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Abstract: Infrared and visible image fusion (IVIF) is devoted to extracting and integrating useful
complementary information from muti-modal source images. Current fusion methods usually require
a large number of paired images to train the models in supervised or unsupervised way. In this paper,
we propose CTFusion, a convolutional neural network (CNN)-Transformer-based IVIF framework
that uses self-supervised learning. The whole framework is based on an encoder-decoder network,
where encoders are endowed with strong local and global dependency modeling ability via the CNN-
Transformer-based feature extraction (CTFE) module design. Thanks to the development of self-
supervised learning, the model training does not require ground truth fusion images with simple
pretext task. We designed a mask reconstruction task according to the characteristics of IVIF, through
which the network can learn the characteristics of both infrared and visible images and extract more
generalized features. We evaluated our method and compared it to five competitive traditional and deep
learning-based methods on three IVIF benchmark datasets. Extensive experimental results demonstrate
that our CTFusion can achieve the best performance compared to the state-of-the-art methods in both
subjective and objective evaluations.
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1. Introduction

Due to the hardware limitations of imaging, single sensor types or setups are often unable to fully
represent imaging scenes [1, 2]. For example, visible images contain rich texture details, but they are
susceptible to extreme environments and occlusion, leading to target loss in scenes. In contrast,
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infrared sensors are capable of imaging by capturing the thermal radiation information emitted by the
objects, which effectively highlights pedestrians, vehicles, and other significant targets, but lack detail
description for the scenes [3]. In order to represent the scene accurately and effectively, image fusion
has been pushed forward to integrate the complementary features of multiple source views in the
same scene, thus generating a high-quality image for the downstream high-level tasks or human
perception [4]. Specifically, infrared and visible image fusion (IVIF) aims to integrate complementary
information from the source images and generates a high-contrast fusion image that can both
highlight salient objects and contain rich texture details [5]. In the early years, traditional methods
usually used related mathematical transformations and manual design of the fusion rules to realize the
image fusion [3], including wavelet [6], pyramid [7], and sparse representation [8]. However, these
manually designed feature representation approaches and fusion rules poorly understand the inherent
information of images, which limits the ability to mine statistical characteristics of large samples and
the generalizability.

Recently, deep learning has dominated the development of computer vision with its powerful
feature extraction and expression capabilities. It has been used in all kinds of fields such as image
classification [9], object detection [10–12], semantic segmentation [13], and image fusion [14]. In
order to overcome the shortcomings of traditional algorithms, researchers have explored a large
number of image fusion methods based on deep learning, which can be divided into convolutional
neural network (CNN)-based and generative adversarial network (GAN)-based IVIF frameworks.
Nevertheless, these models exhibit a major weakness: the lack of ground-truth fused images. Some
algorithms [15, 16] choose to generate ground-truth fusion results with existing
state-of-the-art (SOTA) fusion methods, whose fusion quality cannot be promised since it highly
depends on the quality of the produced “ground-truth”. Moreover, most existing deep learning-based
IVIF methods utilize CNNs for feature extraction, but CNNs fail to model longrange dependencies
owing to their small receptive field, which is an inherent limitation [17].

In a word, there are two major problems in most existing IVIF tasks. On the one hand, there is the
lack of ground-truth fused images. As mentioned above, though some methods try to generate
so-called ground-truth fused images using other SOTA IVIF approaches, the quality of those
produced ground-truths cannot be promised, thus largely affecting the consequent fusion results. On
the other hand, failure to capture long-range dependencies of CNNs due to their small receptive field
becomes a weakness in most deep learning based IVIF methods. To address the aforementioned
issues, we propose a CNN-Transformer-based IVIF framework utilizing self-supervised learning,
dubbed CTFusion. The pretext task using masked image reconstruction helps better extract features of
source images. The CNN-Transformer-based encoder structure can utilize both local and global
information. Inspired by [18], we adopt a specific image augmentation strategy that will mask some
patches of the original images Iir and Ivis with noise to generate two “source images”, Ĩir and Ĩvis.
Afterwards, they are fed into the CNN-Transformer-based encoders to excavate the intrinsic features
fir and fvis in the source images. We then apply two decoders Dir and Dvis to produce the repaired
images of Ĩir and Ĩvis. In addition, a self-cross perceptual feature fusion (S-CPFF) strategy is
elaborated, by which we combine features fir and fvis together to generate the fusion result of Iir and
Ivis. The idea of our proposed method can be applied to common image fusion scenarios, since the
abovementioned two problems are universal in the image processing field.

