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Abstract: Vaccine hesitancy threatens to reverse the progress in tackling vaccine-preventable diseases.
We used an S IS model with a game theory model for vaccination and parameters from the COVID-
19 pandemic to study how vaccine hesitancy impacts epidemic dynamics. The system showed three
asymptotic behaviors: total rejection of vaccinations, complete acceptance, and oscillations. With
increasing fear of infection, stable endemic states become periodic oscillations. Our results suggest
that managing fear of infection relative to vaccination is vital to successful mass vaccinations.
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1. Introduction

Vaccination is one of the most cost-effective ways of avoiding disease—it prevents 2–3 million
deaths a year, and a further 1.5 million could be avoided if global coverage of vaccinations improved
[1]. The recent COVID-19 pandemic, caused by SARS-CoV-2, presented an unprecedented challenge
to human health, the economy, and nearly all aspects of our society. Vaccination, social distancing, and
mask-wearing are effective mitigation methods to prevent widespread morbidity and mortality from the
infection. The rapid development of effective vaccinations was one of the longstanding legacies of the
COVID-19 pandemic.

Mass vaccination for COVID-19 started on December 14, 2020 in the United States [2], leading
to a significant reduction of infections and disease burden within vaccinated populations [3]. As the
vaccination programs progressed into March 2021, a widespread reduction in cases and deaths [4] led
to the relaxation of non-pharmaceutical interventions in many places [5].
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However, vaccine hesitancy, a strong unwillingness to adopt vaccination [6,7], remains a persistent
barrier to complete population inoculation against highly infectious diseases. “It is difficult to compre-
hend that some of the greatest triumphs of medical science are being eroded by misinformation and
distrust.” [8]. As COVID-19 vaccination efforts went underway worldwide, significant vaccine hesi-
tancy and resistance were observed even among healthcare workers [9,10]. Multi-country surveys have
shown wide country-to-country variation in vaccine acceptance (31–89%) [11, 12]. Another interna-
tional study using data from 13 countries showed a concerning trend: As the pandemic progressed, the
percentage of people intending to refuse vaccination increased [13]. In the UK, a large survey of 5114
adults in October 2020 showed 16.6% were “very unsure”, and 11.7% were “strongly hesitant” [14].
An excellent model fit explaining 86% of the variance in hesitancy “was provided by beliefs about the
collective importance, efficacy, side-effects, and speed of development of a COVID-19 vaccine.” [14]
In Japan, a country with more than 75% vaccination rate, nearly 4% of the people surveyed switched
from being willing to be vaccinated to being hesitant between February 2021 and February 2022 [15].
A more recent analysis of Polish COVID-19 vaccination data (until January 2023) showed a general
decline in subsequent vaccine uptake even after increased government-provided doses, which led them
to recommend significant changes in official vaccination policies [16].

There are many possible reasons for vaccine hesitancy [17], including concerns about the safety and
side effects of the vaccine. Some studies suggest that belief in conspiracy theories drives vaccination
hesitancy through exposure to misinformation [18, 19]. Even medically informed individuals rely on
a personal risk–benefit perception that may be influenced by misinformation regarding vaccine safety
[9]. Distrust in the scientific expertise and health and government authorities drives consumers from
“traditional” sources (newspapers, television, radio, government agencies) to social media outlets [20],
who are then more likely subject to misinformation. Misinformation has been shown to correlate with
vaccine hesitancy, even though the causal relationship has yet to be established [18, 19].

Our goal is to develop a model to help understand vaccine hesitancy’s mechanistic role in the spread
of infections. Meant to explore the essentials of a system that can accommodate both stable endemic
equilibria and periodic oscillations of high/low infections, our model does not address the underlying
causes for vaccine hesitancy, nor attempt to reproduce the COVID-19 pandemic spread quantitatively.
The key ingredient here is an evolutionary game theoretical framework for aggregate decision-making
on vaccination with a susceptible-infected-susceptible (S IV) model for epidemic spread, which we
call the S IV model. We show analytically and numerically that the competition between the fear of
vaccination and the perceived risk of infection introduced in our model, may drive the system into a
stable endemic equilibrium or dynamic oscillations of the epidemic.

