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Abstract: This study investigated how permanent charges influence the dynamics of ionic channels.
Using a quasi-one-dimensional classical Poisson–Nernst–Planck (PNP) model, we investigated the
behavior of two distinct ion species—one positively charged and the other negatively charged. The
spatial distribution of permanent charges was characterized by zero values at the channel ends and a
constant charge Q0 within the central region. By treating the classical PNP model as a boundary value
problem (BVP) for a singularly perturbed system, the singular orbit of the BVP depended on Q0 in a
regular way. We therefore explored the solution space in the presence of a small permanent charge,
uncovering a systematic dependence on this parameter. Our analysis employed a rigorous perturbation
approach to reveal higher-order effects originating from the permanent charges. Through this inves-
tigation, we shed light on the intricate interplay among boundary conditions and permanent charges,
providing insights into their impact on the behavior of ionic current, fluxes, and flux ratios. We derived
the quadratic solutions in terms of permanent charge, which were notably more intricate compared to
the linear solutions. Through computational tools, we investigated the impact of these quadratic solu-
tions on fluxes, current-voltage relations, and flux ratios, conducting a thorough analysis of the results.
These novel findings contributed to a deeper comprehension of ionic flow dynamics and hold potential
implications for enhancing the design and optimization of ion channel-based technologies.
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1. Introduction

Ion channels, proteins within cell membranes, are vital for cell communication, signal transforma-
tion, and coordinated activities [1, 2]. They are defined by their shape and permanent charge. These
channels typically resemble cylinders, with amino acid side chains concentrated in a short and narrow
region. Acidic side chains contribute negative charges, while basic side chains add positive charges,
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determining the channel’s permanent charge. Channel structures selectively permit specific ions and
ease their diffusion across cell membranes [3–7].

Permeation and selectivity properties of ion channels are currently derived mainly from experi-
mentally measured current-voltage (I-V) relations [2, 5, 8, 9]. While individual fluxes convey more
detailed information, they are costly and difficult to measure [6, 10]. The I-V relation reflects the
channel structure’s response to ionic fluxes but is influenced by boundary conditions that drive ionic
transport [11, 12]. This multi-scale nature, with various physical parameters, grants the system great
flexibility and diverse behaviors—a hallmark of natural devices [3]. However, this complexity also
poses challenges in extracting meaningful insights from experimental data, especially given the limi-
tations in observing internal dynamics.

The Poisson-Nernst-Planck (PNP) model stands out as one of the most commonly utilized math-
ematical frameworks for studying ion channels [13–21]. This model takes into account the interplay
between structural characteristics and physical parameters, and researchers have extensively examined
it using a geometric singular perturbation (GSP) approach [22,23]. Through the application of this ap-
proach, the PNP model can be simplified into an algebraic system referred to as the governing system.
Analyzing this governing system unveils crucial properties of ion channels, providing valuable insights
for informed design and optimization across various applications [24, 25].

The effects of permanent charge on ionic flows have been investigated by several studies using
the PNP model, with both analytical and numerical methods [10, 26–28]. Liu et al. [10, 27] exam-
ined the flux ratios and ion channel structures via PNP, and analyzed how they influence the fluxes,
boundary concentrations, and electric potentials of the system. Other papers explored the reversal po-
tential and permanent charge under unequal diffusion coefficients, and derived universal properties of
the system [29–33] or numerically studied the permanent charge effects on flux ratios, revealing new
phenomena and qualitative changes [34, 35]. These studies enhance the understanding of the channel
geometry and the role of permanent charge in ion channel dynamics.

Given the complex and multi-scale nature of the problem at hand, a comprehensive understanding
of the interactions between permanent charges and boundary conditions cannot solely rely on analyti-
cal methods, especially across varying magnitudes of permanent charges. Therefore, this study adopts
a combined approach of analytical insights and numerical methods to delve deeper into how perma-
nent charges influence ionic flows in the presence of electric potentials. Leveraging previous analytical
work, particularly from studies such as [16, 36], which investigated flux ratios under different con-
ditions, the focus narrows down to the flux ratio introduced in [27], examining its dependencies on
permanent charges and electric potentials.

The methodology integrates rigorous analysis and numerical simulations to explore the impact of
permanent charges on individual fluxes within fixed-shape open channels. Rigorous analysis uncovers
essential biological properties and classifies distinct behaviors across various physical domains, espe-
cially in limiting or ideal scenarios. Conversely, numerical simulations extend these analytical findings
into realistic parameter ranges, often unveiling additional phenomena. This approach allows a deeper
dive into the intricacies of permanent charge effects, expanding upon previous analyses based on the
PNP framework, which have revealed intriguing phenomena related to small permanent charges [16].

For the numerical simulations, Python along with the Numpy and Matplotlib libraries [37] are
utilized. The computational code used in this study is publicly accessible through the author’s
GitHub repository at https://github.com/Hamid-Mofidi/PNP/tree/main/Q2contribution. This open ac-

Mathematical Biosciences and Engineering Volume 21, Issue 5, 6042–6076.



6044

cess repository encourages collaboration and facilitates knowledge sharing among researchers inter-
ested in this field.

In this manuscript, we revisit the zeroth and first order solutions in permanent charge, as outlined
in [16], to pave the way for higher-order analyses. The new findings and highlights of our studies in
this manuscript are as follows:

(a) We derive analytical expressions for the intricate second order solutions, which are elaborated in
Section 3.2 and form the backbone of our study.

(b) We study the effect of permanent charge and boundary concentrations on fluxes and I-V relations,
estimate error and assess nonlinear effects for fluxes (explained in Section 4).

(c) In Section 5, we explore the higher order impact of permanent charge on flux ratios and analyze
their dependencies on voltages and permanent charges.

In addition, the combination of our analytical (Section 3) and numerical investigations (Sections 4
and 5) shed light on both linear and quadratic solutions, providing novel insights and expanding our un-
derstanding beyond existing frameworks. These results serve as the foundation for further exploration
and analysis in this study.

The paper follows this structure: Section 2 introduces the classical PNP model for ion channels and
establishes a quasi-one-dimensional electro-diffusion model in Section 2.1, considering two types of
ions with different charges and a simple distribution of permanent charge. Section 2.2 transforms the
model into a dimensionless form for simplified analysis. Section 2.3 presents the governing system
for the boundary value problem (BVP). In Section 3, the singular solutions in the presence of small
permanent charge are analyzed, exploring higher-order effects. Sections 3.1 and 3.2 respectively delve
into the zeroth, first, and second order solutions and their implications for system behavior. Notably,
Section 3.2 introduces new analytical results for the second order solutions in Q0. Section 4 provides
computational outcomes for the first and second order solutions in Q0 and numerically investigates
the impact of permanent charge on fluxes and I-V relations, revealing the intricate interplay between
permanent charge, boundary conditions, and channel geometry. Sections 4.1 and 4.2 respectively focus
on the first and second order effects. In Section 5, we study the higher order effects of small positive
permanent charges on flux ratios. Finally, Section 6 concludes the manuscript, summarizing the main
results, discussing implications, and suggesting directions for future research.

2. Classical PNP systems for ion channels: Setup and key results

PNP systems, essential for studying ionic flows, originate from molecular dynamic models [38],
Boltzmann equations [39], and variational principles [40, 41]. Advanced coupling with Navier–Stokes
equations [42–44] and rigorous establishment of the Onsager reciprocal law [45] offer sophisticated
insights, striking a balance between accuracy and analytical/computational challenges, supported by
reviews and model comparisons [46, 47].

Building upon this foundation, we further streamline PNP models, especially for ion channels with
narrow cross-sections relative to lengths, resulting in quasi-one-dimensional models [48]. This re-
duction yields quasi-one-dimensional models [48], with rigorous justification provided in [49]. The
streamlined approach addresses both accuracy and analytical/computational challenges.

This section provides a detailed exposition of our mathematical model for ionic flows, focusing on
the essential setup and key results. Specifically, we explore a quasi-one-dimensional PNP model that
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characterizes ion transport within a confined channel featuring a permanent charge. To ensure clarity
in our subsequent analysis, we introduce notation and assumptions consistently used throughout the
paper. Moreover, we review relevant findings from previous literature, such as [14, 18], serving as
crucial foundations for our contributions outlined in the following sections.

Remark 2.1. The time-dependent PNP model has been discussed in [14]. Equation (2.1) in the fol-
lowing is selected based on two primary reasons: First, the one-dimensional system offers simplicity.
Second, if the one-dimensional limiting system maintains structural stability, the dynamics of the three-
dimensional system mirror those of the one-dimensional counterpart. Verification of structural stability
follows a well-established framework, albeit nontrivial. Therefore, understanding the behavior of the
steady-state in the limiting one-dimensional system serves as a pivotal step in this context.

2.1. A quasi-one-dimensional PNP model

Our analysis is based on a quasi-one-dimensional PNP model first proposed in [48] and, for a special
case, rigorously justified in [49]. For a mixture of n ion species, a quasi-one-dimensional PNP model is

1
A(X)

d
dX

(
εr(X)ε0A(X)

dΦ
dX

)
= −e0

( n∑
s=1

zsCs + Q(X)
)
,

dJk

dX
= 0, −Jk =

1
kBT
Dk(X)A(X)Ck

dµk

dX
, k = 1, 2, · · · , n,

(2.1)

where X ∈ [a0, b0] is the coordinate along the axis of the channel and baths of total length b0−a0, A(X)
is the area of cross-section of the channel over the longitudinal location X, e0 is the elementary charge,
ε0 is the vacuum permittivity, εr(X) is the relative dielectric coefficient, Q(X) is the permanent charge
density, kB is the Boltzmann constant, T is the absolute temperature, Φ is the electric potential, for the
kth ion species, Ck is the concentration, zk is the valence, Dk(X) is the diffusion coefficient, µk is the
electrochemical potential, and Jk is the flux density.

Equipped with the system (2.1), a meaningful boundary condition for ionic flow through ion chan-
nels (see, [14] for reasoning) is, for k = 1, 2, · · · , n,

Φ(a0) = V, Ck(a0) = Lk > 0; Φ(b0) = 0, Ck(b0) = Rk > 0. (2.2)

In relation to typical experimental designs, the positions X = a0 and X = b0 are located in the baths
separated by the channel and are locations for two electrodes that are applied to control or drive the
ionic flow through the ion channel. An important measurement is the I-V (current-voltage) relation
where, for fixed Lk’s and Rk’s, the current I depends on the transmembrane potential (voltage) V by
I =

∑n
s=1 zsJs(V).

