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Abstract: In this work, we investigated the finite-time passivity problem of neutral-type complex-
valued neural networks with time-varying delays. On the basis of the Lyapunov functional, Wirtinger-
type inequality technique, and linear matrix inequalities (LMIs) approach, new sufficient conditions
were derived to ensure the finite-time boundedness (FTB) and finite-time passivity (FTP) of the
concerned network model. At last, two numerical examples with simulations were presented to
demonstrate the validity of our criteria.
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1. Introduction

Hopfield neural network (HNN) is in the powerful class of artificial neural networks (ANNSs),
which has been introduced in the literature by John Hopfield in 1982. Since then, its investigation has
become a worldwide focus [1-5]. All of those models are real-valued neural networks (NNSs).
However, complex-valued neural networks (CVNNs) can handle problems that cannot be handled
with real-valued parallel networks [6,7]. Recently, some authors started the dynamical analysis of
CVNNs.  For example, in [8], Ali et al. studied the finite time stability analysis of delayed
fractional-order memristive CVNNs by using the Gronwall inequality, Holder inequality and
inequality scaling skills. In [9], Zhang and Cao investigated the existence and global exponential
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stability of periodic solutions of neutral type CVNNs by collecting the Lyapunov functional method
with the coincidence degree theory as well as graph theory. In article [21], the authors dealt with the
problem stability of impulsive CVNNs with time delay.

In the functioning of ANNSs, time-delays always exist in the signal transmission between neurons
on account to the limited pace of signal exchange and transmission. Thus, it is one of the main reasons
poor performance and instability in a system is the presence of delays. Therefore, in recent years,
the analysis of the stability of delayed ANNs has been the great attention of researchers, and various
results have been discussed in the literature [16-22].

ANNSs with neutral-type delays were also very seldom discussed in the existing literature; such
models are called neutral-type ANNs. They have been the subject of in-depth studies by many
researchers, for instance, Guo and Du [17], concerned with the global exponential stability of periodic
solution for neutral-type CVNNs.

The theory of passivity is a significant notion of automatic for the analysis and control of models
whose certain input/output characteristics are established in terms of energy criteria. The notions
of passivity are adapted to several scientific fields and are effective for the regulation of electrical,
mechanical, and electromechanical systems present in several fields of engineering, such as robotics,
power electronics, aeronautics, etc. Many results are concentrated in the research of the passivity of
NN systems. In [11], Li and Zheng proved the global exponential passivity for delayed quaternion-
valued memristor-based NNs. Ge et al. [12] studied the robust passivity analysis for a class of uncertain
NN subject to mixed delays. The problem of passivity analysis for uncertain bidirectional associative
memory NN in the presence of mixed delays are discussed in [13]. In [35], Khonchaiyaphum et al.
studied FTP analysis of neutral-type NNs.

Many researchers have been interested in finite-time control problems of dynamical systems based
on the Lyapunov theory of stability to give big attention to the asymptotic model of systems over
an infinite time interval. Recently, many interested results have been published. In [14], Thuan et
al. discussed the robust FTP for a fractional order NNs with uncertainties. In paper [19], Wei et al. are
focused on a class of coupled quaternion-valued NNs with several delayed couplings to study fixed-
time passivity.

The main objective of this manuscript is to deal with the FTP for the following neutral-type CVNNSs:

(1)
u(r)

Here, we have

—Az(t) + Bf(z(?) + Cf(z(t — 7(1))) + Dz(t — h(t)) + w(1),

Kiz(t) + Ka f (2(1)). (1.1)

2() = [21(), 22(), -+, za()]T € C" is the complex valued state vector,

o

o

w(-) € C" is the disturbance input which belongs to L*[0, +c0),

(e]

u(-) € C" is the control output,

(e]

@) = [f@1(), fz()), -+, f(za(-)]" € C" is the complex-valued activation function,
o A =diaglay,as,- - ,a,} >0 € R™" is a diagonal matrix,

o B=(bjy) e C™", C=(cip) € C™", D= (dy) € C™" are respectively the connection weight matrix
and the connection weight matrix with delays,
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o K; is a known real constant matrice with appropriate dimension,
o K, is a known complex matrice with appropriate dimension.

The initial condition of (1.1) is given as
z2(s) = ¢¥(s), s €[—-p, O], (1.2)

where p = max{sup(7(¢), sup(h(?))}.

teR teR

The main contributions of our article are :

o We use a more adequate hypothesis for the complex-valued activation functions (CVAF) considered
in our model. Based on this assumption, a controllable model is formed by divised the real and
imaginary parts, and we give a sufficient condition to realize FTP. This result is more general than
the existing passivity results on real-valued NNs [35-37].

o A Lyapunov—Krasovskii function that support triple, four, and five integral terms is introduced, and
the Wirtinger-type inequality technique and convex combination approach are espoused.

o A new set of sufficient conditions in terms of LMIs is derived to guarantee FTB and FTP results.
These conditions can be simply found by the Matlab LMI toolbox.

The main contents of the manuscript are outlined as follows: in Section 2, we established new
assumptions, definitions, and lemmas for the dynamic systems (1.1), which will be used later. New
sufficient conditions on the FTB and FTP are discussed in Section 3. Two examples are presented in
Section 4 to verify our results. At last, in Section 5, we end with the conclusion and perspective.