2. A SIV model for vaccine hesitancy

The simplest epidemic model considers a well-mixed population, a fraction of which are susceptible
(S ) to the infection, and the rest being infected and infectious (I = 1 − S ). The transmission rate is
β, and the infected recover at the rate γ. Known as the S IV model, this system evolves in time (t)
according to the equation: Ṡ = dS/dt = γI − βIS (or İ = βS I − γI). In general, if β > γ (infection
faster than recovery), the system settles into the disease endemic state with a fraction of susceptible at
γ/β and infectious at 1− γ/β. Otherwise, the system eventually arrives at a disease-free, stable, steady
state with I = 0. This disease-free steady state loses stability when β > γ or R0 = β/γ > 1. The
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S IV model generally applies to diseases where infection does not confer long-term immunity, such as
the common cold, influenza, or herpes. Considering the repeated emergence of new viral variants of
SARS-CoV-2 (BA.1, Omicron, EG.5...) that render existing immunity less effective, and knowing that
previously infected people can become infected again, the S IV model is a reasonable minimal model
for the SARS-CoV-2 epidemics.

To study the effects of vaccination in the S IV model, we further divide the population into a third
fraction, V , representing the vaccinated people (Figure 1A). Two parameters associated with V are β̄,
the breakthrough infection rate (the likelihood of a vaccinated individual becoming re-infected), and
ϕ, the willingness of a susceptible individual to take the vaccine. Considering the non-trivial feedback
of the epidemic into the vaccine willingness, we assume that the probability of vaccination uptake, ϕ,
depends on the risk perception of infection and vaccination.

We use the simplest form of a vaccination game [21] under the presumption of uniform information
exchange. Susceptible individuals can choose one of two strategies, either vaccinate (V) or not. The
latter means they take a chance to become infected (I). The payoff of the strategies chosen by a
susceptible individual depends on the relative strategies selected by others in the population. Denoting
rv and ri as the risk perceptions associated with vaccination and infection, respectively, the equation
for how ϕ changes can be expressed as

ϕ̇ = ϕ × (1 − ϕ) × [−rvV + riI] .

Here ∆E = −rvV + riI is the marginal expectation difference between the two strategies [21–23].
Because scaling the payoff matrix does not change the qualitative dynamics of the game [23, 24], the
marginal expectation difference can be expressed as

∆E = f I − (1 − f ) V,

where f ≡ ri
ri+rv

is dimensionless. For simplicity, we call ∆E the “fear factor” and that plays a similar
role to the incentive to vaccinate, while the fractions f and 1− f are associated with the relative fear of
infection and vaccination, respectively. We will show that ∆E has a significant impact on the oscillatory
behavior of infection and vaccination.

The system of equations of the S IV model is:

Ṡ = γI − βS I − ϕS (2.1)
İ = βS I − γI + β̄IV (2.2)

V̇ = ϕS − β̄IV (2.3)
ϕ̇ = ϕ (1 − ϕ)∆E (2.4)

Because we do not consider immigration, population growth, and death, the population is conserved,
S + I+V = 1, and the model can be reduced to three state variables by rewriting S = 1− (I+V). Figure
1 illustrates the box-and-arrow diagram and a triangular prism representing the three-dimensional (3D)
phase space for the solutions.

The system of three ordinary differential equations, involving I,V, and ϕ, is non-trivial to analyze,
even though it is straightforward to show that trajectories starting on the boundary (a side, edge, or
vertex) of the prism can either remain in those domains or move into the prism. We study this model
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A) B)
Figure 1. The S IV model. (A) Schematic representation of the S IV model: the susceptible
S becomes infected at infection rate β and vaccinated with probability ϕ. The vaccinated
become re-infected at breakthrough infection rate β̄, while the infected recover at rate γ.
(B) The triangular prism representation of the 3D phase space: the S , I, V phase space
as a triangle, with the vertices being S , I,V = 1, and the linear dimension corresponds to
ϕ ∈ [0, 1] from bottom to top.

numerically and analytically to determine how I, V , and ϕ change over time within the prism. We limit
ourselves to a reasonable estimate of the infection rate for susceptible, β = 0.15 (in units of 1/day), the
infection recovery rate γ = 0.07 (1/day) for COVID-19, such that R0 = 2.1 for the earlier variants of
SARS-CoV-2 [25, 26].

