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Abstract: In recent years, significant progress has been made in video-based person re-identification
(Re-ID). The key challenge in video person Re-ID lies in effectively constructing discriminative and
robust person feature representations. Methods based on local regions utilize spatial and temporal
attention to extract representative local features. However, prior approaches often overlook the
correlations between local regions. To leverage relationships among different local regions, we have
proposed a novel video person Re-ID representation learning approach based on a graph transformer,
which facilitates contextual interactions between relevant region features. Specifically, we construct
a local relation graph to model intrinsic relationships between nodes representing local regions. This
graph employs the architecture of a transformer for feature propagation, iteratively refining region
features and considering information from adjacent nodes to obtain partial feature representations. To
learn compact and discriminative representations, we have further proposed a global feature learning
branch based on a vision transformer to capture the relationships between different frames in a
sequence. Additionally, we designed a dual-branch interaction network based on multi-head fusion
attention to integrate frame-level features extracted by both local and global branches. Finally, the
concatenated global and local features, after interaction, are used for testing. We evaluated the proposed
method on three datasets, namely iLIDS-VID, MARS, and DukeMTMC-VideoReID. Experimental
results demonstrate competitive performance, validating the effectiveness of our proposed approach.
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1. Introduction

Person re-identification (Re-ID) aims to match individuals across different time and camera views,
representing a crucial task in intelligent surveillance [1–3]. Early research primarily focused on image-
based person Re-ID, emphasizing the exploration of discriminative information in spatial domains.
With the evolution of detection sensors, multimodal information has been introduced into the Re-ID
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task, leading to the development of various methods to address differences between modalities, such as
network structure [4] and auxiliary features [5]. On another front, some studies leverage multi-frame
data and propose different approaches to extract temporal information for video-based person Re-
ID [5, 6]. In this scenario, when given an unlabeled query video sequence, the task involves extracting
discriminative feature representations to retrieve corresponding individuals from an unlabeled gallery
of video sequences. However, how to extract discriminative spatiotemporal aggregation features is the
key to improving video-based person Re-ID.

Traditionally, to address this challenge, hierarchical convolutional architectures are often
employed to progressively update local patterns. Additionally, some attempts utilize attention-based
modules to dynamically infer discriminative information from videos. For instance, Wu et al. [7]
embedded prior knowledge about body parts into the network architecture through dense non-local
region attention. Despite recent success with convolution-based methods, their inherent limitations in
modeling spatiotemporal dependencies and aggregating information pose bottlenecks for
accuracy improvement.

In recent years, the transformer [8] has gained attention in computer vision due to its exceptional
contextual modeling capabilities. The core idea of this model is to construct long-range relationships
between local contents through an attention mechanism. Some hybrid network architectures have
been proposed to address context modeling in video-based Re-ID. A widely used paradigm involves
using a transformer as a post-processing unit along with convolutional neural networks (CNN) as
basic feature extractors. For example, Zhang et al. [9] employed a single transformer to fuse
frame-level CNN features. Liu et al. [10] further proposed a multi-stream transformer architecture,
with each stream emphasizing a specific dimension of video features. However, in hybrid
architectures, the 2D CNN encoder limits long-range spatiotemporal interactions between local
contents, hindering the exploration of contextual information. Subsequently, to address this issue,
some pure transformer-based methods have been introduced into video-based Re-ID. However,
existing frameworks are primarily inspired by video understanding and focus on designing
architectures for effective spatiotemporal representation learning. Most algorithms still remain limited
in extracting information-rich and person-relevant discriminative information from video segments,
which is crucial for large-scale matching tasks.

Moreover, graph neural networks (GNNs) have been widely used in some computer vision tasks,
introducing the idea of modeling relationships between graph nodes. Recently, the combination of
Re-ID with graph models has also been explored. Cheng et al. [11] formulated structured distance
relationships as a Laplacian graph using relations between training samples. Barman et al. [12]
mapped the ranking process to a graph theory problem. Shen et al. [13] updated features extracted
from images by leveraging similarities between different probe galleries. Chen et al. [14] used
multiple graphs in a unified conditional random field (CRF) to simulate relationships between local
and global similarities. Yan et al. [15] formulated a person search as a graph matching problem, and
resolved it by considering contextual information from probe gallery pairs. To address unsupervised
Re-ID, Ye et al. [16] incorporated graph matching into an iterative updating process for robust
label estimation.

