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Abstract: Respiratory diseases represent one of the most significant economic burdens on health-
care systems worldwide. The variation in the increasing number of cases depends greatly on climatic
seasonal effects, socioeconomic factors, and pollution. Therefore, understanding these variations and
obtaining precise forecasts allows health authorities to make correct decisions regarding the allocation
of limited economic and human resources. We aimed to model and forecast weekly hospitalizations
due to respiratory conditions in seven regional hospitals in Costa Rica using four statistical learning
techniques (Random Forest, XGboost, Facebook’s Prophet forecasting model, and an ensemble method
combining the above methods), along with 22 climate change indices and aerosol optical depth as an
indicator of pollution. Models were trained using data from 2000 to 2018 and were evaluated using
data from 2019 as testing data. During the training period, we set up 2-year sliding windows and a
1-year assessment period, along with the grid search method to optimize hyperparameters for each
model. The best model for each region was selected using testing data, based on predictive precision
and to prevent overfitting. Prediction intervals were then computed using conformal inference. The
relative importance of all climatic variables was computed for the best model, and similar patterns in
some of the seven regions were observed based on the selected model. Finally, reliable predictions
were obtained for each of the seven regional hospitals.

Keywords: temperature; precipitation; climate change, aerosol optical depth; statistical learning;
forecasting; hospitalization; respiratory diseases

1. Introduction

Respiratory diseases are conditions that affect the organs and tissues within the lungs and airway
systems, leading to difficulty in breathing. These illnesses are currently the leading contributors to
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the global burden of diseases when assessed through disability-adjusted life-years. Moreover, the
rising healthcare costs associated with these diseases are placing a growing strain on the economies
of nations worldwide, particularly due to the “big five” conditions: Chronic obstructive pulmonary
disease, asthma, acute respiratory infections, tuberculosis, and lung cancer [1].

To maintain a balanced health economy, it is crucial to understand the distribution and the incidence
of these diseases to optimize healthcare systems, ensure efficient resource allocation, and enhance
healthcare access and quality. Therefore, our focus is to provide a reliable forecast for respiratory
hospitalizations at the hospital level in Costa Rica by using potential climatic factors as inputs in
predictive models, enabling health authorities to anticipate future hospital needs. Specifically, three
different competitive predictive models (Random Forest, XGBoost, and PROPHET) along with an
ensemble method are used and compared.

Extensive research indicates that climate influences respiratory health, resulting in higher rates of
hospitalization and mortality in varying seasons [2–6]. Furthermore, it is well known that human
activities significantly impact the short-term and long-term climate by releasing greenhouse gases and
other pollutants into the atmosphere, leading to more extreme weather events in recent years. As a
consequence, researchers worldwide have been studying the effects of pollution and climatological
factors on human health in different regions of the world [7–11].

Specifically with respiratory diseases, climate factors are associated with extreme weather [5,6,12],
and pollution, such as particular matter (PM) [4, 13]. Airborne PM is a complex mixture of different
chemical species originating from numerous sources. These particles can be a product of combustion,
suspension of soil materials, suspension of substances from the sea, and can also be formed by chemi-
cal reactions in the atmosphere [14]. Furthermore, elevated concentrations of PM not only substantially
heighten health risks but also contribute significantly to the challenges associated with climate change.
Therefore, the monitoring of PM is essential for comprehending and mitigating air pollution, aiming to
enhance public health. Nevertheless, the measurement of PM presents challenges in developing coun-
tries due to the constrained monitoring infrastructure, resulting in gaps in data analysis both temporally
and spatially.

On the other hand, an aerosol is defined as a stable suspension of solid and liquid particles in gas. It
is possible to obtain related measurements with the facilitation of remote sensing techniques. Aerosol
optical depth (AOD), a satellite-derived metric that quantifies the presence of aerosols across the en-
tire atmospheric column, is a good option. Several researchers around the world have found that the
driving factors of AOD are related to urban and economic development, agricultural activities, indus-
trialization, landscape aggregation, and regional transportation [15, 16]. Moreover, AOD is associated
with socio-economic factors, such as GDP, industry, and vehicle density [17].

