
MBE, 21(8): 6807–6828. 
DOI: 10.3934/mbe.2024298 
Received: 01 May 2024 
Revised: 06 July 2024 
Accepted: 25 July 2024 
Published: 09 August 2024 

http://www.aimspress.com/journal/MBE 
 

Research article 

Potential for eliminating COVID-19 in Thailand through third-dose 

vaccination: A modeling approach  

Pannathon Kreabkhontho1, Watchara Teparos2 and Thitiya Theparod1,* 

1 Department of Mathematics, Mahasarakham University, Maha Sarakham 44150, Thailand 
2 Department of General Science, Faculty of Science and Engineering, Kasetsart University, 

Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand 

* Correspondence: Email: thitiya.t@msu.ac.th. 

Abstract: The COVID-19 pandemic continues to pose significant challenges to global public health, 
necessitating the development of effective vaccination strategies to mitigate disease transmission. In 
Thailand, the COVID-19 epidemic has undergone multiple waves, prompting the implementation of 
various control measures, including vaccination campaigns. Understanding the dynamics of disease 
transmission and the impact of vaccination strategies is crucial for guiding public health interventions 
and optimizing epidemic control efforts. In this study, we developed a comprehensive mathematical 
model, termed 𝑆𝑆௩𝐼𝐻ଵ𝐶𝐻ଶ𝑅𝐷, to elucidate the dynamics of the COVID-19 epidemic in Thailand. The 
model incorporates key epidemiological parameters, vaccination rates, and disease progression stages 
to assess the effectiveness of different vaccination strategies in curbing disease transmission. 
Parameter estimation and model fitting were conducted using real-world data from COVID-19 patients 
in Thailand, enabling the simulation of epidemic scenarios and the exploration of optimal vaccination 
rates. Our results showed that optimizing vaccination strategies, particularly by administering 
approximately 119,625 doses per day, can significantly reduce the basic reproduction number (𝑅଴) 
below 1, thereby accelerating epidemic control. Simulation results demonstrated that the optimal 
vaccination rate led to a substantial decrease in the number of infections, with the epidemic projected 
to be completely eradicated from the population by June 19, 2022. These findings underscore the 
importance of targeted vaccination efforts and proactive public health interventions in mitigating the 
spread of COVID-19 and minimizing the burden on healthcare systems. Our study provides valuable 
insights into the optimization of vaccination strategies for epidemic control, offering guidance for 
policymakers and healthcare authorities in Thailand and beyond. By leveraging mathematical 
modeling techniques and real-world data, stakeholders can develop evidence-based strategies to 
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combat the COVID-19 pandemic and safeguard public health. 

Keywords: mathematical modeling; control strategy; COVID-19 elimination; third-dose vaccination; 
basic reproduction number 
 

1. Introduction  

Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) is an infectious respiratory 
disease known as the coronavirus disease 2019 (COVID-19). The outbreak originated in Wuhan, the 
capital of Hubei Province, People’s Republic of China, with the first cases reported in December 2019, 
initially linked to the Wuhan Seafood Market [1]. Shortly after the first case was identified, the World 
Health Organization declared the COVID-19 outbreak a global public health emergency [2–5]. As of 
March 11, 2024, there have been approximately 703,997,824 million confirmed cases of COVID-19, 
with over 7 million fatalities, with the United States reporting the highest number of infections [6]. 
Thailand reported its first COVID-19 case on January 31, 2019, which marked the beginning of a 
steady increase in infections. Thailand has experienced five waves of the epidemic, the most recent of 
which began in early 2022. As of March 1, 2024, Thailand recorded 34,569 deaths and 4,760,813 
confirmed cases [6–8].  

Regarding vaccinations, 33,987,074 individuals received the first dose, 53,730,348 received the 
second dose, and 57,233,919 received the third dose [7–9]. COVID-19 has not been completely 
eradicated, even though the outbreak’s peak has passed throughout the nation. In Thailand, COVID-19 
infections are still widespread, and hospitals are still treating patients who require ventilators for severe 
pneumonia. There has been a decline in the use of self-defense techniques, which has increased the 
number of cases. Furthermore, a small percentage of the population in Thailand is either unvaccinated 
or has not completed vaccinations [10]. 

To curb the spread of COVID-19, Thailand has implemented various measures, including 
extensive vaccination campaigns, social distancing protocols, frequent cleaning of floors and surfaces, 
mandatory mask-wearing, and stringent environmental hygiene practices [11]. Vaccination campaigns 
have proven to be pivotal in preventing infections and mitigating disease severity. Thailand has 
administered five different types of vaccines: Sinovac, Sinopharm, AstraZeneca, Pfizer, and Moderna 
vaccines. The vaccination drive commenced on February 28, 2022, with the aim of inoculating the 
entire population. Facing limited vaccine availability and prevalence of the Delta variant, the Thai 
government adopted a combined vaccination approach to expedite the immunization process and curb 
the rising number of infections [12–17]. As a result, Thailand offers a variety of vaccine formulations 
with varying degrees of efficacy in preventing viral transmission. For instance, the overall infection 
prevention efficacy of the vaccines was 89% after each dose. Specifically, the vaccine demonstrated 58% 
effectiveness four weeks after the initial dose, 64% efficacy six months after the second dose, and 44% 
efficacy six months after the third dose. Within four weeks after the third dose, the efficacy rose to 92%, 
reaching 88% within two to two-and-a-half months after the third dose, and remained at 83% efficacy 
two-and-a-half months or more after the third dose [18–22].  

The development of epidemic system dynamics models offers robust forecasting techniques and 
tools for guiding decisions in public health emergency management. These models simulate the disease 
progression, emergency response strategies, and transmission patterns. They are built upon the 
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foundation of the SIR epidemic model, which categorizes individuals into susceptible, infected, and 
recovered compartments [23]. The SIR model or its variations, such as the SIRS [24], SEIR or SEIRD 
models [25,26], and the SEQIAHR model pioneered by Sacrifice Nana-Kyere [27], have been 
extensively utilized in simulation studies to illustrate the dynamics of COVID-19. Additionally, more 
sophisticated compartmental extensions have been explored [28–31]. 

Mathematical models related to the COVID-19 pandemic are currently being developed to 
address the ongoing outbreaks. When it comes to vaccination to prevent and control epidemics, these 
models are incredibly useful in both research and education. They assist in the comprehension and 
control of various diseases. As a result, many studies have examined the effects of individual 
immunization doses. For instance, Intawong et al. [32] examined the effects of administering more 
than three doses of vaccination to high-risk COVID-19 patients in Thailand who have insufficient 
immunity. Similar research has been undertaken in prior studies [33–38], examining the impact of 
administering all three immunization doses on the transmission of COVID-19 in various countries. As 
the government of Thailand endeavors to ensure that its citizens receive all three vaccinations by 
early 2022, this proactive measure is expected to substantially diminish the probability of contracting 
infections that might undergo further mutations. Moreover, if infections occur, their severity is 
anticipated to be reduced, thereby mitigating hospitalization and mortality rates. Recently, Theparod 
et al. [39] studied the impact of booster dose vaccinations on the recent COVID-19 wave in Thailand. 
Their findings revealed a dose-dependent decrease in the percentage of infected individuals among the 
vaccinated population, with the simulation results closely aligned with real-world data. Notably, 
individuals who received vaccinations exhibited a better recovery rate, while those who received 
booster doses had the lowest mortality rate. These findings align with previous research [40] affirming 
the efficacy of administering three vaccine doses in conferring protection against COVID-19, thereby 
reducing disease severity and mitigating mortality rates as well as infection rates. However, individuals 
with compromised immune systems, particularly healthcare professionals, necessitate additional 
vaccine doses. Therefore, it is interesting to explore the impact of implementing a third-dose policy on 
controlling COVID-19 spread with the aim of eliminating COVID-19 in the population. 