To study the effects of the vaccine, we consider a breakthrough infection and focus on the dynamics
of the epidemic due to vaccine hesitancy by varying the fear factor f . Numerous studies estimated the
breakthrough infection rate for SARS-CoV-2 vaccines [27, 28]. In the US, UK, Brazil, South Africa,
and Israel, the breakthrough infection rates have been estimated to be roughly 40% to 77% of the nor-
mal infection rate, hence our choice of breakthrough infection rate of β̄ = 0.05. It should be noted that
the breakthrough infection depends on a multitude of factors, including vaccine type, number of doses,
time after vaccination, virus variant, and individual immune response (older individuals have weak-
ened immune systems and are more likely to become re-infected) [29–31]. Thus, varying β̄ coincides
with exploring different scenarios with variable vaccination efficacy due to the aforementioned factors.
The incorporation of breakthrough infection is applied to consider the timeline for waning infection
and reduced transmissibility between vaccinated and susceptible individuals. Indeed, the likelihood of
transmission is reduced for vaccinated individuals [32], yet it could depend on the variant or the num-
ber of vaccines received, and age group [30, 31]. Our choice of β̄ lies between the intrinsic recovery
rate γ and the normal infection rate β. Unless otherwise stated, we will use these baseline parameter
values (Table 1) in our numerical simulations.
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Table 1. Baseline parameters for the numerical simulations throughout the paper unless
otherwise stated.

Parameter Description Value
β Infection rate for susceptible 0.15
β̄ Breakthrough infection rate for vaccinated 0.05
γ Recovery rate 0.07
f Fear of infection [0, 1]

3. Three branches of asymptotic behavior

Seeking steady states, we set the right-hand sides of Eqs (2.1)–(2.4) to zero. These define the null-
clines of 2D surfaces within the 3D prism. The most relevant nullclines to explore vaccine hesitancy
are associated with ϕ̇ = 0, namely, ϕ = 0, ϕ = 1, or ∆E = 0. These nullclines correspond to three
branches of distinct behaviors. We label the bottom plane of the prism (ϕ = 0) as the “total rejec-
tion” branch and the top plane (ϕ = 1) as the “full acceptance” branch. More generally, when the
epidemic is perceived to be severe, there is less vaccination hesitancy, and ϕ increases. Conversely,
if the epidemic is mild and few are infected, the perceived fear of infection is low, and ϕ decreases.
Because ϕ is driven up or down by the sign of ∆E, oscillatory behavior can quickly emerge from this
feedback mechanism between the fear of infection and the fear of vaccination. Therefore, we label this
third part of this nullcline (∆E = 0, a vertical plane in our prism) as the “oscillation” branch.

Along with ϕ̇ = 0, the other nullclines (İ = 0 and V̇ = 0),

I = 0 or γ = βS + β̄V (3.1)
ϕS = β̄IV (3.2)

intersect at fixed points, with values denoted by I∗,V∗, and ϕ∗ (and S ∗ = 1 − I∗ − V∗) for convenience.
We will examine the stability properties of these fixed points by their respective Jacobian matrix:

J =


−βI∗ −

(
β − β̄

)
I∗ 0

−ϕ∗ − β̄V∗ −ϕ∗ − β̄I∗ 1 − I∗ − V∗

fϕ∗ (1 − ϕ∗) ( f − 1) ϕ∗ (1 − ϕ∗) (1 − 2ϕ∗) ( f I∗ − (1 − f ) V∗)

 (3.3)

3.1. Total rejection: the “bottom” plane

This plane is characterized by ϕ ≡ 0, i.e., no susceptible individuals are willing to be vaccinated.
Thus, if no one in the population is vaccinated to begin with, V will remain zero. However, even if
the system is initiated with some fraction of V’s, that fraction can only decrease (via breakthrough
infections) and end up at V = 0. With V removed from the system, the dynamics reverts back to that
of the trivial S IV model, i.e., ending at the endemic stable steady state (provided β > γ):

S ∗0 ≡ γ/β; I∗0 ≡ 1 − γ/β.

We illustrate this scenario in Figure 2, where multiple initial conditions converge to this stable endemic
state. Exceptions include the unrealistic case of 100% efficacy (β̄ = 0) and when I exponentially decays
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Figure 2. The dynamics of total rejection is reducible to the standard S IV model, and
the trajectories robustly converge to the endemic equilibrium. A) Temporal dynamics of
8 random initial conditions. All variables asymptotically approach the endemic equilibrium
of finite infection and zero vaccination, equivalent to the S IV model. B) Trajectories in the
S -I phase plane where the S and I nullclines are in red and blue, respectively.

with time t and the entire population becomes vaccinated and permanently immune (equivalent to R in
a S IR model). In the latter case, I is so mild that the epidemic would end even without vaccination.