2. Problem formulation and preliminaries
In this section, we present new necessary assumptions and some definitions and lemmas, which are

utilized in the next section.
Assumption 1: The delays 7(-) and A(-) are differentiable functions satisfies the inequalities below:

0t <7, 7)) < U,
0 < h(t) < h, h(t) < hy.
Assumption 2: The neuron activation function f;(-) satisfy the below Lipschitz condition:

1fi(z1) = ful@)l < Ilzy =z, >0 (k =1, 2,---, n). 2.1)

Furthermore, by means of Assumption 2, it is clear to get

(f(z) = f(@) (@) = f(22)) < (21 = 22)'LT Lz — 22), (2.2)

where L = diag{ly, b, - ,1,}.
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Assumption 3: The neuron activation functions f(-) can be divided into two parts as follows:

f@ = Ay +if'x, y),

where z = x + iy, i shows the imaginary unit, and the real imaginary parts check the below conditions:

af o
1) The partial derivatives 8_f’ 8_f exist and are continuous.

X oy
2) There exist positive constant numbers y{*, y&, viX, yi! such that
R R
e O
= 1) —= k
0x ay
1 !
dx ~ K7 gy Tk

Thus, one can obtain that for any x;, x,, y;, y; € R,

1R Ger, y1) = £, vl < v 1xn = xal + v yr = yal,
LG, y0) = fi G, vl < ¥l = xal + v v = yal,

forallk=1, 2,---, n.
Remark 1: As we know, in many literatures [29-31], after the separation of the activation

0 0
functions into real-imaginary type, (9_f and 6‘_f are still supposed to exist and be continuous and
X y

limited. Via these conditions, we can point that they checked the same inequalities given in
hypothesis 3 by considering the mean value theorem for multivariable functions. Here, we delete
these constraints of the partial derivatives and make the hypothesis into an appropriate one that
imaginary and real parts of the activation functions just check the inequalities in hypothesis 3.
Consequently, our study can help a broader class of CVAF.

Remark 2: By applying the modulus of a complex number to some simple inequalities, it is worth
mentioning that hypothesis 2 is equivalent to hypothesis 3. Therefore, for writing convenience, we will
assume that activation functions satisfy hypothesis 2 to study our main results.

Assumption 4: The neuron activation function f;(-) may be divided into two parts according to the
complex number z as follows

fi@) = fERe() + if{(Im(z))
where f;(-), fl() : R > R, then forany k = 1, 2,---, n, there exist constants lvf, i{f, IZ lz such that
o SRk - R o, flk) - flk)
<t e A LA (2.3)

K1 — Kz K1 — Kz

where fkR(O) =0, fk’(O) =0, ki, kK €ER, K| # Ky.
For presentation convenience, we denote

IR = diag{},--- I}, [F = diag{l¥,--- ,I}}, L' = diag{l},--- I},

IR+ IR
2 b

L' = diag{ll,--- I}, L, = LRI, L, = L', L; =
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L+

4 = ) . El = diag{Ll, Lz}, zz = diag{Lg, L4}

Remark 3: In [23-25], hypotheses 3 and 4 are given on the activation functions which separate
between the real and imaginary parts. Moreover, we can even simply say that hypothesis 3 is quite
strict and that it is a special case of hypothesis 2. This fact has already been mentioned in [26] and
[27]. In addition, hypothesis 4 is also a strong constraint. For instance, if the activation functions
fi(z) (k =1, 2,---, n) checked hypothesis 4, we have:

1) = fR )l < Blxy = xal, 1FL ) = FL )l < Blyy — vl

where z; = x| +iy1, 20 = X + iyp, If = max{llvfl, Iifl}, and [] = max{llvil, IZII}, then one can have that

I(FECe) + i) = (R (x) + ifl ()]
I8 Ge) = (Rl + 1A o) = L)

Bx; = x| + Llyy = yal

VIO + @)z = zal.

Thus, the activation function fi(z) (k = 1, 2,---, n) satisfies the Lipschitz condition of hypothesis
2. Therefore, hypotheses 3 and 4 imply hypothesis 2, that is, the condition of hypothesis 2 is a special
case of hypotheses 3 and 4.

Remark 4: Indeed, when the activation function is given as follows: fi(z) = ff(x, y) + if{(x, y)
includes fi(z) = fkR(Re(z)) + 1 fkl (Im(z)) as a special case. Therefore, in the following section, we
will indicate that f;(z) is of the type of distinct real-imaginary activation functions. Let z(f) = x(¢) +
iy(t), z(t—1(1) = 2°(1), x(t~7(2)) = x"(2), y(t = 7(1)) = Y (1), x(t = h(t)) = x"(t), y(t = h(1)) = y"(1), B =
B*+iB!, C = C*+iC', f(z(1)) = f*(x(0), y@O)+if'(x(2), (1)), f(z7 (1)) = fRx7 (@), y () +if' (x7 (1), y (1)),
w(t) = WR(1) + iw!(f), and u(f) = u®(¢) + iu'(t), then model (1.1) can be divided into imaginary and real
parts as the following form

|fx(z1) = fi(z2)l

IA A

IA

) = —Ax(t) + BYfA(x(0), y(©) — B' f1(x(0), y(1)) + C*fR(x7(), y7(®)

= CfIT (@), y' () + DR (D) = D(1) + (),

(6 = —Ay@®) + B'ff(x, y)®) + B f(x(1), y(©) + C fRx7(@), y(1)
(2.4)
+ CRfIGT(), y7 (1) + DR (1) + D' (1) + o' (1),
w'(®) = Kix(®) + K3 (x(0), y(®) — K3 f1(x(@®), y(1)),

u'(t) = K@)+ K fR(x(@), y(0) + KX f1(x(2), (1)),

The initial condition of (2.4) is given by:

{ x(s) = ¢®(s), se[-p, 0],
y(s) = ¢'(s), se[-p, 0],
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where ¢%(s), ¢!(s) € C([-p, 0],R").

x5 ma  (FRE D s (R (@R o [A O
LetH— (y)’f(e) - (f’(x,y))’f(g) - (f](x‘r,y‘r))’w_ (wl)’A - (O A)a

