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Abstract: This article considered the sampled-data control issue for a dynamic positioning ship (DPS) 
with the Takagi-Sugeno (T-S) fuzzy model. By introducing new useful terms such as second-order 
term of time, an improved Lyapunov-Krasovskii function (LKF) was constructed. Additionally, the 
reciprocally convex method is introduced to bound the derivative of LKF. According to the constructed 
LKF, the sampling information during the whole sampling period was fully utilized, and less 
conservatism was obtained. Then, the stability condition, robust performance, mode uncertainty and 
sampled-data controller design were analyzed by means of the linear matrix inequality (LMI). Finally, 
an example was given to demonstrate the effectiveness of the proposed method. 
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1. Introduction 

Ship dynamic positioning is a system used in ships and offshore vessels to automatically maintain 
the ship’s positions and heading by thrusters and propulsion systems [1]. Eliminating the need for 
traditional anchoring, dynamic positioning ship (DPS) is equipped with a sophisticated system that 
allows it to stay in a specific location or follow a set track. And DPS has been used in various maritime 
applications, including offshore oil and gas exploration, subsea construction, cable laying, and so on. 
Recently, there is a wealth of research in the academic literature on the control for DPS ([2–7]), and 
the control algorithms and strategies include that proportional integral derivative (PID) control, 
adaptive control, intelligent control, etc. [2]. The research direction includes sensor fusion and position 
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reference systems [3]; robust control [4]; fault tolerance control [5]; cooperative control and networked 
system [6]; simulation and validation [7] etc. For example, in [3], the technology of sensor fusion and 
the selection and optimization of position reference systems for DPS are discussed, which emphasizes 
the requirements of system accuracy and reliability. Reference [4] uses H∞ robust control techniques 
for DPS to obtain a robust controller with better performance than traditional dynamic positioning 
systems. Trajectory preservation is achieved through appropriate weighting functions. Reference [5] 
discusses the asymptotic stability conditions for DPS with partial actuator failure. The saturation 
proportional differential controller has been designed, and the asymptotic stability conditions are given 
by using the LKF approaches. In [6], a new event triggered collaborative DP control algorithm is 
proposed for multiple surface vessels. This algorithm adopts an undirected interactive topology to 
construct a communication network between surface vessels, so that all followers can obtain leader 
information. Reference [7] proposes a multi physics modeling method for a comprehensive electric 
propulsion system used for DPS, which can run in real-time and connect to control hardware. 

In recent years, due to the advantages of discreteness, high efficiency, and low communication 
costs, the sampled-data control system has received widespread attention and it has been widely 
applicated in various systems, such as the hypersonic vehicle system [8,9], Lur’e system [10–12], 
neural networks system [13–17], Markovian jump system [18,19] and so on [20,21]. It can be applied 
to practical system such as fast train [22], unmanned aerial vehicle [23], large cruise liner [24,25], 
small unmanned ships [26], etc. Nowadays, the Takagi-Sugeno fuzzy system (TSFS) has received 
widespread attention due to their significant effectiveness in describing the complex nonlinear system, 
and considerable sampled-data control methods are reported for TSFS [27,28]. For example, in [29], 
the sampled-data control issue for TSFS with random time delay and actuator faults is studied using 
the input-delay method; In [30], the stability issue for nonlinear sampled-data TSFS is studied using 
the LKF method, which is validated by a single link robotic arm with an electric motor model. In [31], 
the stability characteristics of TSFS under sampling-data control are studied. The system is considered 
as a variable time delay system based on the input delay method. An appropriate LKF candidates and 
quadratic delay product terms are provided. Reference [32] studies the nonfragile sampling control 
problem for TSFS with parameter uncertainty. A new augmented LKF with sufficient sample data 
information has been constructed, which results in less conservative results. 

Recently, the research on sampled-data control systems for DPS has attracted widespread 
attention. In [33], A semi-globally practically asymptotically stable controller is designed using the 
integration and backstepping technique of the Euler approximation models. In [34], based on the Euler 
approximation model and nonlinear sampling control theory, a state feedback controller and an output 
feedback controller based on a reduced order observer are designed for DPS to stabilize the tracking 
error. In [35], the sampling control system was applied to the dynamic positioning ship, and the input 
delay method was combined with the Wirtinger integral inequality to obtain results with less 
conservatism. In [36], the control problem of a sampling system for DPS with actuator failure is 
discussed, and a sampling controller is designed to ensure the exponential stability of the system and 
meet the H∞ performance index. In [37], the fuzzy robust stability criterion of sampled-control systems 
for DPS is studied, and a fuzzy sampling controller is designed using an input time delay method to 
ensure that the system remains stable under external disturbances. In [38], the reliable tracking control 
problem for DPS based on nonperiodic measurement information is studied and the mean square 
exponential stability criterion is obtained. 