Costa Rica, a country with an area of 51,179 Km2, is located in Central America with an estimated
population of approximately 5,003,402 inhabitants in 2018. It is a stable democratic country with
a socioeconomic development model based on the opening and economic liberalization, upholding
human rights, and ensuring universal basic access to essential goods and services, such as education
and health system, while preserving extensive natural resources. [18].

Although Costa Rica is renowned for its biodiversity, with most environmental policies focusing on
the protection and conservation of natural resources, unregulated land use has been observed, resulting
in significant environmental impacts. This issue is not limited to the Great Metropolitan Area, the
country’s most urban and densely populated region, but is also prevalent in other parts of the national
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territory. Consequently, this form of human development can intensify vulnerability to natural disasters
and extreme weather conditions [18].

Regarding to its health system, since the 1940s Costa Rica prompted its national health system and
social investment by creating the Costa Rican Social Security Fund (CCSS, from its Spanish acronym
Caja Costarricense de Seguro Social). The basis of the health system in Costa Rica is universal and
public, which covers 95% of the Costa Rican population [18, 19]. The CCSS carries all health care
functions in the country and divides the territory into 7 Health Regions (región sanitaria in Spanish),
and at the same time, it is divided into 104 Health Areas (AS, from its Spanish acronym áreas de
salud) and then, 1045 Basic Team for Comprehensive Health Care (EBAIS, from its Spanish acronym
Equipos Básicos de Atención Integral de Salud). Each AS caters to a population ranging from 15,000
to 40,000 individuals in rural areas and 30,000 to 60,000 individuals in urban areas. Subsequently,
these ASs are subdivided into 1,045 segments, each overseen by an EBAIS. Each segment, in turn,
serves approximately 4,000 people.

The health service in Costa Rica operates on three distinct levels of attention, interconnected
through referral and counter-referral mechanisms. The initial level of service acts as the primary en-
try point to the healthcare system, providing essential services within each EBAIS at the community
level. Additionally, there are two possibilities in which a person can access the health system: (1) an
insured person can be attended by a private doctor who is registered by the CCSS and access reference
to more specialized attention, and (2) an insured person is attended by a doctor hired by the company.
The second level supports the first level through a network of 10 main clinics, 13 peripheral hospitals,
and 7 regional hospitals. It provides specialized outpatient services, interventions, hospitalization, and
medical-surgical treatments for medical specialties and high-demand areas like dermatology, urology,
and ophthalmology, all of low complexity. Finally, the third level includes outpatient and inpatient ser-
vices of greater complexity and specialization that require high technology and level of specialization.
It is provided through 3 national hospitals and 6 specialized hospitals; the area of influence of this level
covers the territory of several provinces.

Due to this health administrative flow, the accurate diagnostics of respiratory conditions that require
hospitalization are registered in hospital discharge events (second level), instead of hospital entrance
(first level). As a consequence, the limitation of this data lies in the presence of a lagged and unknown
effect, necessitating consideration in the analysis. Beyond the delayed impact associated with hospi-
tal admissions and discharges, there is also a temporal lag effect pertaining to climate and pollution
variables.

In the literature, most related studies are linked to statistical association between climate and hospi-
talizations [2–6,20]. Additionally, some concentrate on forecasting hospitalizations specifically within
emergency departments and respiratory diseases [21–29].

Our main goal is to predict hospital discharges due to respiratory diseases at the secondary health-
care level of the system, in the hope of enhancing the country’s healthcare economy. Specifically, by
utilizing pollution and climatic indices, we aim to obtain accurate forecasts of respiratory hospitaliza-
tions in seven regions by comparing four different predictive models. Our goal is to provide easily
implemented models to health authorities in order to make accurate predictions and informed budget
decisions in the near future. To the best of our knowledge, this approach is the first predictive study
undertaken in the region with these distinctive characteristics. Moreover, this study may serve as a
potential tool to be replicated in other countries with similar diverse climatic characteristics around the
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world.
This paper is divided as follows: Section 2 describes the data and the implemented methodologies.

Section 3 presents the analysis and forecasting results. Finally, Section 4 discusses the prediction
performance, limitations, and future work.

2. Materials and methods

This section first provides an overview of the primary datasets used in our study. Then, the statistical
methods applied to predict the hospital discharge are outlined.