The main contributions of this paper are summarized as follows:
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• We propose a self-supervised IVIF framework by designing a mask reconstruction task which
no longer needs ground-truth to better excavate intrinsic information lying in infrared and visible
source images.
• To compensate for the defect in establishing long-range dependencies in CNN-based

architectures, we design an encoder that combines a CNN-Block with a Transformer-Block,
which enables the network to utilize both local and global information during feature extraction.
• The S-CPFF module is devised to help enhance the extracted modality-specific and modality-

common features, obtaining a final fusion result with high quality.
• Extensive experiments conducted on three publicly available datasets demonstrate the

effectiveness of our method, as well as show its superior performance when compared with other
state-of-the-art (SOTA) models.

2. Related works

2.1. Traditional image fusion methods

Traditional fusion frameworks usually realize image fusion in the transform domain and spatial
domain through designing appropriate feature extraction details and fusion rules, which generally
contain two major categories, multi-scale transform-based methods [19, 20] and sparse
representation-based methods [21–25].

Multi-scale transform-based methods first decompose source images into several levels, as the
feature extraction, then fuse corresponding layers with particular rule, and reconstruct the target
images accordingly, where popular transforms used for decomposition and reconstruction include
wavelet [26], pyramid [27], curvelet [28], and their revised versions. However, these methods
typically tend to leave out image details in the fused results and lead to halos or undesirable artifacts
in the fused result due to the fixed bases used in the multi-scale transform-based methods. The key of
sparse representation-based methods is to build over complete dictionaries from a large number of
natural images to possibly represent the source images with linear combinations of sparse bases.
Although sparse representation-based methods have achieved promising performance, a limited
number of dictionaries cannot reflect the full information of input images, obscuring details such as
edges and textures in the source images.

2.2. Deep learning-based image fusion methods

In deep learning-based algorithms, two source images from different modalities are directly input
into a fusion network, and then the network outputs the fused image. Specifically, Liu et al. [29]
proposed a method based on convolutional neural networks, which can deal with activity level
measurement and weight assignment in IVIF as a whole to overcome the difficulty of manual design.
To get more useful features from source images, Li and Wu [15] presented a novel encoding network
combined with convolutional layers, a fusion layer, and a dense block in which the output of each
layer is connected to every other layer. With the development of generative adversarial
networks (GANs), more and more GAN-based IVIF methods appeared. Although CNNs have made
great achievements in the field of supervised learning, they still have not progressed much the
unsupervised learning. In order to fill the gap between supervised learning and unsupervised learning
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of CNNs, Ma et al. [30] established an adversarial game between a generator and a discriminator,
which enabled the final fused image to simultaneously keep the thermal radiation in an infrared image
and the textures in a visible image. Meanwhile, generic image fusion frameworks also achieved
surprising performance. Li et al. [31] proposed a meta learning-based deep framework for the fusion
of infrared and visible images which can accept source images of different resolutions and generate a
fused image of arbitrary resolution with just a single learned model. Zhang and Ma [32] proposed a
squeeze-and-decomposition network named SDNet to realize multi-modal and digital photography
image fusion in real time. Xu et al. [33] used feature extraction and information measurement to
automatically estimate the importance of corresponding source images and came up with adaptive
information preservation degrees, solving different fusion problems. Recently, Tang et al. [34] and
Liu et al. [35] bridged the gap between image fusion and high-level vision tasks, facilitating the
high-level vision tasks with the proposed frameworks.