In person Re-ID tasks, graph-based methods typically construct a graph to represent the
relationships between training samples, where the graph nodes correspond to images or videos. In our
proposed method, we utilize prior knowledge to learn local relational graphs that model the intrinsic
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contextual relationships among regions within image sequences, propagating local information
between different area features. To facilitate the propagation of local information, the graph
convolutional network (GCN) [17] and graph attention network (GAT) [18] have traditionally been
used as feature propagation networks. However, GCN updates node features through a neighbor
aggregation mechanism, which means that information for each node is only obtained from its direct
neighbors [19]. Although increasing the number of layers can expand the range of information
transmission, this also introduces higher computational complexity and the risk of overfitting. GAT
introduces an attention mechanism to assign different weights to each neighbor, enhancing the
model’s flexibility in learning the importance of neighbors, but this also results in higher
computational demands, particularly in graphs with high node degrees [20]. The transformer [8],
through its self-attention mechanism, can directly compute the relationship between any two positions
in a sequence, capturing global information and solving long-distance dependency issues. This
capability is crucial for learning the contextual relationships of graph nodes and extracting person
discriminative information from video segments. Therefore, in the proposed method, we leverage
transformers to update local relational graphs, thereby modeling the intrinsic contextual relationships
between regions in image sequences. The main contributions of this work can be summarized
as follows.

• We introduce a video person Re-ID framework based on a graph transformer, which effectively
integrates both local and global features. This framework is designed to learn feature
representations that capture rich semantics and discriminative information essential for person
identification.
• We present a local feature learning approach based on a graph transformer, facilitating contextual

interactions among relevant region features. Concretely, we construct a local relation graph using
local regions to model intrinsic relationships between graph nodes. The transformer architecture
is used on the local relation graph for feature propagation, iteratively refining regional features
while considering information from adjacent nodes for feature representation.
• To learn compact and discriminative representations, we further propose a global feature learning

branch based on a vision transformer to capture the relationships between different frames in a
sequence. Additionally, we design a dual-branch interaction network based on multi-head fusion
attention to integrate frame-level features extracted by local and global branches. This enhances
the distinctiveness and richness of semantic information in video sequence-level features. Finally,
the global features and the updated local region features are concatenated for testing.
• We conducted extensive experiments on three widely adopted benchmarks, namely iLIDS-VID,

MARS, and DukeMTMCVideoReID. The experimental results affirm the effectiveness of our
proposed approach.

2. Related works

2.1. Image-based person re-identification

Image-based person Re-ID primarily focuses on acquiring effective representations of
individuals [21–23]. Early approaches were dominated by meticulously designed manual feature
extraction. Recently, the field has witnessed a surge in the adoption of deep learning as the
mainstream methodology for representation learning in person Re-ID. CNNs have emerged as
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prevalent feature extractors in this context. Notably, OSNet [24] integrates multi-scale features into an
attentional subnetwork, producing information-rich full-scale features. Other studies [25, 26] place
emphasis on extracting and aligning semantic information to tackle alignment issues arising from
pose/viewpoint variations and imperfect person detection. To counter the detrimental impact of noisy
labels, Ye et al. [27] introduced a self-label refining strategy that intricately combined label
optimization with deep network training. Additionally, several image-based person Re-ID methods
have explored using the vision transformer (ViT) [8] to improve the performance. For instance,
TransReID [28] employs the ViT as the backbone to extract discriminative features from randomly
sampled patch groups.

2.2. Video-based person re-identification

Compared to image-based person Re-ID, video-based person Re-ID often exhibits superior
performance due to the inclusion of temporal information and the utilization of multiple frames to
alleviate occlusion. Traditional video-based Re-ID methods typically focus on two aspects to obtain
more robust and distinctive representations from frame sequences: (1) encoding temporal information
and (2) aggregating temporal information.

To encode additional temporal information, reference [6] directly used time information as
additional features. Some approaches employed recurrent models, such as RNN [29] and LSTM [30],
to handle temporal information. Further advancements, such as [31], introduced attention
mechanisms to dynamically fuse temporal features. Another category of methods introduced optical
flow to capture temporal motion [32]. Additionally, spatiotemporal pooling was performed directly on
video sequences, generating global representations through CNNs [33]. Recently, 3D CNNs have
been employed to encode video features in a joint spatiotemporal manner [34]. M3D [35] endowed
2D CNNs with multi-scale temporal feature extraction capabilities through multi-scale
three-dimensional convolutional kernels.