2.1. Data

We describe the main variable of interest, respiratory hospitalizations, followed by the input data
comprising climate and pollution data, along with their sources.

2.1.1. Respiratory hospitalization

Weekly data on hospital discharges due to all respiratory diseases (J00-J99 using ICD10 [30]) from
2000 to 2019 for seven regions (Brunca, Central Norte, Central Sur, Chorotega, Huetar Atlántica, Hue-
tar Norte and Pacı́fico Central), were obtained from the Health Statistics Area of the CCSS. The choice
of using ’discharge’ instead of ’hospital entrance’ is based on the accurate registration of diagnostics at
the second level of the health system in Costa Rica. According to the official statistics from the CCSS,
the average hospitalization duration in regional hospitals in 2019 due to respiratory diseases was 5.97
days [31]. For a visual representation of the geographic distribution of these regions, refer to Figure 1.

Figure 1. Health administrative division of Costa Rica.

2.1.2. Input data: Climate, pollution, and lagged hospital discharge

We consider distinct climatic indices related to precipitation and temperature extremes, as well as
the aerosol index and previous weekly hospital discharges for each Health Region as input variables to
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predict weekly hospital discharges.
Daily precipitation estimates from 2000 to 2019, sourced from the Climate Hazards Group InfraRed

Precipitation with Station data (CHIRPs) [32], were used to measure the land surface rainfall. Further-
more, the Geophysical Research Center (CIGEFI) of the University of Costa Rica supplied maximum
and minimum daily temperatures across the country, employing the same estimation procedure as the
Climate Hazards Center Infrared Temperature with Stations (CHIRTS) [33], with an extension of the
time period until 2019. Both data sources offer high spatial resolution at 5km by 5km.

After reviewing the 27 core indices∗ related to climate extremes, as recommended by the Climate
and Ocean: Variability, Predictability, and Change (CLIVAR)† on Climate Change Detection [34], we
adapted them for tropical countries and computed 22 climate change indices for each region related to
cumulative rainfall estimates and temperature for each region i = 1, ..., 7 and week t = 1, ...,T (See
Table 1).

Specifically for the temperature indices, we eliminated those indices related to extreme winter con-
ditions (numbers of days in which maximum and minimum temperatures are below 0C). Moreover,
since we are dealing with weekly data, those indices related to the number of days greater than the
90th percentile and below the 10th percentiles, respectively, are zero for the majority of some periods
of the year. To maintain the variability of these indices, we modified them to the 75th and 25th per-
centiles to retain the indices’ variability throughout the year. We also incorporated weekly maximum,
minimum, and average of daily amplitude, as well as the number of days in which the amplitude is
greater than the 75th and 90th percentiles, to account for significant temperature changes within a day.

On the other hand, for precipitation indices, we eliminated the number of consecutive dry days
and consecutive wet days since Costa Rica has distinct rainy and dry seasons, and these indices are
basically zero in the dry season and 7 days a week in the rainy season. Furthermore, we incorporated
the maximum, average, and minimum of maximum daily precipitation across the region, and modified
the yearly day count with precipitation greater than the 95th and 99th percentiles to weekly day counts
with precipitation greater than the 75th and 90th percentiles to account for the variability of the input
variable.

In relation to pollution data, daily measurements of AOD from 2000 to 2019 were obtained from the
MODIS Atmosphere L3 Daily Product (MOD08 D3) [35] from the National Aeronautics and Space
Administration (NASA). We obtained daily data points at 12 locations across the country using a spatial
resolution of 1 × 1 degree grid. The health regions do not naturally align with the 1 × 1 grid, making it
necessary to interpolate the variables to estimate a representative value for each region at a fixed point
in time. Therefore, we calculated the weighted average based on the Euclidean distance between the
12 data points and the centroid of each region i. We believe this is a reasonable method for estimating
a representative value for each region, making the best possible use of the geographic information
available. Finally, weekly AOD values were derived by averaging the daily information.

