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Abstract: Due to the complexity of the driving environment and the dynamics of the behavior of
traffic participants, self-driving in dense traffic flow is very challenging. Traditional methods usually
rely on predefined rules, which are difficult to adapt to various driving scenarios. Deep reinforcement
learning (DRL) shows advantages over rule-based methods in complex self-driving environments,
demonstrating the great potential of intelligent decision-making. However, one of the problems of
DRL is the inefficiency of exploration; typically, it requires a lot of trial and error to learn the optimal
policy, which leads to its slow learning rate and makes it difficult for the agent to learn well-performing
decision-making policies in self-driving scenarios. Inspired by the outstanding performance of
supervised learning in classification tasks, we propose a self-driving intelligent control method that
combines human driving experience and adaptive sampling supervised actor-critic algorithm. Unlike
traditional DRL, we modified the learning process of the policy network by combining supervised
learning and DRL and adding human driving experience to the learning samples to better guide the
self-driving vehicle to learn the optimal policy through human driving experience and real-time human
guidance. In addition, in order to make the agent learn more efficiently, we introduced real-time
human guidance in its learning process, and an adaptive balanced sampling method was designed
for improving the sampling performance. We also designed the reward function in detail for different
evaluation indexes such as traffic efficiency, which further guides the agent to learn the self-driving
intelligent control policy in a better way. The experimental results show that the method is able to
control vehicles in complex traffic environments for self-driving tasks and exhibits better performance
than other DRL methods.
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1. Introduction

With the continuous advancement of artificial intelligence and machine learning, self-driving
technology has seen persistent development [1] and has become one of the most popular research
areas. The huge potential of artificial intelligence has prompted the research and development of
self-driving vehicles to become the focus of attention in various countries. Self-driving vehicles aim
to improve passenger safety, enhance driving comfort, optimize vehicle performance [2], and improve
the efficiency of time use. According to statistics, 90% of traffic accident injuries and fatalities are
caused by driver error behavior. In order to reduce traffic accidents, self-driving vehicles should
achieve a sufficient level of intelligence [3, 4] to be able to correctly perceive their surroundings and
make safe decisions in complex traffic scenarios and hazardous road conditions [5]. Urban driving [6]
is considered one of the most challenging self-driving tasks, because urban environments are highly
complex and include dynamic elements such as neighboring vehicles and pedestrians. Given the
starting point and destination, the goal of the vehicle is to successfully complete the route in a finite
amount of time and satisfy predefined conditions, such as no-collision [7].

Reinforcement learning is a machine learning method centered around the concept that an agent
learns to make decisions in order to maximize anticipated rewards through its interactions with the
environment [8]. This interactive process involves the agent observing the state of the environment,
taking actions, and receiving rewards or punishments based on the results of the environment after
the action is performed by the agent. Through much interaction and feedback, the agent gradually
learns to choose the best driving policy to achieve the goal of maximizing long-term rewards [9].
Deep reinforcement learning (DRL) represents a fusion of reinforcement learning and deep learning,
constituting a specialized subfield within the broader realm of machine learning, allowing the agent
to effectively handle high-dimensional state and action spaces [10]. In the field of self-driving, DRL
allows self-driving vehicles to make decisions and control their own behavior in complex and changing
traffic environments. Compared with traditional rule-based methods [11], DRL can adapt to various
urban road scenarios. DRL enables self-driving vehicles to extract knowledge from human driving
experiences, which means that self-driving vehicles can learn the operations of human drivers and
control themselves to complete self-driving tasks in complex traffic environments. These technologies
provide effective methods to deal with self-driving problems [12], which is crucial to ensuring that
self-driving vehicles drive safely in complex traffic situations. The decision-making process of DRL
helps intelligent vehicles implement self-driving.

Although DRL has great application potential in self-driving, it still has some defects and
shortcomings. In the self-driving scenario, the agent interacts with an environment in which both its
state space and action space are continuous; this will lead to a slow learning rate of the agent, difficult
in convergence, and challenges in learning a well-performing decision-making policy. DRL in
self-driving has a large range of action space (e.g., the steering wheel angle of the vehicle is
between −540 and +540). However, most of the time, this angle is within a very small interval (e.g.,
between −10 and +10), and only very rarely is a large angle needed. Consequently, at the beginning
of the learning process, the agent is most likely to choose a very large steering wheel angle (resulting
in a collision or driving off the road), causing the learning process to crash right from the outset.
Inspired by supervised learning [13], in this paper, we propose a new self-driving vehicle control
method that combines human driving experience and adaptive sampling supervised
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actor-critic (ASS-AC). We used supervised learning to pre-train the policy network so that it learns
the driving skills of a human driver to a certain extent, preventing it from making more serious
mistakes at the beginning of reinforcement learning, and then improving and adjusting its own driving
decision-making policy through reinforcement learning. During the reinforcement learning process,
we also used a human driver to guide the agent in real time. At the same time, in order to speed up the
learning rate, we designed an adaptive experience sampling method to enable the ego vehicle to
automatically adjust the proportion of human driving experience in a batch sample at different
learning stages. We also noticed that the reward function plays a key role in the learning process, so
we designed a specificity reward function for the self-driving task and guided the ego vehicle to learn
faster through a more refined reward function design so that it could get a better self-driving control
policy as much as possible. Contributions of this work are listed below:
• A real-time human-guided ASS-AC algorithmic framework is proposed and applied to the control