In this study, we introduce a comprehensive mathematical model delineating the dynamics of the 
COVID-19 pandemic, denoted as 𝑆𝑆௩𝐼𝐻ଵ𝐶𝐻ଶ𝑅𝐷. Our study was motivated by the work of Theparod 
et al. [39], wherein we refined the model to incorporate recent data updates and insights into the disease 
transmission dynamics. Our model accounts for the recovery trajectory following intensive care unit 
(ICU) treatment. Given the established efficacy of the third dose in curbing disease transmission, we 
aim to explore the potential impact of the third-dose strategy on disease elimination. Specifically, this 
study endeavors to utilize the developed mathematical model to assess the effects of administering a 
third vaccine dose to reduce infection rates and hasten the time until the epidemic is eliminated. 
Through this investigation, we aim to provide valuable insights into the optimization of vaccination 
strategies in evolving pandemic scenarios. 

The remainder of this study is structured as follows: In the Materials and methods section, we 
develop a COVID-19 model with a mathematical formulation. The mathematical analysis of the model, 
including the positive and boundness of the solution, the basic reproduction number, and endemic 
equilibrium, are presented. The corresponding model parameters are estimated and tabulated in the 
Model fitting and parameter estimation section. The Results section explores the sensitivity analysis 
and simulation of the epidemic scenarios. Finally, discussion and conclusion are presented at the end 
of this paper. 
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2. Materials and methods 

In this study, we present an eight-deterministic compartmental model of COVID-19 that classifies 
individuals based on their infection status, vaccination status, and hospitalization stages. This model 
is an adaptation of a previously developed compartmental model [39] with the inclusion of a 
compartment of the recuperated population after ICU treatment. The total population is represented by 𝑁(𝑡) and is divided into 8 compartments: proportion of the susceptible population (𝑆), proportion of 
the susceptible who have already received the third-dose vaccination (𝑆௩), proportion of the infectious 
population under home quarantine and self-care (I), proportion of the hospitalized population (𝐻ଵ), 
proportion of the critically infected population treated in the ICU (𝐶), proportion of the recuperated 
population after treatment in the ICU (𝐻ଶ), proportion of the recovered population (𝑅), and proportion 
of the dead population (𝐷). Thus, the total population can be expressed as follows: 𝑁(𝑡) = 𝑆(𝑡) + 𝑆௩(𝑡) + 𝐼(𝑡) + 𝐻ଵ(𝑡) + 𝐶(𝑡) + 𝐻ଶ(𝑡) + 𝐷(𝑡) + 𝑅(𝑡). 

The assumptions for this model are as follows: 
(i) We assume homogeneous mixing within the population, indicating that each individual in 

the community has an equal likelihood of interacting with others and acquiring infections 
when they come into contact;  

(ii) We consider unvaccinated, vaccinated with one dose, and vaccinated with two doses 
populations in the susceptible compartment (S). Therefore, we refer to these individuals 
as susceptible individuals; 

(iii) A vaccinated individual is assumed to be susceptible with a probability of becoming 
infected once in contact with an infectious person [41]; 

(iv) The second vaccination dose was administered to more than 90 percent of patients who 
received the first dose [42]. As a result, the recipient’s immunity was boosted immediately 
following the injection. Therefore, we assume that the effectiveness of the vaccine remains 
stable over time without any noticeable decline; 

(v) The COVID-19 vaccine is not infallible as its efficacy is not 100%. As a result, 
breakthrough infections can still occur in vaccinated individuals. The level of protection 
provided by the vaccine may vary depending on the efficacy of each dose.  

In our epidemiological model, the progression of individuals through various stages of 
susceptibility, infection, hospitalization, and recovery from COVID-19 is governed by several key 
factors. Susceptible individuals face two primary possibilities: Infection, which happens upon contact 
with an infected individual at a rate denoted by 𝛽, or vaccination, received at a rate 𝜏. The efficacy 
of the vaccine against infection is quantified by 𝛽(1 − 𝑚ூ), where 𝑚ூ represents the vaccine efficacy 
in preventing infection. Infected individuals may develop more severe symptoms and move to the 
hospital at a rate 𝜔. Infected individuals can also move to the death compartment at a rate 𝜆.  The 
remaining infected individuals move to the recovery compartment at a rate of 𝛾.  Hospitalized 
individuals may progress to critical condition at a rate 𝛼, or face mortality at a rate 𝜋.  Additionally, 
those in critical condition may recover enough to leave the ICU at a rate 𝛿, or face mortality at a rate 𝜌. Post-ICU recovery occurs at a rate of 𝜂 for individuals treated in the ICU (classified as 𝐻ଶ). The 
schematic diagram illustrating the constructed model, based on the aforementioned assumptions, can 
be found in Figure 1.  
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Figure 1. Schematic diagram of the model for disease transmission. 

Consequently, the dynamics of COVID-19 are described by the following system of 
differential equations: 

 

⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪
⎪⎧ ௗௌ(௧)ௗ௧ = 𝛬 − 𝜏𝑆(𝑡) − 𝜇𝑆(𝑡) − 𝛽𝑆(𝑡)𝐼(𝑡)ௗௌೡ(௧)ௗ௧ = 𝜏𝑆(𝑡) − 𝜇𝑆௩(𝑡) − 𝛽(1 − 𝑚ூ)𝑆௩(𝑡)𝐼(𝑡)ௗூ(௧)ௗ௧ = 𝛽𝑆(𝑡)𝐼(𝑡) + 𝛽(1 − 𝑚ூ)𝑆௩(𝑡)𝐼(𝑡) − (𝜆 + 𝜔 + 𝛾 + 𝜇)𝐼(𝑡)ௗுభ(௧)ௗ௧ = 𝜔𝐼(𝑡) − (𝜋 + 𝛼 + 𝜎 + 𝜇)𝐻ଵ(𝑡)ௗ஼(௧)ௗ௧ = 𝛼𝐻ଵ(𝑡) − (𝜌 + 𝛿 + 𝜇)𝐶(𝑡)ௗுమ(௧)ௗ௧ = 𝛿𝐶(𝑡) − (𝜂 + 𝜇)𝐻ଶ(𝑡)ௗோ(௧)ௗ௧ = 𝛾𝐼(𝑡) + 𝜎𝐻ଵ(𝑡) + 𝜂𝐻ଶ(𝑡) − 𝜇𝑅(𝑡)ௗ஽(௧)ௗ௧ = 𝜆𝐼(𝑡) + 𝜋𝐻ଵ(𝑡) + 𝜌𝐶(𝑡)

 (1) 

The corresponding initial conditions are: 

 𝑆(0) ≥ 0, 𝑆௩(0) ≥ 0, 𝐼(0) ≥ 0, 𝐻ଵ(0) ≥ 0, 𝐶(0) ≥ 0, 𝐻ଶ(0) ≥ 0, 𝐷(0) ≥ 0, 𝑅(0) ≥ 0 (2) 

Furthermore, Tables 1 and 2 detail all of the state variables and parameters, along with their 
corresponding descriptions, respectively. 
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Table 1. State variables and their descriptions. 