The selection of the above environmental covariates is based on the results cited in the introduction,
where previous studies have found a significant relationship between extreme weather data, pollutants,
and hospital admissions. Due to the lack of admission information in the CCSS, we consider the depen-
dent variable of hospital discharges to be a fairly close proxy for the former variable. All precipitation
indices were logarithmically transformed due to their asymmetry where the main purpose of this trans-

∗See https://etccdi.pacificclimate.org/list_27_indices.shtml
†https://www.clivar.org/
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Table 1. Climate change indices related to rainfall and temperature.

Variable Description

1. Tmax max Maximum (across the region) of maximum weekly temperature.
2. Tmax mean Average (across the region) of maximum weekly temperature.
3. Tmax min Minimum (across the region) of maximum weekly temperature.

4. n Tmax Q3
Average (across the region) of the number of days in which the maxi-
mum temperature is higher than the percentile 75 of maximum temper-
ature.

5. Tmin min Minimum (across the region) of minimum weekly temperature.
6. Tmin mean Average (across the region) of minimum weekly temperature.
7. Tmin max Maximum (across the region) of minimum weekly temperature.

8. n Tmin Q1
Average (across the region) of the number of days in which the mini-
mum temperature is lower than the percentile 25 of minimum tempera-
ture.

9. amplitude max max
Maximum of the maximum daily amplitude of temperature (difference
of daily maximum and minimum temperature).

10. amplitude max mean Average of the maximum daily amplitude of temperature.
11. amplitude max min Minimum of the maximum daily amplitude of temperature.
12. amplitude min max Maximum of the minimum daily amplitude of temperature.
13. amplitude min mean Average of the minimum daily amplitude of temperature.
14. amplitude min min Minimum of the minimum daily amplitude of temperature).

15. n amplitude Q3
Average of the number of days in which the amplitude of temperature
is higher than the percentile 75 of daily amplitude of temperature.

16. n amplitude P90
Average of the number of days in which the amplitude of temperature
is greater than the percentile 90 of daily amplitude of temperature.

17. precip max max Maximum (across the region) of the maximum daily precipitation.
18. precip max mean Average (across the region) of the maximum daily precipitation.
19. precip max min Minimum (across the region) of the maximum daily precipitation.
20. precip mean mean Average (across the region) of the average daily precipitation.

21. n precip max Q3
Average (across the region) of the number of days in which the max-
imum precipitation is higher than the percentile 75 of daily maximum
precipitation.

22. n precip max P90
Average (across the region) of the number of days in which the max-
imum precipitation is higher than the percentile 90 of daily maximum
precipitation.
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formation is to ensure stability in calculating the importance factors of these variables, rather than to
improve the predictive power of the models. Furthermore, we computed the sample cross-correlation
function between all covariates and hospital discharges. We observed that the highest correlation be-
tween all covariates and hospital discharges occurs in the same week, that is, at 0 lag, except for AOD,
where the highest sample cross-correlation is detected with a lag of 10 weeks, namely AOD 10, thus
we incorporate this lagged covariate instead of the same-week AOD in the model. Finally, hospital
discharges from both the previous week and the week before are used in the model.

2.2. Statistical Learning Methods

We employed a supervised statistical learning approach to forecast hospital discharges based on the
environmental information in each region. The prediction model for hospital discharges at time t (HDt)
in a fixed region i is defined as follows:

HDt ∼ f (Xt, AODt−10,HDt−1,HDt−2),

where f (·) represents the applied machine learning technique, Xt encompasses all 22 climate covariates
at time t (see Table 1), and AODt−10 denotes the AOD at time t − 10. The variables HDt−1 and HDt−2

represent the lags of one and two weeks respectively of the discharge series. These lags are considered
as predictors because they allow to capture the non-stationarity of the original series.

For f (·), we apply four different machine learning methods:

Random Forest (RF) [36, 37] is a bootstrapped ensemble method that combines results of regression
trees to improve the prediction.

XGBoost (XGBOOST) [38] is a gradient-boosting algorithm that employs bagging and trains multiple
decision trees in order to produce forecasts.

Facebook’s Prophet Forecasting Model (PROPHET) [39] is an additive-based model that fits non-
linear trends with multiple seasonality plus holiday factors.

Ensemble method (ENSEMBLE) is a combination of the predictions of the three aforementioned
models with equal weights.