of autonomous vehicles;
• An adaptive experience sampling method is proposed, which automatically adjusts the proportion

of self-discovery experience of autonomous vehicles and human driving experience sampled in the
samples learned by the model;
• The proposed method is compared with several other DRL methods in CARLA simulator and

shows better performance than others.

2. Related works

Since self-driving was proposed, some researchers have been conducting research on it with great
enthusiasm. In the early days, self-driving decision-making was dominated by the traditional rule-
based method [14], but this relied heavily on manually formulated rules [15]; since it is not possible
to predict all traffic scenarios, this method is not the most reliable. With the development of machine
learning, methods based on learning [16] provided new research directions for self-driving decision-
making. DRL perfectly combines the representation ability of deep learning with the trial-and-error
mechanism of reinforcement learning [17]. It obtains better expected rewards through continuous
training and improvement of the agent’s policy. Self-driving based on DRL can use sensory inputs
such as millimeter-wave radar, lidar, and cameras to directly obtain control actions such as throttle,
brake, and steering wheel angle [18], which greatly reduces the workload and parameter adjustment
costs of each layer of algorithm construction. At the same time, it gets rid of the dependence on
complicated rule formulation work and improves the generalization ability of self-driving [19, 20].

2.1. Rule-based self-driving

Traditional self-driving mainly uses a layered framework that combines perception,
decision-making, and control [21], in which the decision-making and control modules are usually
designed using a rule-based approach. The finite state machine (FSM) is widely used in behavioral
decision-making due to its simplicity and practicality. Jo et al. [22] used FSM to select driving
strategies among predefined rules to meet traffic rules, such as speed limits, traffic light signals, and
the prohibition of lane changes. Okumura et al. [23] combined FSM and support vector
machines (SVM) to construct a behavioral decision maker suitable for the island roundabout scenario.
Guidolini et al. [24] used FSM to solve the decision-making problem in zebra crossing scenarios
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based on input information such as maps, vehicle status, current path, pedestrians on zebra crossings,
and traffic signals.

Methods based on trajectory planning are also used in self-driving vehicles [25]. The vehicle
Odin [26] in the DARPA Challenge uses the Dijkstra algorithm for trajectory planning and completes
self-driving through trajectory tracking control. Kala and Warwick [27] applied it to self-driving
vehicles and simulated a multi-vehicle environment. As an extension of the Dijkstra algorithm, the A*
algorithm uses the heuristic cost estimation method to allocate weights to each node, thereby
improving the planning speed. Li et al. [28] used cubic polynomial curve alternative paths to
construct the state grid and used a cost function to evaluate and select the generated trajectory. The
interpolation curve method uses an interpolation function to calculate a smooth desired trajectory
based on the pre-planned trajectory points and vehicle status set. Commonly used interpolation curves
include polynomial curves, Bezier curves [29], etc. Methods based on numerical optimization achieve
trajectory planning by solving a constrained objective function. The solution process usually also
needs to satisfy vehicle dynamics constraints, safety constraints, comfort constraints, and
other conditions.