Certainly, the relations of individual fluxes Jk with respect to V are more informative, but, mea-
suring them experimentally is much more difficult [50]. Ideally, the experimental designs should not
affect the intrinsic ionic flow properties so one would like to design the boundary conditions to meet
the so-called electroneutrality

∑n
s=1 zsLs = 0 =

∑n
s=1 zsRs. The reason for this is that, otherwise, there

will be sharp boundary layers which cause significant changes (large gradients) of the electric potential
and concentrations near the boundaries so that a measurement of these values has nontrivial uncer-
tainties. One smart design to remedy this potential problem is the “four-electrode-design”: two ‘outer
electrodes’ in the baths far away from the ends of the ion channel to provide the driving force and
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two ‘inner electrodes’ in the baths near the ends of the ion channel to measure the electric potential
and the concentrations as the “real” boundary conditions for the ionic flow. At the inner electrodes
locations, the electroneutrality conditions are reasonably satisfied, and hence, the electric potential and
concentrations vary slowly and a measurement of these values would be robust. The cross-sectional
area A(X) generally exhibits the characteristic of being significantly smaller for X in the interval (a0, b0)
(representing the neck region of the channel) compared to X outside the interval [a0, b0].

2.2. Dimensionless form of the quasi-one-dimensional PNP model

The following rescaling or its variations have been widely used for the convenience of mathemat-
ical analysis [51, 52]. Let C0 be a characteristic concentration of the ion solution. We now make a
dimensionless rescaling of the variables in the system (2.1) as follows.

ε2 =
εrε0kBT

e2
0(b0 − a0)2C0

, x =
X − a0

b0 − a0
, h(x) =

A(X)
(b0 − a0)2 , Q(x) =

Q(X)
C0
,

D(x) = D(X), ϕ(x) =
e0

kBT
Φ(X), ck(x) =

Ck(X)
C0
, Jk =

Jk

(b0 − a0)C0Dk
.

(2.3)

We assume C0 is fixed but large so that the parameter ε is small. Note that ε = λD/(b0 − a0), where λD

is the Debye screening length. In terms of the new variables, the BVP (2.1) and (2.2) becomes

ε2

h(x)
d
dx

(
h(x)

dϕ
dx

)
= −

n∑
s=1

zscs − Q(x),

dJk

dx
= 0, −Jk =

1
kBT

D(x)h(x)ck
dµk

dx
,

(2.4)

with boundary conditions at x = 0 and x = 1

ϕ(0) =V, ck(0) = Lk; ϕ(1) = 0, ck(1) = Rk, (2.5)

where V := e0
kBTV, Lk := Lk

C0
, Rk := Rk

C0
. The permanent charge Q(x) is

Q(x) =
{

0, x ∈ (0, a) ∪ (b, 1)
Q0, x ∈ (a, b),

(2.6)

where 0 < a = A−a0
a1−a0

< b = B−a0
a1−a0

< 1.We will take the ideal component µid
k only for the electrochemical

potential. In terms of the new variables, it becomes

1
kBT
µid

k (x) = zkϕ(x) + ln ck(x). (2.7)

The ideal component µid
k (x) contains contributions of ion particles as point charges and ignores the ion-

to-ion interaction. PNP models including ideal components are referred to as classical PNP models.
Recall that the critical assumption is that ε is small. This assumption allows us to treat the BVP
(2.4) with (2.5) as a singularly perturbed problem. A general framework for analyzing such singularly
perturbed BVPs in PNP-type systems has been developed in prior works [14, 18] for classical PNP
systems and in [34, 52, 53] for PNP systems with finite ion sizes.
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A method described in [14] (expanded upon in [18]) addresses the connection issue within classical
PNP models by breaking down the system into two subsystems: the fast and slow systems under
limiting conditions. Leveraging the specific structures of the PNP system allows for the integration
of these subsystems, resulting in the creation of a singular orbit as an initial approximation. Aligning
slow and fast orbits gives rise to a set of algebraic equations governing these singular orbits. This study
takes a direct approach using regular perturbation theory to derive singular orbits for small magnitudes
of |Q0|, complementing the broader methodology detailed in previous literature.

We now recall the result from [14], upon which our work will be based. For n = 2 with z1 > 0 > z2,
the authors applied the GSP theory to construct the singular orbit of the BVP (2.4) and (2.5). The
BVP is then reduced to a connecting problem: finding an orbit from B0 = {(V, u, L1, L2, J1, J2, 0) :
arbitrary u, J1, J2}, to B1 = {(0, u,R1,R2, J1, J2, 1) : arbitrary u, J1, J2}.

	

	

	

	

Figure 1. Illustration showing a singular connecting orbit projected onto the (u; z1c1+z2c2; x)
space. The solid line represents the O(ε) estimate of the connected problem, obtained using
the Exchange Lemma (see [14, 22]), from the left boundary Bl to the right boundary Br.

On each interval, a singular orbit typically consists of two singular layers and one regular layer:

(1) In view of the jumps of permanent charge Q(x) at x = a and x = b, the construction of singular
orbits is split into three intervals [0, a], [a, b], [b, 1], as depicted in Figure 1. To do so, one
introduces (unknown) values of (ϕ, c1, c2) at x = a and x = b:

ϕ(a) = ϕa, c1(a) = ca
1, c2(a) = ca

2; ϕ(b) = ϕb, c1(b) = cb
1, c2(a) = cb

2. (2.8)

These values then determine boundary conditions at x = a and x = b as Ba =

{(ϕa, u, ca
1, c

a
2, J1, J2, a) : arbitrary u, J1, J2}, and Bb = {(ϕb, u, cb

1, c
b
2, J1, J2, b) : arbitrary u, J1, J2}.

Consequently, there are six unknowns ϕa, ϕb, ca
k , and cb

k for k = 1, 2 that should be determined. On
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interval [0, a], a singular orbit from B0 to Ba consists of two singular layers located at x = 0 and
x = a, denoted as Γl

0 and Γl
a, and one regular layer Λl. Furthermore, with the preassigned values

ϕa, ca
1, and ca

2, the flux Jl
k and ul(a) are uniquely determined so that (ϕa, ul(a), ca

1, c
a
2, J

l
1, J

l
2, a) ∈ Ba.

(2) On interval [a, b], a singular orbit from Ba to Bb consists of two singular layers located at x = a
and x = b, denoted as Γr

a and Γl
b, and one regular layer Λm. Furthermore, with the preassigned

values (ϕa, ca
1, c

a
2) and (ϕb, cb

1, c
b
2), the flux Jm

k , um(a) and um(b) are uniquely determined so that
(ϕa, um(a), ca

1, c
a
2, J

m
1 , J

m
2 , a) ∈ Ba and (ϕb, um(b), cb

1, c
b
2, J

m
1 , J

m
2 , b) ∈ Bb.

(3) On interval [b, 1], a singular orbit from Bb to B1 consists of two singular layers are located
at x = b and x = 1, denoted as Γr

b and Γl
1, and one regular layer Λr. Furthermore, with

the preassigned values ϕb, cb
1, and cb

2, the flux Jr
k and ur(b) are uniquely determined so that

(ϕb, ur(b), cb
1, c

b
2, J

r
1, J

r
2, b) ∈ Bb.

2.3. Governing system for the BVP

The matching conditions of the connecting problem in the previous section are

Jl
k = Jm

k = Jr
k for k = 1, 2, ul(a) = um(a) and um(b) = ur(b). (2.9)

There are a total of six conditions, which are exactly the same number of unknowns preassigned in
(2.8). Then, the singular connecting problem is reduced to the governing system (2.9) (see [14] for an
explicit form of the governing system). More precisely,

z1ca
1ez1(ϕa−ϕa,m) + z2ca

2ez2(ϕa−ϕa,m) + Q0 = 0,

z1cb
1ez1(ϕb−ϕb,m) + z2cb

2ez2(ϕb−ϕb,m) + Q0 = 0,
z2 − z1

z2
ca,l

1 = ca
1ez1(ϕa−ϕa,m) + ca

2ez2(ϕa−ϕa,m) + Q0(ϕa − ϕa,m),

z2 − z1

z2
cb,r

1 = cb
1ez1(ϕb−ϕb,m) + cb

2ez2(ϕb−ϕb,m) + Q0(ϕb − ϕb,m),

J1 =
cL

1 − ca,l
1

H(a)

(
1 +

z1(ϕL − ϕa,l)

ln cL
1 − ln ca,l

1

)
=

cb,r
1 − cR

1

H(1) − H(b)

(
1 +

z1(ϕb,r − ϕR)

ln cb,r
1 − ln cR

1

)
,

J2 =
cL

2 − ca,l
2

H(a)

(
1 +

z2(ϕL − ϕa,l)

ln cL
2 − ln ca,l

2

)
=

cb,r
2 − cR

2

H(1) − H(b)

(
1 +

z2(ϕb,r − ϕR)

ln cb,r
2 − ln cR

2

)
,

ϕb,m = ϕa,m − (z1J1 + z2J2)y,

cb,m
1 = ez1z2(J1+J2)yca,m

1 −
Q0J1

z1(J1 + J2)

(
1 − ez1z2(J1+J2)y

)
,

J1 + J2 = −
(z1 − z2)(ca,m

1 − cb,m
1 ) + z2Q0(ϕa,m − ϕb,m)

z2(H(b) − H(a))
,

(2.10)
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where y > 0 is also unknown, and under electroneutrality boundary conditions z1L1 = −z2L2 = L and
z1R1 = −z2R2 = R,

ϕL =V, ϕR = 0, z1cL
1 = −z2cL

2 = L, z1cR
1 = −z2cR

2 = R,

ϕa,l =ϕa −
1

z1 − z2
ln
−z2ca

2

z1ca
1
, ϕb,r = ϕb −

1
z1 − z2

ln
−z2cb

2

z1cb
1

,

ca,l
1 =

1
z1

(z1ca
1)

−z2
z1−z2 (−z2ca

2)
z1

z1−z2 , ca,l
2 = −

1
z2

(z1ca
1)

−z2
z1−z2 (−z2ca

2)
z1

z1−z2 ,

cb,r
1 =

1
z1

(z1cb
1)

−z2
z1−z2 (−z2cb

2)
z1

z1−z2 , cb,r
2 = −

1
z2

(z1cb
1)

−z2
z1−z2 (−z2cb

2)
z1

z1−z2 ,

ca,m
1 =ez1(ϕa−ϕa,m)ca

1, cb,m
1 = ez1(ϕb−ϕb,m)cb

1,

H(x) =
∫ x

0

1
h(s)

ds.