However, there is still much room for further study for the sampled-data DPS. Firstly, some 



6021 

Mathematical Biosciences and Engineering  Volume 21, Issue 5, 6019–6041. 

important characteristics are still overlooked, which include the features of sampling pattern and the 
effective characteristics of the constructed LKF. Secondly, the positivity limit of the Lyapunov matrix 
is strict, which will result in the conservatism of the system. 

Inspired by the above discussions, we aim to study the stability condition and controller design 
for sampled-data DPS with the T-S fuzzy model. In addition, we will construct an improved LKF by 
adding the new useful terms and introducing the reciprocally convex method. The main advantages of 
this article are be listed that: 

(1) To capture the features of sampling pattern fully, some novel terms, like

1 22
1

3
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  are introduced in the constructed LKF. 

(2) The tighter technique of reciprocally convex combination is introduced during the 
differentiation of LKF. Hence, the conservatism of stability criteria can be greatly reduced. 

(3) A second-order term 1 1( )( ) ( ) ( )T
k k k kt t t t x t N x t        related to time t is added during the 

construction of  V t , thereby a less conservative result is obtained.  

Notations: m  denotes m-dimensional Euclidean space, and “ T  ” represents the matrix 
transposition. “*” is a symmetric block matrix. 

2. Problem formulation 

Consider the dynamic equations for DPS as follows: 
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where  ( ) ( ) ( ) ( )
T

a at x t y t t  is the positions and heading angle in the northeast coordinate system 

respectively.  ( ) ( ) ( ) ( )
T

t p t v t r t   represents the surge, sway, and yaw velocity vector in the 

attached coordinate system (see Figure 1).  J   is the coordinate rotation matrix. ( )u t  is the control 

force vector; M   and D   denote the inertial matrix and damping matrix, respectively. G   is the 

mooring force matrix, and  1 2 3( ) ( ), ( ), ( )w t w t w t w t is the environmental disturbance including wind, 

waves, and currents. 
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Figure 1. Body-fixed coordinate systems. 

Remark 1. During the modelling of the ship, it can be considered that the interaction forces 
between the various points of action of the ship are ignored, that is, the ship is considered as a rigid 
body. Hence, the combination of forward, lateral, and turning motions with heave, roll, and pitch 
motions is neglected, and we only consider the three degrees of freedom plane motion of the DPS. 
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where 11 22 23 32 33 11 22 23 32 33 11 22 23 32 33, , , , , , , , , , , , , ,a a a a a d d d d d b b b b b  are constant. 

The global fuzzy models can be described as follows:  

O 
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Mode Rule i: IF 1( )z t  is i1f , ( )nz t  is inf , THEN 

( ) ( ) ( ) ( ), 1,2, ,i i wix t Ax t Bu t B w t i n                          (5) 

where 1 2 n( ), ( ), , ( )z t z t z t   represent the premise variables, ijf   is the fuzzy set, and n is the rules 

number.  
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where  sin 2   ,  cos 88   . The global fuzzy models are inferred such that: 
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The membership function of ( )t  is shown in Figure 2. 
 
 
 
 
 
 
 

 
 
 
 

Figure 2. Membership function of ( )t . 

Assuming that the states of the DPS are obtained at each sampling instant kt , the sampling time 

is assumed to be 

. 

The structure of the system is depicted in Figure 3. 
 
 
 
 
 
 
 
 
 

Figure 3. The structure of sampled-data DPS system. 
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Figure 4. The working principle of the DPS system. 

The system stability process is shown in Figure 4. It can be seen that the DPS fuzzy controller 
calculates the ship’s control force and moment based on the deviation between the desired and actual 
position and velocity of DPS. Then, the thrust allocation distributes control force and moment for DPS 
to generate the actual position and velocity under the environmental disturbances, which achieves the 
stability target of the system. 