2.2. Self-driving based on DRL

Compared with rule-based methods, the representation and generalization abilities of DRL [30]
have shown great potential in self-driving. Sallab et al. [31] first applied DRL to the research of lane
keeping, using the distance between the vehicle and the lane center and the vehicle speed as state
inputs to output steering angle, gear level, and the values of acceleration or braking. In the simulation
environment TORCS, training and testing were conducted. The experiments showed that the Deep
Q-Network (DQN) and the Deep Deterministic Policy Gradient (DDPG) performed equally well in
the straight road scene, but in the curved driveway, the DDPG, which outputs continuous actions,
showed more stable control effect and better comfort. Chae et al. [32] used the method of separating
sparse collision samples and ordinary samples to train the DQN, which improved the safety
performance of the DQN in autonomous obstacle avoidance tasks in zebra crossing scenes.
Zhu et al. [33] used the time to collision (TTC), headway time, and acceleration to characterize safety,
efficiency, and comfort, and combined the above factors with the reward function of the DDPG. The
experimental results showed that the proposed method is consistent with the real vehicle driving
performance recorded in the NGSIM data set, having advantages in both safety and efficiency.
Jaritz et al. [34] used the Asynchronous Advantage Actor-Critic (A3C) algorithm in the rally game to
make the vehicle learn drifting and other actions, and achieved similarly good results when using real
images similar to the training scene as input to the algorithm. Qian et al. [35] inputed the path
features extracted from the path planning space into the Twin Delayed Deep Deterministic (TD3)
algorithm, allowing the actor network to learn better policies from safe and feasible candidate paths,
improving the performance of vehicle motion control and path planning. Ure et al. [36] successfully
introduced DRL to tune parameters in the model predictive control (MPC) controller to obtain better
and more stable performance in path tracking.

DRL requires constant interaction and feedback from the environment, and learning optimal
behavior policy under the guidance of reward functions. Factors such as low sample efficiency and
unreasonable reward function design will affect the learning rate of the agent and even make it
impossible to learn a policy that performs well. In this paper, we combine the DRL algorithm
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actor-critic with supervised learning, introduce human driving experience in the learning samples,
adaptively adjust the sampling ratio of self-exploration experience and human driving experience in
the learning samples at different stages, and at the same time improve its decision-making results by
real-time human guidance during the training process. Reward functions were designed in detail for
different metrics used to compute rewards when the ego vehicle interacts with the environment. We
experimentally validated the proposed method in a simulation environment with adversarial situations
to evaluate its decision-making performance and capability when facing rare and
challenging scenarios [37].

3. Methods

In the reinforcement learning process, the agent observes the environment state st at moment t,
selects and executes the action at according to the policy π(at|st), and after the action at is executed, the
environment transitions to the next state st+1 and returns the corresponding reward rt. In this section,
we will give a detailed description of our proposed method. First are the inputs st and outputs at of
the model; next, the formulation of the reward function is introduced, then the collection and use of
human driving experience and pre-training of the decision-making network using supervised learning,
and finally, the general framework of the proposed method and the reinforcement learning process
are presented.

3.1. Inputs and outputs

In the end-to-end self-driving system, it is crucial to accurately understand environmental
information. In this work, we take the state of the environment and the state of the vehicle itself
together as the state inputs to the model, and the outputs as the driving actions that the self-driving
vehicle should perform, i.e., how to control the accelerator/brake and steering wheel of the vehicle
itself. Specifically, we utilize three different types of data to jointly characterize the input state st:
RGB images captured by the vehicle’s front-facing camera, 16-line LiDAR point cloud data, and the
vehicle’s own state information. With this multimodal input, our system is able to capture more
comprehensive information about the surrounding environment and thus make more accurate driving
decisions. First, RGB images provide rich visual information, which are crucial for understanding
complex traffic scenarios. However, relying only on image data may lead to inaccurate or missing
information under changing lighting or obstructed vision. To overcome this limitation, we
introduce 16-line LiDAR point cloud data. LiDAR provides accurate distance measurements,
generates a 3D representation of the surrounding environment, and is unaffected by lighting
conditions, thus enabling it to work effectively at night or in other low-light conditions. Inputs from
the vehicle’s own information, such as velocity and acceleration, are important for understanding the
current state and predicting future states of the vehicle. This information helps the algorithm to
evaluate the possible consequences of different maneuvers and thus make faster and safer decisions at
high speeds or in emergency situations. Unet and PiontNet are used to process RGB images and point
cloud data, respectively. We assume that the inputs to these data correctly represent information about
the surroundings and that the Unet network correctly semantically segments the RGB images. The
driving actions at output from the model are the actions that the vehicle should perform, specifically
the steering wheel angle values and the throttle or brake values. The inputs (states) and
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outputs (actions) of the model are shown in Figure 1.

(a) Input (state). (b) Output (action).

Figure 1. Input and output representations of the model.