Table 2. Summary of model parameters and descriptions. 

Parameters Description 𝛬 Recruitment rate 𝜇 Natural death rate 𝜏 Vaccination rate  𝛽 The effective transmission rate 𝛾 Recovery from infection 𝜎 Recovery from infection while in hospital 𝜂 Recovery from recuperation after treatment in the ICU 𝛿 The recovery rate from infection in the ICU, returning to the recuperation 𝜔 Hospital admission rate 𝜆 The death rate of the infected population 𝜋 The death rate of the hospitalized population 𝜌 The death rate of the population admitted to the ICU 𝛼 ICU admission rate of infected hospitalized individuals 𝑚ூ The efficacy of vaccines for preventing infection 

2.1. Data 

Data pertaining to COVID-19 were obtained from the COVID-19 Data Repository managed by 
the Department of Disease Control (DDC) [7]. This repository contains a wide array of information, 
including daily COVID-19 case counts, hospital admissions, critical cases, recoveries following ICU 
treatment, daily mortality rates, and vaccination statistics. 

Figure 2 illustrates the incidence of COVID-19 from the onset of the pandemic up until the fifth 
wave. As we can see, a considerable number of cases were reported during the fifth wave of the epidemic, 
with the highest infection rates compared to the previous waves. Furthermore, in February 2021, 
Thailand initiated its COVID-19 vaccination campaign with procurement of the Sinovac vaccine from 
China [43]. As the alpha variant began to spread in March, Thailand expanded its vaccine arsenal by 
importing the AstraZeneca vaccine from England and Sweden. In June 2021, the country imported the 
Sinopharm vaccine from China, followed by the introduction of the Pfizer vaccine from Germany in 
August 2021. Responding to the rise of the delta variant, Thailand commenced administering the 
Moderna vaccine from the United States in November 2021 [44]. 

Variable Description 𝑆 The proportion of the susceptible population 𝑆௩ The proportion of the susceptible and vaccinated population 𝐼 The proportion of the infectious population under home quarantine and self-care 𝐻ଵ The proportion of the hospitalized population 𝐶 The proportion of the critically infected population who are treated in the ICU 𝐻ଶ The proportion of the recuperated population after treatment in the ICU 𝑅 The proportion of the recovered population 
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Figure 2. The course of COVID-19 in Thailand from the beginning of the pandemic. 

2.2. Positivity and boundedness of the solution 

For model (1), a region of attraction is given by Lemma 2.2. 
Lemma 2.2. Set 𝛺 = ሼ(𝑆, 𝑆௩, 𝐼, 𝐻ଵ, 𝐶, 𝐻ଶ, 𝑅, 𝐷) ∈ ℝା଼: 𝑁 = 𝑆 + 𝑆௩ + 𝐼 + 𝐻ଵ + 𝐶 + 𝐻ଶ + 𝐷 + 𝑅ሽ is 
the invariant region of model (1). 
Proof. Let 𝑁 = 𝑆 + 𝑆௩ + 𝐼 + 𝐻ଵ + 𝐶 + 𝐻ଶ + 𝐷 + 𝑅,and then 

 ௗேௗ௧ = ௗௌௗ௧ + ௗௌೡௗ௧ + ௗூௗ௧ + ௗுభௗ௧ + ௗ஼ௗ௧ + ௗுమௗ௧ + ௗோௗ௧ + ௗ஽ௗ௧ ,  

 ௗேௗ௧ = Λ − 𝜇𝑁.  

Integrating 𝑁(𝑡) ≤ 1 + (𝑁(0) − 1)𝑒ିఓ௧, then 𝑁(𝑡) ≤ 1  and 𝑒ିఓ௧ → 0  as 𝑡 → ∞.  This 
indicates that the solution of model (1) remains non-negative and bounded.  

2.3. The basic reproduction number (𝑅଴) 

The reproduction number is the average number of secondary infections produced by one infected 
individual in a completely susceptible population. To compute the basic reproduction number, we use 
the next-generation approach described by Dietz [45]. Let X = (𝐼, 𝐻ଵ, 𝐶, 𝐻ଶ)் be a vector of infected 
classes. 𝐹 represents the Jacobian matrix of the terms that cause new infections and the matrix of the 
remaining transfer terms is represented as 𝑉 . The Jacobian matrices, 𝐹  and 𝑉 , evaluated at the 
disease-free equilibrium, are obtained as  

 𝐹 = ൦𝛽𝑆 + 𝛽(1 − 𝑚ூ)𝑆௩ 0 00 0 000 00 00    0000൪,  
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 𝑉 = ൦𝜆 + 𝜔 + 𝛾 + 𝜇 0 0−𝜔 𝜋 + 𝛼 + 𝜎 + 𝜇 000 −𝛼0 𝜌 + 𝛿 + 𝜇−𝛿
000𝜂 + 𝜇൪.  

The next generation matrix is the production of 𝐹𝑉ିଵ . The eigenvalues of 𝐹𝑉ିଵ  are 𝛷ଵ =ఉௌାఉ(ଵି௠಺)ௌೡఒାఠାఊାఓ  , 𝛷ଶ = 0, 𝛷ଷ = 0, and 𝛷ସ = 0.  

Hence, 𝑅଴ = 𝜌(𝐹𝑉ିଵ) = 𝑚𝑎𝑥ሼ|𝛷ଵ|, |𝛷ଶ|, |𝛷ଷ|, |𝛷ସ|ሽ = ఉ௸ఓାఛ௸ఉ(ଵି௠಺)(ఒାఠାఊାఓ)ఓ(ఛାఓ). 
Understanding the basic reproduction number (𝑅଴) is paramount in epidemiological theory for 

predicting the fate of infectious diseases within populations. When 𝑅଴ < 1, the disease is destined to 
extinguish naturally, whereas an 𝑅଴ > 1 signifies the persistence of the disease within the population 
for a significant duration. Effective control measures necessitate reducing 𝑅଴  below unity. Thus, 
comprehending the influence of model parameters on the basic reproduction number is critical. 