(2.11)

Remark 2.2. In (2.10), the unknowns are: ϕa, ϕb, ca
1, ca

2, cb
1, cb

2, J1, ϕ
a,m, ϕb,m, y∗, and Q0, that is,

there are eleven unknowns that match the total number of equations on (2.10).

Remark 2.3. In the upcoming sections, we will encounter lengthy terms in certain formulas. To simplify
our notation, we introduce the following abbreviations for k = 0, 1, 2:

Ik =z1J1k + z2J2k, Tk = J1k + J2k. (2.12)

3. Expanding singular solutions in the presence of small permanent charge

This section, and particularly Section 3.2, involves numerous intricate computations, undertaken
with rigorous precision and validated through multiple verifications. However, to maintain readability,
the detailed computations have been presented in compact form within the text. Interested readers are
encouraged to meticulously examine each step and process to replicate the results accurately. Detailed
computations pertaining to Section 3.1 can be found in the papers [16, 17]. Additionally, for further
clarification on Section 3.2, the authors are available upon request and can provide a comprehensive
version of the paper to the journal if necessary.

Assuming that |Q0| is small, we expand all unknown quantities in the governing system (2.10) and
(2.11) in Q0, i.e., we write

ϕa = ϕa
0 + ϕ

a
1Q0 + ϕ

a
2Q2

0 + O(Q3
0), ϕb = ϕb

0 + ϕ
b
1Q0 + ϕ

b
2Q2

0 + O(Q3
0),

ca
k = ca

k0 + ca
k1Q0 + ca

k2Q2
0 + O(Q3

0), cb
k = cb

k0 + cb
k1Q0 + cb

k2Q2
0 + O(Q3

0),
y = y0 + y1Q0 + y2Q2

0 + O(Q3
0), Jk = Jk0 + Jk1Q0 + Jk2Q2

0 + O(Q3
0),

I = I0 + I1Q0 + I2Q2
0 + O(Q3

0),

(3.1)

where, Ik, for k = 0, 1, 2, were defined in (2.12).
Remark 3.1. To simplify matters, we made the assumption that all diffusion coefficients Dk in (2.3) are
equal. Therefore, we did not include them in our calculations in (3.1).

Remark 3.2. In the upcoming sections, as illustrated in (3.1), the subscripts ‘s’ in ϕa
s , c

a
ks, Jks, etc.,

indicate the term’s order when expanded with respect to Q0. Here, ‘s’ can represent values of 0, 1, or
2, corresponding to the zeroth, first, or second-order term, respectively.
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3.1. Zeroth and first order solutions in Q0 of (2.10) and (2.11).

The problem for the limiting case, where Q0 = 0, has been addressed in [17] for h(x) = 1, and for
a general h(x), it can be resolved as demonstrated in [14] over the interval [0, a]. One can also derive
the zeroth order solution directly by substituting Eq (3.1) into (2.10), expanding the identities in Q0,
and comparing the terms of like-powers in Q0. Below, we outline the results for the zeroth and first
order terms. The detailed proofs for these solutions can be referenced in [16]. These expressions are
essential for the computational calculations discussed in Section 4.1, as well as for the computations
related to second-order solutions in Section 4.2. Denote,

α =
H(a)
H(1)

and β =
H(b)
H(1)

, (3.2)

where H(x) was defined in (2.11). Note that if h(x) is uniform, then H(x) represents the ratio of the
length to the cross-sectional area of the portion of the channel over the interval from 0 to x [35]. The
origin of this quantity, H(x), can be traced back to Ohm’s law for the resistance of a uniform resistor.
It is important to highlight that the parameters a and b, along with the value Q0, play pivotal roles
in defining the shape and the permanent charge of the channel structure. For a more comprehensive
understanding of the influences of a and b on the fluxes, refer to Section 4 in [16].

Proposition 3.1. The zeroth order solutions in Q0 of (2.10) and (2.11), under electroneutrality bound-
ary conditions z1L1 = −z2L2 = L and z1R1 = −z2R2 = R where one obtains cL

j = L j, cR
j = R j, ϕ

L =

V, ϕR = 0, are given by

z1ca,l
10 = z1ca,m

10 = z1ca
10 = (1 − α)L + αR, z1ca

10 = −z2ca
20,

z1cb,m
10 = z1cb,r

10 = z1cb
10 = (1 − β)L + βR, z1cb

10 = −z2cb
20,

ϕa,l
0 = ϕ

a,m
0 = ϕa

0 =
ln

(
(1 − α)L + αR

)
− ln R

ln L − ln R
V,

ϕb,m
0 = ϕb,r

0 = ϕ
b
0 =

ln
(
(1 − β)L + βR

)
− ln R

ln L − ln R
V,

y0 =
H(1)

(z1 − z2)(L − R)
ln

(1 − α)L + αR
(1 − β)L + βR

,

J10 =
L − R

z1H(1)(ln L − ln R)
(z1V + ln L − ln R),

J20 = −
L − R

z2H(1)(ln L − ln R)
(z2V + ln L − ln R).

To compute the first-order terms in Q0, we adopt the method introduced in [16], where we represent
the intermediate variables in relation to the zeroth-order terms. The proof process is straightforward:
by expanding the relevant identities in (2.11) with respect to Q0, comparing the first-order terms in Q0,
and utilizing the results derived from Proposition (3.1), we can establish the desired relations.
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Lemma 3.2. For the first order solution in Q0 of (2.10) and (2.11), we obtain

z1ca
11 + z2ca

21 = −
1
2
, ϕa,m

1 = ϕa
1 +

1
2z1(z1 − z2)ca

10
,

z1cb
11 + z2cb

21 = −
1
2
, ϕb,m

1 = ϕb
1 +

1
2z1(z1 − z2)cb

10

,

ϕa,l
1 = ϕ

a
1 −

ca
10ca

21 − ca
20ca

11

(z1 − z2)ca
10ca

20
, ca,l

11 =
z2(ca

11 + ca
21)

z2 − z1
, ca,l

21 =
z1(ca

11 + ca
21)

z1 − z2
,

ca,m
11 = ca

11 −
1

2(z1 − z2)
, cb,m

11 = cb
11 −

1
2(z1 − z2)

,

ϕb,r
1 = ϕ

b
1 −

cb
10cb

21 − cb
20cb

11

(z1 − z2)cb
10cb

20

, cb,r
11 =

z2(cb
11 + cb

21)
z2 − z1

, cb,r
21 =

z1(cb
11 + cb

21)
z1 − z2

.

By applying the same procedure as above to the remaining four identities in (2.10), and utilizing the
results from Proposition (3.1) and Lemma (3.2), one can directly derive the first-order terms as follows.

Proposition 3.3. The first-order terms of the solution in Q0 for the system (2.10) are as follows:

ca
11 =

z2α(ϕb
0 − ϕ

a
0)

z1 − z2
−

1
2(z1 − z2)

, ca
21 =

z1α(ϕb
0 − ϕ

a
0)

z2 − z1
−

1
2(z2 − z1)

,

cb
11 =

z2(1 − β)(ϕa
0 − ϕ

b
0)

z1 − z2
−

1
2(z1 − z2)

, cb
21 =

z1(1 − β)(ϕa
0 − ϕ

b
0)

z2 − z1
−

1
2(z2 − z1)

,

ϕa
1 =

(1 + z1λ)(1 + z2λ)(cb
10 − ca

10)(ln cL
1 − ln ca

10)

z1(z1 − z2)ca
10cb

10(ln cR
1 − ln cL

1)
+

1
2z1(z1 − z2)ca

10
+

z2α(ϕb
0 − ϕ

a
0)

(z1 − z2)ca
10
λ,

ϕb
1 =

(1 + z1λ)(1 + z2λ)(cb
10 − ca

10)(ln cR
1 − ln cb

10)

z1(z1 − z2)ca
10cb

10(ln cR
1 − ln cL

1)
+

1
2z1(z1 − z2)cb

10

+
z2(1 − β)(ϕa

0 − ϕ
b
0)

(z1 − z2)cb
10

λ,

y1 =

(
(1 − β)cL

1 + αcR
1

)
(ϕa

0 − ϕ
b
0)

z1(z1 − z2)T0ca
10cb

10

+
(ln ca

10 − ln cb
10)(ϕa

0 − ϕ
b
0)

z1(z1 − z2)T0(cL
1 − cR

1 )
−

(z2J10 + z1J20)(ca
10 − cb

10)

z2
1z2(z1 − z2)T 2

0 ca
10cb

10

,

J11 =
A
(
z2(1 − B)V + ln L − ln R

)
(z1 − z2)H(1)(ln L − ln R)2 (z1V + ln L − ln R),

J21 =
A
(
z1(1 − B)V + ln L − ln R

)
(z2 − z1)H(1)(ln L − ln R)2 (z2V + ln L − ln R),

where, under electroneutrality boundary conditions z1L1 = −z2L2 = L and z1R1 = −z2R2 = R, and in
terms of α = H(a)

H(1) and β = H(b)
H(1) , the expressions for A, B and λ are

A = A(L,R) = −
(β − α)(L − R)2(

(1 − α)L + αR
)(

(1 − β)L + βR
)
(ln L − ln R)

,

B = B(L,R) =
1
A

ln
(1 − β)L + βR
(1 − α)L + αR

, λ = λ(L,R) =
V

ln L − ln R
.

(3.3)

Mathematical Biosciences and Engineering Volume 21, Issue 5, 6042–6076.



6052

3.2. Second order solutions in Q0 of (2.10) and (2.11).

The results presented in this section extend the findings of the previous section, employing a consis-
tent approach and methodologies with solutions exhibiting regularity concerning the permanent charge.
To date, as far as we know, other papers have examined only up to the first-order terms in Eq (3.1), and
the quadratic expression obtained in Section 3.2 is introduced for the first time in this work. Hence, all
results in this section represent novel findings. Nevertheless, it is crucial to note that certain intricate
calculations, owing to their extensive nature, are condensed for the sake of clarity in the presentation.
For the second order solutions in terms of Q0, we will first express the intermediate variables such as
ϕa,l

2 , ca,l
k2 , etc. in terms of zeroth and first order terms and ϕa

2, ca
k2, etc.