We selected these methods because they are widely known in the literature and extensively used in
the modeling and prediction of admission variables or hospital discharges; see [40–48] for examples
of recent uses. We acknowledge the potential for employing hybrid or more complex methodologies
(as exemplified in [49, 50]); however, for this article, we opt for straightforward and purely predictive
techniques. We favor simplicity in implementation and interpretation, particularly considering the
potential utilization of our methods by non-expert users of the CCSS. For example, any of the models
used in this article are implemented in R libraries such as tidymodels [51], modeltime [52], as well as
in scikit-learn [53] in Python.

To train the model, we split the data into training (2001-2018) and testing sets (2019). We selected
the testing period with the intention of encompassing a complete cycle (annual) of observed behavior in
regional discharges, where there was no presence of external shocks such as the COVID-19 pandemic
that began in the year 2020. The training process involves a systematic approach, where the training
set is divided into sliding windows. Each sliding window comprises a 2-year analysis set and a 1-year
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assessment set, accounting for the temporal annual seasonality inherent in the data. Following this,
we proceed with model tuning utilizing the grid search method employing a Latin hypercube approach
with 20 combinations of hyperparameters, all based on the default tuning procedures provided by the
tune_grid function in the tidymodels package. Subsequently, we refine this process through a grid
search over a regular grid with a smaller number of combinations. In both instances, our objective
remains consistent: to minimize the mean squared error (MSE). Once we identified the optimized
hyperparameters based on both the aforementioned criterion and the tuning procedure (see Table 2),
we predict hospital discharges and their prediction interval using conformal inference [54] in 2019 to
compare with the testing set. The use of conformal inference ensures that prediction intervals are free

Table 2. Optimal hyperparameters found using grid search for each method and region. For
the RF and XGBOOST methods, the number of trees was held constant at 1000.

Method Hyperparameter Brunca Central
Norte

Central
Sur

Chorotega Huetar At-
lantica

Huetar
Norte

Pacifico
Central

RF
mtry 25 20 17 15 12 20 22
min n 40 22 30 30 40 40 37

XGBOOST

mtry 12 14 14 12 12 10 10
min n 40 8 8 40 40 35 35
tree depth 13 11 11 13 13 12 12
learn rate 0.007 0.078 0.078 0.007 0.007 0.003 0.003
loss reduction 0.001 0.018 0.018 0.001 0.001 0.000 0.000
sample size 0.898 0.828 0.828 0.898 0.898 0.589 0.589

PROPHET
prior scale changepoints 1.000 1.778 1.000 1.000 3.162 1.778 1.000
prior scale seasonality 3.162 1.778 10.000 1.000 1.778 5.623 1.000

from any assumptions about the distribution of our outcome, and it also allows for achieving interesting
coverage properties even for small samples (see [54]).

Finally, we compute three metrics to compare the predictive performance of the applied methods
for a fixed region. The first one, MSE [55] is defined as follows:

MSE =
1
m

m∑
t=1

(HDt − ĤDt)2,

where m is the number of weeks in the testing period, HDt is the observed hospital discharge at
week t, and ĤDt is the estimated hospital discharge according to each model at time t. The Mean
Absolute Error (MAE) [55] is computed as follows:

MAE =
1
m

m∑
t=1

|HDt − ĤDt|,

and finally, the Interval Score (IS) [56] is defined as

ISα =
1
m

m∑
t=1

[
(Ut − Lt) +

2
α

(Lt − HDt) · 1HDt<Lt +
2
α

(HDt − Ut) · 1HDt>Ut

]
,
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where Ut and Lt are the upper and lower limits of the prediction interval of (1 − α)%, respectively.
MSE and MAE evaluate the point forecasts with the observed hospital discharges. On the other

hand, IS α assesses a (1 − α)%-prediction interval by comparing its upper and lower limits against the
observed values. This metric is more comprehensive than MSE for evaluating the models’ predictive
capacity when uncertainty is summarized through a predictive interval [56]. While it is not the only
measure that achieves this, it is one of the simplest to compute and easiest to interpret. Finally, to
quantify the degree of overfitting in each of the models, we compare the MSE and the IS obtained in
the training set versus those obtained in the testing period through the relative MSE and relative IS as
follows:

MSErel =
MSEtest

MSEtrain
, and ISrel =

IStest

IStrain
.