To generate discriminative features from complete video features, literature [36] used average
pooling along the temporal dimension to aggregate spatiotemporal feature maps. Recently, an
attention-based approach dynamically highlighted different video frames or regions, filtering out more
discriminative features from these key frames or regions and significantly improving performance.
For example, Liu et al. [10] introduced cross attention to aggregate multi-view video features through
pairwise interactions between these views. In addition to exploring more effective architectural
designs, Zhao et al. [37] investigated pedestrian attributes, such as shoes, bags, down jacket color, or
gait (the walking style of pedestrians), to provide a more comprehensive description of pedestrian
features. Chang et al. [38] tightly integrated gait recognition and video-based Re-ID as coherent tasks
using a hybrid framework that includes a set-based gait recognition branch. Some studies embedded
attribute predictors into the network, supported by annotations obtained from pretraining on attribute
datasets. For instance, Chai et al. [39] categorized attributes into ID-related and ID-unrelated
attributes, proposing a new triple loss method for pose and motion invariant learning to mine the most
challenging samples considering pose and motion status distances.

Although the mentioned methods have achieved significant advancements in performance, the
transformer is considered a more powerful architecture for sequence data processing, which may
elevate the performance ceiling of video-based Re-ID. To illustrate this, the transformer can easily
adapt to video data, supporting global attention mechanisms to capture spatiotemporal dependencies
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and time-position encoding to sequence spatiotemporal positions. Additionally, class tokens are
readily available for transformer-based models to aggregate spatiotemporal information. However,
transformers have several drawbacks [9], and currently, there are relatively few works on
transformer-based video-based person Re-ID. In this work, we aim to explore the potential of the
graph and transformer in video-based person Re-ID.

3. Method

The purpose of video-based person Re-ID is to retrieve gallery video sequences with the same
identity as a given query video sequence. The overall architecture of our proposed method is illustrated
in Figure 1. For a specific identity’s video sequence, we employ a constrained sampling method [40]
to randomly sample T frames, which are then grouped into an image sequence {It}t=1,...,T . Initially,
these sequences are input into a feature extraction module based on ResNet50, where the stride of the
first residual block in Conv-5 is set to 1. In the global branch, generalized mean pooling is applied
to the feature map to generate a video representation denoted by x ∈ Rb×T×d, where b represents
the batch size, T represents the number of frames, and d represents the feature dimension. In the
local branch, we employ pyramid pooling to obtain regional features X = {xi}

T×N
i=1 , where the feature

map is vertically divided into 1, 2, and 4 regions in our experiments, with N = 7 representing the
number of regions for a single frame. Subsequently, we construct a graph of local region relationships
using feature similarity, capturing intrinsic relationships among region features. In the graph feature
propagation module, region features are iteratively updated by aggregating contextual information from
neighboring regions on the graph. Following this, we utilize average pooling to generate a video
representation. The network is supervised by a combination of cross-entropy loss and triplet loss.

Figure 1. The overall architecture of our approach comprises a local branch and a global
branch. The local branch primarily focuses on modeling intrinsic relationships among
local regions to extract fine-grained information. The global branch is designed to capture
relationships between different frames in the sequence, facilitating the learning of a global
representation for the entire video sequence. DBIN is used to fuse frame-level features
extracted from local and global branches.
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3.1. Local feature network

The relationships between different parts of the human body are beneficial for mitigating the
impact of complexities such as occlusion and background noise. Therefore, describing the
relationships between different body parts and propagating contextual information are crucial for
learning discriminative sequence features. Graphs are commonly used to model such relationships,
and we adopt GNNs to mine information between regions.

3.1.1. Local relation graph

To describe the relationships between regions, as illustrated in Figure 1, we propose to learn a local
relation graph G = {V, A},V = {vi}

T×N
i=1 , which is a set of features containing T × N nodes aimed at

capturing the affinity between regions. Each node vi corresponds to a spatial region in a frame. For
two nodes vi and v j, the node features are denoted as xi and x j. S (xi, x j) is used to calculate the cosine
similarity between nodes. The adjacency matrix A is represented as:

Ai j = S (xi, x j) =
2

e∥xi−x j∥2 + 1
(3.1)

Next, we utilize pre-defined graph structures to generate position encoding for graph nodes:

∆ = 1 − D−1/2AD−1/2 = UTΛU (3.2)

where A and D represent the adjacency matrix and degree matrix of the local relation graph,
respectively. Λ and U denote the Laplacian eigenvalue matrix and eigenvector matrix. UTΛU is the
factorization of the graph Laplacian matrix, and the local relation graphs in the same dataset share the
same initialized adjacency matrix. Following [41], we utilize the K smallest singular eigenvectors as
the node position encoding, denoted as ei ∈ R

K . vi and ei are mapped to a feature space of the same
dimensionality d through an affine transformation and summed up, as defined:

vl
i = (Wvvi + bv) + (Wpei + bp) (3.3)

where vl
i ∈ R

d represents the i-th positional encoding node, and Wv ∈ R
d×N , Wp ∈ R

d×K , bv, bp ∈ R
d are

the learnable parameters of the linear mapping layer for the i-th node vi and its corresponding positional
encoding. It is important to note that Laplacian position encoding is added only to the node features of
the input layer and not to the intermediate graph transformer layers.

3.1.2. Transformer-based graph feature propagation network

After obtaining the graph, contextual information is propagated, iteratively updating the original
spatial region features. As shown in Figure 2, we employ a transformer architecture adapted for graph
input to aggregate information from adjacent nodes for each node. In the graph feature propagation
network, we use a layer-wise transformer architecture, with the number of heads for multi-head
attention being K. At the k-th attention head of the l-th layer, the feature aggregation and updating
operations are defined as follows:

v̂l
i = Ol∥Kk=1

∑
j∈Ni

wk,l
i j Vk,lvl

j

 (3.4)
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Figure 2. Diagram of the graph transformer layer using Laplacian eigenvectors. e denotes
positional encoding, which is added to the input node embeddings before features are fed
into the first layer.

In the equation, wk,l
i j = softmax

(
Qk,lvl

iK
k,lvl

j
√

dk

)
. Qk,l, Kk,l, Vk,l ∈ Rdk×d, Ol ∈ Rd×̇d represent the learnable

parameters of the linear mapping layer. k = 1, . . . ,K denotes the number of attention heads, and ||
represents the concatenation operation. For clarity, we use v̂l

i ∈ R
d to represent the i-th node, which

denotes the node features learned from different heads connected starting from the first layer. It is
noteworthy that the graph transformer layer naturally extends self-attention [31] to learn relationships
among graph nodes and can be seen as a general paradigm for simultaneously capturing relationships
between adjacent and non-adjacent elemental nodes in the graph representing local region
relationships. This allows the integration of more crucial features from relevant nodes into the final
node representation. Finally, following [41], we apply a feed-forward network (FFN) with residual
connections and batch normalization:

vl
i = Norm

(
vl

i + v̂l
i

)
,

vl+1
i = Norm

(
vl

i +W l
2σ
(
W l

1vl
i

))
,

(3.5)

where Norm(·) represents the batch normalization operation. W l
1 ∈ R

2d×d, W l
2 ∈ R

d×2d are the learnable
parameter of the FFN layer. σ(·) is the ReLU activation function. vl

i and vl+1
i respectively represent the

intermediate node features and the final output node features of the l-th graph transformer layer. We
obtain the graph representation corresponding to each node by taking the average of the node features
in each local relation graph. These continuous graph representations are then integrated into the final
sequence-level graph representation S , where N represents the number of local relation graphs:

S =
1
T

T∑
t=1

st =
1
T

T∑
t=1

1
N

N∑
i=1

vt
i (3.6)

where S , st ∈ Rd represent the video sequence features and features of a single frame image,
respectively.
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3.2. Global feature network

Transformer is a powerful neural network architecture initially designed for natural language
processing tasks but has been successfully applied in the field of computer vision. In the context of
video-based person Re-ID, using the transformer enables effective feature learning and representation
for individuals across video sequences. In this paper, we first feed the output of the last residual block
of ResNet50 through generalized mean pooling to vectorize the feature maps, obtaining a feature
vector for each frame. Let F = { fi}

T
i=1 be the set of feature vectors, and fi ∈ R

b×T×d represents the i-th
frame in the video sequence. Subsequently, each extracted frame-level feature is treated as a token
vector and fed into the ViT to model the entire video sequence. The self-attention mechanism of the
transformer is utilized to capture relationships between different frames in the sequence.
Consequently, each token vector, after the vision transformer interacts with the remaining token
vectors, captures information from other frames. Finally, averaging all output token vectors yields the
global feature for the entire video sequence. This can be formally defined as follows:

F =
1
T

T∑
t=1

f t (3.7)

where F, f t ∈ Rd represent the video sequence features and frame-level features, respectively.