Though existing approaches devise complicated fusion rules and loss functions to achieve effective
fusion, they still fail to effectively learn the characteristics of infrared and visible images for not
devising specific task to explore intrinsic features in source images. It is a consensus that feature
extraction is a pivotal step in image fusion. If the extracted features cannot comprehensively represent
rich characteristics of source images, the quality of fusion results will definitely be worse. In contrast,
we design a self-supervised mask reconstruction task to deeply excavate the intrinsic characteristics of
infrared and visible images so that our network is able to achieve high-quality IVIF fusion.

2.3. Vision transformer

Transformer was first proposed by Vaswani et al. [36] for machine translation. Its ability to extract
features from the global level and effectively depict the correlations between features at different
locations has attracted wide attention in the community. Later, researchers made great success in
introducing Transformer into computer vision tasks, such as image processing [37], object
detection [38], semantic segmentation [39], etc. Dosovitskiy et al. [40] introduced Transformer to an
image classification task for the first time, proposing Vision Transformer (ViT). Based on ViT, a series
of ViT variants were proposed to improve the performance [41, 42]. Particularly, in the field of image
fusion, Vs et al. [43] proposed a Transformer based IVIF method. This method used Transformer’s
encoder to extract image features, obtained the fused features with Spatial-Transformer, and finally
reconstructed the fused image through Transformer’s decoder.

Since Transformer has a stronger ability to model long-range dependencies, it is suitable to extract
global image features. In contrast, CNNs are apt to capture local image features and describe
low-level visual features such as structure and texture details, for they extract image features through
convolutional kernels, whose receptive fields are limited. To integrate their advantages, we design an
encoder that combines a CNN-Block with a Transformer-Block, which enables the network to utilize
both local and global information during feature extraction.
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3. Method

3.1. Overview

As mentioned above, lack of ground-truth fused images remains a tricky problem in IVIF tasks.
Therefore, we propose CTFusion to achieve fusion in a self-supervised way, with a pretext
reconstruction task aiming at image understanding is elaborated. More specifically, a
CNN-Transformer-based encoder is devised to compensate for the defect in establishing long-range
dependencies in CNN-based architectures. After the parameters in encoders are optimized, we fix
them during the fusion phase and then fuse the extracted feature maps through tailored fusion net
S-CPFF, to generate the fused image.

Figure 1. Overall framework of our proposed method. (a) The proposed self-supervised
masked image reconstruction network. (b) The image fusion architecture.

The Pipeline of the encoder training process is shown in Figure 1(a). We use the network to perform
the self-supervised image reconstruction task to enable the encoders to extract intrinsic features lying
in the source images, i.e., to reconstruct the original image from the masked input image. Concretely,
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given an original image Iin(in∈{ir,vis}) ∈ R
H×W×3, masked image Ĩin is generated by masking several non-

overlapping patches with noise. Then, we feed the masked images into respective encoders Eir and Evis

to obtain corresponding embeddings, which consists of a CNN-Transformer feature extraction (CTFE)
module and a feature enhancement (FE) module. The CTFEBlock integrates the advantages of the
CNN and the Transformer to model both global and local dependencies. FE aggregates and enhances
the features extracted from the CNN-Block and the Transformer-Block. Finally, the image features
extracted by the encoders are sent to respective decoders Dir and Dvis to reconstruct images Irecon ir,
Irecon vis ∈ R

H×W×3.
After training the encoders, we then use them for image fusion with their parameters fixed, as shown

in Figure 1(b). Specifically, two source images Iir and Ivis are first input to the trained encoders Eir and
Evis to extract features, and then the fusion result is obtained by fusing the extracted features using the
well-designed fusion network S-CPFF.