Lemma 3.4. For the second-order solutions in terms of Q0, we have

z1ca
12 + z2ca

22 = −
z1 + z2

24z1(z1 − z2)ca
10
, ϕa

2 − ϕ
a,m
2 =

z2
1ca

11 + z2
2ca

21

2
(
z1(z1 − z2)ca

10
)2 −

z1 + z2

12
(
z1(z1 − z2)ca

10
)2 ,

z1cb
12 + z2cb

22 = −
z1 + z2

24z1(z1 − z2)cb
10

, ϕb
2 − ϕ

b,m
2 =

z2
1cb

11 + z2
2cb

21

2
(
z1(z1 − z2)cb

10
)2 −

z1 + z2

12
(
z1(z1 − z2)cb

10
)2 .

Proof. We present the derivations of the first two equations without showing the tedious computations,
which mainly involve manipulating lengthy terms. The first step is to substitute (3.1) into the first
equation in (2.10) and expand with respect to the parameter Q0. Then, by applying a Taylor expan-
sion for the function ezk(ϕa−ϕa,m) with respect to Q0, we obtain the following expression for the second
order terms:

ϕa
2 − ϕ

a,m
2 = −

z1ca
12 + z2ca

22

z1(z1 − z2)ca
10
+

z2
1ca

11 + z2
2ca

21

2
(
z1(z1 − z2)ca

10
)2 −

z3
1ca

10 + z3
2ca

20

8
(
z1(z1 − z2)ca

10
)3 . (3.4)

Next, we substitute the expression for ca,l
1 from ca,l

1 from (2.11) into the third equation of (2.10) and
expand the resulting equation up to third-order terms in Q0, which gives us:

z2 − z1

z2

( 1
z1

(z1ca
1)

−z2
z1−z2 (−z2ca

2)
z1

z1−z2

)
= ca

1ez1(ϕa−ϕa,m) + ca
2ez2(ϕa−ϕa,m) + Q0(ϕa − ϕa,m). (3.5)

To obtain the desired result, we must carefully compute the expansions on both sides of (3.5) up to the
third order and simplify the terms accordingly. to obtain the desired result.

Note that for small values of Q0, we can make an approximation: z1ca
1 + z2ca

2 ≈ z1ca
10 + z2ca

20 = 0,
which implies that −z2ca

2/z1ca
1 ≈ 1. Moreover, in the proof, we applied the Maclaurin expansion of the

natural logarithm, given by ln(x) = ln(1+ (x−1)) = (x−1)− 1
2 (x−1)2+ · · · . This expansion converges

when |x − 1| < 1.
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Lemma 3.5. For the second-order intermediate variables in terms of Q0, we establish

ϕa,l
2 = ϕ

a
2 +

z1z2α(ϕb
0 − ϕ

a
0)

2
(
z1(z1 − z2)ca

10
)2 −

z1 + z2

6
(
z1(z1 − z2)ca

10
)2 , ca,l

12 =
z2(ca

12 + ca
22)

z2 − z1
+

z2

8z1ca
10(z1 − z2)2 ,

ϕb,r
2 = ϕ

b
2 +

z1z2(1 − β)(ϕa
0 − ϕ

b
0)

2
(
z1(z1 − z2)cb

10
)2 −

z1 + z2

6
(
z1(z1 − z2)cb

10
)2 , cb,r

12 =
z2(cb

12 + cb
22)

z2 − z1
+

z2

8z1cb
10(z1 − z2)2

,

ca,l
22 =

z1(ca
12 + ca

22)
z1 − z2

−
z1

8z1ca
10(z1 − z2)2 , cb,r

22 =
z1(cb

12 + cb
22)

z1 − z2
−

z1

8z1cb
10(z1 − z2)2

ca,m
12 = ca

12 +
z1 − 8z2

24z1(z1 − z2)2ca
10
, cb,m

12 = cb
12 +

z1 − 8z2

24z1(z1 − z2)2cb
10

.

Proof. Starting from the second line of (2.11), we can derive the second order terms as follows:

ϕa,l
2 =ϕ

a
2 +

12z1(z1 − z2)ca
11 + 2(z1 − 2z2)

24
(
z1(z1 − z2)ca

10

)2 .

By substituting ca
11 from Proposition (3.3), we obtain the formula for ϕa,l

2 .
Moving on to the fourth line of (2.11), the second order terms can be expressed as:

ca,l
12 =

z2(ca
12 + ca

22)
z2 − z1

+
z2

8z1ca
10(z1 − z2)2 .

Finally, from the sixth line of (2.11), we can determine ca,m
12 . Similar relations can be found for the

other terms.

By following the previously outlined procedure for the last four identities in (2.10) and leveraging
the results from Proposition (3.3), along with Lemmas (3.4) and (3.5), one can straightforwardly derive
the following Lemma.

Lemma 3.6. Second order fluxes of the solution in Q0 to the system 2.10 are given by

J12 =
z2(ca

12 + ca
22)

(z1 − z2)αH(1)

(
1 +

z1(ϕL − ϕa
0)

ln cL
1 − ln ca

10

−
z1(ϕL − ϕa

0)(cL
1 − ca

10)
(ln cL

1 − ln ca
10)2ca

10

)
−

z1(cL
1 − ca

10)
αH(1)(ln cL

1 − ln ca
10)

(
ϕa

2 +
z1z2α(ϕb

0 − ϕ
a
0)

2
(
z1(z1 − z2)ca

10
)2 −

z1 + z2

6
(
z1(z1 − z2)ca

10
)2

−
z2(ϕL − ϕa

0)
8z1(z1 − z2)2(ln cL

1 − ln ca
10)(ca

10)2

)
−

z1z2(ca
11 + ca

21)
αH(1)(ln cL

1 − ln ca
10)(z1 − z2)

(
ϕa

1 −
(cL

1 − ca
10)ϕa

1

(ln cL
1 − ln ca

10)ca
10

−
1

2z1(z1 − z2)ca
10

+
cL

1 − ca
10

2z1(z1 − z2)(ln cL
1 − ln ca

10)(ca
10)2
+

z2(ca
11 + ca

21)(ϕL − ϕa
0)(cL

1 + ca
10)

2(z1 − z2)(ln cL
1 − ln ca

10)(ca
10)2

)
−

z1z2(ϕL − ϕa
0)

8z1(z1 − z2)2ca
10αH(1)(ln cL

1 − ln ca
10)
−

z2

8z1ca
10(z1 − z2)2αH(1)

,
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J22 = −
z1(ca

12 + ca
22)

(z1 − z2)αH(1)

(
1 +

z2(ϕL − ϕa
0)

ln cL
2 − ln ca

20

−
z2(ϕL − ϕa

0)(cL
2 − ca

20)
(ln cL

2 − ln ca
20)2ca

20

)
−

z2(cL
2 − ca

20)
αH(1)(ln cL

2 − ln ca
20)

(
ϕa

2 +
z1z2α(ϕb

0 − ϕ
a
0)

2
(
z1(z1 − z2)ca

10
)2 −

z1 + z2

6
(
z1(z1 − z2)ca

10
)2

+
z1(ϕL − ϕa

0)
8z1(z1 − z2)2(ln cL

2 − ln ca
20)ca

10ca
20

)
+

z1z2(ca
11 + ca

21)
αH(1)(ln cL

2 − ln ca
20)(z1 − z2)

(
ϕa

1 −
(cL

2 − ca
20)ϕa

1

(ln cL
2 − ln ca

20)ca
20

−
1

2z1(z1 − z2)ca
10

+
cL

2 − ca
20

2z1(z1 − z2)(ln cL
2 − ln ca

20)(ca
10)(ca

20)
−

z1(ca
11 + ca

21)(ϕL − ϕa
0)(cL

2 + ca
20)

2(z1 − z2)(ln cL
2 − ln ca

20)(ca
20)2

)
+

z1z2(ϕL − ϕa
0)

8z1(z1 − z2)2ca
10αH(1)(ln cL

2 − ln ca
20)
+

z1

8z1ca
10(z1 − z2)2αH(1)

,

where,

K1 = T0y1 + T1y0, K2 = T2y0 + T1y1 + T0y2,

and T0,T1 and T2 were defined in (2.12).

Proof. Consider the expression J1 in (2.10), and expand the terms with respect to Q0 to get,

cL
1 − ca,l

1

H(a)
=

cL
1 − ca

10 − ca,l
11Q0 − ca,l

12Q2
0

αH(1)
,

(cL
1 − ca,l

1 )
H(a)

z1(ϕL − ϕa,l)

ln cL
1 − ln ca,l

1

=
(
cL

1 − ca
10 − ca,l

11Q0 − ca,l
12Q2

0

)
·
(
ϕL − ϕa

0 − ϕ
a,l
1 Q0 − ϕ

a,l
2 Q2

0

)

·

z1
(

ln cL
1 − ln ca

10 +
ca,l

11
ca

10
Q0 +

2ca,l
12ca

10 − (ca,l
11)2

2(ca
10)2 Q2

0
)

αH(1)(ln cL
1 − ln ca

10)2
.

Therefore, the zeroth and first order terms in Q0 of J1 are,

J10 =
cL

1 − ca
10

αH(1)
+

z1(cL
1 − ca

10)(ϕL − ϕa
0)

αH(1)(ln cL
1 − ln ca

10)
,

J11 = −
z1(cL

1 − ca
10)

αH(1)(ln cL
1 − ln ca

10)

(
ϕa,l

1 −
ca,l

11(ϕL − ϕa
0)

(ln cL
1 − ln ca

10)ca
10

)
−

z2(ca
11 + ca

21)
(z2 − z1)αH(1)

−
z1ca

11(ϕL − ϕa
0)

αH(1)(ln cL
1 − ln ca

10)
.
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The second-order term in Q0 of J1, with a careful computation, will be as follows,

J12 =
z2(ca

12 + ca
22)

(z1 − z2)αH(1)
−

z2

8z1ca
10(z1 − z2)2αH(1)

−
z1(cL

1 − ca
10)

αH(1)(ln cL
1 − ln ca

10)

(
ϕa

2 +
z1z2α(ϕb

0 − ϕ
a
0)

2
(
z1(z1 − z2)ca

10
)2 −

z1 + z2

6
(
z1(z1 − z2)ca

10
)2

)
+

z1ca,l
11ϕ

a,l
1

αH(1)(ln cL
1 − ln ca

10)

(
1 −

cL
1 − ca

10

(ln cL
1 − ln ca

10)ca
10

)
−

z1ca,l
12(ϕL − ϕa

0)
αH(1)(ln cL

1 − ln ca
10)

(
1 −

(cL
1 − ca

10)
(ln cL

1 − ln ca
10)ca

10

)
−

z1(ca,l
11)2(ϕL − ϕa

0)
αH(1)(ln cL

1 − ln ca
10)2ca

10

(
1 +

cL
1 − ca

10

2ca
10

)
.