Next, we study small perturbations from this plane, i.e., ϕ ≪ 1. It is clear from Eq (2.4) that such
perturbations will either decay or grow, depending on the sign of ∆E. For example, the likelihood of a
susceptible individual will choose to be vaccinated increases when there are many infected individuals
(I), as the fear of infection becomes greater than the fear of vaccination. Quantitatively, we carry
out a linear stability analysis and note that J is triangular with eigenvalues −βI∗0,−βI

∗
0, f I∗0. Thus,

although the bottom plane is unstable, this fixed point is stable within the bottom plane. Trajectories
approaching the rest of the plane (away from the fixed point) will either be attracted or repelled to the
plane, depending on the sign of the fear factor ∆E.

3.2. Full acceptance: the “top” plane

The total acceptance (ϕ ≡ 1) branch corresponds to the top plane of the prism. Trajectories that start
from this plane never leave and, as may be expected, always end at the V = 1 vertex. To confirm this
scenario, we first consider the nullclines to seek a steady state in the plane.

The second part of Eq (3.1) specifies a straight line that joins the point S = γ/β on the V = 0 edge
and the point V = γ/β̄ on the S = 0 edge. Because we have chosen β, γ so that the former lies in the
physical region, but the latter would lay outside if β̄ < γ (indication of a good vaccine), this nullcline
intersects the I = 0 edge at S ∗1 =

(
γ − β̄

)
/
(
β − β̄

)
= 1 − V∗1 . Meanwhile, since I = 0 is also a nullcline,

the physically meaningful İ = 0 nullcline consists of both line segments: I = 0 and I = I∗0−
(
1 − β̄/β

)
V

(red lines in Figure 3A), joined at
(
S ∗1,V

∗
1

)
.

The second nullcline is a hyperbola, as
(
β̄I∗ + 1

) (
β̄V∗ + 1

)
= 1 + β̄ is an equivalent form for Eq

(3.2). Symmetric in IV and “anchored” at the I and V vertices of the triangle, it bows out to a mid-
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.
Figure 3. The nullclines: A) Top plane. Red lines are the I-nullclines, Equation (3.1), and
blue for the V-nullcline, Equation (3.2). The I , 0 red line connects S = γ/β along the V = 0
line and V = γ/β̄ along the S = 0 line. γ/β̄ lies outside the triangle for an efficacious vaccine
and within the triangle for an ineffective vaccine. B) A possible scenario with extremely
contagious infections (see text).

point Im = Vm =
[ √

1 + β̄ − 1
]/
β̄ (blue line in Figure 3). For parameters of interest (β̄ < γ < β), the

two nullclines meet at the stable steady state (V = 1 vertex). Figure 4 provides an example illustrating
this plane’s typical evolution trajectories.

Mathematically, the V nullcline (blue hyperbola) can intersect the I nullcline (red line) at two other
points (Figure 3B). This scenario can occur only for β >

(
1 + β̄

)
/2. Keeping λ = 0.07 and β̄ = 0.05,

the minimum value of γ/β = 0.022 for two intersections. This value corresponds to a R0 = 45.5,
much larger than any known reproduction number of SARS-CoV-2. This number corresponds to an
extremely contagious infection, much higher than for measles (R0 > 10 with a wide range [33]) or
even the most contagious Omicron sub-variants (R0 = 9.5 [34]). Because our main interest is to study
a population with vaccination choices and how it affects “moderately” transmissible pathogens, we
will not analyze these possibilities further.

Likewise, the two nullclines can intersect outside the feasible region if β̄ > γ. This scenario cor-
responds to an ineffective vaccine that cannot end the epidemic even if the entire population accepts
it. We do not analyze these scenarios and summarize the obvious: with full participation (ϕ = 1), an
efficacious vaccine (β̄ > γ) will terminate an epidemic as long as the transmissibility is not too high
(β <

(
1 + β̄

)
/2).

