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Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been evolving rapidly
after causing havoc worldwide in 2020. Since then, it has been very hard to contain the virus owing to
its frequently mutating nature. Changes in its genome lead to viral evolution, rendering it more resistant
to existing vaccines and drugs. Predicting viral mutations beforehand will help in gearing up against
more infectious and virulent versions of the virus in turn decreasing the damage caused by them. In
this paper, we have proposed different NMT (neural machine translation) architectures based on RNNs
(recurrent neural networks) to predict mutations in the SARS-CoV-2-selected non-structural proteins
(NSP), i.e., NSP1, NSP3, NSP5, NSP8, NSP9, NSP13, and NSP15. First, we created and pre-processed
the pairs of sequences from two languages using k-means clustering and nearest neighbors for training a
neural translation machine. We also provided insights for training NMTs on long biological sequences.
In addition, we evaluated and benchmarked our models to demonstrate their efficiency and reliability.

Keywords: neural machine translation; recurrent neural networks; long short-term memory; gated
recurrent units; mutation prediction; SARS-CoV-2

1. Introduction

COVID-19 is known as the biggest pandemic of the 21st century caused by SARS-CoV-2 (severe
acute respiratory syndrome coronavirus 2) which is responsible for more than 6.9 million deaths and
more than 770 million infections worldwide since its onset [1]. The first-ever case was reported in
November 2019 and, for almost three years, the world has suffered a lot because it is hard to contain
the virus due to its frequently occurring mutations and complex mechanism of action.

Viruses are known as obligate intracellular parasites that neither belong to living nor non-living
organisms due to their unique course of reproduction. They behave like living beings and reproduce
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only when they are inside their host but remain dormant otherwise like non-living beings. SARS-
CoV-2 belongs to the category of ss(+)RNA (single-stranded) viruses having a size of 29.9 Kb [2],
its genome contains 12 functional open reading frames (ORFs) constituting ∼30,000 nucleotide base
pairs, 38% GC content with 11 protein-coding regions and 12 expressed proteins. It has four major
structural proteins, i.e., spike (S), envelope (E), membrane (M), and nucleocapsid (N), appearing in
an order of 5′ to 3′; considered as the foremost vaccine and drug targets. In the genome, ORF1a and
ORF1ab hold the viral nucleotide content; ORF1a along with ORF1b also encode polyproteins pp1a
and pp1ab upon a ribosomal frame-shift between them. These polyproteins are then processed by
viral proteinases to produce 16 non-structural proteins which have been found well-conserved in the
coronavirus family [3].

The probability of a genetic change being passed to the next generation is known as the
mutation rate in organisms; whereas, in viruses, one generation refers to the host cell infection
cycle which comprises attachment, penetration, uncoating, gene expression, replication,
encapsidation, and release [4]. Apart from replication, mutations can also occur from genome editing
or rapid RNA/DNA damage and when these changes are left uncorrected these are transferred to the
next viral generation. Some mutations are beneficial, some are neutral, while others are deleterious
but higher mutation rates result in higher genetic diversity. RNA viruses are more prone to genetic
variations as compared to DNA viruses, therefore, a small escalation in their mutation rates can cause
an RNA virus strain to wipe off locally [5]. Cellular organisms have exonucleases that are responsible
for correcting the nucleotide misincorporations that occur during the process of replication. Most of
the viral RNA replicases lack proofreading activity, therefore, the absence of 3′ prime exonucleases
causes a rise in the mutation rate of RNA viruses as compared to the DNA viruses, contributing to the
immense number of SARS-CoV-2 variants and its high infectivity [6].