By substituting ca,l
11, ca,l

12, and ϕa,l
1 as per Lemmas 3.2 and 3.5, we can directly derive the formula for J12.

The expression for J22 can be obtained in a similar manner.

Proposition 3.7. Second order intermediate concentration terms of the solution in Q0 to the system
2.10 are given by

ca
12 = −

z1 + 4z2

24z1(z1 − z2)2ca
10
−

(ϕa
1 − ϕ

b
1)αz2

(z1 − z2)
,

ca
22 =

4z1 + z2

24z1(z1 − z2)2ca
10
+

(ϕa
1 − ϕ

b
1)αz1

(z1 − z2)
,

cb
12 = −

z1 + 4z2

24z1(z1 − z2)2cb
10

+
(ϕa

1 − ϕ
b
1)(1 − β)z2

(z1 − z2)
,

cb
22 =

4z1 + z2

24z1(z1 − z2)2cb
10

−
(ϕa

1 − ϕ
b
1)(1 − β)z1

(z1 − z2)
,

y2 =
(ϕa

1 − ϕ
b
1)y0

H(1)T0
−

y1

ca
10

(z2α(ϕb
0 − ϕ

a
0)

z1 − z2
−

ca
10(ϕa

0 − ϕ
b
0)

H(1)T0
−

1
z1 − z2

)
+

1
2z2

1(z1 − z2)2T0

( 1(
ca

10
)2 −

1(
cb

10
)2

)
+

(ϕa
1 − ϕ

b
1)

z1(z1 − z2)T0

( α
ca

10
+

1 − β
cb

10

)
−

z1z2

2T0

(
T0y1 + T1y0

)2
+

(ϕa
0 − ϕ

b
0)y0

H(1)T0ca
10

(z2α(ϕb
0 − ϕ

a
0)

z1 − z2
−

1
z1 − z2

)
+

J11

z2
1z2T 2

0

( 1
cb

10

−
1

ca
10

)
+

J10(ϕa
0 − ϕ

b
0)

z2
1z2T 3

0 H(1)

( 1
cb

10

−
1

ca
10

)
.

Proof. Initially, we start by adding up the expressions for J12 and J22 as outlined in the equations for
J12 and J22 in Lemma 3.6, using careful simplification procedures. Afterward, we include ca

22 and cb
22

into the derived expression using the relevant expressions from Lemma 3.4. Through comprehensive
computational analysis, we determine the expressions for ca

12 and ca
22.
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In the process of determining the variable y2, our initial step involves solving the equation for cb
12 as

presented in Lemma 3.6, specifically for K2. Following this, we proceed to substitute the expressions
for K1 and K2 and subsequently solve the equation for y2, resulting in a simplified expression that
provides the formula for y2.

Remark 3.3. It is important to mention that because there are no explicit solutions for ϕa
2 at this stage,

the fluxes J12 and J22 in Lemma 3.6 cannot be expressed explicitly. Therefore, additional simplifications
are required to compute the expression for ϕa

2, as demonstrated in Proposition 3.8.

Utilizing the procedure outlined earlier, we shall extend our analysis to encompass the remaining
four identities specified in Eq (2.10). With the foundational insights obtained from Proposition (3.1)
and Lemma (3.2), we can proceed to systematically deduce the second order terms as delineated below.

Proposition 3.8. Under the electroneutrality boundary conditions, where ϕL = V, ϕR = 0, zlL1 =

−z2L2 = L and zlR1 = −z2R2 = R, the following results hold,

J12 =
z1z2(ϕa

1 − ϕ
b
1)

H(1)(z1 − z2)

( 1
z1
+

(V − ϕa
0)

ln cL
1 − ln ca

10

−
(V − ϕa

0)(cL
1 − ca

10)
(ln cL

1 − ln ca
10)2ca

10

)
−

z1(cL
1 − ca

10)
αH(1)(ln cL

1 − ln ca
10)

(
ϕa

2 +
z1z2α(ϕb

0 − ϕ
a
0)

2
(
z1(z1 − z2)ca

10
)2 −

(z1 + z2)

6
(
z1(z1 − z2)ca

10
)2

)
−

z1z2(ϕa
0 − ϕ

b
0)

H(1)(ln cL
1 − ln ca

10)(z1 − z2)2

(
(z1 − z2)ϕa

1 −
(z1 − z2)(cL

1 − ca
10)ϕa

1

(ln cL
1 − ln ca

10)ca
10

−
1

2z1ca
10

+
(cL

1 − ca
10)

2z1(ln cL
1 − ln ca

10)(ca
10)2
+

z2(ca
11 + ca

21)(V − ϕa
0)(cL

1 + ca
10)

2(ln cL
1 − ln ca

10)(ca
10)2

)
,

J22 =
z1z2(ϕa

1 − ϕ
b
1)

H(1)(z2 − z1)

( 1
z2
+

(V − ϕa
0)

ln cL
1 − ln ca

10

−
(V − ϕa

0)(cL
1 − ca

10)
(ln cL

1 − ln ca
10)2ca

10

)
+

z1(cL
1 − ca

10)
αH(1)(ln cL

1 − ln ca
10)

(
ϕa

2 +
z1z2α(ϕb

0 − ϕ
a
0)

2
(
z1(z1 − z2)ca

10
)2 −

(z1 + z2)

6
(
z1(z1 − z2)ca

10
)2

)
+

z1z2(ϕa
0 − ϕ

b
0)

H(1)(ln cL
1 − ln ca

10)(z1 − z2)2

(
(z1 − z2)ϕa

1 −
(z1 − z2)(cL

1 − ca
10)ϕa

1

(ln cL
1 − ln ca

10)ca
10

−
1

2z1ca
10

+
(cL

1 − ca
10)

2z1(ln cL
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where,

A1 = −
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Furthermore, z1cL
1 = z1L1 = L, z1cR

1 = z1R1 = R due to electroneutrality and T0,T1 were defined in
(2.12).

Proof. Starting from the expressions for J12 and J22 derived in Lemma 3.6 and employing the relation-
ships established in Lemma 3.5 and Proposition 3.7, and through meticulous computations, one can
directly derive the second order terms for fluxes and electric potentials.
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Remark 3.4. In Proposition (3.8), it is noteworthy that the following relationships hold:

J12 = A1ϕ
a
2 +A2 = B1ϕ

b
2 + B2, J22 = −A1ϕ

a
2 +A3 = −B1ϕ

b
2 + B3,

wherein,

A3 = −A2 +
(ϕb

1 − ϕ
a
1)

H(1)
, B3 = −B2 +

(ϕb
1 − ϕ

a
1)

H(1)
.

Remark 3.5. We emphasize once more the complex computations used to derive the second-order solu-
tions in Section 3, although they are condensed for readability. Furthermore, Proposition 3.8 provides
us with the necessary explicit expressions for the second-order solutions of the fluxes J12 and J22.
However, given the complexity of these solutions, deriving additional analytical results to examine
their impact on flux behavior would be very challenging. Hence, we turn to numerical investigations
for further exploration in Section 4.

4. Impact of permanent charge and boundary conditions on fluxes and I-V relations

In this section, we investigate how permanent charges and the boundary conditions impact the
movement of individual fluxes and the current-voltage (I-V) relations. When the magnitude of Q0

(a measure of permanent charge) is small, the flux Jk for the k-th type of ion and the current I can
be represented as in (3.1). The quantities J1k and J2k, where k = 0, 1, 2, capture the primary effects
of permanent charges and channel shape on the flow of ions. We will analyze these quantities to
understand their impact.

Remark 4.1. In the subsequent sections of this part, we conduct numerical simulations alongside an
analysis of the equations in Section 3. The integration of numerical methods and analytical insights
enhances our comprehension of the analytical findings. Specifically, the complexity of the quadratic
solutions in Section 3.2 necessitates leveraging numerical observations to gain a deeper understanding
of the second order solutions and their impact on the system. In our numerical simulations, we choose
simplicity and specificity by setting a = 1/3, b = 2/3 in (2.6), and h(x) = 1. As a result, this yields
α = 1/3 and β = 2/3 in (3.2).

As highlighted in the Introduction section, our numerical methods are implemented using Python
in conjunction with the Numpy and Matplotlib libraries. We create heatmaps, if possible, to visualize
the signs of fluxes in various figures during our investigations, necessitating the identification of roots
within the expressions. To accomplish this, we leverage combinations of Python functions, specifically
np.where and np.isclose, for root finding purposes. Additionally, we also tried utilizing some other
functions like the root function from the em scipy.optimize module, which is commonly used to solve
systems of nonlinear equations. Due to the structured nature of our code, we prioritize the np.where
and np.isclose functions. The np.isclose function, with its parameters rtol (relative tolerance), atol
(absolute tolerance), and equal-nan (specifying ‘Not a Number’ (NaN) handling), generates a boolean
array indicating element-wise equality within specified tolerances. Similarly, np.where(condition, [x,
y]) selects elements from x or y based on a given condition, which proves useful when combined with
np.isclose to locate indices satisfying the condition [37].
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4.1. Exploring first-order effects: Influence of permanent charges on fluxes

We begin by revisiting and simplifying specific findings from [16] and presenting numerical results
for the first-order terms. Initially, we articulate Theorem 4.8 in [16], providing numerical insights, and
subsequently expand on our findings based on further numerical investigations.

Suppose B , 1 where B is defined as in (3.3). Let V1
q and V2

q be defined as follows:

V1
q = V1

q (L,R) = −
ln L − ln R
z2(1 − B)

,

V2
q = V2

q (L,R) = −
ln L − ln R
z1(1 − B)

.