_ Bt —B i ck -C! _ D —D!
R Nt I vy |

A Ky 0\ - K¥ -K]
()K(o ki) BTk k)

Model (2.4) can be rewritten as:

{ 0(t) = —A6(t) + BF(O(1)) + CF(O° (1)) + DO (1) + @(1), 2.5)
a(t) = Ki6(1) + KL f(0(1)), '
with
H(S) = ¢(S), s € [_p’ O]’
R
" (s) 2
h = € C([-p, 0], R™).
waww(ww)(w] )
The norm is defined as follows: For every ¢(-) € C([—p, 0],R?™),
llgll; = max {ligll, llg'll} = max{ sup (@), sup I (s)I}.
s€[-p,0] ¢€[-p,0]
It is clear from (2.3) that:
I; < Jilk1) — fi(ko) < I, (2.6)
K1 — K2
- (I* o) ., (IF 0
where, L —( 0 I:I)’ L —( 0 ﬁ’)'
Assumption 5: Given a positive value b¥, b’, then w®(r), w!(f) checks
T Ty
(WO O ()dt < -, (W' (D' )dt <b', T, 20, b® >0, b’ >0,
0 . ) 0
= f o' ((H)dt < b, (2.7)
0

R
whereB:( Z, )
Definition 1 (FTB): For a known constant 77 > 0, system (1.1) is FTB with regard to

(1, G, T, L, b), and @(*) checked (2.7) if:
sup {07 (to)LO(ty), 6" (t)LO(ty)y < ¢ = 60" (OLOGF) < &, for t € [0, T;], where

to€[-7,0]

~ C11 - 21 _ ' .
Cl:(c )’62:(0 , 0<cir <ca, 0<cpp <cp, L> 018 amatrix.
12 22

Definition 2(FTP): For a known constant 7; > 0, system (1.1) is said to be FTP, with regard to
(¢1, ¢, Ty, L, b), if the beelow conditions are checked:
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(i) Model (1.1) is FTB with regard to (¢, ¢,, T;, L, D).
(i1) For a known constant v > 0, and since the zero initial condition, the below relation is true:

T, Ty
2 f i’ (Ha(H)dt > —y f o' (Ha(tdt,
0 0

when @(-) checked (2.7).

Lemma 1 [28]: For a symmetric matrix ¢ = 97 > 0, scalars e; > e, > 0, such that the integrations
below are well defined. We have

f—en T 1—e)
—(er — ) f 67 (5)96(s)ds < ( f e(s)ds) ( f e(s)ds)
R B ([, [, soasas)of [~ [
()PO(uw)duds < — H(Lt)duds H(M)duds
(el - ez) T T
B [ f f 6" (V)F(v)dvduds < —( I f f 0(v)dvdudAds)' 6
—e) 0 !
X(f ff 0(v)dvdudAds). (2.8)

Lemma 2: For a symmetric matrix ©# = 97 > 0, scalars e, > e, > 0, such that the integrations
below are well defined. We have

@ _62) f f f f 8" ("I0(v)dvdudids < —( f f f f 0(v)dvdudads)" 9
X( f f f f 0(v)dvdudds). (2.9)
—ey K A t+u

Proof: The proof of Lemma 2 is inspired by the proof of Lemma 2 in [28].
For any symmetric matrix ¢ = ¢ > 0, we have

67 (vy96(v) 67 (v)
o) 9! ]Z 0,

then after integration of it from ¢ + u to ¢, from A to 0, from s to 0, and from —e; to —e; in turn, we can

obtain
IT;, le)
>0,
(Hsz I,
where

=
I

—e) 0 0 !
f f f f 6" (v)90(v)dvdudads,
—ey s A t+u
—en 0 0 t
I, = f fff 0" (v)dvdudds,
—ey K A t+u
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I,

—e) 0 0 !
f f f f 9 'dvdudads
—eq s A t+u

—en 0 0
f f f ~ud ' dudAds
—ey K A

—e) 0 u2

—e) s

—e2 /13
:j: [gﬂ‘l]gds

el
st et — et
—[— M—l —er _ 1 219—1.
l 24 I 24

According to Schur complement, [16] is equivalent to the below condition:
Iy > 0, Iy — HpIL, 11, > 0. = T > I, 11, I, which is equivalent to inequality (2.9).

This completes the proof.

Lemma 3 [38]: For a given symmetric definite matrix & > 0 and for any differentiable function
L(-) : [e1, e2] = R”, the below inequality holds:

— L (g {(e)
f F($)l(s)ds = ——| L)) | xE@)| e |.
ey 2 1 p% X

2 ‘f _f 0 ) g g _2‘§
where y = f (s, B = x & 0 |[+%]| % & =26 |.
el 0 0 O *x x  4f
Remark 5: In this manuscript, our goal is to know how to determine the sufficient condition to
study the FTB and FTP of the proposed model. So, to get the desired objectives, a processable whole
model (2.5) is first formed by dividing the initial model into imaginary and real parts and founding an
equivalent real-valued model. Second, using the Lyapunov function approach, the design procedure
can be easily performed by checked the LMlIs, so in the next section the expected conditions will be
obtained.