3.2. Reward function

The reward function used to compute the reward rt is one of the most important factors influencing
learning in reinforcement learning. A reasonable reward function can speed up the learning process and
show great performance. We comprehensively considered various related factors in self-driving, fully
considered the driving safety, driving efficiency, and comfort of self-driving vehicles, and designed the
following reward function:

rt = rspeed + rcollision + rmindis + racc + rclose (3.1)

The first item rspeed is used to evaluate the transportation efficiency. We hope that the vehicle can go
fast, but at the same time, faster may not be better, therefore:

rspeed =

{
min(vcar, 10) − 5, vcar ≤ 10
10 − vcar, vcar > 10

(3.2)

vcar represents the driving speed of the vehicle, whose unit is m/s. The reward is negative when the
vehicle is traveling at less than 5 m/s, and a positive reward is only given when the vehicle speed is
greater than 5 m/s. Also for safety, the vehicle speed should not be too fast: If the vehicle speed is
higher than 10 m/s, the reward is also negative. The second and third items rcollision and rmindis represent
whether the vehicle collides and the minimum distance from surrounding vehicles, respectively:

rcollision =

{
1, no-collision
−1000, collision

(3.3)

rmindis = dmin − 5 (3.4)

That is, when the vehicle collides while driving, the value of rcollision is −1000, and this training episode
will end. It is a relatively serious penalty item, which means that the vehicle should avoid collisions
as much as possible. The value of rcollision is 1 when no collision occurs. The rmindis is for the distance
reward, and dmin represents the minimum distance between the center of the ego vehicle and other
surrounding vehicles. When the minimum distance is less than 5 m, a corresponding penalty will be
given, which means that the ego vehicle should try its best to stay away from other vehicles to avoid a
collision. racc is a measure of comfort:

racc = min(0, 2 − |acc|) (3.5)
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The acc is the acceleration of the ego vehicle. When the absolute value of the acceleration of the ego
vehicle is greater than 2 m/s2, a penalty will be received. Otherwise, this value is 0, which means we
hope that the speed of the vehicle should not change too drastically. The last item rclosse is used to
measure whether the self-vehicle is approaching the destination, which can be expressed as:

rclosse = distancet − distancet−1 (3.6)

distancet and distancet−1 represent the distance of the ego vehicle from the destination in meters at
the current and previous moments, respectively; the reward is positive when the ego vehicle is moving
closer to the destination and negative when the vehicle is moving away from the destination. With
this setting, we encourage the ego vehicle to keep moving closer to the target position to complete the
self-driving task.

3.3. Human driving experience and the pre-training of the decision-making network

We noticed that the direct use of AC algorithms in self-driving tasks suffers from inefficient
exploration, and it takes a long time for self-driving vehicles to learn seemingly feasible
decision-making policy, with some even failing to do so. Therefore, we improved it accordingly by
introducing human driving experience to assist the algorithmic model to learn better. Human driving
experience has two purposes. Firstly, it is used for the pre-training of the decision-making network
actor, which is pre-trained using the human driving experience, so as to make it learn some basic
driving skills and to prevent it from committing more serious mistakes in the beginning of the
reinforcement learning, which will lead to the end of this round of training. Secondly, during the
reinforcement learning training phase, which is used to learn and keep up to date with the critic, the
critic is able to learn more quickly which maneuvers are good and which are not by using a
combination of human driving experience. Because human driving experience provides high-quality,
successful action sequences, these action sequences are used as references during the training process
to help the critic more accurately assess the value of actions. By utilizing human driving experience,
the critic can quickly learn the value of effective actions, which in turn guides the actor to more
targeted exploration. The human driving experience is obtained by the human driver controlling the
vehicle in the environment of the simulator, and it is denoted by tuple (st, at, rt, st+1). After completing
the collection of human driving experience, the actor is pre-trained by supervised learning with st as
training data and at as labeling. The input st consists of three parts: RGB images, point cloud data,
and the vehicle’s own information, such as speed. Unet and PiontNet are used to process the RGB
image and point cloud data, respectively, while the vehicle information is represented by
one-dimensional vectors. After extracting the features of the three, they are fused, and the fused
features are used as inputs to the actor and output the control information of the vehicle, such as
steering wheel angle and the value of throttle or brake at, as shown in Figure 2.
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Figure 2. The inputs and outputs of actor.

3.4. ASS-AC framework

Figure 3 shows the structure of the ASS-AC framework. We maintain an actor network and two
critic networks critictarget and criticvalue. We use the fixed critictarget method, that is, we let the critictarget

equalize criticvalue every time a fixed number of learning steps are completed so as to ensure the stability
of the learning. An experience pool D [38] storing experience samples is also maintained for storing
self-exploration experiences of self-driving vehicles and human driving experiences. The actor is
responsible for outputting action at based on the state st, the criticvalue guiding actor to update, and
continuously optimizing its own policy.

Figure 3. ASS-AC framework.