(4.1)

Then the following cases arise:

(i) if V1
q < 0 < V2

q , then, for V > V1
q , a small positive Q0 decreases |J1|, and for V < V1

q , it enhances
|J1|. Similarly, for V > V2

q , a small positive Q0 decreases |J2|, and for V < V2
q , it strengthens |J2|;

more precisely,

(i1) for V ∈ (V1
q ,V

2
q ), J10J11 < 0 and J20J21 > 0;

(i2) for V < V1
q , J10J11 > 0 and J20J21 > 0;

(i3) for V > V2
q , J10J11 < 0 and J20J21 < 0;

(ii) if V1
q > 0 > V2

q , then, for V < V1
q , a small positive Q0 decreases |J1|, and for V > V1

q , it enhances
|J1|. Similarly, for V < V2

q , a small positive Q0 decreases |J2|, and for V > V2
q , it strengthens |J2|;

more precisely,

(ii1) for V ∈ (V2
q ,V

1
q ), J10J11 < 0 and J20J21 > 0;

(ii2) for V > V1
q , J10J11 > 0 and J20J21 > 0;

(ii3) for V < V2
q , J10J11 < 0 and J20J21 < 0.

The statements above are presented in a more streamlined form based on Theorem 4.8 in [16],
which indicates that either case (i) or (ii) may occur regardless of whether L < R or L > R. It is
crucial to highlight that the roots V1

q and V2
q in Eq (4.1) correspond to the roots of J10J11 and J20J21,

respectively. This allows us to examine the effects of including linear terms J11 or J21. Now, let us
extend the aforementioned findings based on the numerical observations depicted in Figure 2. It is
also important to note that, with the simplifying assumptions in Remark 4.1, we have standardized the
structure of channel geometry to focus on our primary objective, which is analyzing the relationships
between the different orders of solutions in terms of Q0 and boundary conditions, and their effects on
fluxes and the I-V relation.

Now, we present a key observation derived from our numerical investigations, which sheds light on
critical values and their impact on flux magnitudes under specific conditions regarding channel geom-
etry. The findings from our analysis, summarized below, reveal significant insights into the behavior
of fluxes J1 and J2 under varying voltage conditions and boundary concentrations:

Given boundary concentrations L and R, and under certain conditions regarding channel geometry
we have:

(i) There exist critical values V∗1 < 0 < V∗2 such that:
(i1) For V > V∗1 , a small positive Q0 reduces |J1|, and for V < V∗1 , it amplifies |J1|.
(i2) For V > V∗2 , a small positive Q0 decreases |J2|, and for V < V∗2 , it strengthens |J2|.
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(ii) There exist critical points V∗2 < 0 < V∗1 leading to:
(ii1) For V < V∗1 , a small positive Q0 reduces |J1|, and for V > V∗1 , it amplifies |J1|.
(ii2) For V < V∗2 , a small positive Q0 decreases |J2|, and for V > V∗2 , it strengthens |J2|.

It is worth nothing that the detailed cases can be articulated similarly to the detailed parts in Theo-
rem 4.8 in [16]. Additionally, it is important to notice that V∗1 and V∗2 denote V1

q and V2
q respectively,

although they are derived from numerical results.
Below is an observation derived from our numerical investigations. While the theoretical proof is

not overly challenging, we opt not to consider it. The following findings are noted:

(a) When the boundary concentrations on the left and right (L and R, respectively) are nearly identical
(L ≈ R), a small positive Q0 decreases |J1| while increasing |J2|. This behavior is exemplified by
the blue region near L = 1 in Figure 2(A) and the red region near L = 1 in Figure 2(B).

(b) When the boundary concentrations are significantly different, the voltage ranges, for which a
small positive Q0 reduces |J1|, become smaller, as do the voltage ranges for which Q0 raises |J2|.
In other words, as the gap between L and R widens, the blue region in panel (A) and the red region
in panel (B) in Figure 2 also reduce. In particular, for a fixed R, let V∗1 and V∗2 represent the critical
points of J10J11 and J20J21 corresponding to L1 and L2, respectively, and let V̄∗1 and V̄∗2 denote the
critical points of J10J11 and J20J21 corresponding to L̄1 and L̄2. Refer to Figure 2. This yields:

(b.1) if R < L1 < L̄1, then V∗1 < V̄∗1 < 0 and 0 < V̄∗2 < V∗2 .
(b.2) if L̄1 < L1 < R, then 0 < V̄∗1 < V∗1 and V∗2 < V̄∗2 < 0.

(A) (B)
Figure 2. Visualization of heatmaps indicating the sign agreement for the products J10J11

(panel A) and J20J21 (panel B). The concentration L varies from zero to two while R is fixed
at 1, shedding light on the impact of linear terms.

Remark 4.2. One can check the author’s GitHub repository for additional validation of the above
observation as well as the upcoming figures in the subsequent sections. Similar situations can
also be seen for a fixed L there. The GitHub repository link is: https://github.com/Hamid-
Mofidi/PNP/tree/main/Q2contribution.

Remark 4.3. In computational plots where it appears that l and r are equal, it is essential to note that
they are very close but not precisely equal. This distinction is crucial based on the results.

The numerical results shown in Figure 2 validate the discussed scenarios, where the right boundary
concentration R is fixed at 1, while L is varied between 0 and 2. Initially, this figure presents individual
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heatmaps illustrating the signs of J10J11 and J20J21 to clarify their respective flux changes. The red
regions indicate areas where J10 and J11 in panel (A) (or, equivalently, J20 and J21 in panel (B)) share
the same signs, while the blue regions denote areas where the signs are opposite. The color scheme
can be interpreted as follows:

a. Red regions indicate areas where a (small) positive Q0 reinforces |J1| or |J2|.
b. Blue regions denote areas where a (small) positive Q0 diminishes |J1| or |J2|.

Thus far, the validation of our computational approach and analytical findings has been achieved
by comparing them with Theorem 4.8 in [16], incorporating both zeroth and first-order terms. Our
numerical analyses not only confirmed these findings but also provided additional insights into the
first-order terms.

Remark 4.4. To validate our findings, we employed two approaches in our numerical analysis:

1) First, we computed V1
q and V2

q according to Theorem 4.8 in [16], as outlined at the beginning of
this section. We then determined the signs on each interval.

2) Second, we numerically identified the roots V∗1 and V∗2 without explicitly computing V1
q and V2

q .

We confirmed that the results are consistent for the first-order terms. The latter approach is particularly
advantageous when incorporating the second order terms in the subsequent section, as obtaining roots
analytically could be challenging. This will be our approach in the following section.

The intricate nature of the second order terms, specifically the fluxes J12 and J22 discussed in Sec-
tion 3.2, necessitates numerical approaches to determine their roots. Therefore, we turn to Python,
leveraging the Numpy and Matplotlib libraries, to perform calculations for zeroth, first, and the second
order terms [37]. Additionally, numerical tools are employed to identify flux roots, facilitating the
study of their signs across diverse regions.

The theoretical analysis of complex second order terms in equations provided in Proposition 3.8 is
challenging. As a result, we use computational methods to explore how permanent charges affect ion
movement and the membrane’s electrical behavior, focusing on the current-voltage (I-V) relation. We
analyze and compare these outcomes to scenarios without permanent charges, examining how these
differences affect membrane performance. Then we study higher order contributions of permanent
charges. Our numerical investigation delves into understanding the intricate interactions of permanent
charges, shedding light on their influence on crucial electrical properties. Through this exploration,
our aim is to advance our comprehension of the system’s behavior and offer valuable insights to the
academic community.

4.2. Exploring the effects of second-order solutions and boundary conditions on fluxes

As of now, to the best of our knowledge, previous studies have only investigated up to the first-
order terms in Eq (3.1) [16], and the quadratic expression obtained in Section 3.2 is introduced for the
first time in this work. Incorporating these quadratic terms into the linear solutions will increase the
accuracy of the solutions, although it was analytically challenging to derive them.

In this section, we delve into the implications of incorporating the Q2
0 term into the expressions.

Our primary focus is on investigating how the inclusion of Jk2 influences the linear estimation of J1,
represented as Jk0 + Jk1Q0. Additional comprehensive and noteworthy findings have been uncovered.
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Using heatmaps to examine the signs of (Jk0 + Jk1Q0)J12 for k = 1, 2, along with the product Jk0Jk1Jk2,
has revealed deeper insights, highlighting the unique impact of the Q2

0 terms on the results.
In [15], the author demonstrates that the sign of the flux Jk for k = 1, 2 remains unaffected by a

permanent charge. In biological and chemical terms, the sign of the flux is dictated by the driving
force (the gradient of electrochemical potential) rather than the structure (permanent charge Q0) of the
channel protein. However, the magnitude of Jk is indeed influenced by Q0. Referring back to 3.1,
where for k = 1, 2, we have Jk = Jk0+ Jk1Q0+ Jk2Q2

0+O(Q3
0), we now focus on analyzing the impact of

Jk2, the second order term of the flux, on the magnitude and behavior of Jk using various approaches:

(1) Computing the product (Jk0 + Jk1Q0)Jk2 to observe the effects of Jk2 on the linear estimation of Jk:

1.i. If the product is positive, it suggests that the presence of Jk2 amplifies the effect of the linear
term Jk0 + Jk1Q0. This implies that the magnitude of the linear estimation of Jk will increase.

1.ii. Conversely, if the product is negative, it implies that Jk2 dampens or counteracts the effect of
the linear term Jk0 + Jk1Q0, resulting in a decrease in the magnitude of the linear estimation of
Jk (see Figure 4).

(2) Assessing the joint effects of Jk0, Jk1, and Jk2 through the product Jk0Jk1Jk2:

2.i. This product considers the interaction between all three coefficients Jk0, Jk1, and Jk2. If the
product is positive, it indicates a reinforcement of the flux Jk by Jk2, leading to an increase in
the magnitude of Jk. Conversely, a negative product suggests a damping effect on |Jk| due to
the combined influence of Jk0, Jk1, and Jk2 (see Figure 5).

(3) Computing the product Jk0(Jk1 + Jk2Q0) to observe the effects of small Q0 on Jk:

3.i. If the product is positive (negative), it indicates that a small positive Q0 will enhance (diminish)
|Jk|. However, since this scenario is akin to computing the product Jk0Jk1 in the previous
section where Q0 is small, it can be disregarded.