2.4. Endemic equilibrium 

The model has two equilibrium points: disease-free equilibrium (DFE), which occurs when 𝑅଴ < 1, and endemic equilibrium (EE), which occurs when 𝑅଴ > 1.  
Theorem 2.4. A disease-free equilibrium state (DFE) of model (1) exists at the point 𝐸଴=൫𝑆଴, 𝑆௩బ, 𝐼଴, 𝐻ଵబ, 𝐶଴, 𝐻ଶబ, 𝑅଴, 𝐷଴൯ = ቀ ௸(ఛାఓ) , ఛ௸ఓ(ఛାఓ) , 0, 0, 0, 0, 0, 0ቁ  and the endemic equilibrium point 

exists at 𝐸∗= (𝑆∗, 𝑆௩∗, 𝐼∗, 𝐻ଵ∗, 𝐶∗, 𝐻ଶ∗, 𝑅∗, 𝐷∗) where 

 𝑆∗ = ௸ఛାఓାఉூ∗,  

 𝑆௩∗ = ఛ௸(ఛାఓାఉூ∗)(ఓାఉ(ଵି௠಺)ூ∗),  

 𝐼∗ = ି஻±√஻మିସ஺஼ଶ஺ ,  

 𝐻ଵ∗ = ఠூ∗(గାఈାఙାఓ),  

 𝐶∗ = ఈఠூ∗(గାఈାఙାఓ)(ఘାఋାఓ),  

 𝐻ଶ∗ = ఈఠఋூ∗(ఎାఓ)(గାఈାఙାఓ)(ఘାఋାఓ),  

 𝑅∗ = ఊூ∗ఓ + ఙఠூ∗ఓ(గାఈାఙାఓ) + ఎఈఠఋூ∗ఓ൫(ఎାఓ)(గାఈାఙାఓ)(ఘାఋାఓ)൯,  

 𝐷∗ = 1 − (𝑆∗ + 𝑆௩∗ + 𝐼∗ + 𝐻ଵ∗ + 𝐶∗ + 𝐻ଶ∗ + 𝑅∗),  

such that 
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 𝐴 = (𝜆 + 𝜔 + 𝛾 + 𝜇)𝛽ଶ(1 − 𝑚ூ),  

 𝐵 = ൫(𝜆 + 𝜔 + 𝛾 + 𝜇)(𝜏 + 𝜇)𝛽(1 − 𝑚ூ) + 𝜇𝛽൯ − 𝛽ଶ𝛬(1 − 𝑚ூ),  

 𝐶 = (𝜆 + 𝜔 + 𝛾 + 𝜇)(𝜏𝜇 + 𝜇ଶ) − 𝜏𝛬 − 𝜇𝛽𝛬.  

Proof. The above expressions are deduced by equating all derivatives mentioned in the system of 
Eq (1) to zero. 

We get 

 0 = 𝛬 − τ𝑆(𝑡) − 𝜇𝑆(𝑡) − 𝛽𝑆(𝑡)𝐼(𝑡) (3) 

 0 = 𝜏𝑆(𝑡) − 𝜇𝑆௩(𝑡) − 𝛽(1 − 𝑚ூ)𝑆௩(𝑡)𝐼(𝑡) (4) 

 0 = 𝛽𝑆(𝑡)𝐼(𝑡) + 𝛽(1 − 𝑚ூ)𝑆௩(𝑡)𝐼(𝑡) − (𝜆 + 𝜔 + 𝛾 + 𝜇)𝐼(𝑡) (5) 

 0 = 𝜔𝐼(𝑡) − (𝜋 + 𝛼 + 𝜎 + 𝜇)𝐻ଵ(𝑡) (6) 

 0 = 𝛼𝐻ଵ(𝑡) − (𝜌 + 𝛿 + 𝜇)𝐶(𝑡) (7) 

 0 = 𝛿𝐶(𝑡) − (𝜂 + 𝜇)𝐻ଶ(𝑡) (8) 

 0 = 𝛾𝐼(𝑡) + 𝜎𝐻ଵ(𝑡) + 𝜂𝐻ଶ(𝑡) − 𝜇𝑅(𝑡) (9) 

 0 = 𝜆𝐼(𝑡) + 𝜋𝐻ଵ(𝑡) + 𝜌𝐶(𝑡) (10) 

At the disease-free equilibrium state (𝐸଴), all infectious stages are 0, and we have 

 𝑆(𝑡) = 𝑆଴,  𝑆௩(𝑡) = 𝑆௩బ, 𝐼(𝑡) = 0, 𝐻ଵ(𝑡) = 0, 𝐶(𝑡) = 0, 𝐻ଶ(𝑡) = 0, 𝑅(𝑡) = 0, 𝐷(𝑡) = 0.  

From Eq (3), we get 0 = 𝛬 − 𝜏𝑆(𝑡) − 𝜇𝑆(𝑡) , then 𝑆଴ = ௸(ఛାఓ) . From Eq (3), we have 0 =𝜏𝑆(𝑡) − 𝜇𝑆௩(𝑡) , then 𝑆௩బ = ఛ௸ఓ(ఛାఓ) . Therefore, 𝐸଴ = ൫𝑆଴, 𝑆௩బ, 𝐼଴, 𝐻ଵబ, 𝐶଴, 𝐻ଶబ, 𝑅଴, 𝐷଴൯ =ቀ ௸(ఛାఓ) , ఛ௸ఓ(ఛାఓ) , 0,0,0,0,0ቁ. 
Next, we will determine 𝐸∗. From (3), we have 

 𝑆∗ = ௸ఛାఓାఉூ∗. (11) 

From (4), we get 𝜇𝑆௩ − 𝛽(1 − 𝑚ூ)𝑆௩𝐼∗ = 𝜏𝑆. Then 

 𝑆௩∗ = ఛௌ∗ఓାఉ(ଵି௠಺)ூ∗ = ఛ௸(ఛାఓାఉூ∗)(ఓାఉ(ଵି௠಺)ூ∗). (12) 

Substitute (11) and (12) in (5) and since 𝐼∗ > 0, we get 

 0 = ఉ௸ఛାఓାఉூ∗ + ఉ(ଵି௠಺)ఛ௸(ఓାఉ(ଵି௠಺)ூ∗)(ఛାఓାఉூ∗) − (𝜆 + 𝜔 + 𝛾 + 𝜇).  

Let 𝐾 =  𝜆 + 𝜔 + 𝛾 + 𝜇 and, from the above expression, we have 
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 0 = ఉ௸(ఓାఉ(ଵି௠಺)ூ∗)(ఛାఓାఉூ∗)(ఓାఉ(ଵି௠಺)ூ∗) + ఉ(ଵି௠಺)ఛ௸(ఛାఓାఉூ∗)(ఓାఉ(ଵି௠಺)ூ∗) − ௄(ఛାఓାఉூ∗)(ఓାఉ(ଵି௠಺)ூ∗)(ఛାఓାఉூ∗)(ఓାఉ(ଵି௠಺)ூ∗) ,  

 0 = ఉ௸(ఓାఉ(ଵି௠಺)ூ∗)ାఉ(ଵି௠಺)ఛ௸ି௄(ఛାఓାఉூ∗)(ఓାఉ(ଵି௠಺)ூ∗)(ఛାఓାఉூ∗)(ఓାఉ(ଵି௠಺)ூ∗) .  