3. Main results
In this section, we will concentrate on the problem of FTB and FTP.

3.1. FTB analysis

In this first part, our goal is to study the FTB in the following system:
0(t) = —A0(t) + BF(O(1)) + CF(67 (1)) + DE"(t) + (1) 3.1

Theorem 1: Suppose that Assumptions 1-5 hold. Let 7, pu, h, h;, and 6 be positive scalars, then
system (3.1) is FTB, with respect to (¢, &, T}, L, b), if there exists symmetric positive definite matrices
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P, Q], Qz, RQ], Ry, R()z, R,, R3, R, R5 R6, T()], T, T3 and diagonal matrices M, > O, M, > O, M3 > 0,
such that the following LMIs hold:

[ 7 LiMs ms ma ms GiD .7 ms 0 i %Ré 5T, LT G
x mp 0 0 0 0 -MIF] ms 0O 0O o 0 0 0
*x x m3z 0 0 0 0 0 ZTr, 0 0 0 0
* kK ma 00 0 o o o Zr 0o 0 o0
* * * *x 155 GoD 15,7 G,C O 0 0 0 0 G,
* * * * *x Mg 0 0 0 0 0 0 0 0
0= * * * * * * 77,7 M3 0 0 0 0 0 0 <0, 32)
* * * * * * * nsg O 0 0 0 0 0
* * * * * * * *x 799 0 0 0 0 0
* * * * * * * * * 71010 0 0 0 0
* * * * * * * * * * 11 0 0 0
* * * * * * * * * * * =T, 0 0
* * * * * * * * * * * * -T3 0
* * * * * * * * * * * * * —ol
el +b(1 — 1) < 834,711, (3.3)
where

M = Rot + Ry —Ry— TRy +7Rs —Re— LR~ 72Ty = T~ T3~ LM, — LiM3~ G, A~ ATGT 6P,
2
M3 =Ry —_7572R4, Mma = Re— HTRQ,
ms=P-L"Q1+L"0, -G, -A"G],
— - = 2 —
M7 = LMy + LyM; + G, B, M = %R4 +_TT01,
M2 =—(1 = Ry — LMy — LiM3, m5 = LM, + M; L3,
2 2

M3 = —Ry— TRy — Ry, Maa = —Re — HTR6,

- 7 74 70 8
Nss5 = R3 + T2R4 + h2]_€6 + TTO] + %Tz + %Tg — G2 - Gg,
ns7 = 0] — Q) + GoB, nge = —(1 — )R, 1177 = Rop + R — My — M3,

M2

nss = —(1 = f)Rox — My — M3, 19 = =Ry, 110,10 = 5-Rs — Rs — Toy,

- _r
Mmin = =5z Re.

Proof: We consider the Lyapunov functional below:

5
V(O®) = > Vi), (3.4)
i=1
where
Vi) = 6" (PO,
0
V00 = 2| Q)= L7s)+ Oa(L's = f(s))ds,
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V3(6(1))

_l_

Va4 (6(1))

Vs(6(1))

+

! !
f 07 (5)Ry10(s)ds + f 07 ()R 0(s)ds
t—7(1) t—1
Tt

FTO(s)Rf(O(5))ds + f fHO)Rf(B())ds,

t—1(t)

t 0 t
f 0" (s)R30(s)ds + T f 0" (s)R40(s)dsdpB
t—h(t) -7 Jt+B

0 t 0 t
T f f 0" ($)Rs0(s)dsdB + h f f 0" (5)Re0(s)d sdp,
-t J+p —h Ji+p
7—.2 0 0 ! . .
5 f f f 0" (5)T10(s)dsdBdy
-T Jy +p
7—.3 0 0 0 t . .
s f f f f 0" ($)T»0(s)dsdBdydA
-T JA y t+3
,7.4 0 0 0 0 t ) )
— f f f f f 0" (5)T560(s)d sdBdydadA.
24 -7 JAa a Jy t+f3

Calculating the time-derivative of V(6(-)) along any trajectory of model (3.1), we obtain

where

Vi((n) =
Va(6(r) =

V3(6() <

Va(o(r)) =

IA

5
V(Ow) = " Vi), (3.5)
i=1

207 (1) PO(1),

2(f(0(1)) — L~60(0)" 010(r) + 2(L*6(r) — f(0(1)))" 020(1),
2f(6(0))" 016(t) - 20()" L™ 016(t) + 26" (1) L* Q,6(1)
2f(6(0)" Q20(n),

6" (D[Ro1 + R116(1) + fT(0()[Roa + R21F(6(1))

(1 = w16 = T(O)Rof(6(1 — 7(1)) — 0" (1 = DR, 0t — T)
(1= wo" (t = T(1))R1 6t — (1)) — f1(6(t — )R F(O(t - 1)),

0T (OR30(1) — (1 = h(1)8" (t = h(D)R30(t — h(1))

0
T f 6" (HR,0(t) — 07 (t + B)RLO(t + B)dp

0
T f 6" (H)Rs0(t) — 67 (¢ + B)Rs6(t + B)dp3

0
h f 0T (DRO(1) — 6" (1 + B)RsO(1 + B)dB

h
0" (OR0(1) — (1 — O™ (t — h(t)R30(t — h(1))

70T (ORO() — T f ] 0" (5)R40(s)ds + 726" (1)Rs0(1)

T

Mathematical Biosciences and Engineering Volume 21, Issue 5, 6097-6122.
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-7 f 0" (5)RsO(s)ds + I*0" (NRO(t) — h f 0" (9)ReO(s)ds.
t t=h

-1

Applying Lemma 3 to the above inequality, we get

o(t) ! o(t)
= f FoRbsds<-| 7D | xmwy| UTD |
o 1 f 6(s)ds 1 f 0(s)ds
where
Ry =Ry 0) [ Rs Ri —2Ry
Er(Ry) = * R, O +T * Ry —-2R4 |,
0 0 O * % 4Ry
' . 2 12
-7 f _eT(s)R4e(s)ds < —[GT(I)(R4+—R4)0(t)+20T(t)(—R4+—R4)0(t—7")
2
+ 29T(t)(——R4) e(s)ds +07(t—T)(Rs + H—R4)9(t —7)
+ 29T(t—‘?)(——_R4) f 0(s)ds + ( f 9T(s)ds)_—R4 f H(S)ds].
2T -7 -7 Tz -7
Similary,

2 2

—h f 0" (5)Rel(s)ds < —[HT(t)(R6 + HTR6)6’(I) + 260" (1)(—Re + %Ré)e(; —h)
t—h

2 ! 2
207 (1)(- H—_R(,) 0(s)ds + 07 (t — h)(Rg + H—R(,)G(t —h)
2h o 4

—+

+

20T(t—71)(—n—_2R6) f t 0(s)ds
2h t—h

! HZ A
L : GT(s)ds(ﬁR@ ft_ i H(S)ds],

-7 f 0T (5)Rs0(s)ds < —( f _HT(s)ds)TR5( f 6(s)ds).