Let d  represent the upper bound of the sampling interval, i.e., 

10 , 0, 0,k kt t d k d       

then we consider the following sampled-data controller 

1( ) ( ), ,k k ku t Kx t t t t                               (10) 

where K represents the controller matrix. Then the T-S fuzzy controller can be described that: 
Controller Rule 1: 
IF ( ) 0t  , THEN 

1( ) ( ).ku t K x t                                 (11) 

Controller Rule 2: 

IF ( )
2

t
  , THEN 

2( ) ( ).ku t K x t                                 (12) 

Controller Rule 3: 

IF ( )
2

t
   , THEN 

3( ) ( ).ku t K x t                                 (13) 

Hence, the overall fuzzy controller is inferred to be: 
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When the system has an uncertainty parameter, the system is converted into 
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Lemma 3 [41] Given matrices , ,T   , for any F  satisfying TF F L , the inequality is 

established 
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and only if there is a scalar 0  , then  
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3. Main results 

3.1. Stability analysis 

In the section, a novel LKF is constructed, and the stabilization condition of system (15) is 
proposed. To begin, the notation is defined as follows: 
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Proof. Consider the following LKF: 
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( ) ( )( ) ( ) ( )

( ) ( ) ( )

k k

k

T

t tT

t t

t T

t d

T
t

k t
k k

T
k k k k

T

x t x tP P
V t

x s ds P P x s ds

V t x s Qx s ds

x s x s
V t d t t M ds

x t x t

V t t t t t x t N x t

V t d x s Zx s d





                



   
      

   
     



 




 

 
0 t

d t
sd




  

 

Take the derivative of ( )V t , which yields 

   
 

1 2
1

2 3

1 2 2 3

3

( ) ( )
( ) 2

( ) ( ) ( )

2 ( ) ( ) 2 ( ) ( ) 2 ( ) ( ) 2 ( ) ( )

2 ( ) ( ) 2 ( ) ( )

k

k k

k

T
T

t
T

kt

T Tt tT T T

t t

TtT T
kt

x t x tP SR P
V t

x s ds x t x tP P

x t P x t x s ds P x t x t P x t x s ds P x t

x t SR x t x s ds P x t

               

   

 



 





 



  (27)
 

2( ) ( ) ( ) ( ) ( )T TV t x t Qx t x t d Qx t d                                      (28) 

 

 

 

3

11 12

22

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) 2 ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

k

k

T T
t

kt
k k k k

t

k kt

T
k k k k

x s x s x t x t
V t M ds d t t M

x t x t x t x t

x s M x s ds x t M x t x t

t t x t M x t d t t t M t 

       
           

       

   

    





   

             (29) 

 
 

4 1 1

1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

T T
k k k k k k k

T T
k k k k k k

V t d t t x t N x t t t x t N x t

d t t x t N x t t t x t N x t

          
          


                (30)



6029 

Mathematical Biosciences and Engineering  Volume 21, Issue 5, 6019–6041. 

2
5 ( ) ( ) ( ) ( ) ( )

tT T

t d
V t d x t Zx t d x t Zx t ds


                               (31) 

By Lemma 1, it can be obtained that 

 1
11 11( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) ( )

k

t T T T
k kt

x s M x s ds t t t XM X t t X x t x t                 (32) 

Then 

   
 

1
3 11 12

22

( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) 2 ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

T T T
k k k k

T
k k k k

V t t t t VM V t t V x t x t x t M x t x t

t t x t M x t d t t t M t

  

 

     

    


 

By Lemma 2, we have 

( ) ( ) ( ) * 2 ( )

* *

t T T T

t d

Z Z U U

d x s Zx s ds t Z U U Z U t

Z

 


  
       
  

              (33) 

where 

( ) ( ) ( ) ( )
TT T T

kt x t x t x t d      

then 

2
5( ) ( ) ( ) ( ) * 2 ( )

* *

T T T

Z Z U U

V t d x t Zx t t Z U U Z U t

Z

 
   

       
  

            (34) 

For any matrixes 1 2,G G , we have 

1 2
1 1

2 ( ) ( ) ( ) ( ( )) ( ( )) ( ) ( ) 0
r r

T T
i j i i j k

i j

x t G x t G x t t t A x t B K x t   
 

 
           

 
    (35) 

For any diagonal matrix 0D  , it can be obtained that 

   2 ( ) ( ) 0
T

k kLx t D Lx t                          (36) 

Then, from (27) to (36), we have 

 
3 3

1 1

( ) ( ( )) ( ( )) ( ) ( ) ( )T
i j

i j

V t t t t t t      
 

                (37) 

where 

     1
1 2 11 3

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )

k

k

tT T T T T T
k kt

T
k k k

t t t

t x t x t x t x t d x t

t t t t t V M V d t t





 

 

    
             

  

1 2 3, ,    is defined in Theorem 1. 
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By Lemma 2, we can derive a linear convex combination about ( )t , for all  ( ) 0,t d  , if 

  1 30 0d                               (38) 

  1
1 2 1( ) 0Td d V M V                         (39) 

Then,  ( )t  is negative definite. 