We also calculate the contribution of each covariate in predicting the dependent variable. In partic-
ular, we are interested in quantifying the global contribution through the aggregation of local contribu-
tions based on Shapley values. In other words, we calculate the importance of each covariate through
its mean absolute Shapley value using the vip_shap function from the vip R package [57]. This al-
lows us to compare which covariates have a greater impact on the prediction process for each specific
region.

All calculations were performed in the statistical software R [58] and the following packages
tidymodels [51], modeltime [52], ranger [59] , xgboost [60] modeltime.ensemble [61], and
prophet [62]. The block diagram depicted in Figure 2 provides a concise overview of the method-
ological steps outlined in this article. The code used in this application, as well as the computational
details of this article, can be found at https://github.com/shuwei325/pollution_hosp.

3. Results

In Table 3, we provide a comparison of the four employed methods using the metrics detailed in
Section 2. It is crucial to highlight that our objective is to assess the predictive performance of the four
models during the testing period. This assessment involves comparing the observed outcomes with the
projected ones, utilizing the set of covariates observed within the same period.

Due to differences in the behavior of the series in each region, it is confirmed that there is no method
that is optimal for all cases. Likewise, the ensemble method is not optimal according to the calculated
metrics. In order to choose the proposed models, we sought to have the smallest IS in the testing
period, and we also ensured an ISrel ratio higher than 80%, with the goal of selecting alternatives
with potential overfitting. The other metrics were used to verify that the selected methods are also
competitive compared to alternatives. In general terms, all selected methods successfully predict the
testing period across the regions and capture both high and low-frequency characteristics of the original
discharge series in a descriptive manner, as seen in Figure 3.

Figure 3 illustrates that the 95% predictive intervals successfully capture the observed series in most
regions, except for Huetar Atlantica and Norte regions, and partially in the Pacifico Central region,
which showed greater difficulty in their forecasts.

For these last regions, the PROPHET method constitutes an interesting alternative, since this method
also allows incorporating a time index that can explain those non-stationary components not being
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Table 3. Metric comparison by region and method (all covariates). The best method for each
region is shown in bold.

Region Model MSE MAE IS0.05 MSE (train) MAE (train) IS0.05(train) MSErel ISrel

Brunca
RF 188.55 10.18 71.79 73.10 7.00 60.09 68.78 83.69
XGBOOST 253.34 11.74 79.12 74.65 6.94 69.71 59.13 88.10
PROPHET 237.86 13.29 63.68 55.41 6.08 59.29 45.77 93.10
ENSEMBLE 205.36 11.29 70.83 58.74 6.25 34.67 55.32 48.94

Central
Norte

RF 222.95 12.01 69.65 97.77 7.80 56.27 64.89 80.79
XGBOOST 281.86 13.70 75.23 0.00 0.03 71.80 0.21 95.44
PROPHET 2947.93 48.38 210.24 99.48 7.80 191.61 16.12 91.14
ENSEMBLE 540.34 18.11 112.19 38.07 4.89 29.89 27.00 26.64

Central
Sur

RF 407.37 16.63 85.27 166.16 10.01 76.44 60.21 89.64
XGBOOST 429.42 17.28 86.63 0.00 0.03 79.24 0.17 91.47
PROPHET 660.35 21.00 110.24 131.06 9.23 89.29 43.97 81.00
ENSEMBLE 408.17 17.28 89.01 57.41 6.14 35.92 35.52 40.36

Chorotega
RF 90.16 7.34 44.12 24.29 3.87 41.31 52.71 93.64
XGBOOST 84.14 7.11 42.12 32.86 4.49 42.01 63.18 99.75
PROPHET 96.64 8.09 47.00 29.61 4.22 35.05 52.15 74.58
ENSEMBLE 81.11 7.18 42.19 25.60 3.94 24.81 54.92 58.81

Huetar
Atlántica

RF 142.02 8.77 58.77 32.12 4.36 57.38 49.73 97.63
XGBOOST 156.60 9.13 62.70 34.71 4.50 58.33 49.28 93.03
PROPHET 237.39 12.56 66.79 22.09 3.72 63.98 29.61 95.79
ENSEMBLE 160.25 9.61 61.59 25.67 3.90 24.55 40.55 39.87