-7

+

and by applying Lemma 1,

Vs(6(1) —9 (t)TmH(t)—— f f 0" ()To16(s)dsdy
-T JIi+y

+ %GT(I)TQH(I)—— f f f 0" ($)T»0(s)dsdydA

+ %HT(t) 39(0—— f f f f 0" (5)T50(s)dsdydadA.
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Applying Lemma 1 and 3 to the above inequality, we get

2 .
A = —— f f 0" (5)To10(s)dsdy
~( f f 07 (5)ds)Ton f f B(s)dsdy)

= —[7(r) - f 07 (5)ds|T,[T6(¢) — f 0(s)ds]

A

IA

= P07 (1T 6(t) + 276" ()T, f 0(s)ds — ( f 0" (5)ds)T( f 0(s)ds).

A, = fff HT(s)TZH(s)dsdyd/l<(f ff 0" (s)dsdydA)
X Tz(fff 0(s)dsdydl)
,7.2 o H—)(l) t 7—_2 0 t
= —[=60"() - f f 6" (5)dsdA)T,[—=6(t) — f f 6(s)dsd )
2 7 Jt+1 2 T Jt+d

7—.4 7—.2 0 1
=~ 0" (OT260) + 26" ((5 T) f f 6(s)dsdA
-7 Jt+41

0 t 0 t
- ( f f 6" (5)dsdA)T( f f (s)dsdA).
T Jt+4d -7 Jt+1

Ay = —— f f f f 0" (5)T50(s)dsdydad

f f f f HT(s)dsdydad/l T3 f f f f H(S)dsdydad/l)
t+y

—eT(r)— f f f GT(s)dsdozd/l]T3[—9(t)— f f f 0(s)dsdad ]

:——QT(t)T39(t)+20T(t)( T3) f f f e(s)dsdacm

_ f f f 0" (s)dsdadA T f f f 0(s)dsdada) (3.6)
-TJA t+a -TJAa t+a

For any py; > 0, oo >0, p3x >0, k=1, 2,--- ,n, it follows from (2.3) that

Az

IA

[Fe(0u(0) — L (D] pia Ly 0:(0) — fil6:(£))] = O,

LBt = 7(1))) = Li 64t = ()] pou L 02 = 7(2)) = i@z = T(1)))] = 0,
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[Fc(6:(®)) — Fu(6u(t — (1)) = Li (6:(2) — Okt — 7)) o3[ L (0i (1) — 6t — 7(1))) — (fi(Br(D))
+ (Ot — T(D)))] = 0,

which implies

07 (r) )( LM, LM, ) ( 0() )
( ey )\« —m )<\ fewy )2 3-7)
0" (t — (1)) )( -LiM, LM, ) ( ot — (1)) )
(fT(@(t—T(t))) x  -My )\ -y )2 (38)
and
OT([) —£1M3 Z42M3 ZlMg —Z1M3 6(t)
L) * -M; —L,M; Ls f6@)
Te—r0) || « x LMy LM; oi—wy |Z0 G
10 — (1)) * * * —M;, @ — (1))

where M, = diagl{p1, p12,- - pin}, M2 = diag{par, pr,- - - pa}, M3 = diag{psi, p3, - panl-
Moreover, for any matrices G| and G, with appropriate dimensions, it is true that,

2[67 (1)G, + 6" ()G, ][-0(t) — AB(t) + BF(O()) + CF(O(t — 1(1))) + DO(t — h(t)) + ()] = 0

= 20" ()G, 0(t) — 26" (1)G1A6(t) + 20" ()G BF(6(1)) + 26" ()G C f(6(t — 1(1)))

+207 ()G DOt — h(1)) + 20" ()G (1) — 267 (1)G,0(t) — 207 (1) GLAN(1)

1207 ()G,BF(0(1)) + 20" (1)G,C £(O(t — (1)) + 20" (1)G,DO(t — h(1))

20" (1)GL(2). (3.10)

We can say that
V(1)) — SV1(8(1) — 6" (Da(t) < ET(HQE(®r) < 0, (3.11)
where

&t = [QT(t) 't —1() (-7 6'(t—h) 6@ 6'(t-h@®)

frem)  free—@) fee-7) f t_ 0" (s)ds f [_ 0" (s)ds

-7 t—h
b

0 t 0 0 t T
f f 07 (s)dsdA f f f 0" (s)dsdad G)(t)]
-7 Jt+d -7 JAa t+a

and Q is given in (3.2).