Following the Schur complement, (24) and (25) imply (38) and (39), which means that ( ) 0V t  . 

This proof is completed. 
Remark 1. In the constructed LKF, 1( )V t  and 2( )V t  are the general energy function of the system 

state, and it represents the energy changes of the system state and derivative from t d  to t . It is the 
foundation of the entire LKF. 5( )V t  symbolizes the relationship between state derivatives and time 

delay, and it is the foundation of time delay dependent stability standards. Additionally, 3( )V t  and 4( )V t  

include the characteristic of time delay, and they play an important role in obtaining the final solution. 

Remark 2. Compared with literature [42], two  1,k kt t    dependent terms like 

1 22
1

3

( ) ( )
( )

( ) * ( )
k

Tt
s

k
k kt

x s R R x s
t t e ds

x t R x t




     
      

     
  and 1 1( )( ) ( ) ( )T

k k k kt t t t x t N x t        are added in the LKF, 

which means that the available characteristic of sampling patterns are fully captured, and the LKF has 
a more general form. 

Remark 3. In some previously published papers (such as [43,44]), they used overly relaxed 

delimitation techniques when estimating some integral terms such as ( ) ( )
kt T

t d
d x s Zx s ds


    . However, 

this paper directly uses a tighter technique by reciprocally convex combination in Lemma 2. Besides, 
free matrices G and 1G  are proposed during the derivation procedure of LKF, which improves the 

design flexibility. Therefore, the conservatism of stability criteria can be greatly reduced. 

3.2. H  performance analysis 

To prove the robustness of the system, the following H  performance function is proposed 

2

0
( ) ( ) ( ) ( ) , 0

t T T
ywJ y s y s w s w s ds                           (40) 

where ( ) 0w t   and  2( ) 0,w t L  , and ( )y t  denotes the system output, and satisfies that 

3 3

1 1

( ) ( ( )) ( ( )) ( ),i j i
i j

y t z t z t C x t 
 

                       (41) 

Then, based on the Theorem 2, the system (15) can be proved to satisfy the robust performance 
with disturbances. 

Theorem 2: the system (15) is asymptotically stable, if there exist positive-definite matrices

1 2 3 4 5 ,
TT T T T TX X X X X X      1 2 11 12

1 2
3 22

, , , , , , , ,
* *

P P M M
P Q Z U S R N N M

P M

   
    

  
 , and given 

scale 0d  , such that 
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0
*

Z U

Z

 
 

 
                               (42) 

1 3 0d                                  (43) 

1 2

1
11

0
*

d dX

dM 

   
  

                        (44) 

where 

11 12 13 14 15

22 23 2

33 34 35
1

44

2

11 1 1 2 2 1

0

* 0 0

* * 0

* * * 0 0

* * * * 0 0

* * * * *
T T T T

i i

P

I

G A A G P P Q Z X C C



     
   
   

   
 

 
 

  
        







 

12 13 14 15 22 23 33 34 35 44         ， ， ， ， ， ， ， ， ，  are defined in Theorem 1. 

Prove: 

 

2

0

2

0

2

0

3 3

1 1

( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ( )) ( ( )) ( ) ( ) ( )

t T T
yw

t T T

t T T

T
i j

i j

J y s y s w s w s ds

y s y s w s w s V s ds V t

y s y s w s w s V s ds

t t t t t







      
 

   

     

    

   










               (45) 

where 

     1
1 2 11 3

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )

k

k

tT T T T T T T
k kt

T
k k k

t t t

t x t x t x t x t d x t w t

t t t t t V M V d t t





 

 

    
             





 

The proof is finished. 

3.3. Mode uncertainty analysis 

Next, Theorem 3 provides the stability conditions for systems with norm bounded uncertainty. 
Theorem 3: the system (15) is asymptotically stable, if there exist positive-definite matrices

1 2 3 4 5 ,
TT T T T TX X X X X X      1 2 11 12

1 2
3 22

, , , , , , , ,
* *

P P M M
P Q Z U S R N N M

P M

   
    

  
 , and given 

scale 0, 0d   , such that 
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0
*

Z U

Z

 
 

 
                               (46) 

1 3 0d                                  (47) 

1 2

1
11

0
*

d dX

dM 

   
  

                        (48) 

where 

11 12 13 14 15 1

22 23 2 2

33 34 35
1

44

* 0

* * 0ˆ
* * * 0 0

* * * * 0 0

* * * * *

T T
a a a b

T
b b

E E E E G D

P G D

E E

I

 





       
   
    

   
 

 
 

  

 

12 13 14 15 22 23 33 34 35 44         ， ， ， ， ， ， ， ， ， are defined in Theorem 1. 