3.2. Self-supervised mask reconstruction task

In general, the goal of image fusion is to integrate complementary information from different source
images into a synthetic image. Moreover, feature dependency excavation is also the key in image
fusion, since the relation understanding is important in feature extraction. Features with rich semantic
and structural information are ideal to obtain high-quality fusion results. We divide the input image
into non-overlapping patches and then use a random mask M and Gaussian noise n to force encoders
to excavate intrinsic information lying in source images.

Ĩin = M(Iin) + M(n)(in ∈ {ir, vis}), (3.1)

where M(·) is the logical negation operator of mask M.
For each source image pair Iir and Ivis, they share parts of the scene information with each other

while retaining some unique information. By randomly masking and filling the remaining with random
noise, the encoders are forced to extract more information in source images, better understanding the
relations between pixels. After pre-training, the encoders are able to extract more comprehensive
features, which can be directly used for the following image fusion task.

3.3. CNN-Transformer-based encoder-decoder framework

Given source images Iir and Ivis, we first randomly mask subregions and fill the remaining with
noise to form Ĩir and Ĩvis, which will be sent to the CNN-Transformer-based encoders Eir and Evis.
Each encoder contains a CTFE module and a FE module, whose detailed architectures are shown in
Figure 2.

Given that CNNs are adept at modeling local dependencies in images, while the Transformer
specializes in modeling global dependencies, we propose CTFE, which combines the CNN and
Transformer architectures to model both local and global dependencies in images. Specifically, the
CNN-Block contains a residual dense block following the residual dense network [44]. As for the
Transformer-Block, the masked image Ĩin(in∈{ir,vis}) ∈ R

H×W×3 is first divided into a total of N patches
with size H

P ×
W
P , where N = HW

P2 and P is the size of the patches. Passing the patches through a patch
embeddings linear projection and L Transformer layers, we can obtain Transformer-embedded feature
f t f
in(in∈{ir,vis}). Figure 2 illustrates the architecture of one Transformer layer, which consists of a
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multi-head attention (MSA) block and a multi-layer perceptron (MLP) block, where layer
normalization (LN) is applied before every block, and residual connections are applied after every
block. The MLP block consists of two linear layers with a Gaussian Error Linear Unit (GELU)
activation function. In order to better integrate the local and global features extracted by CNN and
Transformer blocks, we devise the FE module to aggregate and enhance the feature maps f cnn

in(in∈{ir,vis})

and f t f
in(in∈{ir,vis}). Concretely, we concatenate the two feature maps from the CNN-Block and the

Transformer-Block in CTFE and send them into four sequentially connected ConvBlock layers to
achieve FE, as shown in Figure 2.

f en
in = (ConvBlock([ f cnn

in , f t f
in ]))×4, in ∈ {ir, vis}, (3.2)

where each ConvBlock consists of two convolutional layers with a kernel size of 3× 3, a padding of 1,
and two Rectified Linear Unit (ReLU) activation layers, and [·] denotes channel-wise concatenation.

We then feed the obtained feature maps f en
ir and f en

vis to decoders Dir and Dvis, each composed of
two convolutional layers with a kernel size of 3 × 3, a padding of 1, and one ReLU activation layer, to
reconstruct the corresponding image.

In the mask reconstruction task, we encourage the network to not only learn the pixel-level image
reconstruction but also capture the structural and gradient information in the image. The loss of the
reconstruction task in each branch can be formalized as follows:

ℓreconstruction = ℓpixel + λ1ℓstructure + λ2ℓTV , (3.3)

where ℓpixel is the L1 loss function, ℓstructure is the structural similarity (SSIM) loss function, and ℓTV is
the total variation loss function. λ1 and λ2 are two hyperparameters empirically set to 20.
ℓpixel ensures pixel-level reconstruction