The framework shows the process in which the ego vehicle continuously interacts with the
environment and learns and optimizes its behavior policy π(at|st). The ego vehicle observes the state
of the environment st at moment t, which is represented by three parts: the RGB image captured by
the vehicle’s front camera, the 16-line LiDAR point cloud data, and the vehicle’s own state
information. For the RGB image, we are more concerned about the relative position of obstacles in
the field of view than their color information; therefore, we use Unet to semantically segment the
original image. The purpose of this is to enable key features in the image (such as the locations of the
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surrounding vehicles) to be better extracted while ignoring other useless information. Then, the
semantic segmentation image is subjected to feature extraction, and the point cloud data is subjected
to feature extraction using PointNet network. The vehicle’s own state information includes seven
items: steering wheel angle, accelerator/brake value, vehicle speed, acceleration, steering angle speed,
steering angle acceleration, and distance from the destination, which are represented by
one-dimensional vectors [n1, n2, n3, n4, n5, n6, n7], and then encoded with features. Then, the
features of image, point cloud, and vehicle state are fused, the fused features are used as inputs to the
actor, and the action at is output according to the policy π(at|st). The action at is represented by
vector [at1 , at2]. The value range of each component is −1 to 1. at1 represents the steering wheel angle
of the vehicle: If it is less than 0, it means turning left, while a value greater than 0 means turning
right. at2 indicates throttle and brake: A value lower than 0 means braking, and greater
than 0 means throttle.

In the training phase of the algorithm, in order to better learn the decision-making policy, we
introduce real-time human guidance. When the actor outputs the action at, it does not directly execute
the action. As the ego vehicle interacts with its environment, the human driver also controls the ego
vehicle in real time based on the state st. The human driver’s control action for the vehicle is ah

t , the āt

is obtained by weighting and summing at, ah
t is the final action to be executed, and the weight of the

two is related to the reward value of the previous moment rt−1:

āt =


rt−1

r̄H
× at + (1 −

rt−1

r̄H
) × ah

t ,
rt−1

r̄H
< 0.5

at,
rt−1

r̄H
≥ 0.5

(3.7)

r̄H is the average reward value of human driving experience, i.e., the mean value of all rt in the
collected human driving experience (st, at, rt, st+1).

rt−1

r̄H
has a minimum value of 0 and a maximum

value of 1. If the ego vehicle performs better in the previous moment, we believe that its decision can
bring better rewards, and the weight of its output at will be increased accordingly in the next moment.
When its performance is poor in the previous moment, we consider that its decision cannot bring
better rewards, and the next moment will need real-time guidance of the human driver to improve its
policy, which reduces the weight of at and increases the weight of ah

t . When āt is executed, the
environment transitions to the next state st+1 and returns the reward rt. After the ego vehicle
completes one interaction with the environment, one self-exploratory experience (st, āt, rt, st+1) will be
stored in the experience pool D just like the human driving experience (st, at, rt, st+1) and will be used
for learning and update the parameters of the criticvalue network. For the sampling process, we
designed a new adaptive sampling method for automatically adjusting the proportion of
self-exploration experience and human driving experience in each batch of learning samples. The
sampling learning is performed in the training phase by the following equation:

B = (p ∼ DH) ∪ (1 − p ∼ DH) (3.8)

B is a batch of learning samples, p ∈ [0, 1] represents the proportion of human driving experience DE

in this batch of learning samples, and DH is the self-exploration experience of the ego vehicle, where:

p = 1 −
rE

rH
(3.9)
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rt is the current reward of the ego vehicle when exploring, the minimum value of p is 0, and the
maximum value is 1. Therefore, when the average reward of the ego vehicle is low, it will increase the
sampling proportion of human driving experience and learn with high-quality human driving
experience; when the average reward of the ego vehicle has some improvement, the percentage of
self-exploration experience in its learning samples will be increased accordingly. This means that ego
vehicles are able to intelligently decide when to use self-exploration experiences and when to rely on
human driving experiences, thus improving the learning efficiency.

3.5. Loss function

In order to overcome the problem of inefficient exploration and to prevent the model from making
more serious mistakes at the beginning of reinforcement learning that could lead to the end of
training, we pre-trained the actor network using collected human driving experiences and by means
of supervised learning. The actor performs parameter updates through the following loss function in
the pre-training stage:

Lactor,pre(θ) =
1
N

N∑
i=1

|aθi − ai|
2 (3.10)

i = 1, 2, θ is the parameter of acto, aθi is the corresponding component of the action output by the
actor, and ai represents the corresponding component of the action in human driving experience.