Prove: replace A and dA  in (25) with ( ) aA DF t E  and ( ) bB DF t E , respectively. It can be 

obtained that: 

( ) ( ) 0T T TF t F t                      (49) 

where 

   1 2 0 0 0 , 0 0 0a bG D G D E E     

According to Lemma 3, if there exist a scale 0  , the following inequality holds 

1 0T T                                (50) 

According to Schu’s complement, Eq (48) is equivalent to Eq (50). The proof is completed. 

3.4. Controller design 

Then, the controller method can be obtained according to Theorem 4. 
Theorem 4: for a given scale 0d   , if there exist positive-definite matrices

1 2 3 4 5 ,
TT T T T TX X X X X X   

1 2 11 12
1 2

3 22

, , , , , , , ,
* *

P P M M
P Q Z U S R N N M

P M

   
    

  
, such that  

0
*

Z U

Z

 
 

 
                             (51) 

1 3 0d                                 (52) 

1 2

1
11

0
*

d dX

dM 

   
  

                     (53) 
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where 

11 12 13 14 15

22 23 2

1 33 34 35

44

2 3 22 3 3 1 3

3 23 23 3 1 3

11 2 2 1

12 1 2

13 12 3 1

14 4

15 3 5

* 0

* *

* * * 0

* * * * 0
T T

T T

T T T
i i

T T T
i

T T
i j

T

T

P

I M I I N I

I MI I N I

AG G A P P Q Z X

G GA SR P X

B K M Z U X X

UE X

P X



     
   
     
 

 
  

   

  

       

      

      

  

  

 
 

2
22

23 2

33 12 3

34 4

35 5 3

44

23

3

1 2

2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

, ,

( ) ( ) ( ) ( ) ( ) ( )
k

T

T

i j

T

T

T T

n

tT T T T T T
k kt

G G d Z

B K X

M Z U U X

Z U X

X P

Q Z

I
I

I

I I

L diag l l l

t x t x t x t x t d x t

 




    

  

     

   

   

   

 
  
 





    





 

then the system (15) with ( ) 0w t   is asymptotically stable. Moreover, the controller gain is 

1
j jK K G                                 (54) 

Proof: Define 
1 1

1 2

1 1 2 2

, , , { , } { , }, { , , } { , , },

, , , , , , .

G G G G K KG P diag G G Pdiag G G M diag G G G Mdiag G G G

D GDG Q GQG N GN G N GN G R GRG U GUG Z GZG

     

      
 

Let { , , , , , }Tdiag G G G G G G   and { , , , , , }diag G G G G G G  . By pre- and post-multiplying (24) 

respectively, (52) can be obtained. Let { , , , , , , }Tdiag G G G G G G G  and { , , , , , , }diag G G G G G G G , pre- 

and post-multiplying (25) respectively, (53) can be obtained. This completes the proof. 
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Remark 4. The system (15) can obtain less conservativeness than that in [45], which is mainly 
due to two results. First, during the construction of  V t  , a second-order term 

1 1( )( ) ( ) ( )T
k k k kt t t t x t N x t       related to time t is also added, which can reduce the conservatism of 

the results to some extent. Second, during the derivative of the LKF, the reciprocally convex 
combination method is used, which can obtain a more stringent derivative upper limit than Jensen's 
inequality, thereby less conservativeness will be achieved. 

4. Numerical examples 

To demonstrate the merits of the method, a practical example is carried out. The M and D is 
considered as follows [46]. 

1.0852 0 0 0.0865 0 0

0 2.0575 0.4087 , 0 0.0762 0.1510 ,

0 0.4087 0.2153 0 0.0151 0.0031

0.0389 0 0

0 0.0266 0 .