Predicting viral mutations can help a lot in understanding the course of the pandemic by
identifying potential drug targets and rapid vaccine development. Statistical learning and probabilistic
models were used for mutation prediction like indels or substitutions to get insights into sequence
evolution [7]. Over time, new methods have been designed for mutation prediction tasks in genomic
sequences such as statistical relational learning where mutation data is associated with drug resistance
information related to the nucleoside and nonnucleoside human immunodeficiency viruses (HIV)
reverse transcriptase inhibitors [7]. Such methods are dependent on general engineering techniques
such as “rational designs” to induce site-specific mutations. Mutation prediction has also been
performed on the influenza virus genome; time-series mutation prediction model (Tempel) is one such
example that makes use of LSTMs (long short-term memory units) with an attention mechanism. This
study was further topped by a classification model that discriminates whether a mutation is imminent
in the genomic sequences or at specific residue sites of the influenza virus genome for months or
not [8]. In our current study, the data preprocessing part has been inspired by the work done in
Tempel. In the literature, the mutation prediction task has been performed using a deep neural
network, cause and effect relationship, and randomness [9]. Apart from using deep neural networks to
predict new viral strains, rough set theory has been used to extract point mutation patterns [10].
Recently, there have been rapid advancements in the field of NMT which have also escalated the
prediction of mutations and their assessment in diverse ways. This includes using large language
models (LLMs) to: study viral escape [11, 12], identify high-risk SARS-CoV-2 variants [13], predict
mutations in the SARS-CoV-2 genome [14], predict antigenic evolution in the SARS-CoV-2 genome
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and revealing its evolutionary dynamics [15, 16], predict evolutionary dynamics of proteins [17],
predict protein structure over evolutionary information [18, 19], decipher gene regulatory code as one
gene can produce various proteins [20], and predict the molecular phenotype [21].

So far, NMT applications (seq2seq) related to mutation prediction focus on the prediction of the
mutations in the influenza virus, Newcastle disease virus, and SARS-CoV-2. The previously proposed
models related to machine translation are imprecise in two ways, their training data and their
evaluation, i.e., the input and output language have common sequences which creates a bias while
making predictions from the decoder, and there is no proper evaluation measure based on which
models are evaluated as accuracy is not an appropriate measure to evaluate NMT models.
Furthermore, their models do not utilize attention mechanisms which suggests that their models are
not information-rich enough to predict diverse mutations [22–24] like ours. Finally, these models are
trained on the protein sequences which means that silent mutations cannot be predicted by these
models. Contrary to seq2seq modeling, LLMs have been used not only to study the evolution of viral
genomes, but also to study the evolutionary dynamics of eukaryotic genomes and proteomes [17–21].
However, LLMs used for mutation predictions are more complicated than seq2seq models as they
have a wider range of parameters to be tuned and are more computationally expensive. Therefore, in
this study, we are using bidirectional gated recurrent units (GRUs) with an attention mechanism to
predict mutations in the SARS-CoV-2 genome specifically targeting only seven non-structural
proteins (NSPs), i.e., NSP1, NSP3, NSP5, NSP8, NSP9, NSP13, and NSP15. Our proposed model
(stacked biGRU with an attention mechanism) is not only less computationally expensive but is also
simpler in terms of fine-grained control over architecture and training than LLMs alongside providing
good predictions.

We first tried three unidirectional models (RNNs, LSTMs, and GRUs) to predict mutations. Based
on slightly better convergence than RNNs and LSTMs, we opted for the GRU model and applied
the attention mechanism. Since uni-directional models had convergence issues, we incorporated a
bidirectional feature to obtain the proposed model which shows superior performance.

The paper is structured as follows: First, we explain neural machine translation (NMT) and recurrent
neural networks (RNNs). Next, we describe data processing by the use of machine learning algorithms
for the creation of sequence pairs. Following this, the workings of the proposed models are explained.
The significance of the results is elaborated in the discussion section and, lastly, the conclusion marks
the end of the paper.

2. Materials and methods

This section describes the protocol adopted for the current study. Figure 1 gives an overview of the
workflow. The integrants of this figure are explained in detail.

Mathematical Biosciences and Engineering Volume 21, Issue 5, 5996–6018.



5999

Figure 1. Workflow of the current study. Genomic sequence data of seven SARS-CoV-2
proteins is taken from the Global Initiative on Sharing All Influenza Data (GISAID), only
belonging to Germany. It is clustered via k-means clustering in terms of months to keep
the evolutionary relation intact between the sequences. Two relevant protein sequences are
part of one pair which is used to train the recurrent neural networks to perform machine
translation task.