In the subsequent discussion, we will review the aforementioned cases. However, prior to that, we
utilize Figure 3 to showcase the transformative impacts of introducing the Q2

0 term, transitioning the
behavior from linear to nonlinear (quadratic).

Figure 3. Linear (J1(Q0) = J10 + J11Q0) and quadratic (J1(Q0) = J10 + J11Q0 + J12Q2
0)

approximations of flux J1 for boundary concentrations L = 0.9,R = 1.
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Figure 3 illustrates that, transitioning from linear to quadratic, the sign of the flux J1 never changes
in the observed cases, as expected, while the magnitude of J1 increases. However, this method has
several limitations: its primary constraint is its representation of only specific cases, which may not be
indicative of other scenarios. Furthermore, despite providing similar figures, descerning whether the
quadratic term diminishes or amplifies the flux remains challenging. Another limitation is its inability
to clearly illustrate how the flux behaves for very small values of V .

4.2.1. Exploring the influence of Jk2 on the magnitude of linear estimation of the flux Jk

In this section, we delve into the intricate relationship between the second order flux component,
Jk2, and the linear estimation of flux Jk, where k = 1, 2. Given that Jk ≈ Jk0 + Jk1Q0, we examine
the influence of the second order flux, Jk2, on the flux Jk for k = 1, 2 by analyzing its effects on the
linear estimate of Jk. To initiate our exploration, we construct plots of the product (Jk0 + Jk1Q0)Jk2,
which effectively illustrates the impact of the second order flux Jk2 on the linear approximation of Jk.
Referencing Figure 4 specifically enables a visual comprehension of these effects for both k = 1 and
k = 2 scenarios.

We emphasize that due to the smallness of Q0, the term Jk1 could be ignored, facilitating a direct
calculation of Jk0Jk2 to evaluate the influence of Jk2 on the linear approximation magnitude of Jk,
yielding the same results.

Figure 4. Heatmap depicting (J10 + Q0J11)J12 with Q0 = 0.01, while varying concentration
L from zero to two and keeping concentration R fixed at 1.

The following insights are obtained from numerical observations:

(a) When the left and right boundary concentrations (L and R, respectively) are almost equal (L ≈ R),
a small positive Q0 increases the magnitude of linear estimations for both J1 and J2. This trend is
highlighted by the red region near L = 1 in Figure 4.

(b) In cases when the boundary concentrations are unequal, denoted as L , R, two critical voltages
V∗1 and V∗2 emerge:

b.i. For voltages V within the range (V∗1 ,V
∗
2), a small positive Q0 reduces the magnitude of linear

estimations for both J1 and J2.
b.ii. Conversely, for voltages V outside the range V∗1 to V∗2 , i.e., for V < V∗1 or V > V∗2 , a small

positive Q0 increases the magnitude of linear estimations for both J1 and J2.
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Furthermore, as the difference between L and R increases, the voltage ranges where a small posi-
tive Q0 reduces the magnitude of linear estimations for both J1 and J2 also expand.

4.2.2. Evaluating the combined impact of J10, J11, and J12 through their product

In this part, we explore the combined impact of J10, J11, and J12 by examining their product,
J10J11J12. This product captures the interplay among all three coefficients: Jk0, Jk1, and Jk2. A positive
product signifies a reinforcement of the flux Jk, resulting in an amplified magnitude of Jk. Conversely,
a negative product indicates a damping effect on |Jk|, reflecting the combined influence of Jk0, Jk1,
and Jk2.

(A) (B)
Figure 5. Visualization of heatmaps illustrating sign agreement for the products J10J11J12

(panel A) and J20J21J22 (panel B). Concentration L varies from zero to two while R is fixed
at 1, shedding light on the impact of linear terms.

The observations can be summarized as follows:

(a) When the left and right boundary concentrations are in proximity (i.e., L ≈ R), there exists a
single critical value V∗0 ≈ 0. Under this condition:

a.i. If V > V∗0 , then Jk0Jk1Jk2 < 0, leading to a damping effect on |Jk| for k = 1, 2.
a.ii. If V < V∗0 , then Jk0Jk1Jk2 > 0, resulting in an amplified effect on |Jk| for k = 1, 2. (Refer to

Figure 5 near L = 1.)

(b) Conversely, when the left and right boundary concentrations are not sufficiently close, there are
two critical voltages: one is V∗0 ≈ 0, and the other could be either V∗− < 0 or V∗+ > 0, depending
on the channel geometry and boundary concentration values. Under these conditions:

b.i. If V∗0 and V∗− are the critical values, then for V in the interval (V∗−,V
∗
0), Jk0Jk1Jk2 > 0, leading

to an increasing |Jk|, and for V outside this interval, Jk0Jk1Jk2 < 0, resulting in a diminishing
effect on |Jk|.

b.ii. However, if V∗0 and V∗+ are the critical values, then for V in the interval (V∗0 ,V
∗
+), Jk0Jk1Jk2 <

0, causing decreasing of |Jk|, and for V outside this interval, Jk0Jk1Jk2 > 0, leading to a
strengthened effect on |Jk|.

Additionally, as the disparity between L and R widens, the two critical voltages converge (refer to
Figure 5 far from L = 1).
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4.3. Estimating errors and assessing nonlinear effects for fluxes

In the context of Taylor expansions and polynomial approximations, error estimation serves to as-
sess the impact of truncating the series at a finite order. Neglecting higher-order terms in the expan-
sion introduces approximation errors, which can lead to deviations from the true function behavior.
Therefore, quantifying these errors is essential for ensuring the validity of the approximation and un-
derstanding its limitations. We explore the calculation and analysis of approximation errors introduced
by neglecting higher-order terms in the expansion. By examining the magnitude and significance of
these errors, we gain insights into the accuracy of the approximations and the necessity of including
additional terms in the expansion.

We present a detailed methodology for computing and analyzing approximation errors in the context
of Taylor expansions. This involves calculating the error term introduced by neglecting the J12 and J22

terms in the Taylor expansion:

Error Estimate for J1 = (J10 + J11Q0 + J22Q2
0) − (J10 + J11Q0) = J12Q2

0.

This error estimation evaluates the approximate value missed by fluxes when using the linear term.
In other words, incorporating J12Q2

0 allows us to approach the exact value of flux J1, while omitting
it provides an estimation of the error. Similarly, this applies to flux J2 and the term J22Q2

0. Since Q0

is small, Q2
0 and, consequently, J12Q2

0 are also small. Therefore, we primarily focus on its sign to
determine if flux J1 gains a small value (if J12 is positive) or misses a small value (if J12 is negative).
Figure 6(A) demonstrates that for a fixed R, there exists a voltage VL for any L, such that for V < VL,
flux J1 misses, and for V > VL, it gains a small value when the approximation becomes more accurate
by adding the nonlinear term J12. Similarly, for J2, Figure 6(B) indicates that for a fixed R, there exists
a voltage VL (same as for J1) for any L, such that for V < VL, flux J2 gains, and for V > VL, it misses
a small value when the approximation becomes more accurate by adding the nonlinear term J22. It
is important to note that L and R are independent here; thus, if one fixes L, and varies R, a similar
discussion applies (refer to the figures available in the GitHub repository).

(A) (B)
Figure 6. Heatmaps for J12 and J22 with varying concentration L from zero to two and fixed
concentration R = 1.

Nevertheless, error estimation in Taylor expansions is not without its challenges. One significant
challenge lies in finding the exact solution against which to compare the approximated results. In
many cases, the exact solution may be unknown or difficult to determine, leading to uncertainties in
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the accuracy of the error estimation. Additionally, the choice of expansion point in the Taylor series can
significantly impact the magnitude and behavior of the error. Moreover, there exists a trade-off between
accuracy and computational cost when considering the inclusion of higher-order terms in the expan-
sion. While including more terms may improve the accuracy of the approximation, it also increases
the computational complexity and resource requirements. Acknowledging these obstacles underscores
the complexity and uncertainty inherent in error estimation methods and highlights the need for further
research to address these limitations and enhance the reliability of numerical approximations.

4.4. Impact of higher-order solutions on the I-V relation

This section explores the impact of permanent charge on the current-voltage (I-V) relationship. We
investigate how the presence of permanent charge influences the electrical behavior of the system. By
examining the influence of permanent charge on electrical behavior, a deeper understanding of the
underlying mechanisms governing charge transport and device performance is sought.

In Section 4.4 of [16], an analysis of the impact of small permanent charges Q0 on I-V relations was
conducted, specifically focusing on the zeroth and first-order terms of Q0. Here, we present some of
their findings concerning equal diffusion coefficients and subsequently validate these results through
our numerical investigations. Furthermore, we extend the inquiry to higher orders and explore the
influence of the second order terms in permanent charge Q0 on the I-V relation.

(A) (B) (C)

Figure 7. Heatmaps for I0 (panel A), I1 (panel B) and I2 (panel C), versus V , with varying
concentration L from zero to two and fixed concentration R = 1.

The authors of [16] demonstrated that the current I0 remains unaffected by boundary concentrations,
while I1 does depend on them. Specifically, they established the existence of a Vrev (which equals
zero when the diffusion coefficients D′is are equal) where I0 < 0 if V < Vrev and I0 < 0 if V >
Vrev, irrespective of L and R values. This finding aligns with our numerical investigations depicted in
Figure 7(A). It is worth noting that when Vrev = 0 (for equal diffusion coefficients), the righthand sides
of Figure 7(A) are red, indicating I0 > 0 for V > Vrev = 0, and the left-hand side is blue, indicating
I0 < 0 for V < Vrev = 0, regardless of L and R values.

Additionally, Theorem 4.14 in [16] asserts that I1 does vary with L and R; specifically, for equal
diffusion coefficients, I1 > 0 when L < R and I0 < 0 when L > R. This result is also consistent with
our numerical investigations shown in Figure 7(B) where R = 1 is fixed. The lower part of the figure,
representing L < R, is red, indicating I1 > 0, while the upper part, where L > R, is blue, indicating
I1 < 0 in this scenario.

Remark 4.5. In [16], it is additionally shown how the current I1 is influenced by the boundary V (in
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addition to L and R) for nonequal diffusion coefficients. Nevertheless, we chose not to delve into the
numerical results for this scenario in order to maintain our primary focus on the higher-order terms
involving the permanent charge Q0 and its impact on the I-V relation.