V@) < 6Vi(0(0) + 6T (H)a(t)
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< OV(O®) + 6" (Ha(t) (3.12)
Multiplying by e™®, we can obtain
eV (O(1) — 6e "V (0(1)) < Se™ " (Dw(1),

%(e—&vw(t))) < 8¢ (a(r). (3.13)

By integrating (3.13] between O to ¢, such as ¢ € [0, T,], we can write

e V(6(1)) — V(x(0)) < § f 5ol (s)(s)ds,
0

!
V(6()) < € [V(6(0)) + f e ST (5)w(s)ds]. (3.14)
0
So,
9(0) _ _ _ _
V(6(0)) = 6" (0)PY(0) + 2 Q1(f(s) — L™ s) + Q2(L"s — f(s5))ds
0
0 0 0 B
+ f 07 (5)Ry10(s)ds + f 0T ()R 0(s)ds + f FLO(s)R,F(O(s5))ds
~1(t) -7 -7
0 _ 0 ) . 0 t . .
+ FLO(s)Rpf(O(s))ds + f 0" ($)R30(s)ds + T f f 0" ($)R40(s)dsd
-7(1) —h(t) -TJp
0 0 _ 0 0 ) )
+7 f f 0" (s)Rs0(s)dsdf + h f f 0" (s)Re0(s)dsdpB
-7 ~h
7—.2 0 0
+5 f f f 0" ($)T10(s)dsdBdy + — f f f f 0" ($)T»0(s)dsdBdydA
-7 b%
7—.4 0 0 0 0 0 ) )
+—f f f f f 0" (5)T50(s)dsdBdydadA.
24 -TJA a Y B
Letting
P= L_%Pl_f%, = I:_%le_%, 0, = Z_%Qﬂ:_%, Ry = Z_%le_f%,
R\l = Z‘_%Rli_%, RAZ = L_%Rozl_/_%, R\z = I:_%Rzi_%, R\g, = Zl_%R3Z4_%,
R\4 = Z;%R4ZJ_%, A5 = ZJ_%R5Z4_%, Iéﬁ = Z_%R6l_4_%, T()] = ZJ_%T()ll_J_%,
Az = Z‘_%Tzl_,_% T3 = E_%T3L" A = min(p)’ Ay = /lmax(p),
/13 = de(Ql) /14 max(QZ)» /15 = max(ﬁOI)a /16 = ﬂmax(ﬁl)a
27 = AaxR2), g = A (R2), A9 = A (R3), 10 = Aman(Ry),
A1 = Amax(Rs), 212 = A (Re), A3 = Aman(To1), A1a = Aman(T2),
/115 = /lmax(T3)’
we obtain

0(0)
V©O) = 67(0)L2PL76(0) + 2 f L0\ L3 (F(s) — L™s)
0
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0
10,03 (L* s — f(s))ds + f 0" (s)L2 Ry, L26(s)ds
-7(1)

+
~

0

+ f 0L LR, L26(s)ds + f (L2607 (s)L2R,L26(s)ds
0 0

+ (LY20" (s)L2Roy L2 6(5)ds + f 07 (s)L2R;L20(s)ds
0 —h(?)

+ I f 0" ()L R, L2 O(s)dsdB + 7 [ 0 f OHT(s) RsL26(s)d sdp

+ h f ] f 07 (s)L2Rq %(s)dsdﬁ+— f f f 07 (s)L2 T, L26(s)dsdBdy
+ [ f f f 0" (s)L> ToL> 0(s)d sdBdydA

+ f f f f f 07 (s)L2 T5L26(s)dsdBdydadA

< {ﬂmax(P)GT(O)LQ(O) + 2Amax (Q)[max{|L*, L] = L7}]

+ 2/lmax(QA2)[maX{I:+ - |[_4+ I:_lz}] + 7_-[/lmax(R’(\)l) + /lmax(R\l)]
—3
+ 7_'[Hlax{ll_'+, i—|2}][ max(ROZ) + /lmaX(RZ)] + h/lmax(RS) + = 2 max(R\4)

’T-3 A ]jl3 ~ %5 A ’?7 %9
+ _/lrnax Rs) + _/lmax Re¢) + _ﬂmax T)+ — max 15) + —== max
A (B) + 3 A (R) + 15 A (1) + 1 (F2) + s A ()}
X sup {07 (10)LO(10), 0" (t)LO(to)},
to€[-7,0]

V(6(0)) < T,

where

=3
T = [+ L[5 =L7 ]+ [L = L2+ 7[As + Ag] + TL*[A7 + Ag] + hdo + %mlo

]jt3 =5 ,7_7 =9

7 T
A —A —A —A Ays,
+ 11]+2 12+12 13+144 14+2880 15

where L = max{|L*, L |*.
Furthermore, it follows from (3.14) that

V(0(1)) = 0" ()PO() > dpin(P)OT (1)LO() = 1,07 (1) LO(1). (3.15)

Because of inequalities (3.14) and (3.15), we obtain

1,6 (D)PO() < & TV(6(0)) + f 1ol (s)aw(s)ds],
0

OT 1= _ ,(=0Ty)
= 6T(OLA < & [C‘”i(ll ")y (3.16)
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From condition (3.3), we arrive at 87 (£)L6(f) < ¢,. From Definition 1, the model (3.1) is FTB with
regard to (¢, &, T, L, b).

This allowed the proof to be obtained.

Remark 6: In Theorem 1, sufficient conditions are met to verify that the model (3.1) is FTB, then
Theorem 2 will present FTP conditions.

3.2. FTP analysis

In this second part, we study the FTP analysis for the below model

{ 0(t) = —A6(t) + Bf(0(t)) + Cf(6(t — (1)) + DOt — h(t)) + (1), (3.17)

(1) = Ki6(t) + K, f(6(1)).