We will obtain the condition of the denominator that (𝜏 + 𝜇 + 𝛽𝐼∗)(𝜇 + 𝛽(1 − 𝑚ூ)𝐼∗) > 0.  Let 
us look at the numerator. 

 0 = 𝛽𝛬(𝜇 + 𝛽(1 − 𝑚ூ)𝐼∗) + 𝛽(1 − 𝑚ூ)𝜏𝛬 − 𝐾(𝜏 + 𝜇 + 𝛽𝐼∗)(𝜇 + 𝛽(1 − 𝑚ூ)𝐼∗).  

We then obtain 

 0 = 𝐾𝛽ଶ(1 − 𝑚ூ)𝐼∗ଶ − ൫𝐾(𝜏 + 𝜇)𝛽(1 − 𝑚ூ) + 𝐾𝜇𝛽 − 𝛽ଶ𝛬(1 − 𝑚ூ)൯𝐼∗ − (𝐾𝜏𝜇 − 𝛽(1 − 𝑚ூ)𝜏𝛬 + 𝐾𝜇ଶ − 𝜇𝛽𝛬).  

Let 𝐴 = 𝐾𝛽ଶ(1 − 𝑚ூ), 𝐵 = −൫𝐾(𝜏 + 𝜇)𝛽(1 − 𝑚ூ) + 𝐾𝜇𝛽 − 𝛽ଶ𝛬(1 − 𝑚ூ)൯ , and 𝐶 =−(𝐾𝜏𝜇 − 𝛽(1 − 𝑚ூ)𝜏𝛬 + 𝐾𝜇ଶ − 𝜇𝛽𝛬). Then, 0 = 𝐴𝐼∗ଶ + 𝐵𝐼∗ + 𝐶. 
Under the condition 𝐵ଶ − 4𝐴𝐶 ≥ 0, the solutions of this quadratic equation are 

 𝐼∗ = ି஻±√஻మିସ஺஼ଶ஺ . (13) 

We can see that if 𝐶 ≤ 0 , the condition 𝐵ଶ − 4𝐴𝐶 ≥ 0 is true. Consider C ≤ 0 , we have 𝐾𝜏𝜇 − 𝛽(1 − 𝑚ூ)𝜏𝛬 + 𝐾𝜇ଶ − 𝜇𝛽𝛬 ≤ 0.  Hence 𝐾𝜏𝜇 − 𝛽(1 − 𝑚ூ)𝜏𝛬 + 𝐾𝜇ଶ − 𝜇𝛽𝛬 ≥ 0 , then 𝐾 ≥ ఉ(ଵି௠಺)ఛ௸ାఓఉ௸ఓ(ఛାఓ) . 

By substituting 𝐼∗ in (6)–(9), we get 

 𝐻ଵ∗ = ఠூ∗(௧)(గାఈାఙାఓ), (14) 

 𝐶∗ = ఈఠூ∗(௧)(గାఈାఙାఓ)(ఘାఋାఓ), (15) 

 𝐻ଶ∗ = ఈఠఋூ∗(௧)(ఎାఓ)(గାఈାఙାఓ)(ఘାఋାఓ), (16) 

 𝑅∗ = ఊூ∗(௧)ఓ + ఙఠூ∗(௧)ఓ(గାఈାఙାఓ) + ఎఈఠఋூ∗(௧)ఓ൫(ఎାఓ)(గାఈାఙାఓ)(ఘାఋାఓ)൯. (17) 

2.5. Stability analysis 

Initially, we performed a stability analysis at the disease-free and endemic equilibrium points. 
The results are as follows: 
Theorem 2.5.1. The disease-free equilibrium point, 𝐸଴, is stable if 𝑅଴ < 1, and 𝐸଴ is unstable if 𝑅଴ > 1. 
Proof. The Jacobian matrix of model (1) evaluated at 𝐸଴ is 
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 𝐽ாబ =
⎣⎢⎢
⎢⎢⎢
⎡−𝜇 − 𝜏𝜏00000

0−𝜇00000

−𝛽𝑆଴−𝛽(1 − 𝑚ூ)𝑆௩బ𝛽𝑆଴ + 𝛽(1 − 𝑚ூ)𝑆௩బ − (𝜔 + 𝜆 + 𝛾 + 𝜇)𝜔00𝛾
000−𝛼 − 𝜋 − 𝜇 − 𝜎𝛼0𝜎

0000−𝜌 − 𝛿 − 𝜇𝛿0
00000−𝜂 − 𝜇𝜂

000000−𝜇⎦⎥⎥
⎥⎥⎥
⎤
.  

The characteristic polynomial is 𝑑𝑒𝑡(𝐽ாబ − 𝜙𝐼଻) = 0. Hence, 

 det൫𝐽ாబ − 𝜙𝐼଻൯ = (−𝜇 − 𝜏 − 𝜙ଵ)(−𝜇 − 𝜙ଶ)(𝛽𝑆଴ + 𝛽(1 − 𝑚ூ)𝑆௩బ − (𝜔 + 𝜆 + 𝛾 + 𝜇 + 𝜙ଷ),  

 (−𝛼 − 𝜋 − 𝜇 − 𝜎 − 𝜙ସ)(−𝜌 − 𝛿 − 𝜇 − 𝜙ହ)(−𝜂 − 𝜇 − 𝜙଺)(−𝜇 − 𝜙଻) = 0.  

We get 𝜙ଵ = −𝜇 − 𝜏 < 0, 𝜙ଶ = −𝜇 < 0, 𝜙ସ = −𝛼 − 𝜋 − 𝜇 − 𝜎 < 0, 𝜙ହ = −𝜌 − 𝛿 − 𝜇 < 0, 𝜙଺ = −𝜂 − 𝜇 < 0, and 𝜙଻ = −𝜇 < 0. 

That is, 𝜙ଵ, 𝜙ଶ, 𝜙ସ, 𝜙ହ, 𝜙଺ , and 𝜙଻  are all negative. Considering 𝜙ଷ , 𝛽𝑆଴ + 𝛽(1 − 𝑚ூ)𝑆௩బ −𝜔 − 𝜆 − 𝛾 − 𝜇 − 𝜙ଷ = 0 . By substituting 𝑆଴  and 𝑆௩బ , we obtain 𝜙ଷ = ଵఓ(ఛାఓ) (𝜇𝛽𝛬 + 𝛽(1 −𝑚ூ)𝜏𝛬 − (𝜔 + 𝜆 + 𝛾 + 𝜇)𝜇(𝜏 + 𝜇)). 
Since  𝑅଴ < 1 , then 𝛽𝛬𝜇 + 𝜏𝛬𝛽(1 − 𝑚ூ) − (𝜆 + 𝜔 + 𝛾 + 𝜇)𝜇(𝜏 + 𝜇)) < 0.  Therefore, 𝜙ଷ =ଵఓ(ఛାఓ) (𝜇𝛽𝛬 + 𝛽(1 − 𝑚ூ)𝜏𝛬 − (𝜔 + 𝜆 + 𝛾 + 𝜇)𝜇(𝜏 + 𝜇)) < 0. All eigenvalues are negative. Hence, 𝐸଴ is stable. 