We now expand upon the findings regarding the second order terms of Q0 using numerical analysis,
as depicted in Figure 7(C). These investigations reveal that, akin to I0, the current I2 remains unaffected
by the boundary concentrations L and R but is contingent solely upon the boundary V , which equals
zero when diffusion coefficients are equal. Consequently, we derive the following relationship:

I2 > 0 for V > 0, and I2 < 0 for V < 0. (4.2)

Figure 8. Linear (J1(Q0) = J10 + J11Q0) (represented by solid black curves) and quadratic
(J1(Q0) = J10 + J11Q0 + J12Q2

0) (represented by dashed green curves) approximations of
the current I with respect to V for various fixed values of Q0 = 0.001, 0.005, 0.01, 0.1 and
boundary concentrations L = 0.008,R = 0.001.

Remark 4.6. It is noteworthy to mention that in Eq (4.2), we could potentially assert V > Vrev = 0 (and
similarly for the converse case).

In the following discussion, we employ Figures 8 and 9 (for fixed boundary concentrations at
L = 0.008,R = 0.001, while varying Q0 and V) to illustrate the significant effects of introducing
the Q2

0 term, which leads to a transition in behavior from linear to nonlinear (quadratic). Several key
observations from these figures are outlined below:
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(a) Monotonicity in V for small Q0 and non-monotonic behavior in Q0 for fixed V: Observing
Figure 8, we note that for small Q0, the current I shows a monotone (increasing) behavior with
respect to V . This aligns with the expectation that the current is primarily influenced by V when
Q0 is small. However, as depicted in Figure 9, monotonicity does not hold concerning Q0 when
V is held constant.

(b) Bifurcations of I = 0 (reversal potential): For values of Q0 near Q0 = 0.1, as depicted in
Figure 8, the second-order solution in terms of Q0 for the current, I, appears to have three roots.
This phenomenon was not anticipated or predicted in earlier studies such as those mentioned
in [16, 54].

(c) Figure 8 (Q0 = 0.1) shows that the dashed green curve for the quadratic current solution lies
below the linear solution between two red circles representing negative and positive voltages.
This indicates that a small positive Q0 may increase or decrease the magnitude of linear current
estimations.

5. Permanent charge effects on flux ratios

This section delves into the influence of a positive permanent charge on the fluxes of both cation
and anion species. To quantify this influence, we introduce the flux ratio λk(Q0) = Jk(Q0)/Jk(0), which
compares the flux Jk(Q0) associated with a permanent charge Q0 to the flux Jk(0) with zero permanent
charge, for a given ion species under specific boundary conditions and channel geometry. Note that
in the following, we may use λk(Q0), λk(Q0,V), or λk(Q0,Q2

0) for simplicity or to demonstrate the
dependence of flux ratios on V or Q2

0, respectively.
For n = 2 with z1 = 1 and z2 = −1, detailed analysis of the impact of permanent charge described by

Eq (2.9) on flux ratios has been conducted for both small and large Q0 [16,27,36]. The flux ratio λk(Q0)
serves as a metric for measuring the impact of the permanent charge Q0: When λk(Q0) > 1, the flux
is augmented by Q0, and when λk(Q0) < 1, the flux is diminished by Q0. An analysis of PNP models
governing ionic flows reveals a universal principle regarding the effects of permanent charge [27]:

Proposition 5.1. For a positive permanent charge Q0, if λ1(Q0) denotes the flux ratio for cation species
and λ2(Q0) signifies the flux ratio for anion species, then λ1(Q0) < λ2(Q0) holds true irrespective of
boundary conditions and channel geometry.

This proposition is precise in that, especially for a small positive Q0, various scenarios emerge based
on boundary conditions and channel geometry, such as (i) λ1(Q0) < 1 < λ2(Q0), (ii) 1 < λ1(Q0) <
λ2(Q0), and (iii) λ1(Q0) < λ2(Q0) < 1. Each of these options captures unique details in how flux ratios
change with a positive permanent charge.

In the preceding section, we generated heatmaps to visualize flux sign patterns across various figures
in our investigations, necessitating the identification of roots within the expressions. However, due to
the computational complexity involved, not all initial values are conductive to heatmap creation. The
extensive computations introduce numerous tiny errors across a range of values, ultimately resulting
in significant final errors in the output, thus reducing the effectiveness of heatmaps for representation.
Consequently, we refrain from employing heatmaps in the subsequent section and instead focus on
specific cases to derive results.
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Figure 9. Linear (J1(Q0) = J10 + J11Q0) approximations (solid black curves) and quadratic
(J1(Q0) = J10 + J11Q0 + J12Q2

0) approximations (dashed green curves) of the current I
with respect to Q0 for various fixed values of V = −15,−12.5,−0.5, 0.2, 0.5, 1.5, 2, 10 and
boundary concentrations L = 0.008,R = 0.001.
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(a) Linear approximations.

(b) Quadratic approximations.

Figure 10. Linear (a) and quadratic (b) approximations of the flux ratios λ1 (solid black
lines) and λ2 (dashed green lines) with respect to Q0, considering various fixed values of
V = −50,−10, 0, 30, and L = 0.008,R = 0.001.
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5.1. Dependence of flux ratios on Q0 for fixed V

For small Q0, as V increases, the change occurs from 1 < λ1 < λ2 to λ1 < 1 < λ2 and to λ1 < λ2 < 1
or from λ1 < λ2 < 1 to λ1 < 1 < λ2 and to 1 < λ1 < λ2 (refer to [54]).

(i) Non-monotonic behavior in Q0 for fixed values of V: Examining Figure 10 for V = −10 (and
similarly for V = 30), it becomes apparent that while the flux ratio λ2 appears to increase (or
decrease) based on linear estimates, the quadratic approximations reveal a different trend.

(ii) Possible Pitchfork Bifurcations at λk = 1: In Figure 10 (for V = 30), the behavior of λk(Q0,Q2
0)

for various Q0 values, influenced by second-order solutions in Q0, exhibits non-monotonic
trends and can cross the value of 1 twice. This implies the existence of two instances where
λk(Q0,Q2

0) = 1, or there is a Q∗0 for which ∂λk
∂V (Q∗0,V) = 0, indicating the possibility of bifurcations

at λk(Q∗0,V) = 1. As we will see in Section 5.2 (part ii), there is a V∗ such that ∂λk
∂V (Q0,V∗) = 0.

Consequently, there is a chance that the corresponding value of Q0 for which ∂λk
∂V (Q0,V∗) = 0

is precisely Q∗0. This implies the existence of (Q∗0,V
∗) such that ∂λk

∂V (Q∗0,V
∗) = ∂λk

∂Q0
(Q∗0,V

∗) = 0,
potentially leading to a pitchfork bifurcation.

5.2. Dependence of flux ratios on V for fixed permanent charges

We now examine the dependence of ion fluxes λ1 and λ2 on V for several fixed values of Q0. In
Figure 11, they are plotted as functions of V ∈ (−50, 50) for Q0 = 0.001, 0.005, and 0.01.

Figure 11. Quadratic approximations of the flux ratios λ1 (solid black lines) and λ2 (dashed
green lines) with respect to V , considering various fixed values of Q0 = 0.001, 0.005, 0.01,
and L = 0.008,R = 0.001. The horizontal red line in the zoomed-in image is λ = 1 that shows
there are three voltage values for which the flux ratio λ1 becomes one and this is bifurcation.
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(i) Monotonicity in V for small Q0. From Figure 11, one observes that for very small Q0 = 0.001,
both λ1 and λ2 are monotone (decreasing) in V . This is consistent with the theoretical prediction
made in [16] and also with the numerical observations in [54], and with the intuition that the flux
ratios are dominated by the effects of V when Q0 is small.

(ii) Bifurcations at λk = 1: In Figure 11, for various Q0 values, λ1(Q0,Q2
0), influenced by second-

order solutions in Q0, exhibits a discontinuity near λ1 = 1, resulting in three values where λ1 = 1.
Additionally, with increasing Q0, fluxes show non-monotonic behavior in V , crossing λ1 = 1
multiple times. These behaviors were not predicted by the analysis in [16], but non-monotonicity
was discussed in [54] through numerical observations. Similar discussions apply to λ2 = 1.

6. Concluding remarks and future work

In this study, we presented a comprehensive exploration of ion channel dynamics, focusing on the
intricate influence of permanent charges. Theoretical and numerical analyses have been combined to
unveil the qualitative shifts in fluxes, flux ratios, and electric potentials at higher-order contributions
of permanent charge. The investigation has delved into the subtle interplay between boundary con-
ditions and channel geometry, elucidating the nuanced impact of permanent charges on ion channel
behavior. Our findings contribute to the understanding of ion electro-diffusion, shedding light on the
complex interactions that arise due to permanent charges. The systematic perturbation analysis, span-
ning zeroth, first, and second order solutions, has provided valuable insights into the behavior of the
system under the influence of small permanent charges. As we conclude this study, avenues for further
research emerge.

As indicated in Remark 4.1, the complexity of the quadratic solutions in Section 3.2 led us to
utilize numerical observations to further explore the second-order solutions and their effects on the
system. Integrating numerical observations with analytical insights improves our understanding of
the analytical results, which we plan to continue studying in the future. Additionally, the application
of advanced numerical techniques and simulations may offer a more detailed understanding of ion
channel behavior in complex biological environments. Further investigations could also delve into the
impact of permanent charges on specific ion channel types, allowing for a more targeted analysis of
their behavior. Moreover, experimental validation and comparison with existing biological data would
provide a bridge between theoretical insights and real-world observations, enhancing the practical
relevance of our findings.

Exploring local hard-sphere PNP systems, which account for finite ion sizes, offers valuable insights
into the dynamics of ionic channels by considering ion sizes d [53]. However, the computations be-
come more complex in this case. A fascinating aspect of this study involves investigating higher-order
solutions concerning ion size d and permanent charge Q0, specifically deriving Q2

0,Q0d, and d2 solu-
tions. We derived solutions involving Q2

0 in this manuscript. The work presented in [25] delves into
the higher-order effects of ion size and provides d2 solutions. Additionally, the paper [53] examines
PNP models with ion size and permanent charge, and to complete the puzzle, one must carefully derive
Q0d terms from that paper. By assembling all these quadratic terms, a more accurate exploration of the
higher-order impacts of ion size and permanent charge becomes possible.
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