Within the top plane, every individual “accepts” the vaccine (ϕ = 1) and the stable steady state
is trivially the case of V = 1. Such “total acceptance” is best interpreted as a compulsory vaccine
(such as polio). Clearly, for this population, the fear factor ∆E plays no role as everyone takes the
vaccine regardless of social factors such as risk perception and fear of unwarranted side effects. Not
surprisingly, trajectories on this plane that start with either sign of ∆E converge robustly to V = 1
(Figure 4). By contrast, ∆E plays a significant role away from this plane, as trajectories are attracted
either towards the plane (when ∆E > 0) or away from it (when ∆E < 0).
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Figure 4. Dynamics of total acceptance (ϕ ≡ 1) always end in the stable steady state of
V = 1. A) Temporal dynamics from 8 random initial conditions with f = 0.50. B) Phase
trajectories in the I-V phase plane with the I and V nullclines in red and blue, respectively.

3.3. Oscillation: the “vertical” plane

The third and most interesting branch is where trajectories oscillate across the ∆E = 0 surface (the
green plane in Figure 1B). A steady state represents a perception of balanced fears that satisfies

f I∗ = (1 − f ) V∗ (3.4)

This equation leads us readily to the balanced fears steady state (BFSS):

S ∗ =
γ − f β̄
β − f β̄

; I∗ = (1 − f ) (1 − S ∗) ; V∗ = f (1 − S ∗) ; ϕ∗ = β̄I∗V∗/S ∗ (3.5)

Note that these values are all physical (positive fractions) for the “realistic” scenarios (β ≥ γ ≥ β̄). In
particular, S ∗ ∈

[
S ∗0, S

∗
1

]
as f varies from 0 to 1.

To understand how the BFSS changes as the fear of infection increases from 0 to 1, we start with
the V = 0 edge on the bottom plane: If someone has no fear of being infected, why would they
bother taking a vaccine? Indeed, as f → 0, this fixed point approaches the one in the “total rejection”
plane, which is equivalent to the S IV model (Table 2). On the other hand, when f = 1, the infection
is eradicated through mass vaccination. This corresponds to timely vaccination interventions when
the population is educated on the health benefits of vaccines and vaccine hesitancy is suppressed.
Algebraically, it is surprising that this fixed point returns to this plane as f → 1 (since ϕ∗ ∝ 1 − f ).

To appreciate this scenario, consider a population with a strong fear of infection. They are more
likely to accept the vaccine, driving V up and I down. Eventually, the vaccination prevalence is high
enough such that ∆E changes sign and ϕ decreases and reaches a small value of ϕ∗. If the population
is in a regime where the proportion of vaccination exceeds the susceptible such that βS + β̄V < γ, then
infections cannot regain their foothold, and the epidemic ends with I → 0. Indeed, a more interesting
behavior is associated with this BFSS as we study its stability properties next.

Mathematical Biosciences and Engineering Volume 21, Issue 8, 6829–6846.



6837

Figure 5. A stable steady state for balanced fear in the vertical plane. A) Temporal dynamics
with β = 0.15, β = 0.05, γ = 0.07, f = 0.50. Inset shows a case with f ≫ fc. B) Phase
trajectories, projected onto the I-V plane, converge to stable focus with a non-trivial ϕ∗.

Consider the characteristic equation µ3 − Tµ2 +Cµ−D = 0 for the matrix J with trace (T ), cofactor
(C), determinant (D), and the discriminant of the cubic equation ∆:

T = −
[
ϕ∗ +
(
β + β̄

)
I∗
]
, (3.6)

C =
[
ϕ∗ + βI∗ −

{
β − β̄ − (1 − f ) (1 − ϕ∗)

}
V∗
]
β̄I∗, (3.7)

D = −
(
β − f β̄

)
β̄ (1 − ϕ∗) V∗I∗2 (3.8)

∆ = 18CDT − 4DT 3 − 4C3 +C2T 2 − 27D2 (3.9)

We see both T and D are negative everywhere, except for f ∼ 0. Thus, we encounter a pair of
complex eigenvalues, which indicate oscillatory behavior. The physical interpretation is clear: with
any imbalance (∆E , 0), ϕ is changed in order to restore that balance. But then, the system overshoots,
leading to oscillations. The transition from a stable focus to an unstable one (a Hopf bifurcation) shows
trajectories turn from spiraling into the fixed point to outward spirals ending in a stable limit cycle.