3.3. The dual-branch interaction network with multi-head fused attention

For the purpose of incorporating richer semantic information into the sequence-level features used
for final testing, we propose a dual-branch interaction network (DBIN) based on multi-head fused
attention. DBIN is designed to fuse frame-level features extracted from local and global branches. The
structure is illustrated in Figure 3. Assuming Fl and Fg represent the feature sets of each frame from
the local and global branches, the feature sequences of the two branches are taken as inputs to this
interaction network. We perform dimension reduction on the input features to obtain two sequences
with dimensions T × D. Subsequently, layer normalization is applied to the features. The overall
process is described as follows: y1 = LN

(
LP(Fl)

)
y2 = LN

(
LP
(
Fg
)) (3.8)

where LP represents the linear mapping operation, LN denotes the layer normalization, and y1, y2 ∈

Rd×N represents the two sequences of features after dimension reduction and layer normalization.
The two output feature maps of the DBIN can be formulated as:z1 = Attention (Q1,K1,V2) = softmax

(
Q1K1√

dk

)
V2

z2 = Attention (Q2,K2,V1) = softmax
(

Q2K2√
dk

)
V1

(3.9)

where Q represents the query, K represents the key, V is the value, and dk represents the dimensionality
of the input data. DBIN differs from the traditional self-attention mechanism. The goal of the DBIN is
to capture the correlation between the query Q and the key K, obtain an attention map, and then derive
the feature values based on this attention map. This cross-attention mechanism is more advantageous
for the information interaction between the two feature maps in fusion tasks, thereby improving the
fusion effectiveness.
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Figure 3. A dual-branch interaction network based on multi-head fusion attention (DBIN),
used to integrate frame-level features extracted by the local branch and the global branch, so
that the final extracted features contain rich semantic information.

4. Experiments and results

4.1. Dataset and evaluation scheme

In this paper, we evaluate our proposed method MSTAT on three widely used video-based person
Re-ID datasets: iLIDS-VID [42], DukeMTMC-VideoReID (DukeV) [43], and MARS [44].
iLIDS-VID consists of 600 video sequences of 300 individuals captured by two cameras. The number
of frames in these video sequences varies from 23 to 192. The test set shares 150 identities with the
training set. DukeMTMC-VideoReID is a large-scale video-based dataset with 4832 videos from
1404 identities. In the subsequent sections, we use the abbreviation “DukeV” for the
DukeMTMC-VideoReID dataset. Video sequences in the DukeV dataset are generally longer than
those in other datasets, with an average of 168 frames per sequence. MARS is one of the largest video
Re-ID datasets, collecting 20, 000 video sequences from 1261 identities captured by six cameras.
Frames in the video sequences are relatively less aligned in the tracker as they are obtained from
deformable part model (DPM) detectors and generalized maximum multi clique problem (GMMCP)
trackers rather than manually annotated [44]. Additionally, the dataset includes around 3200
distractor sequences to simulate real-world scenarios.

To evaluate the MARS and DukeV datasets, we used two metrics: the cumulative match
characteristic (CMC) curve and the mean average precision (mAP). However, for the gallery set of
iLIDS-VID, only the cumulative accuracy is provided for this benchmark.
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4.2. Experimental setup

All experiments were conducted on a single RTX 3090 GPU. Optimization was performed using
the stochastic gradient descent (SGD) optimizer. The learning rate was initialized at 0.1 and linearly
adjusted through a warm-up strategy in the first 10 epochs. It was then reduced to 0.01 at the 35th
epoch and to 0.001 at the 80th epoch. The weight decay was set to 0.0005, and the batch size was
8 (each mini-batch included 4 identities, with each identity having 2 video sequences). Training was
performed for over 200 epochs. During the training phase, a constrained random sampling strategy was
employed, randomly extracting T = 8 frames from each video and grouping them into video sequences.