Huetar
Norte

RF 158.97 10.13 55.13 27.52 4.12 49.76 40.70 90.26
XGBOOST 180.60 10.85 60.19 48.21 5.42 54.86 49.94 91.13
PROPHET 163.56 10.15 58.24 34.34 4.72 55.85 46.52 95.89
ENSEMBLE 161.28 10.20 56.61 33.23 4.51 27.50 44.21 48.58

Pacı́fico
Central

RF 53.64 5.89 34.90 35.48 4.73 31.01 80.21 88.87
XGBOOST 47.99 5.46 32.65 56.81 5.83 35.97 106.65 110.16
PROPHET 85.38 8.18 32.11 34.52 4.67 32.05 57.06 99.82
ENSEMBLE 55.21 6.20 31.03 37.39 4.82 28.68 77.67 92.42
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Table 4. Relative Importance factors for the best methods (in percentage) by means of the
Shapley values. The date covariate corresponds to the time index, needed for the PROPHET
algorithm.

Covariate Brunca Central
Norte

Central
Sur

Chorotega Huetar
Atlantica

Huetar
Norte

Pacifico
Central

date 21.1 18.4 23.2
n amplitude Q3 11.0 2.0 4.4 7.5 7.6
n amplitude P90 9.9 6.7
amplitude max max 9.9 6.1 7.4
egreso 2 9.3 21.6 18.9 36.1 31.0 8.8
precip max min 9.1 3.1 3.1 6.6
precip mean mean 9.0 3.0 3.0 7.7
Tmax max 7.9 13.1
n precip max Q3 6.6 2.3 3.0 3.6
Tmax mean 6.1 1.5 4.0 10.9
egreso 1 46.5 50.3 16.8 24.5
AOD 10 15.6 16.5 17.1 14.0
AOD 4.3 4.5
precip max max 2.2 1.6 3.8
precip max mean 1.6 2.3 6.1
Tmin min 1.5 2.8 7.3 7.5
Tmin mean 1.4 13.8 13.0
amplitude min min 2.1
amplitude min mean 1.8 5.7
amplitude max min 9.3 9.2
n Tmin Q1 3.5
amplitude max mean 5.8 10.4
amplitude min max 2.9
Tmin max 10.0

Mathematical Biosciences and Engineering Volume 21, Issue 7, 6539–6558.
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Figure 2. Block diagram for developing the forecasting models for hospital discharges at
regional level using environmental factors. The blue shaded blocks are specified in greater
detail in Figure 4 in the Supplementary section.

explained by the covariates. Its flexibility in modeling trends, seasonal components, and trend changes
makes it particularly well-suited for these complex-behaved regions, as it was purposefully designed
to accommodate such complexities (see [39]). This method has been used in situations where the
complexity of the patterns observed in the series makes the use of classical time series models not as
effective (see [63,64]). For example, the ISrel reflects the model’s ability to provide accurate predictions
in the testing set, even in the Huetar Atlantica region where it is slightly outperformed by the RF. This
is largely due to its balanced adaptability to the series. Also, in Table 4, we show the Shapley values,
all in percentage terms to facilitate interpretation.

It is worth noting that the PROPHET method performs better in three regions (Brunca, Huetar
Norte, and Pacifico Central), where the date is the most important feature, while lagged HD and AOD
are not. It is worth noting that for other four regions where the RF and XGBOOST methods are the
best, the covariates with the greatest contribution to the prediction of hospital discharges tend to be the
lagged discharge variables (orders 1 and 2) along with the lagged AOD variable. This indicates that for
these regions, the climate and pollution features, as well as lagged HD, are important inputs to predict
HD, while for those that PROPHET are best models, temporal information such as nonstationarity and
seasonality provides better information to forecast the HD.
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Figure 3. Forecast comparison of hospital discharges, by region. Dark blue line: observed
series, pink line: predicted series and pink shaded area: 95% prediction interval.