Theorem 2.5.2. The endemic equilibrium point, 𝐸∗, of model (1) is stable if 𝑅଴ > 1 where 𝐸∗ of the 

model (1) is stable under the condition that 𝑆∗ + (1 − 𝑚ூ)𝑆௩∗ ≤ ఠାఒାఊାఓఉ . 

Proof. The mathematical expression of the eigenvalues of the Jacobian matrix of model (1) is tedious. 
The Jacobian matrix of model (1) evaluated at 𝐸∗ is 

𝐽ா∗ =
⎣⎢⎢
⎢⎢⎢
⎡−𝐼∗𝛽 − 𝜇 − 𝜏𝜏𝛽𝐼∗0000

0−𝜇 − 𝛽(1 − 𝑚ூ)𝐼∗𝛽(1 − 𝑚ூ)𝐼∗0000

−𝛽𝑆∗−𝛽(1 − 𝑚ூ)𝑆௩∗𝛽𝑆∗ + 𝛽(1 − 𝑚ூ)𝑆௩∗ − 𝜔 − 𝜆 − 𝛾 − 𝜇𝜔00𝛾
000−𝛼 − 𝜋 − 𝜇 − 𝜎𝛼0𝜎

0000−𝜌 − 𝛿 − 𝜇𝛿0
00000−𝜂 − 𝜇𝜂

000000−𝜇⎦⎥⎥
⎥⎥⎥
⎤
. 

We have that  

 det(𝐽ா∗ − 𝜙𝐼଻) = (−𝛼 − 𝜋 − 𝜇 − 𝜎 − 𝜙ସ)(−𝜌 − 𝛿 − 𝜇 − 𝜙ହ)(−𝜂 − 𝜇 − 𝜙଺)(−𝜇 − 𝜙଻)(−1)(𝜙ଷ + 𝑍ଵ𝜙ଶ + 𝑍ଶ𝜙 + 𝑍ଷ) = 0,  

where  𝑍ଵ = (𝐼∗𝛽 + 𝜇 + 𝜏) + (𝜇 + 𝛽(1 − 𝑚ூ)𝐼∗) − (𝛽𝑆∗ + 𝛽(1 − 𝑚ூ)𝑆௩∗ − 𝜔 − 𝜆 − 𝛾 − 𝜇),  𝑍ଶ = (𝐼∗𝛽 + 𝜇 + 𝜏)(𝜇 + 𝛽(1 − 𝑚ூ)𝐼∗) − (𝐼∗𝛽 + 𝜇 + 𝜏)(𝛽𝑆∗ + 𝛽(1 − 𝑚ூ)𝑆௩∗ − 𝜔 − 𝜆 − 𝛾 − 𝜇) + (𝛽𝐼∗)(𝛽𝑆∗) − (𝜇 +𝛽(1 − 𝑚ூ)𝐼∗)(𝛽𝑆∗ + 𝛽(1 − 𝑚ூ)𝑆௩∗ − 𝜔 − 𝜆 − 𝛾 − 𝜇) + (𝛽(1 − 𝑚ூ)𝐼∗)(𝛽(1 − 𝑚ூ)𝑆௩∗),  
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𝑍ଷ = (𝐼∗𝛽 + 𝜇 + 𝜏)(𝛽(1 − 𝑚ூ)𝐼∗)(𝛽(1 − 𝑚ூ)𝑆௩∗) + (𝛽𝐼∗)(𝛽𝑆∗)(𝜇 + 𝛽(1 − 𝑚ூ)𝐼∗) − (𝐼∗𝛽 + 𝜇 + 𝜏)(𝜇 + 𝛽(1 −𝑚ூ)𝐼∗)(𝛽𝑆∗ + 𝛽(1 − 𝑚ூ)𝑆௩∗ − 𝜔 − 𝜆 − 𝛾 − 𝜇) + (𝜏)(𝛽𝑆∗)(𝛽(1 − 𝑚ூ)𝐼∗). 

Consider each term in det(𝐽ா∗ − 𝜙𝐼଻) , and we have that 𝜙ସ, 𝜙ହ, 𝜙଺, and 𝜙଻  are all negative. 
According to the Routh–Hurwitz criteria, we need to show that 𝑍ଵ > 0, 𝑍ଷ > 0, and 𝑍ଵ𝑍ଶ > 𝑍ଷ so that 

the solution of the polynomial has negative real parts. By assumption, 𝑆∗ + (1 − 𝑚ூ)𝑆௩∗ ≤ ఠାఒାఊାఓఉ . 

Hence, 

 𝛽𝑆∗ + 𝛽(1 − 𝑚ூ)𝑆௩∗ − 𝜔 − 𝜆 − 𝛾 − 𝜇 ≤ 0. (18) 

Note that (18) is a second term of 𝑍ଵ. Therefore, it is obvious that 𝑍ଵ > 0. Now consider 𝑍ଷ, 
and we can see that the first, second, and fourth terms of 𝑍ଷ are positive. Since (18) is negative, this 
makes the third term negative. Next, we want to show that 𝑍ଵ𝑍ଶ > 𝑍ଷ.  Consider the inequality 𝑍ଵ𝑍ଶ − 𝑍ଷ > 0, which is (−𝐼∗𝛽 − 𝜇 − 𝜏)(𝛽𝐼∗)(−𝛽𝑆∗) + (𝜏)(𝛽(1 − 𝑚ூ)𝐼∗)(−𝛽𝑆∗) + (−𝜇 − 𝛽(1 − 𝑚ூ)𝐼∗)(𝛽(1 − 𝑚ூ)𝐼∗)(−𝛽(1 − 𝑚ூ)𝑆௩∗) +(𝛽(1 − 𝑚ூ)𝐼∗)(−𝛽(1 − 𝑚ூ)𝑆௩∗)(𝛽𝑆∗ + 𝛽(1 − 𝑚ூ)𝑆௩∗ − 𝜔 − 𝜆 − 𝛾 − 𝜇) + (𝛽𝐼∗)(−𝛽𝑆∗)(𝛽𝑆∗ + 𝛽(1 − 𝑚ூ)𝑆௩∗ − 𝜔 −𝜆 − 𝛾 − 𝜇) − (−𝐼∗𝛽 − 𝜇 − 𝜏)(−𝐼∗𝛽 − 𝜇 − 𝜏)(−𝜇 − 𝛽(1 − 𝑚ூ)𝐼∗) − (−𝐼∗𝛽 − 𝜇 − 𝜏)(−𝜇 − 𝛽(1 − 𝑚ூ)𝐼∗)(−𝜇 − 𝛽(1 −𝑚ூ)𝐼∗) − (−𝐼∗𝛽 − 𝜇 − 𝜏)(−𝐼∗𝛽 − 𝜇 − 𝜏)(𝛽𝑆∗ + 𝛽(1 − 𝑚ூ)𝑆௩∗ − 𝜔 − 𝜆 − 𝛾 − 𝜇) − (−𝜇 − 𝛽(1 − 𝑚ூ)𝐼∗)(−𝜇 − 𝛽(1 −𝑚ூ)𝐼∗)(𝛽𝑆∗ + 𝛽(1 − 𝑚ூ)𝑆௩∗ − 𝜔 − 𝜆 − 𝛾 − 𝜇) − (−𝐼∗𝛽 − 𝜇 − 𝜏)(𝛽𝑆∗ + 𝛽(1 − 𝑚ூ)𝑆௩∗ − 𝜔 − 𝜆 − 𝛾 − 𝜇)(𝛽𝑆∗ + 𝛽(1 −𝑚ூ)𝑆௩∗ − 𝜔 − 𝜆 − 𝛾 − 𝜇) − (−𝜇 − 𝛽(1 − 𝑚ூ)𝐼∗)(𝛽𝑆∗ + 𝛽(1 − 𝑚ூ)𝑆௩∗ − 𝜔 − 𝜆 − 𝛾 − 𝜇)(𝛽𝑆∗ + 𝛽(1 − 𝑚ூ)𝑆௩∗ − 𝜔 −𝜆 − 𝛾 − 𝜇) − (−𝐼∗𝛽 − 𝜇 − 𝜏)(−𝜇 − 𝛽(1 − 𝑚ூ)𝐼∗)(𝛽𝑆∗ + 𝛽(1 − 𝑚ூ)𝑆௩∗ − 𝜔 − 𝜆 − 𝛾 − 𝜇) − (−𝐼∗𝛽 − 𝜇 − 𝜏)(−𝜇 −𝛽(1 − 𝑚ூ)𝐼∗)(𝛽𝑆∗ + 𝛽(1 − 𝑚ூ)𝑆௩∗ − 𝜔 − 𝜆 − 𝛾 − 𝜇) > 0.  (19) 