Theorem 2: Suppose that Assumptions 1-5 hold. Let 7, wu, h, h;, and § be scalars, then system
(3.17) is FTP with keeping the parameter (¢;, >, T}, L, D), if there exists symmetric positive definite
matrices P, Q1, Q», Ro1, R1, Ryp2, R2, R3, R4, Rs, Ty, T>, T3 and diagonal matrices M; > 0, M, > 0,
M35 > 0, and scalar 8 > 0 such that the following LMIs (3.18) hold:

)
o
U

mi LMy ms ma ms GD m7  ms 0 Mo TRy TT, IT; G -BI-K
* mp, O 0 0 0 -MILT ms O 0 0 0 0 0
x % mz 0 0 0 0 0 0 Tr, 0 0 0 0
x & K, ma 00 0 0 0 0 TR 0 0 0
* * * * 155 G.D Ns57 GC 0 0 0 0 0 G,
* * * * * 76,6 0 0 0 0 0 0 0 0
Q — * * * * * * N7 M; 0 0 0 0 0 -K <0 (3 18)
* * *  x * * * ngs 0O 0 0 0 0 0 ’ )
* * * * * * * * 199 0 0 0 0 0
* * * * * * * * * 110,10 0 0 0 0
* * * * * * * * * * ni1,11 0 0 0
* * * * * * * * * * * -7, 0 0
* * * * * * * * * * * * ~T; 0
* * * ok ok * * * * * * * * -BI
cl' + B(l - 6_6T1) < 52/116_5T1,
where the parameters are kept the same as Theorem 3.1.
Proof: Select the Lyapunov function used in the Theorem 3.1. We get
V(6(r) = 6V1(0(1)) = 2" (N@(t) — Bo" (1) < €T (HQE() < 0,
= V(1) - 5V (1) - 2i" (Da(r) - o’ (o) < 0,
where Q is given in (3.18), then
V(@) —6VO@) < 2a" (Do) + pa" (D). (3.19)

Multiplying (3.19) by e, we can get

e V(O(1)) — 6e”'V(O(1)) < 2™’ (H)iw(t) + Be @ (Ha(t),
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dit(e_d’V(G(t))) < 27! (Ha(t) + Be @' (H(t).

Integrating the above inequality between O to T, we can write

T T
e TV(6()) - V(6(0)) < 2 f e'u’ (Ha(t)dt + B f e o’ (Ha(tdt.
0 0

Consider the zero initial condition for 6, = 0 and we have V(6(0)) = 0, then
T Ty
V@) < 2 f e'ul (Ha(t)dt + B f e’ (Ha(rdt,
0 0

Ty
V(@) < M [2a” ()i (t) + B (H)iw(t)]dt. (3.20)
0

Since V(6(t)) > 0, we can say from (3.20) that

T Ty
2 f i’ (Ha(tdt > - f o' (Ha(t)dt. (3.21)
0 0

Finally, we can say that the system (3.17) is FTP. This allowed the proof to be obtained.

Remark 7: It should be emphasized that the LMI approach proposed in this paper is more useful
for reducing the conservatism of the delay system, which may lead to obtain less conservative results.
This proves the advantage of our proposed method.

Remark 8: We note that the optimal value of ¢, depends on the parameter 9, then the optimal
minimum value of ¢, is determined from the minimum value of 8, such that the LMIs matrix solution
remains feasible.

Remark 9: In the majority of published work, the Lyapunov function theory is the most effective
approach to investigating the problem of stability and passivity for divers dynamical models.
Moreover, it can be seen that the existing literature [11-13, 15, 19, 32-35] contains the Lyapunov
function with single, double, tripe, and four integral terms. However, in this article, we give the
Lyapunov—Krasovskii function with five integral terms such as

0 f0 f0 0
% f f f f f 0" (5)T30(s)dsdBdydadA. Different from the published work, this is the first
-TJA @ y t+

time studying the problem of FTP of neutral-type CVNNSs. Via a Lyapunov—Krasovskii function with
triple, four and five integral terms, by utilizing Jensons inequality and the Wirtinger-type inequality
technique, new sufficient conditions for FTB and FTP are taken in terms of LMIs, which is effective
on reducing conservatism.

4. Numerical examples

In this section, two examples are given to show the feasibility of our results.
Example 1: Consider the following model

{ 2(t) = =Az(t) + Bf (z(1)) + C f(z(t — 7(1))) + Dz(t — h(1)) + w(2),

z2(s) = y(s), se[-p, 0], 4.1)

Mathematical Biosciences and Engineering Volume 21, Issue 5, 6097-6122.
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where
A = 19 0 [ 05+0.57 0.03+0.03 C- 1.1+1.1; 0.03+0.03
B 0 12) 7 \-04-04i -01-0.17i ) 1 007+0.07i 0.1+0.1i )’

19 0 0 O 0.5 003 -05 -0.03
D = ( 0.1+0.1i 0 ) Q- 0O 12 0 O B -04 -0.1 04 0.1
0 0.1+0.17 )’ 0 0 19 0V 05 003 05 0.03 [
0 0 0 12 -04 -0.1 -04 -0.1
1.1 0.03 -1.1 -0.03 01 0 -01 O
c o= 0.07 0.1 -0.07 -0.1 D= 0 01 0 -0.1
1.1 003 1.1 0.03 |’ 0.1 0 0.1 0 YV

0.07 0.1 007 0.1 0 01 O 0.1

. 03 O
f](Z) = O.3(|xj~+1|—|Xj—1|)+l0.3(|yj+1|—|yj—1|).ThUS, L] = L2 = 02><2 andL3 = L4 = ( 0 03 )’:>

Ly = Ogxa and Ly = 031, 7(7) = 0.15(1 = sin(20), h(t) = 0.15(1 — cos(21), w(r) = 0.9sin(xr)e” > +

sin(rH)e i, 6 = 1, ¢ = 82 )0.5, b = 82(1) , T} = 15, matrix L = I. Using the Matlab
LMI toolbox to solve the LMIs (3.2) and (3.3) in Theorem 1, we obtained the feasible solutions for an

9.8208
9.4072
1 are shown in Figures 1 and 2, and the time history of (Re(z))” L(Re(z)) and (Im(z))” L(Im(z)) are given
in Figure 3. Hence, it can be concluded that the system (4.1) is FTB.

optimal minimum value of ¢, = ( ) . The trajectories of the solution of system (4.1) in Example

-0.4 -

061 -

08 L 1 I L | I L 1 L |
0 2 4 6 8 10 12 14 16 18 20
Time t

Figure 1. The trajectories of the real parts of the solution of model (4.1) in Example 1 with
4 initial conditions.
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0.8

0 2 4 6 8 10 12 14 16 18 20
Time t

Figure 2. The trajectories of the imaginary parts of the solution of model (4.1) in Example 1
with 4 initial conditions.