ℓpixel = Irecon in − Iin, in ∈ {ir, vis}, (3.4)

where Irecon in is the output reconstructed image, and Iin represents the input unmasked source image.
To better help the model learn structural information from images, we use the structure loss:

ℓstructure = 1 − S S IM(Irecon in, Iin), in ∈ {ir, vis}. (3.5)

Furthermore, ℓTV in VIFNet [45] is used to facilitate gradient preservation in the source images and
eliminate noise. It is formulated as follows:

ℓTV =
∑
x,y

||R (x, y + 1) − R (x, y) ||2 + ||R (x + 1, y) − R (x, y) ||2. (3.6)

where R(x, y) = Irecon in(x, y) − Iin(x, y) (in ∈ {ir, vis}) denotes the difference between the input image
and the reconstructed image, || · ||2 is the L2 norm, and x, y represent the horizontal and vertical
coordinates of the image’s pixels, respectively.
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Figure 2. Detailed structures of CNN-Transformer-based encoder, ConvBlock, and
Transformer.

3.4. Self-cross perceptual feature fusion

How to effectively fuse feature maps to obtain final fusion results remains challenging. Here, we
propose S-CPFF, which is able to highlight both self and mutually interested parts in feature maps,
naturally improving the qualities of fused images. Concretely, as shown in Figure 3, the S-CPFF has
two self-attention (SA) and two cross-attention (CA) modules. The detailed structures of the SA and
CA modules are shown in Figure 4. Mathematically, the SA process is denoted as:

fir = softmax(
Qir(Kir)T

√
d

)Vir,

fvis = softmax(
Qvis(Kvis)T

√
d

)Vvis,

(3.7)

where Qir, Qvis ∈ R
H×W×C, Kir, Kvis ∈ R

H×W×C, and Vir, Vvis ∈ R
H×W×C are the results of f en

ir and f en
vis

passed through 1 × 1 convolution, respectively.
√

d is a normalization factor, and T is the transpose
operation. The CA process is:

fir→vis = softmax(
Qvis(Kir)T

√
d

)Vir,

fir→vis = softmax(
Qir(Kvis)T

√
d

)Vvis,

(3.8)

where vis → ir denotes information flow from visible modal to infrared modal. Then, we concatenate
the results after respective SA and CA modules to obtain the self-cross perceptual feature:

fir
′ = [ fir, f vis→ir],

fvis
′ = [ fvis, f ir→vis].

(3.9)
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Note that in the fusion phase, we fix the parameters of encoders Eir and Evis learned in the mask
reconstruction task. We then concatenate fir

′ and fvis
′ and feed the concatenated result to a 3 × 3

convolution to integrate all the features. Then, the integrated feature is sent to the decoder D f use to
attain the fused image:

I f use = D f use(Conv3×3([ fir
′, fvis

′])), (3.10)

where the detailed structure of D f use is shown in Figure 1.
To retain rich edge and texture information in the fused image, we adopt joint gradient loss ℓJGrad,

which is formulated as
ℓJGrad = ||O(max(|∇Iir| , |∇Ivis|)) − ∇I f used||1, (3.11)

where ∇ is the Laplacian gradient operator. max(·) denotes taking the maximum value. O(|x|) = x
denotes finding the original gradient value before taking its absolute value.

We also introduce the intensity loss to preserve the saliency targets in two input images, which can
be expressed as

ωir = SIir/(SIir − SIvis),ωvis = 1 − ωir,

ℓint = ||(ωir ⊙ Iir + ωvis ⊙ Ivis) − I f used||1,
(3.12)

where SIir and SIvis denote saliency matrices of Iir and Ivis, which can be computed according to [46].
ωir and ωvis are the weight maps for Iir and Ivis, respectively. ⊙ represents the element-wise
multiplying operation.

The overall fusion loss is computed by

ℓ f use = ℓint + λJGℓJGrad, (3.13)

where λJG is the hyper-parameter set to 20.