4.3. Comparison with existing methods

To validate the effectiveness of our proposed method, we compare it with several state-of-the-art
methods on iLIDS-VID, MARS, and Duke-V, including STMP [45], SCAN [46], AP3D [34],
TCLNet [47], GRL [48], STRF [49], STT [9], Snippet+OF [50], SCAN+OF [46], DCCT [51],
MSTAT [52], and PiT [53]. The experimental results on MARS and iLIDS-VID are listed in Table 1
and those on Duke-V are shown in Table 2. On the MARS dataset, our method outperforms the
previous best method, DCCT, by 0.3% in Rank-1. The proposed method achieves a good performance
on the Duke-V dataset, with accuracies of 97.5% for Rank-1 and 97.8% for mAP. The mAP metric
surpasses that of the state-of-the-art DCCT. The experimental results confirm the effectiveness and
superiority of our proposed method.

Table 1. Comparison with state-of-the-art methods on MARS and iLIDS-VID datasets,
providing Rank-1, -5, -20 accuracies (%) and mAP (%). The experimental results
demonstrate that the proposed method achieves state-of-the-art performance.

Method Source
MARS iLIDS-VID
R-1 R-5 R-20 mAP R-1 R-5 R-20

STMP [45] AAAI2019 84.4 93.2 96.3 72.7 84.3 96.8 99.5
SCAN [46] TIP19 86.6 94.8 97.1 76.7 81.3 93.3 98.0
AP3D [34] ECCV20 90.7 - - 85.6 88.7 - -
TCLNet [47] ECCV20 89.8 - - 85.1 86.6 - -
GRL [48] CVPR21 90.4 96.7 - 84.8 90.4 98.3 -
STRF [49] ICCV21 90.3 - - 86.1 89.3 - -
STT [9] Arxiv21 88.7 - - 86.3 87.5 95.0 -
PiT [53] TII22 90.2 97.2 - 86.8 92.0 98.9 100.0
DCCT [51] TNNLS23 92.3 - - 87.5 91.7 98.6 -
MSTAT [52] TMM23 91.8 97.4 - 86.5 93.3 99.3 -
Snippet+OF [50] CVPR2018 86.3 94.7 98.2 76.1 85.4 96.7 -
SCAN+OF [46] TIP19 87.2 95.2 98.1 77.2 88 96.7 100.0
Graph Trans (ours) - 92.5 97.5 98.5 86.4 93.8 98.6 100.0

Results on iLIDS-VID, as shown in Table 1, indicate the superiority of the proposed method over
existing state-of-the-art methods on this dataset. Specifically, our method achieves a Rank-1 accuracy
of 93.8%, surpassing all previous methods, even without considering optical flow. On this small-scale
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dataset, the comparison between Snippet and Snippet+OF demonstrates that motion information
provides more reliable features than appearance cues. Even when compared to methods utilizing
optical flow, our proposed method remains competitive.

Table 2. Comparison with state-of-the-art methods on Duke-V datasets, providing Rank-1,
-5, -20 accuracies (%) and mAP (%). The experimental results demonstrate that the proposed
method achieves state-of-the-art performance.

Method Source R-1 R-5 R-20 mAP
STMP [45] AAAI2019 - - - -
AP3D [34] ECCV20 97.2 - - 96.1
TCLNet [47] ECCV20 96.9 - - 96.2
GRL [48] CVPR21 95.0 98.7 - 93.8
STRF [49] ICCV21 97.4 - - 96.4
STT [9] Arxiv21 97.6 - - 97.4
DCCT [51] TNNLS23 98.4 - - 97.6
MSTAT [52] TMM23 97.4 99.3 - 96.4
Graph Trans (ours) - 97.5 98.7 99.3 97.8

4.4. Ablation experiment

To analyze the effectiveness of each component in the proposed method, we conduct the ablation
experiment on the MARS dataset. The experimental results are presented in Table 3. In the ablation
experiment, the baseline includes only the ResNet backbone and 3D global average pooling, supervised
by a cross-entropy loss and a triplet loss. The Rank-1 and mAP accuracies of the baseline method
are 87.9% and 77.7%, respectively. The baseline+local branch indicates the adoption of the graph
transformer module in the local relation graph branch, achieving Rank-1 and mAP accuracies of 89.6%
and 82.9%, respectively. The baseline+global branch refers to the additional branch of the framework
for video sequence-level feature learning based on the vision transformer.

Table 3. Ablation experiment results on the MARS dataset.