To analyze this bifurcation, let us label the eigenvalues of J by Λ, λ± iω. In terms of these, we have
T = Λ + 2λ, C = 2Λλ + λ2 + ω2, and D = Λ

(
λ2 + ω2

)
, so that we can conclude Λ < 0 from D < 0.

Further, for the regime whereω is real, the sign of λ is conveniently identical to that of the characteristic
Ξ ≡ TC − D. Thus, by solving Ξ

(
γ, β, β̄, fc

)
= 0, we can determine fc

(
γ, β, β̄

)
, i.e., the critical f as a

function of the parameter set
(
γ, β, β̄

)
. For example, with our choice of

(
γ, β, β̄

)
= (0.07, 0.15, 0.05), we

find fc ≃ 0.58. For f > fc, the trajectories in our model end either in limit cycles or, for more extreme
values of f , in fixed points in the boundary of the prism. To illustrate this transition, we present two
cases: f = 0.50, 0.59 (Figures 5 and 6), where the trajectory spirals into a stable fixed point and a
stable limit cycle.
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Figure 6. Dynamics of a stable limit cycle around the unstable balanced fear fixed point, with
f = 0.5788. A) Temporal dynamics of oscillations close to the limit cycle. B) A trajectory
near the limit cycle. C) A trajectory spiraling into the limit cycle from the “outside”. D) A
trajectory spiraling outward toward the limit cycle from the “inside”. Arrows indicate the
direction of the spiral. For clarity, we place a star at the starting points of the trajectories
displayed.

At the Hopf bifurcation, the frequency of the emerging limit cycle is ω =
√

C, evaluated at this
point. Though an explicit expression for ω

(
γ, β, β̄

)
is available, we do not reproduce it here, as it is

cumbersome and provides little insight. Its numerical evaluation agrees with the results of simulation
runs. In particular, we find that the period of the limit cycle starts at about 120 days for f ≳ fc, rising
by a factor of about 3 when f ≃ 0.9.

Far above fc, it is common to find cycles in which the system spends a long time near the ϕ = 0
plane. At some point in the cycle, with substantial V and little I, V trickles out very slowly (as we have
a low rate of breakthrough infection, β̄) in a quasi-linear fashion so that I increases slowly. As soon
as the I/V ratio passes (1 − f ) / f , the point of balanced fear, ϕ rises precipitously. This rise drives V
to increase rapidly (at the expense of S ). As V surpasses I, the population changes its perception of
the relative risks when (1 − f )V > f I (∆E flips sign) and ϕ swings downwards. This swing is also
relatively fast as ϕ approaches zero. An example is provided in the inset of Figure 5A. From a game
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theoretical perspective, the changing of signs of ∆E corresponds to the emergence of the non-trivial
Nash equilibrium, where a small perturbation about ∆E = 0 causes an oscillation in the frequency of
strategy selection. The essential properties of such swings can be understood through a solvable toy
model, which demonstrates the nature of the ϕ equation (details in Appendix).

In a slightly more general form of the model, we can write ϕ̇ = δϕ (1 − ϕ)∆E, where δ corresponds
to the “strength of belief” and models how rapidly susceptible individuals get vaccinated when they
decide to do so. The strength of belief mainly impacts the characteristic time of the oscillations (Figure
7B). The higher δ results in more rapid changes in ϕ̇with oscillations in V and I in a more square shape.

In other highly infectious diseases with different R0 values, as the fixed points in all three branches
of the solutions depend on γ/β = 1/R0, changing R0 will shift the steady state values without changing
the overall dynamics. Most notably is the critical fear factor fc for oscillation depends on R0.

Even when between 60% and 90% of the population is vaccinated, because of the low vaccination
efficacy (β̄ ≈ γ), the breakthrough infection leads to fast spikes of infection followed by high vaccina-
tion uptake in response to the epidemic. This resembles the typical epidemic characteristic after a new
viral variant emerges. Note that β̄ > γ occurs only in the case of an ineffective vaccine.

Figure 7. Increasing the “strength of belief” makes steeper transitions. A) Temporal dynam-
ics around the vertical plane f I = (1 − f )V . The two sets of traces correspond to different
initial states. B, C) Phase trajectories for β = 0.15, γ = 0.07, β̄ = 0.0695, f = 0.931, δ = 10,
with different initial values (denoted stars), projected onto the I-V plane. The former spirals
inward into a stable limit cycle. The latter spirals outwards to the limit cycle. This scenario
resembles the case of a low-efficacy vaccine where the population is not vaccine-hesitant.