4. Experiments and results

In this section, we evaluate the qualitative and quantitative performance of our proposed method by
comparing to five SOTA methods, including IFCNN [47], PMGI [48], CrossFuse [49], RFN-Nest [50],
and FusionGAN [30]. We also implement several ablation studies to validate the effectiveness of the
proposed modules.

Figure 3. Detailed framework of S-CPFF.
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Figure 4. Detailed structures of SA and CA.

4.1. Experimental configurations

Dataset: First, 300 multi-modality images from the M3FD [35] benchmark are selected and
cropped to 360k patches with 256 × 256 pixels by random cropping and augmented as the training set
in this study. M3FD is a multi-modal dataset with multiple scenarios, where 4,200 aligned image
pairs are divided into four typical types, i.e., Day, Cloudy, Night, and Challenge. We perform
qualitative and quantitative experiments on three datasets (i.e., Roadscene, TNO, and MSRS).
RoadScene is a wildly-used dataset for cross-modality image fusion. The TNO dataset contains
multi-spectral nighttime imagery of various military-relevant scenarios in grayscale. The MSRS
dataset contains 1444 pairs of aligned infrared and visible images with high quality.

Evaluation metrics: For quantitative evaluation, five statistical metrics are selected to objectively
assess the fusion performance, including correlation coefficient (CC) [51], cross entropy (CE),
QCV [52], the sum of correlations of differences (SCD) [53], and structural similarity (SSIM) [54]. CC
evaluates the degree of linear correlation between the fused image and source images. CE reflects the
difference of grayscale information between the fusion image and source images. The smaller the CE
value is, the smaller the difference between images, which indicates better fusion quality. QCV uses
the Sobel operator to extract the edge information of the source images and the fusion result to obtain
the edge intensity map G. Smaller QCV is more in line with human visual perception. SCD reflects the
correlation level between information transmitted to the fused image and corresponding source
images. SSIM approximates image distortion. In addition, a fusion algorithm with larger CC, SCD,
and SSIM indicates better fusion performance.

Implementation details: The Adam optimizer [55] (β1 = 0.9, and β2 = 0.999) is responsible for
updating the network parameters with initial learning rate of 0.001, which decreases to 10−4 after 100
epochs. The epochs of the self-supervised mask reconstruction task and training of S-CPFF are both set
to 300 with batch size of 4. Our framework is implemented on PyTorch with an NVIDIA 3090 GPU.
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Note that source images in all the abovementioned datasets are converted to gray to achieve fusion.

4.2. Comparative experiment

4.2.1. Experiments on RoadScene dataset

Qualitative results on the RoadScene benchmark are reported in Figure 5, where we highlight two
regions in each example. As can be seen, RFN-Nest and FusionGAN suffer blurred edges and
background, and IFCNN, PMGI, and CrossFuse all lose texture details to some extent. Instead, our
method has the best image contrast and clear structure information.

Figure 5. Vision quality comparison of our method with five SOTA fusion methods on the
RoadScene dataset.

Table 1. Quantitative results of five SOTA methods and ours on 50 image pairs from
RoadScene [33] dataset. Bold: best. Italic: second best.

Methods CC CE QCV SCD SSIM
IFCNN [47] 0.622 0.976 589.5 1.245 0.693
PMGI [48] 0.596 1.328 1019.6 1.218 0.644
CrossFuse [49] 0.614 1.397 943.3 1.397 0.687
RFN-Nest [50] 0.582 0.922 983.2 1.373 0.603
FusionGAN [30] 0.577 2.308 1371.2 0.889 0.615
Ours 0.641 0.763 820.9 1.447 0.702

Quantitative comparisons are shown in Table 1, where we use five metrics, i.e., CC, CE, QCV , SCD,
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and SSIM, to evaluate all comparison methods. Our method ranks first in CC, CE, SCD, and SSIM,
indicating that the generated fused results are of higher similarity to the source images. For QCV , our
method also achieves comparable results, which implies that the fusion images of our method are more
real. Our model utilizes the Laplacian gradient operator to detect the edges of images, while QCV uses
the Sobel gradient operator, which might be the reason why our method performs suboptimally in QCV .