Method R-1 R-5 R-20 mAP
Baseline (Resnet50) 87.9 95.8 97.4 77.7
Baseline+local branch 89.6 96.5 97.4 82.9
Baseline+global branch 89.0 95.8 97.0 80.9
Baseline+local branch+local branch 90.0 96.5 98.5 84.4
Baseline+local branch+local branch+DBIN 92.5 97.5 98.5 86.4

Compared to using the global branch alone, the addition of the local branch improves the accuracy
of Rank-1 and mAP by 0.6% and 2.0%, respectively. Moreover, by combining both the global and
local branches, we achieve 90.0% and 84.4% on the MARS dataset. After integrating the DBIN
module, there is an increase of 2.5% and 2.0% in the accuracy of Rank-1 and mAP, respectively.
Utilizing these components, we elevate the accuracy of Rank-1 and mAP from 87.9% and 77.7% to
92.5% and 86.4%, respectively.

Mathematical Biosciences and Engineering Volume 21, Issue 7, 6694–6709.



6705

5. Conclusions

This paper proposes a novel video-based person Re-ID representation learning approach based on
graph transformer. The proposed method learns local region relation graphs in spatial regions. By
aggregating contextual information from neighboring nodes, it captures intrinsic relational structural
information among person feature nodes. Furthermore, it utilizes the transformer architecture to
propagate complementary contextual information, enriching person feature representations.
Additionally, we further propose a global feature learning branch based on ViT to capture the
relationships between different frames in a sequence. A dual-branch interaction network, designed on
the principle of multi-head fusion attention, integrates frame-level features extracted by both local and
global branches. Ultimately, the concatenated global and local features, post-interaction, are utilized
for testing, which is conducive to learning compact and discriminative representations. Experimental
results on three public datasets demonstrate the effectiveness of this approach, and the ablation study
investigates the contribution of the proposed components. Additionally, our current framework only
constructs local relation graphs that consider contextual relationships within single images, but it does
not fully explore the relationships between frames in video sequences. In future efforts, we plan to
more comprehensively utilize both intra-frame and inter-frame relationships to develop a more robust
graph structure, enhancing the accuracy of person identification.
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20. P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph attention networks,
preprint, arXiv:1710.10903.

21. H. Li, S. Yan, Z. Yu, D. Tao, Attribute-identity embedding and self-supervised learning for scalable
person re-identification, IEEE Transactions on Circuits and Systems for Video Technology, 30
(2020), 3472–3485. https://doi.org/10.1109/TCSVT.2019.2952550

22. H. Li, N. Dong, Z. Yu, D. Tao, G. Qi, Triple adversarial learning and multi-view imaginative
reasoning for unsupervised domain adaptation person re-identification, IEEE Trans. Circuits Syst.
Video Technol., 32 (2022), 2814–2830. https://doi.org/10.1109/TCSVT.2021.3099943

23. H. Li, Y. Chen, D. Tao, Z. Yu, G. Qi, Attribute-aligned domain-invariant feature learning for
unsupervised domain adaptation person re-identification, IEEE Trans. Forensics Secur., 16 (2021),
1480–1494. https://doi.org/10.1109/TIFS.2020.3036800

24. K. Zhou, Y. Yang, A. Cavallaro, T. Xiang, Omni-scale feature learning for person re-identification,
in Proceedings of the IEEE/CVF International Conference on Computer Vision, IEEE, (2019),
3701–3711. https://doi.org/10.1109/ICCV.2019.00380

25. F. Yu, X. Jiang, Y. Gong, S. Zhao, X. Guo, W. S. Zheng, et al., Devil’s in the details: Aligning
visual clues for conditional embedding in person re-identification, preprint, arXiv:2009.05250.

26. Z. Zhang, C. Lan, W. Zeng, Z. Chen, Densely semantically aligned person re-identification, in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE,
(2019), 667–676. https://doi.org/10.1109/CVPR.2019.00076

27. M. Ye, H. Li, B. Du, J. Shen, L. Shao, S. C. H. Hoi, Collaborative refining for
person re-identification with label noise, IEEE Trans. Image Process., 31 (2021), 379–391.
https://doi.org/10.1109/TIP.2021.3131937

28. S. He, H. Luo, P. Wang, F. Wang, H. Li, W. Jiang, Transreid: Transformer-based object re-
identification, in Proceedings of the IEEE/CVF International Conference on Computer Vision,
IEEE, (2021), 14993–15002. https://doi.org/10.1109/ICCV48922.2021.01474
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