As shown in Figure 1, criticvalue is used to evaluate the quality of the driving action generated by the
actor, that is, to evaluate the behavioral policy of the actor. It should guide the actor to select actions
that can bring more rewards. Its loss function is as follows:

Lcriticvalue(ϕ) = E(st ,at(āt),rt ,st+1)[(Q(st, at(āt); ϕ) − (rt + γQ(st+1, µ(st+1; θ′); ϕ′)))2] (3.11)

at(āt) denotes that the data used for criticvalue learning consists of human driving
experience (st, at, rt, st+1) and ego vehicle exploratory experience (st, āt, rt, st+1), ϕ and ϕ′ are the
parameters of criticvalue and critictarget parameters, rt is the current reward, µ(st+1; θ′) is the action in
the next state st+1 determined by actor, and Q(st+1, µ(st+1; θ′); ϕ′) is the estimation of value of
critictarget for the next state and the next action. Q(st, at(āt); ϕ) is the value estimate of criticvalue for
the current state and action.

In the exploration stage, we hope that the actor can generate actions with greater rewards; its loss
function is usually defined by using critictarget to evaluate the value of the action under the current
policy. In the case of deterministic policy, the loss function of actor can be designed to maximize the
estimate of the value of the actions generated by the current actor. Thus, the loss function of actor can
be the negative of the value of the action generated by the actor as evaluated by the critictarget, so:

Lactor(θ) = −E[Q(st, µ(st; θ); ϕ)] (3.12)

µ(st; θ) is the action at under the actornetwork determining state st, and Q(st, µ(st; θ); ϕ) is the value of
the action under the given state and action. In order to better illustrate the proposed methodology, the
ASS-AC pseudocode is as described in Algorithm 1.
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Algorithm 1 Adaptive sampling supervised actor-critic

Initialize the experience pool D, collect human driving experience and action labels, and
store them in the experience pool D, initialize the actor θ .
Using supervised learning to pre-train the actor θ.
Initialize criticvalue ϕ , critictarget ϕ

′, discount factor γ.
for episodes

initial the ego-vehicle at starting point
while true:

Observation state st and generation at according to πθ(.|st)
Compute āt using Eq (3.7)
Execute āt in the environment
Return the next state st+1 and reward rt

if st+1 is the terminal
break

Store transition (st, at, rt, st+1) in the experience pool D

Sample a batch data B from D using Eq (3.8)
Update the criticvalue ϕ using Eq (3.11)
Update the actor θ using Eq (3.12)
If have study fixed steps

update critictarget ϕ
′ using ϕ′ = ϕ

Save the best actor θ

End for

4. Experiment

4.1. Simulation setting

We experimentally validated our proposed method in the CARLA simulator and chose Town06 as
our training scenario. We randomly initialized 40 traffic participants in the scene, including vehicles,
pedestrians, etc.; the scene is shown in Figure 4(a). In the scenario, we randomly selected two far apart
locations as the start and destination of the ego vehicle (the distance between the start location and
the destination is the same each time we initialize), and initialize the ego vehicle in the start location;
the ego vehicle needs to complete the decision-making according to our proposed method to control
itself from the start location to the destination, to complete the self-driving task. The red vehicle in
Figure 4(b) is the ego vehicle. The train episode ends when one of the following situations occurs: 1)
The ego vehicle collides with another vehicle or runs off the road; 2) the ego vehicle completes the task
and reaches the end point; or 3) the simulation step length is greater than 2000 steps.

In order to make our method effective in dealing with adversarial scenarios, during each training
session, we set up unexpected situations, these make it challenging for the self-driving vehicle to
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verify the safety of the must-go road between the starting point and the destination with a probability
of 25%. Specifically, as shown in Figure 5, we considered the following three adversarial scenarios: 1)
pedestrians rushing out from the blind spot of the self-driving vehicle’s field of vision; 2) a vehicle in
front suddenly changing lanes and occupying the ego vehicle lane; and 3) traffic congestion situations.
We randomly choose an adversarial situation with 25% probability so that it occurs on the mandatory
route between the starting point and the destination in order to make the ego vehicle learn how to deal
with these rare and challenging contingencies.

(a) Town06 in CARLA. (b) The red ego vehicle.

Figure 4. Training environment of CARLA.

Figure 5. Adversarial scenarios.

4.2. Training settings

We trained the ASS-AC network in 50000 episodes in the simulation environment, with a maximum
step size of 2000 for each episode. The neural network was trained on two NVIDIA RTX 3080Ti GPU
using Pytorch and Adam optimizers with a learning rate of 1 × 10−4, with a total of more than 150
million training parameters. After each training episode, the actor with the highest reward is saved for
subsequent testing. For the ablation experiments, we used the AC algorithm as a baseline model and
verified the effect of different components on the algorithm’s performance improvement, i.e., whether
or not to pre-train the actor network, whether or not to allow a human driver to provide real-time
guidance, whether or not to incorporate the human driving experience in the experience pool, and the
performance of including all three components at the same time. In order to conduct a comprehensive
evaluation of the performance of the proposed method, we compared it with other existing methods,
including DQN, Policy Gradient (PG), Proximal Policy Optimization(PPO), A3C, and DDPG.
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4.3. Experiment results