2.1. Neural machine translation

Neural machine translation is a famous approach for machine translation problems where an
end-to-end trained model learns the meaningful information from the source text and uses it to
output its correct translation. Neural networks are used for this purpose which require very little
supervision. Unlike the conventional MT models, NMT works by training a single and large
neural network that translates the source text into target text correctly/suitably. The NMT model
comprises an encoder network and a decoder network. The encoder reads a source string and
encodes it into a vector of fixed length known as a context vector. The context vector is taken by the
decoder to provide a translation. Encoder and decoder networks are trained together to maximize the
probability of a correct translation [25]. One way to perform machine translation tasks is through
sequence-to-sequence (seq2seq) models.
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2.1.1. Seq2seq modeling

Sequence-to-sequence models are mainly used for language processing tasks, usually implemented
with recurrent neural networks (RNNs) or their modified variants like LSTMs or GRUs, etc. Upon
giving a sequence of inputs (s′1, s

′
2, s
′
3, ..., s

′
T ), sequence-to-sequence models generate a sequence of

outputs (s1, s2, s3, ..., sT ) known as source and target sequences, respectively. Seq2seq models can be
demonstrated as conditional language models:

P(s1, s2, ..., sT , | s′) =
T∏

t=1

p(st | s<t, s′), (2.1)

where p(st|s<t, s′) denotes the probability for the output token, given the input sequence s′ and prior
outputs s<t.These models comprise encoder and decoder parts. The encoder is a recurrent neural
network and its task is to learn meaningful patterns from the source language and pass it to the
decoder. The decoder is a recurrent neural network as well, but it takes a hidden state vector from the
encoder and constructs a sequence from the target language, see Figure 2. One drawback is that
sequence-to-sequence models suffer from information loss if the length of the input sequences is very
long. Thus, to cater to this issue, attention mechanism was proposed [25]. Attention allows the model
to focus on those parts of the source sequence where precise relevant information is present by using
context vectors. The conditional probability changes to

P(s1, s2, ..., sT , | s′) = softmax(Wp[ĥt, ct]), (2.2)

where Wp represents the learnable weight matrix, [ĥt, ct] represents the concatenated vector, ĥt is the
hidden state of the decoder vector at time point t, and ct denotes the context vector.

This was extended by incorporating local and global attention mechanisms by Luong et al. [26].
According to Luong’s attention, the context vector ct at each time step t is computed for the output
sequence and depends on the attention scores eti associated with it. It is the weighted sum of hidden
states of encoder hi where attention weights ati are used as weights:

ct =

m∑
i=1

αtihi, (2.3)

where hi represents the hidden state of the encoder at time step i, and attention weights are computed
by applying softmax to the attention scores,

ati =
exp(eti)∑m

k=1 exp((etk)
, (2.4)

where m is the length of the source sequence and k represents the individual position in the source
sequence, and eti = ĥT

t hi where ĥT
t represents the transpose of the hidden state of the decoder at time

step t. The context vector is concatenated with the hidden state of the decoder and used as input for the
next layer:

[ĥt, ct] = concat(ĥt, ct). (2.5)
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Figure 2. Components of the study: (a) simple LSTM, (b) simple GRU, (c) vanilla RNN, (d)
seq2seq translation, and (e) a snapshot of genome sequence data.

2.2. Recurrent neural networks

Recurrent neural networks (RNNs) are neural networks used to model sequential or time series data
and are adapted from standard feed-forward networks. The most important component of an RNN is
its hidden state which integrates information over several time points aiding in accurate and precise
predictions. For each sequence and time point, it works recursively by taking the input (xo, x1, . . . , xt),
updating the hidden state (ho, h1, . . . , ht), and predicting an output (yo, y1, . . . , yt). So for each time point
from 0 to t, RNN works by iterating:

ht = tanh(whxxt + whhht−1 + bh), (2.6)

yt = wyhht + by, (2.7)

where, whx, whh, and wyh is input to hidden, hidden to hidden, and hidden to output weight matrices,
respectively. bh and by represent the bias vectors. An RNN unit is shown in Figure 2.