4.2.2. Experiments on TNO dataset

We select five pairs of infrared and visible images to visually observe the fusion performance of
different algorithms on the TNO dataset. The visualized results are shown in Figure 6. As shown in the
first column of Figure 6, our method keeps the best image contrast. It can be seen from the zoomed-in
areas that our methods combine complementary as well as modality-common information in source
images to the most extent. Meanwhile, the edges of salient targets from infrared images are clear, and
texture details from visible images are well kept in our fusion results.

Figure 6. Vision quality comparison of our method with five SOTA fusion methods on the
TNO dataset.

For example, in the second row of Figure 6, though the image contrast of CrossFuse is better than
ours, it still loses cloud information. In the first and third rows, people in the foreground are bright in
our fused results, while FusionGAN has blurred target edges.

Quantitative performance of our method on the TNO dataset was similar to that of RoadScene,
which is shown in Table 2.
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Table 2. Quantitative results of five SOTA methods and ours on 30 image pairs from
TNO [56] dataset. Bold: best. Italic: second best.

Methods CC CE QCV SCD SSIM
IFCNN [47] 0.643 1.734 392.5 1.215 0.695
PMGI [48] 0.651 1.781 496.1 1.222 0.676
CrossFuse [49] 0.669 1.694 943.3 1.349 0.682
RFN-Nest [50] 0.622 1.792 533.6 1.361 0.689
FusionGAN [30] 0.554 2.380 968.7 1.451 0.628
Ours 0.675 1.499 433.6 1.476 0.701

4.2.3. Experiments on MSRS dataset

So as to visually evaluate the fusion performances of different algorithms on the MSRS dataset,
three pairs of infrared and visible images are selected, depicted in Figure 7. As illustrated in the red
and green boxes in the image, our proposed method favorably maintains textures of source images
while keeping the clearest salient edges.

Figure 7. Vision quality comparison of our method with five SOTA fusion methods on the
MSRS dataset.

Table 3. Quantitative results of five SOTA methods and ours on 40 image pairs from
MSRS [34] dataset. Bold: best. Italic: second best.

Methods CC CE QCV SCD SSIM
IFCNN [47] 0.551 0.936 873.9 1.219 0.657
PMGI [48] 0.488 1.127 1292.3 1.336 0.628
CrossFuse [49] 0.527 1.248 865.7 1.245 0.663
RFN-Nest [50] 0.495 0.891 823.2 1.328 0.614
FusionGAN [30] 0.463 2.185 1587.8 0.713 0.605
Ours 0.537 0.766 743.5 1.423 0.675

We conduct quantitative comparisons on 40 image pairs from the MSRS dataset to verify the
effectiveness of our method, which is presented in Table 3. It can be seen that our method ranks first

Mathematical Biosciences and Engineering Volume 21, Issue 7, 6710–6730.



6723

in four metrics and second in the CC metric. The CE, QCV , SCD, and SSIM metrics demonstrate that
our results contain more realistic information. As for CC, it directly matches images by their
intensity, without using any analysis of the image structure. Hence, CC is sensitive to intensity
changes in the image. In general, image noise, changes in lighting intensity during imaging, and the
use of different imaging equipment all cause changes in image intensity, which will further affect CC.

In conclusion, our method is fully capable of excavating inherent important features in source
images and integrating them into fused images. Thereby, our method is superior to other SOTA
approaches and obtains high-quality fused images.

4.3. Analysis of generalization ability

To validate the generalization ability of our method, we conduct experiments on datasets for other
image fusion tasks, including LLVIP [57] for color image fusion and CT-MRI [58] for medical image
fusion. Fusion results are shown in Figure 8. From the qualitative results we can see that our proposed
model perfectly completes other fusion tasks, which strongly proves the generalization ability of
our method.