For the ablation experiments, after completing the training, we saved the set of parameters with the
highest average reward for each. Table 1 shows the detailed results of the ablation tests. The actor-
critic algorithm is a reinforcement learning method that combines the learning of policies and value
functions to achieve faster learning and better policy performance. This approach has been shown
to be effective in numerous domains, but its direct application in complex self-driving environments
may face challenges such as low sample efficiency and difficulty in learning strategies that meet safety
requirements. The pre-training can help the model to have a more reasonable strategy than random in
the initial stage, thus accelerating the subsequent learning process. In the reinforcement learning stage,
adding human driving experience to the learning process in the form of samples and dynamically
adjusting the ratio of human experience and self-exploration samples can further improve the learning
efficiency and safety of the strategy. This approach utilizes human intuition and experience to reduce
dangerous situations that the model may encounter during the exploration process, while accelerating
the learning of effective strategies. By incorporating real-time human guidance in the execution phase,
i.e., weighted summation of the decision network’s output and the human driver’s actions, the model’s
behavior can be corrected in real time to ensure safety, while also providing immediate feedback to the
model, which helps it adapt to complex driving environments and unknown situations more quickly.
Ultimately, the combination of these three components was used to achieve the greatest performance
gain, demonstrating that human knowledge and experience can be a significant aid to reinforcement
learning models for complex tasks, especially in the field of autonomous driving where a high degree of
safety and reliability is required. This integrated approach takes full advantage of human intuition and
experience to quickly reach a better starting point through pre-training, accelerates the learning process
by dynamically incorporating human experience samples, and corrects model deficiencies through real-
time coaching, demonstrating an effective collaborative human-machine learning framework.

Table 1. Ablation test results in CARLA Town06.

Method SR(%) RCR(%) CR(%) AR AS
AC(baseline) 65 73.53 18 2074.5 1803
AC+Pre-train actor 89 79.76 14 2407.8 1678
AC+Human driving experience 73 78.50 15 2583.5 1698
AC+ Real-time human guidance 88 87.33 7 3138.6 1380
ASS-AC(Ours) 93 95.72 2 3345.3 1226

SR represents the success rate, meaning that the ego vehicle successfully reaches the destination,
RCR represents the average route completion rate. AR is the average reward (the higher the better).
CR is the collision rate, and AS represents the average steps length of the ego vehicle successfully
driving from the start point to the destination (the lower the better).

Figure 6 shows the comparison of training results between our method and other methods. From
the figure, we can find that the proposed method has better performance and faster convergence speed.
The reward of the proposed method increases steadily with the increase in training episodes, and
begins to converge at about 30,000 episodes. The biggest advantage of the proposed method is that it
combines the advantages of supervised learning and reinforcement learning, which quickly improves
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the starting performance of the model through the pre-training of human driving experience, and the
dynamic incorporation of human driving experience and real-time guidance further improves the
adaptability and safety of the model in complex situations. This method is able to react more flexibly
and accurately when dealing with unexpected situations because it has incorporated a large amount of
human intuition and judgment during model training. DQN is able to deal with high-dimensional
observation spaces by combining deep learning and Q-learning, but may not be as flexible as
policy-based approaches when dealing with continuous action spaces and tasks that require long-term
policy considerations. In complex scenarios of autonomous driving, especially in unexpected
situations that require fast reactions, DQN may struggle to make optimal decisions due to their
over-reliance on the estimation of value functions. The PG method directly optimizes the policy
function, which can better handle the continuous action space and is suitable for application scenarios
such as autonomous driving. However, PG methods usually face higher variance and slower
convergence, and may not be able to learn adaptive policies quickly in unexpected situations. A3C is
able to accelerate the learning process and reduce the training time by executing and learning in
parallel with multiple worker threads. It combines the advantages of PG and value function to
improve stability and efficiency. Nevertheless, in complex autonomous driving scenarios, A3C may
still face challenges from high uncertainty and dynamic changes in the environment. PPO improves
the stability of learning by optimizing a specific objective function to avoid making excessive paces
when updating the policy. This approach performs well in many complex environments. However, it
may not be as flexible as methods that combine human intuition and real-time feedback in very
dynamic situations such as contingency processing. DDPG is an algorithm that combines PG and
Q-learning for continuous action spaces and improves the stability of learning through the use of an
objective Q-network and a policy network. Although DDPG performs well in many tasks, it may not
perform as well as methods that incorporate human experience when dealing with complex, highly
uncertain environments. The proposed method achieves the best performance in challenging test
scenarios of autonomous driving that include pedestrians rushing out of blind spots in the field of
view, sudden lane changes of the vehicle in front, and traffic congestion situations. This is mainly
attributed to the method’s ability to leverage human experience and intuition to provide immediate
adaptation and decision correction, thus maintaining high safety and effectiveness in complex and
unexpected driving situations. In contrast, other methods, while having their own advantages, may
lack sufficient flexibility and adaptability when dealing with such highly dynamic and
uncertain environments.