On the other hand, depending on the region, there are environmental variables that contribute to
predictions to varying degrees once the contribution of lagged variables has been taken into account.
For example, it is noteworthy that for the Chorotega and Huetar Norte regions, the amplitude between
maximum and minimum temperature is important, as well as in the latter region, the regional minimum
of minimum temperature and the regional maximums of maximum temperature.

In general terms, a considerable number of the covariates we used show significant contribution
in the prediction models. The difficulty in determining an optimal fitting method may be due to the
high variability in weekly discharge data, and the existence of complex seasonality components among
different health regions, which may largely stem from the combination of epidemiological cycles of
respiratory diseases. These situations of high variability and seasonality in hospital admission data
(which we are approximating through discharges) have already been evidenced in previous studies
[23, 25, 65, 66]. It is also worth mentioning that as we are choosing models where ISrel is less than
80%, we then directly minimize the occurrence of overfitting, which as far as we know, was not directly
addressed in these same articles previously cited.

4. Conclusion and recommendations

To summarize, we used climatic and pollution data to model and predict weekly hospital dis-
charges due to respiratory conditions, a leading contributor to the global healthcare burden in terms of
costs, at regional hospital levels in Costa Rica. Four statistical learning approaches: RF, XGBOOST,
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PROPHET, and the ENSEMBLE method, were applied to each of the seven regions. According to
the predictive metrics for each region, reliable forecasts are obtained, and specific conclusions can be
drawn. In Brunca, Huetar Norte, and the Pacı́fico Central region, PROPHET obtained better forecasts,
and the temporal input was detected as the most important predictor. For other regions (Central Norte,
Central Sur, Chorotega, and Huetar Atlántico), where other methods obtained better results, temporal
information was not included as a predictor, and other climatic indices and lagged hospitalization and
AOD were found to be the most important factors.

These conclusions are obtained from comparing their predictive performance in both the training
set (2001-2018) and the testing set (2019). Initially, the training procedure utilized sliding windows of
a 2-year training period and a 1-year assessment period, allowing for the optimization of the model’s
hyperparameters while considering yearly seasonality. Subsequently, their predictive capacity was
evaluated in the testing set using metrics such as MSE, MAE, and IS, as well as MSErel and ISrel to
assess overfitting. We conclude that the optimal model for each region depends on specific environ-
mental and pollution variables, which do not align for all cases. However, at least for most regions, the
lagged variables of hospital discharges and the lagged AOD are of the highest relative importance. In
other cases, the non-stationary component is strong enough for a time-indexed model to be preferable.
Despite all of the above, the selected model for each region demonstrates its ability to generate reliable
forecasts. Although no previous predictive studies were found in Costa Rica, we can conclude that the
MSE and MAE metrics of our study are lower compared to a similar study of emergency admissions
in the city of Santiago, Chile (see Table 3 in [25]), which reports MSE and MAE for their forecasts.

As limitations, it is important to recognize that other significant factors, such as the socio-economic
conditions of each region, could serve as potential predictors for hospitalizations due to respiratory
conditions. However, many socio-economic factors, including GDP, population density, and healthcare
facilities, among others, are not available on a weekly basis or remain constant over time. We argue
that, given the established association in the literature between social factors and AOD, we indirectly
incorporate this information into the model, recognizing it as a proxy for the anthropogenic effect on
climate.

Due to the organizational structure of the CCSS, where the decentralization of services through
regional hospitals and clinics by health region is encouraged, decision-making at the hospital level
in Costa Rica is crucial. This study enables health authorities to anticipate and visualize the hospital
requirements for serving the population with respiratory problems in Costa Rican Health Regions.
Additionally, it empowers authorities to administer and allocate limited human and economic resources
effectively and efficiently, fostering a balanced national health economy.

As future work, two directions may be considered. First, since our focus is on forecasting respiratory
hospitalization using climatic and pollution data, the implicit consideration of nonlinear associations
in these models raises questions about the non-linear relationships and long/short-term associations
among them, which need further analysis in different microclimates in Costa Rica. Second, while
climatic and pollution data are key variables for forecasting respiratory hospitalization, they are not
the only factors influencing respiratory health. Socioeconomic data, albeit limited, could be directly or
indirectly included to enhance predictions.
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Figure 4. Block diagrams for the model definition and hyperparameter tuning stages for each
used model.
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