

to deal with the difficulty of detecting gastrointestinal issues. The model’s feature fusion method, which 

integrates the advantage of shallow and deep CNN models, achieved exceptional performance. It correctly 

categorized 98.5% of the samples with high precision, recall, specificity, F1-score, and Matthews 

Correlation Coefficient (MCC) values of 0.985, 0.985, 0.984, 0.997, and 0.982, respectively. 
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Although the outcomes are promising, there are possibilities for future enhancement and research. 

Possible improvements include expanding the training dataset, examining higher-decision pictures, and 

modifying the model for use in different medical imaging domains. Gastric endoscopists might consider 

the suggested algorithm a second opinion, particularly when it is difficult to get specialized medical support. 

GastroFuse-Net demonstrates promising abilities in helping healthcare practitioners in the appropriate and 

quick diagnosis of gastrointestinal issues. Additional clinical data and the exploration of progressive 

algorithms will improve the successful incorporation of this technology into clinical exercise. 
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