4. Summary and outlook

The COVID-19 pandemic caused over 7 million deaths worldwide and 1.2 million in the US alone
(as of June 2024), more than vehicle crashes, gun violence, the flu, or many other public health threats
combined [35, 36]. The situation is unfortunate since many of these deaths could have been prevented
if only more people had received vaccine shots. A recent study estimated that at least 232,000 deaths
could have been prevented among unvaccinated adults during the 15 months in the US (from May
30, 2021 to September 3, 2022), had they been vaccinated with at least a primary series of vaccines
[37]. Hence, accurate communication of valid scientific findings to the public and a decrease in the
politicization of science are necessary.

Our minimal S IV model adds a vaccine willingness to an S IV epidemic model and explores how
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vaccine hesitancy impacts the epidemic evolution. A substantial body of literature exists for more com-
plex models that account for specific COVID-19 characteristics and data. Unfortunately, these complex
models are often difficult to analyze and understand in terms of the underlying complex dynamics. For
example, at the onset of the COVID-19 pandemic, many epidemiological models were rapidly adapted
to emerging public health data and provided valuable support for policymakers to develop public health
responses. In particular, the Center for Disease Control and Prevention (CDC) continues to use a
large and growing list of such models to provide forecasts of new cases, hospitalizations, and deaths
(https://www.cdc.gov/coronavirus/2019-ncov/science/forecasting/mathematical-modeling.html).

Our simple model allowed for detailed analysis to shed new insights into how vaccine hesitancy
can be a novel source of periodic oscillations in epidemic spread. We demonstrated that when vaccine
willingness depends on the epidemic size, the disease-free equilibrium is only achievable in the case
of total vaccine acceptance. On the other hand, in the case of total vaccine rejection, the epidemic
invariably arrives at the endemic equilibrium with a finite infected population depending on the infec-
tion rate and recovery rate. In the more realistic case of intermediate vaccine hesitancy, the relative
strength between the fear of infection and the fear of vaccine drives the epidemic progress. When the
fear of infection is low, the epidemic settles into a steady state, with the number of people vaccinated
proportional to the fear of infection and the number of people infected proportional to the fear of vac-
cination. Increasing the fear of infection, the system will cross a point where the fear of infection and
vaccination balance out, and the system undergoes a Hopf bifurcation and enters periodic oscillations,
eventually settling into a limit cycle. Many other studies have shown the existence of oscillations in
COVID-19 modeling [38–40], but none of them studied vaccine hesitancy. Our minimal model of-
fers novel insight into the role of vaccine hesitancy as a novel source of epidemic oscillation, and the
challenges of achieving herd immunity via vaccination in the presence of vaccine hesitancy.

There are innumerable avenues worthy of future research; only a few will be mentioned here. The
present model has minimal parameters associated with various transition rates. Other rates that may
affect the qualitative outcomes of the model include, e.g., births/deaths and waning immunity. In
the latter, V → S with an additional timescale. Similarly, we may incorporate more sophisticated
ingredients to model the behavior of vaccine acceptance. Another extension of our simple model would
be to include stochastic effects or formulate it as an agent-based model to incorporate an individual’s
history. Preliminary studies involving agent-based simulations revealed several interesting results, e.g.,
finite lifetimes of the endemic steady states (also known as lifetimes to extinction in the language of
population dynamics).

Our model consists of individuals who have the same information and use the information to assess
relative risks, which is a simplification of information processing, selective exposure, and intrinsic bias
due to one’s political affiliation, media exposure, and social network [41–43]. A separate, network-
based model for information transmission in addition to a physical network-based disease transmission
would be desirable to capture the more realistic information dynamics.

It is also possible to study fluctuations of and correlations between modeling parameters (e.g., trans-
mission rates, recovery rate, and fear factor); both are absent from the analysis in this paper. Most
diseases, especially SARS-CoV-2, affect different age groups differently. We can investigate in more
details how an epidemic might spread and end by including age distributions. In general, only some
people are in contact with everyone else in the population due to social and geographic constraints.
Overlaying social and spatial structures on our model and investigating their effects could provide new
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insights. Finally, using agent-based models, we consider the much more realistic situation where there
is a variety of responses (individual ϕ’s) due to different levels of fear and misinformation.