0 0 0

M D

G

   
        
      
 
   
  

 

Let 0sin 2   and 0cos88  , then 

1

0 0 0 1.0000 0.0349 0

0 0 0 0.0349 1.0000 0

0 0 0 0 0 1.0000
,

0.0358 0 0 0.0797 0 0

0 0.0208 0 0 0.0818 0.1224

0 0.0394 0 0 0.2254 0.2468

A

 
 
 
 

    
   
 

   

 

2

3

0 0 0 0.0349 1.0000 0

0 0 0 1.0000 0.0349 0

0 0 0 0 0 1.0000
,

0.0358 0 0 0.0797 0 0

0 0.0208 0 0 0.0818 0.1224

0 0.0394 0 0 0.2254 0.2468

0 0 0 0.0349 1.0000 0

0 0 0 1.0000 0.0349 0

0 0 0 0 0 1.0000

0.0358 0 0 0.0797 0 0

0 0

A

A

 
 
 
 

    
   
 

   




 



,

.0208 0 0 0.0818 0.1224

0 0.0394 0 0 0.2254 0.2468

 
 
 
 
 
 
  
 

   
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0 0 0

0 0 0

0 0 0
, 1,2,3.

0.9215 0 0

0 0.7802 1.4811

0 1.4811 7.4562

i wiB B i

 
 
 
 

   
 
 
 
 

 

The allowable maximum sampling interval is an important control performance index of the 
sampled-data system. A longer sampling period indicates a lower communication burden and fewer 
time consumption of the actuator, which helps to save energy, time and so on. Table 1 lists the results 
which uses different methods to obtain the maximum sampling internal. From Table 1, it can be seen 
that the sampling internal in Theorem1 improves [36–38] about 189.2%, 173.86%, and 35.9%, 
respectively, which means that the designed fuzzy controller is beneficial to obtain a larger maximum 
sampling interval. 

Table 1. Maximum sampling internal for different methods. 

Method [36] [37] [38] Theorem 1 

d 0.25 0.264 0.532 0.723 

Assume the initial value of the system that  ( ) 15 15 0.2 0 / 0 / 0 /sx t m m m s m s s   . 

Then, the gain can be computed such that 

1

2

0.0281 0.0444 0.0339 0.7195 0.0002 0.0003

0.0708 0.0085 0.0457 0.0004 1.3877 0.2656

0.0142 0.0074 0.0088 0.0001 0.2795 0.1371

0.0123 0.0166 0.0170 0.7473 0.0002 0.0000

0.0228 0.0281 0.0790 0.0002

K

K

      
    
    
  

  

3

1.4402 0.2745

0.0047 0.0002 0.0029 0.0001 0.2900 0.1421

0.0123 0.0166 0.0170 0.7473 0.0002 0.0000

0.0228 0.0281 0.0790 0.0002 1.4402 0.2745

0.0047 0.0002 0.0029 0.0001 0.2900 0.1421

K

 
 
 
   
   
    
   

 

To demonstrate the control performance of the proposed method, Figures 5–10 present the 

comparison results with LKF in [36]. From Figures 5–10, it illustrates that the system state ( )sx t  

reaches the expected values within approximately 10 seconds, while [36] achieves the desired target 
and requires a longer time. This indicates that the response speed in the proposed method is faster. 
Besides, the system’s oscillation amplitude is smaller, which indicates that our result has good anti-
interference ability under environment disturbance. In addition, Figures 5–10 further illustrate that the 
proposed method has more preferable control performance. 



6036 

Mathematical Biosciences and Engineering  Volume 21, Issue 5, 6019–6041. 

 

Figure 5. Time response of the x position. 

 

Figure 6. Time response of the y position. 

 

Figure 7. Time response of the yaw angle. 
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Figure 8. Time response of the surge velocity. 

 

Figure 9. Time response of the sway velocity. 

 

Figure 10. Time response of the yaw velocity. 
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5. Conclusions 

The stabilization issue for fuzzy DPS with sampled-data is studied. To reduce the conservative 
and improve the sampling interval, a novel LKF is constructed by adding some integral terms, which 
can utilize the information of actual sampling modes fully. Then a fuzzy sampling control scheme is 
proposed. By introducing free matrices and reciprocally convex approach, the conservatism of the 
system is reduced. Simulation research demonstrates that the proposed method can achieve better 
control performance. However, the proposed methodologies didn’t consider the lower bound of the 
sampling interval, and some matrix in the LKF are still required to be positive definite. Additionally, 
how to avoid the emergence of hierarchical phenomena in the system is an urgent problem to be solved. 
Furthermore, we will improve the LKF and discuss the aperiodic sampled-data control problem for 
DPS, which both considers the lower and upper bound of the sampling interval. 
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