We will show that (19) is true. First, we investigate whether the sum of the first term and the 
second term is positive. Simplifying the first and the second terms, we have the term ൫(−𝐼∗𝛽 − 𝜇 − 𝜏) +  𝜏(1 − 𝑚ூ)൯(−𝛽ଶ𝐼∗𝑆∗) . Therefore, we only need to show that 𝜏(1 − 𝑚ூ) +(−𝜇 − 𝜏) < 𝐼∗𝛽 . It is straightforward to see that 𝜏(1 − 𝑚ூ) + (−𝜇 − 𝜏) = −𝜏𝑚ூ − 𝜇 < 0.  Since 𝛽𝐼∗ > 0, then 𝜏(1 − 𝑚ூ) − 𝜇 − 𝜏 < 𝛽𝐼∗. This gives −𝛽𝐼∗ − 𝜇 − 𝜏 + 𝜏(1 − 𝑚ூ) < 0. 

Similarly, according to (18), other terms of (19) are positive. Therefore, 𝑍ଵ𝑍ଶ − 𝑍ଷ > 0. As a 
result, 𝑍ଵ𝑍ଶ > 𝑍ଷ. Hence, the theorem is proved.  

3. Model fitting and parameter estimation 

Parameter estimation is crucial in infectious disease modeling, as it enables the determination of 
key parameters governing disease spread. Most of the model parameter values are calculated directly 
from the daily new case reports of each group of individuals, while others are sourced from existing 
literature. We define the vaccination rate that accounts for the fact that only those who have received 
the second dose are eligible for the third dose. The initial values for each state variable were obtained 
corresponding to the first day of the fifth wave (January 3, 2022). The values of initial conditions and 
the corresponding estimated parameters are presented in Tables 3 and 4. 
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Table 3. Variables of model parameters. 

State variable Description Source 𝑆 58,511,326 (people) [7] 𝑆௩ 7,466,139 (people) [7] 𝐼 2927 (people) [7] 𝐻ଵ 15,945 (people) [7] 𝐶 704 (people) [7] 𝐻ଶ 38 (people) [7] 𝑅 2903 (people) [7] 

Table 4. Model parameter values corresponding to COVID-19 cases in Thailand. 

Parameters Description Values Source Λ Recruitment rate 0.00090 [46] 𝜇 Natural death rate 0.00090 [46] 𝛾 Recovery from infection 0.1 [14] 𝜎 Recovery from infection while in hospital 0.10497 calculated 𝜂 Recovery from recuperation after treatment in the ICU 1.12820 calculated 𝛿 The recovery rate from infection in the ICU, returning to 
the recuperation 

5.66015 fitted 𝜔 Hospital admission rate 0.93542 fitted 𝜋 The death rate of the hospitalized population 0.00075 calculated 𝜌 The death rate of the population admitted to the ICU 0.02643 calculated 𝛼 ICU admission rate of infected hospitalized individuals 0.03537 calculated 𝛽 The effective transmission rate 1.23431 fitted 𝜆 The death rate of the infected population 0.00823 calculated 𝜏 Vaccination rate  0.00016 [47] 𝑚ூ The efficacy of vaccines for preventing infection 88% [48] 

Here, we estimated 𝛽, 𝜔, and 𝛿 using a least squares method called the Nelber-Mead method, 
which was performed in Rstudio with R version 4.4.1. We defined the objective function using the root 
mean square deviation (RMSE) and searched for parameters that minimized the distance between the 
actual data points and the predicted values. Our parameter estimation was based on real data from 
COVID-19 patients confirmed in Thailand from January 3, 2022, until October 31, 2022. Note that 
Thailand started to report new confirmed cases weekly instead of daily after October 31 because the 
number of new cases was too small. Moreover, parameters 𝜎, 𝜂, 𝜋, 𝜌, 𝛼, and 𝜆 were calculated 
using case count data obtained from the Department of Disease Control (DDC). The rates were 
calculated based on the average number of people moving to each stage per unit of time (day). 

With Thailand’s total population estimated at approximately 66,000,000, and initial counts of 2927 
symptomatic patients, 15,945 hospitalizations, and 704 in the ICU, the initial susceptible population 
was approximated at 65,960,334. Figure 3 illustrates the incidence data along with the model-fitting 
curve, depicting the estimated parameter values. The solid blue curve corresponds to the model fit, 
whereas the dark gray dots represent the observed data points. Additionally, the light and blue-shaded 
bounds indicate the 95% confidence intervals (CI). 
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Figure 3. Results of the fitted model compared with data on the number of people infected 
with COVID-19 with a 95% confidence interval (blue area). 

4. Sensitivity analysis 

Assessing the impact of model parameters on key epidemiological metrics, such as the basic 
reproduction number and infected population, is imperative in guiding decision-making for controlling 
the spread of the disease. This section presents a global sensitivity analysis of the mathematical model 
(model (1)). To determine the most influential l0 parameters governing the model behavior, we 
employed Latin hypercube sampling (LHS) and partial rank correlation coefficient (PRCC) 
techniques [49]. By applying these methods, we identified pivotal factors that demand attention, 
providing decision-makers with essential insights for formulating a more evidence-based COVID-19 
control strategy. 

 

Figure 4. Sensitivity indexes table for the basic reproduction number. 