We believe that understanding how vaccine hesitancy and reluctance impact the progression of an
epidemic can help to design better vaccine campaign strategies and shorten the duration of an epidemic.

5. Appendix

An analytically solvable toy model
Here, we show a minimal model that can be solved analytically and may provide some insight into

the oscillatory behavior in our model. Consider Eq (2.4) and the simplified equation for ∆E:

∆̇E = B − (A + B) ϕ (5.1)
ϕ̇ = σϕ (1 − ϕ)∆E (5.2)

where A, B, σ are positive constants. Although these constants can be absorbed into scale factors of the
variables and t, their explicit presence facilitates discussions here.

This system of equations can be solved exactly, as in classical mechanics. To make the analogy
explicit, let us think of a particle with unit mass moving in x ∈ [−∞,∞]. In addition, motivated by
dx = dϕ/ϕ (1 − ϕ), let us change variables to

p = σ∆E

x = ln
ϕ

1 − ϕ

(An arbitrary x0 may be added to x, we choose it to be 0 when ϕ = 1/2.) Then

ϕ (x) =
ex

1 + ex = 1 + tanh
x
2

lies in [0, 1]. Equations (5.1) and (5.2) become

ẋ = p

ṗ =
[
B − (A + B) ϕ (x)

]
/σ

which displays classic Hamiltonian dynamics with

H =
p2

2
+V (x)

and the potential

V (x) = −σ
[
Ax + 2 (A + B) ln cosh

x
2

]
For |x| ≫ x0, the potential V is almost linear, being −σBx for x < 0 and σAx for x > 0. Keeping
A, B constant and varying σ, we see that σ corresponds to the steepness of the V-shaped potential. We
can verify that, given the same initial conditions (∆E (0) , ϕ (0)), a large σ will result in ϕ making rapid
transitions from 0 to 1 (i.e., our particle oscillating between large positive and negative values of x).
Meanwhile, the “momentum” changes sign at the bottom ofV almost instantaneously, corresponding
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to the kink-like structures at extreme values of ∆E. When the trajectories take us to large values of x,
the almost linear potential V resembles uniform gravity, leading to the momentum being linear in t.
This aspect captures the essence of quasi-linear regions in a V − I plot.

Finally, the main advantage of this toy model is that it guarantees limit cycles. Indeed, this is a
neutral system with an infinite number of limit cycles, labeled by the value ofH , the total “energy” of
our particle.

Steady states

Figure 8. A) The phase portrait of the different regions within the triangular prism (top
view) was obtained by evaluating the sign of the Eqs (2.3) and (2.4). Each of the regions
is obtained by solving for the nullclines and partitioning the polygon from the bottom plane
(S-I nullcline), top plane (I-V nullcline), and vertical plane (ϕ). The steady states are labeled
around the triangular prism and correspond to those listed in (Table 2). The S − V steady
state is not within the polygon due to the parameter values. B) Conditions corresponding to
the different regions within the polygon where ∆E flips signs.

Table 2. Steady states of the SIV model. OFP: ordinary fixed point, DFE: disease-free
equilibrium, SV: susceptible vaccinated, FV: fully vaccinated, IV: infected vaccinated, BFSS:
balanced fear steady state.

Name S ∗ I∗ V∗ ϕ∗

OFP γ/β 1 − γ/β 0 0
DFE 1 0 0 0
SV (γ − β)/(β − β̄) 0 1 − (γ − β)/(β − β̄) 0
FV 0 0 1 1
IV 0 1 − γ/β̄ γ/β̄ 1

BFSS γ−β̄ f
β−β f

(1 − f ) ∗
(
1 − γ−β̄ f

β−β f

)
f ∗
(
1 − γ−β̄ f

β−β f

)
β̄ f (1− f )(1−S ∗)2

S ∗
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We compute the steady states by setting Eqs (2.1)–(2.4) to zero and solving for (S ∗, I∗,V∗, ϕ∗). Our
model demonstrates that the S IV model can be reduced to the S IV framework in the extreme cases
of zero or all vaccinations. We also include a unique complex balanced fear steady state (BFSS). The
steady states can be illustrated in the phase portrait (Figure 8) and the corresponding Table 2. Note the
steady states and their stability depend on the initial conditions and parameter values.
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