Figure 8. Vision effect of our method on the LLVIP and CT-MRI datasets. (a)–(c) are our
fusion results on the LLVIP dataset, and (d)–(f) are our fusion results on the CT-MRI dataset.

4.4. Analysis of computational complexity

As shown in Table 4, a complexity evaluation is introduced to evaluate the efficiency of our method
from two aspects, i.e., training parameters and runtime. It is worth pointing out that though our method
does not perform the best in terms of the model complexity and inference time due to subtle design of
various modules, the proposed CTFusion and the best SOTA method are still equal. This indicates the
efficiency of our CTFusion, which can serve practical vision tasks well with better visual performance.

Table 4. Computational efficiency comparison of five SOTA methods. The value is tested
on GPU.

Methods IFCNN [47] PMGI [48] CrossFuse [49] RFN-Nest [50] FusionGAN [30] Ours
SIZE(M) 0.084 0.042 1.161 30.097 0.926 2.119
TIME(s) 0.013 0.052 1.076 0.358 1.179 0.019
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5. Ablation studies

In the ablation study, we demonstrate the effectiveness of the self-supervised mask reconstruction
task, CNN-Transformer-based encoder, and the proposed S-CPFF. The experimental results are shown
in Figure 9 and Table 5.

Figure 9. Vision quality comparison of the ablation study on proposed modules. From
left to right, infrared image, visible image, and the results without self-supervised mask
reconstruction task, results without Transformer-Block, results without S-CPFF, and results
of our CTFusion.

Table 5. Quantitative evaluation results of ablation study on 30 pairs of infrared and visible
images from TNO dataset.

Configuration CC CE QCV SCD SSIM
w/o mask 0.653 1.571 485.9 1.427 0.626
w/o Transformer-Block 0.669 1.534 499.5 1.413 0.651
w/o S-CPFF 0.655 1.522 479.8 1.388 0.665
Ours 0.675 1.499 433.6 1.476 0.701

First, we remove the mask reconstruction pretext task, simply training a complete encoder-decoder
framework. The results show that our proposed self-supervised mask reconstruction task can improve
the ability of the framework to excavate intrinsic information. To verify the effectiveness of the CNN-
Transformer-based encoder, we conduct an ablation study where the encoders only contain the CNN-
Block. From the results we can see that regardless of whether the proposed self-supervised mask
reconstruction task is used, adding the Transformer-Block in the encoders always improves the fusion
performance. To further prove that our proposed S-CPFF is effective, we replace the fusion net with a
simple feature concatenation operation. The ablation study results also show that S-CPFF highlights
salient regions in source images and further promises the enhancement of texture details.
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6. Discussion

Source images in this paper are all registered before fusion, which is a common data preprocessing
step in an IVIF task. However, in practical scenarios, although the source images can be aligned to
a certain extent by carefully adjusting the installation positions of infrared and visible light sensors,
it stays impossible to achieve accurate alignment directly by manual installation [16, 59]. In other
words, images captured by different sensors are difficult to strictly align on a pixel level. In the future,
we will focus research on misaligned IVIF. Since the source images are misaligned and of different
modalities, we need to reduce the modality discrepancy between them, so that the feature alignment
can be achieved more easily. Once the features are aligned, the fusion process will not be a problem.

7. Conclusions

In this paper, we present CTFusion, a CNN-Transformer-based IVIF framework using
self-supervised mask reconstruction. The CNN-Transformer-based encoder integrates the advantages
of both CNN and transformer so that the network can focus on both local and global information,
better understanding dependencies in images. In addition, the designed mask reconstruction task is
naturally adaptive to the intrinsic information excavation requirement in IVIF. Extensive experiments
on three infrared-visible image datasets demonstrate the effectiveness of the proposed method.
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