Figure 6. Training results in CARLA Town06.
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We tested our method and others 100 times in the training scenario Town06; the test results are
shown in Table 2. Although our proposed method does not perform the best in RCR, its overall
performance is better than other methods. We also tested the trained algorithm in new scenarios (as
shown in Figure 7): the new test scenarios are Town10, a complex urban traffic scenario, and Town04.

Table 2. Test results in CARLA Town06.

Method SR(%) RCR(%) CR(%) AR AS
DQN 65 74.53 16 2133.6 1684
PG 57 77.80 22 1805.4 1770
A3C 80 86.35 13 2735.5 1642
PPO 87 93.68 9 3044.9 1479
DDPG 90 96.03 5 3145.0 1337
ASS-AC(Ours) 93 95.72 2 3345.3 1226

(a) Town10. (b) Town04.

Figure 7. New test scenarios.

As we can see from Tables 3 and 4, in the urban environment of Town10, although the performance
of our method somewhat decreases, such decrease is not significant, opposed to the performance of
the other methods that decreases significantly. The main reason for this decrease in performance is the
higher complexity of these scenarios compared with the training scenarios. The difference between
Town04 and the training scenario Town06 is not as large as the difference between Town10 and the
Town06, so the degradation in performance in Town04 is not as obvious as the degradation in Town10.
This shows that our proposed method can also show relatively good performance in new scenarios.

Table 3. Test results in CARLA Town10.

Method SR(%) RCR(%) CR(%) AR AS
DQN 49 65.63 19 1863.5 1780
PG 50 68.53 23 1633.8 1875
A3C 73 78.66 14 2452.6 1744
PPO 81 85.28 10 2633.0 1680
DDPG 88 88.68 7 3055.3 1456
ASS-AC(Ours) 90 93.23 4 3205.1 1305
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Table 4. Test results in CARLA Town04.

Method SR(%) RCR(%) CR(%) AR AS
DQN 61 70.48 14 2058.9 1659
PG 55 79.55 22 1904.3 1780
A3C 73 85.64 15 2677.8 1637
PPO 85 92.48 8 2770.5 1503
DDPG 89 89.59 6 3088.4 1409
ASS-AC(Ours) 92 92.04 2 3063.8 1238

5. Conclusions

In this paper, we proposed an improved actor-critic ASS-AC algorithm and applied it to
self-driving vehicle control. In order to reduce the agent’s ineffective exploration and make its driving
behavior more humane-like, we used supervised learning methods to pre-train the policy network
actornetwork, allowing the vehicle to learn some human driving skills. At the same time, in order to
improve the accuracy of decision-making during the learning process, we weighted and summed the
output of human and ego vehicle decision-making results by introducing real-time human guidance.
We designed an adaptive experience sampling method to enable the agent to automatically adjust the
proportion of human driving experience in a batch sample; the actor network is updated by combining
human driving experience and maximizing rewards to accelerate the learning rate. We verified our
proposed method in a simulation environment with dense traffic flow and compared it with other
methods. The results show that our proposed method can effectively control the self-driving vehicle to
complete self-driving tasks in dense traffic flow and perform well, and showing better performance
than other methods.

As far as real-time computational efficiency is concerned, our method’s computational
requirements on a device with two NVIDIA RTX 3080TIi GPUs is 20 25Hz, which basically meets
the driving requirements when the self-vehicle is traveling at a low speed (less than 30 km/h).
However, when with the acceleration of the vehicle’s traveling speed, the algorithm’s performance
will be degraded. Also, there are still some challenges when implementing and deploying the method
in real scenarios; the real world is more complex than the simulation environment and there are more
emergent situations, which may bring new challenges to the algorithm performance [39]. Finally,
while self-driving systems can better adapt to unknown environments or rare events through real-time
human guidance, and human experience can help the system to cross situations that are not covered
by insufficient data or algorithms, implementing real-time human guidance in a wide range of
autonomous driving applications, especially when deployed at scale, requires a large number of
human resources to provide guidance, which is potentially costly in terms of labor. Also, the degree
of reliance on human decision-making may limit the ability of the self-driving system to learn and
self-optimize, reducing its ability to operate independently in the absence of human guidance. How to
solve these problems and find new solutions will be the focus of subsequent research.
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