Through computational simulations spanning 1000 days, we performed sensitivity analyses, 
excluding the recruitment rate of the susceptible class (Λ) and the natural death rate (μ). The outcomes 
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of this analysis, illustrated in Figure 4, specifically focus on the PRCC concerning the basic 
reproduction number (𝑅଴). Notably, among the parameters examined, two emerged as significantly 
influential: the effective transmission rate (β), which has a positive effect on the basic reproduction 
number (𝑅଴), and the efficacy of the vaccine against infection (𝑚ூ) with negative effect on 𝑅଴. This 
implies that a 10% increase or decrease in 𝛽 will result in a 9.3% increase or decrease in 𝑅଴. Whereas, 
a 10% increase or decrease in 𝑚ூ will result in a 6.7% decrease or increase in 𝑅଴. 

Furthermore, we investigate the most influential parameters affecting each infected compartment 
as depicted in Figure 5. Our findings show that the efficacy of the third dose in preventing infection 
(𝑚ூ) remains the paramount parameter for all compartments, followed by the effective transmission 
rate (𝛽). The hospital admission rate (𝜔) and the mortality rate of hospitalized individuals (𝜋) also 
have a high impact on the hospitalized compartment (𝐻ଵ), while parameters 𝜎 and 𝛿 play influential 
roles in the critical compartment (C). Lastly, for the recuperation compartment (𝐻ଶ), the mortality rates 
of hospitalized individuals and patients admitted to the ICU also exert significant impact. 

 

Figure 5. Sensitivity indexes table for endemic equilibrium. 

5. Relationship between the basic reproduction number (𝑹𝟎) and vaccination rate (𝝉) 

In this section, we examine the influence of the vaccination rate on the spread of the epidemic by 
analyzing its connection with the basic reproduction number. We incrementally increase the 
vaccination rate within the range 0 to 0.003 and meticulously analyze its impact. Figure 6 illustrates 
the critical threshold representing the optimal vaccination rate necessary to effectively mitigate the 
epidemic spread (𝑅଴ = 1). Notably, the intersection point reveals a vaccination rate of 0.0018125, 
corresponding to approximately 119,625 doses administered per day. This specific threshold signifies 
the point at which the vaccination rate achieves the pivotal status of controlling the outbreak. Therefore, 
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it is evident that to ensure 𝑅଴  remains below 1, a strategic vaccination approach involving the 
administration of at least 119,625 doses per day is imperative, particularly at the onset of the fifth wave 
of the COVID-19 outbreak. This underscores the significance of timely and targeted vaccination efforts 
in effectively curbing the spread of the epidemic: 

 

Figure 6. The optimal cutoff point for the basic reproduction number and the vaccination rate. 

6. The effect of the optimal vaccination rate (119,625 doses) 

 

Figure 7. Comparison of two vaccination strategies: 10,235 doses/day and 119,625 doses/day. 

If the susceptible population varies over time, it is preferable to use the effective reproduction 
number (𝑅௧). This metric signifies the average number of secondary cases arising from an infected 
case at a given point during the epidemic. We compare the effective reproduction number of COVID-19 
between two scenarios: the baseline, with a vaccination rate (𝜏)  of 10,235 doses per day as of 
January 3, 2021, marking the beginning of the fifth-wave outbreak, and the optimal vaccination rate 
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(119,625 doses) identified in our simulation. Figure 7 shows that the baseline scenario reflects a trend 
where the number of infections begins to decline around the end of March, gradually reducing to only 
a few infected individuals by the end. Conversely, adopting the optimal vaccination strategy with 119,625 
doses accelerates epidemic control significantly. In this scenario, infections start declining as early as 
the end of January, leading to complete eradication of the epidemic from the population by June 19, 2022. 
This intervention effectively reduces the time needed to eliminate the epidemic by 4 months. 

7. Discussion 

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), has posed significant challenges worldwide since its emergence in late 2019. With millions of 
confirmed cases and fatalities globally, understanding the dynamics of disease transmission and 
devising effective control strategies is paramount. In this study, we employed a comprehensive 
mathematical model to explore the impact of vaccination strategies on the dynamics of the pandemic, 
particularly in the context of Thailand. 

Various studies have been conducted on COVID-19 vaccination. Intawong et al. [32] investigated 
the efficacy of third and fourth doses of X-ray injection in preventing COVID-19 induced by omicron 
strains. Their findings revealed no significant difference in protection against infection with delta and 
omicron strains of COVID-19 in Thailand. Aikawa et al. [33] examined the increase in immunity 
following administration of the vaccine’s third and fourth doses. The results of this study showed that 
the body’s immunity was not compromised by these higher dosages. Research conducted by Tartof et 
al. [34] and Safa et al. [35] concentrated on the third, fourth, and fifth immunization doses for 
individuals with compromised immune systems. Based on these assessments, it appears that 
vaccination should only require three doses to provide protection against COVID-19 infection in the 
general population. These findings emphasize the importance of booster shots in enhancing immunity 
and avoiding COVID-19, particularly in susceptible groups. 

Our findings highlight the critical role of vaccination campaigns in mitigating the spread of 
COVID-19. Thailand’s efforts to implement extensive vaccination drives have proven instrumental in 
reducing infection rates and mitigating disease severity. By analyzing real-world data and employing 
sophisticated mathematical modeling techniques, we elucidated the potential benefits of administering 
a third vaccine dose in controlling the epidemic. 

One of the key insights from our study was the identification of the optimal vaccination rate 
necessary to effectively curb the spread of the virus. Through meticulous analysis, we determined that 
a vaccination rate of approximately 119,625 doses per day is pivotal in keeping the basic reproduction 
number (𝑅଴) below the critical threshold of 1, thereby facilitating epidemic control. This underscores 
the importance of timely and targeted vaccination efforts, particularly amidst the emergence of new 
variants and the ongoing waves of the pandemic. 

Furthermore, our study highlights the importance of considering the effectiveness of 
vaccination strategies in real-world scenarios. By incorporating data-driven parameter estimation 
techniques, we provided valuable insights into the dynamics of disease transmission and the efficacy 
of vaccination in preventing infections and reducing mortality rates. Our findings suggest that the 
administration of a third vaccine dose can significantly accelerate epidemic control and hasten the path 
toward eradication. 
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8. Conclusions 

In conclusion, our study emphasized the pivotal role of vaccination campaigns in combating the 
COVID-19 pandemic. Through sophisticated mathematical modeling and data-driven analysis, we 
demonstrated the potential benefits of administering third vaccine doses in reducing infection rates and 
mitigating disease severity. Our findings underscore the importance of timely intervention and targeted 
vaccination to curb the spread of the virus and safeguard public health. 

Continued research and refinement of vaccination strategies are essential to effectively navigate 
the evolving landscape of the pandemic. By leveraging mathematical modeling techniques and real-
world data, policymakers and healthcare authorities can make informed decisions to optimize 
vaccination campaigns and mitigate the impact of COVID-19. Ultimately, our study contributes to the 
collective effort toward achieving epidemic control and safeguarding global health security in the face 
of emerging infectious diseases. 
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