0.3

0251V

02\

0.15—

(Re(2))" L(Re(2))

"

)

)

)

0df= b

RPN )

)
]

.

0.05—

. Doy

o e e T e e 0 e e e
1 1 1 1 1 1 1 1 1
0 1 2 3 4 6 7 8 9 10

5
Time t

(Im@)" L (Im(2))

Figure 3. Time history of (Re(z))! L(Re(z)) and (Im(z))" L(Im(z)) of model (4.1) in Example
1 with 4 initial conditions.
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Example 2: Consider the following system :

2(t) = =Az(t) + Bf (z(1)) + Cf(z(t — 7(1))) + Dz(t — h(?)) + w(?),

u(t) = Kyz(t) + Ky f (2(2)), 4.2)
Z(S) = l//(S), s € [_p’ 0]7
where
A= (38 0 o_ 1+i 0.06+0.06i \ . _( 2.2+22i 0.06+0.06i
Lo 24) 7\ -08-08 -02-02i ) " " \0.14+014i 02+02i |’
0.2 +0.2i 0 1.2 1.6 1+i  0.5+0.6i
b= 0 0.2+0.2i)’ Kl‘( 125 1 ) K2‘(o.5—o.4i 1-i )
3. 0 0 0 1 006 -1 =006 22 006 -22 -0.06
.0 24 0 0] 5 |-08-02 08 02 co| 014 02 -014 —02
1o o0 38 0o """ | 1 006 1 006 |”" | 22 006 22 006
0 0 0 24 -0.8 -02 -0.8 -0.2 -0.14 02 014 02
02 0 -02 0 12 -16 0 0 1 05 1 -06
_ 0 02 0 -02]| - -125 1 0 0 _ 05 1 04 1
D =102 0 02 o 'K 0 0 12 —16 | % -1 06 1 05
0 02 0 02 0 0 -125 1 04 -1 05 1
03 0 0.35

fi(z) = 0.6tanh(x;) + i0.7 tanh(y;). Thus, L; = L, = Oy and L3 = (

03 0 0 0
_ - 0 03 0 0
Li=0pgandlo=1 o ' 35
0 0 0 0.35
-0.5¢ —0.3¢; = 0.1 A
0.2e +03e™7,6=1, ¢; = 0.1 0.5, =

0.019
0.053

0 03

), Ly

0.35

|

)=
, T(1) = 0.15(1 = cos(2¢)), h(t) = 0.15(1 —sin(2¢)), w(t) =

), T, = 12, matrix L = I. Using the Matlab

LMI toolbox to solve the LMIs (3.2) and (3.3) in Theorem 2, we obtained the feasible solutions for an

12.4431

optimal minimum value of ¢, = ( 15.0562

)

Table 1. The maximum authorized limits of 7 for different values ¢ = 0.8 and ¢ = 0.9 in

Example 2.
u 0.8 0.9
[32] 3.9212 2.3901
[33] 5.2403 3.5211
[34] 5.6384 3.7718
[35] 6.5411 4.5074
7 of our result 6.9307 52113

From Table 1, The results presented in this manuscript are significantly better than those of [32-35],

which confirms the validity of our work.
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The trajectories of the solution of model (4.2) in Example 4 are given in Figure 4 and Figure 5. The
time history of (Re(z))” L(Re(z)) and (Im(z))! L(Im(z)) are given in Figure 6. Hence, it can be concluded
that the system (4.2) is FTP.

5. Conclusions

This paper is focused on the FTP problem of neutral-type complex-valued NNs in the presence
of time-varying delays. By using Lyapunov functionals, the Wirtinger inequality, and LMIs, new
sufficient conditions are gotten to guarantee the finite-time boundedness and finite-time passivity of
our model. Finally, two examples are presented to prove the effectiveness of our main results. In the
future work, we will take the challenge to study the finite-time dissipativity of stochastic complex NNs
with mixed delays via a non-separation approach and the fixed-time passivity of coupled clifford-valued
NN subject to multiple delayed couplings.

Time t

L 1 I L | I L | I =
0 2 4 6 8 10 12 14 16 18 20
Time t

Figure 4. The trajectories of the real parts of the solution of model (4.2) in Example 2 with
4 initial conditions.
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< e =

05
0.4
03
02f-
N
E o
04
o2l
-03|-
—04- I |
0 2 4
—~ .
N K
£ 1
- b
—01
i
—02p
1
-03L
i
—04f= i i
0 2 4

1 I

10 12
Time t

Figure 5. The trajectories of the imaginary parts of the solution of model (4.2) in Example 2

with 4 initial conditions.

(Re(2))" L(Re(2))

wH

5
Time t

(Im(z))" L (Im(2))

5
Time t

6

9 10

Figure 6. Time history of (Re(z))” L(Re(z)) and (Im(z))" L(Im(z)) of system (4.2) in Example

4 with 4 initial conditions.
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