RNNs are trained by computing gradients via backpropagation through time, but sometimes
gradients become too large (exploding gradients) or too small (vanishing gradients) ceasing the model
to learn. The former can be fixed by simply truncating the gradients; whereas, the latter makes RNNs
unsuitable for learning long-term dependencies [27].
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2.3. Long short-term memory units

Long short-term memory units (LSTMs) were proposed to resolve the vanishing gradient problem
of RNNs, by introducing a cell state (incorporating long-term memory) with three logic gates (forget,
input/update, and output gates) alongside a hidden state (which refers to short-term memory) for
previous and current time points. For each time point, LSTM iterates by updating three gates. Forget
gate ft determines the extent up to which existing memory is forgotten:

ft = σ(w f · [ht−1, xt] + b f ). (2.8)

Input gate it regulates the amount of new content to be stored in the cell state ct, followed by the
generation of a candidate cell state c̃t which ultimately leads to the updation of the old cell state to a
new one, i.e., ct:

it = σ(wi · [ht−1, xt] + bi), (2.9)
c̃t = tanh(wc · [ht−1, xt] + bc), (2.10)
ct = ftct−1 + itc̃t. (2.11)

Output gate ot determines the amount of information required to be output in the form of hidden
state ht, computed as:

ot = σ(wo · [ht−1, xt] + bo), (2.12)
ht = ot(tanh(ct)). (2.13)

An LSTM unit is shown in Figure 2. Unlike RNNS, LSTMs keep updating their context
vector values by incorporating a cell state which makes them suitable for learning long-term
dependencies [28].

2.4. Gated recurrent units

Gated recurrent units (GRUs) are simpler versions of LSTMs that capture the dependencies of
various time scales adaptively. Unlike LSTMs, GRUs have two gates, i.e., the update and reset gate.
The update gate is simply the coalescence of the input and forget gates of LSTM. It also merges
the hidden state and cell state of LSTM into one state ht. GRU generates ht for each time point by
updating these two gates, where update gate zt determines which new information to keep and which
past information to get rid of, whereas, reset gate rt ascertains how much past information to forget [28].
See the GRU unit in Figure 2. For a given time point t, both gates are computed as:

zt = σ(wzhht−1 + wzxxt), (2.14)
rt = σ(wrhht−1 + wrxxt). (2.15)

Activation of candidate state h̃t is done as:

h̃t = tanh(wh(rt · ht−1) + wxxt). (2.16)

Generation of the new state ht is a linear interpolation of the previous and candidate state, as:

ht = ht−1(1 − zt) + zth̃t). (2.17)
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2.5. Data

2.5.1. Target proteins

SARS-CoV-2 is composed of structural and non-structural proteins. The former, as the name
indicates, participate in making the viral structure while the latter are responsible for viral replication
and assembly processes. For mutation prediction, we chose non-structural proteins as their tendency
to mutate is few and far between as compared to structural proteins. Out of 16 NSPs, we chose 7
depending on their functionality; namely NSP1, NSP3, NSP5, NSP8, NSP9, NSP13, and NSP15, see
Figure 3. NSP1 is mainly responsible for suppressing host innate immune functions and promoting
viral protein translation. Therefore, it is known as the host shut-off factor [29]. NSP3 also disrupts the
host immunity by inhibiting IFN (interferons) production and modifying the endoplasmic reticulum to
double-membrane vesicles (DMVs) [30]. NSP5 works as the main protease, cleaving ORF1ab to
generate more NSPs [31]. NSP8 promotes virus replication by making complexes with NSP6 and
NSP7. It is also responsible for the identification of virus inhibitors [32]. NSP9 is a replicase enzyme
blocking mRNA export of the host, and also dampens cytokine and interleukin-1α/β production to
avoid activation of the host immune system [33]. NSP13 blocks interferon activation, downregulates
IFIT1 protein expression, and reduces NF-κβ activation in the host [34]. NSP15 works as an RNA
endonuclease that evades the host’s innate immune response and antagonizes interferon [35].

2.5.2. Data collection

The SARS-CoV-2 nucleotide sequences used in this study were downloaded from the GISAID
repository [36]. GISAID (Global Initiative on Sharing All Influenza Data) was established initially
to provide influenza virus genomic data worldwide which was further expanded to the provision of
SARS-CoV-2 genomic data after the pandemic in late 2019. The selected NSPs’ nucleotide sequences
were downloaded in the fasta format limited to Germany only.

2.5.3. Data preprocessing

Data was preprocessed separately for each NSP as their sequence lengths vary. Following the
removal of redundant sequences, nucleotide sequences were further subjected to the removal of
sequences with inappropriate lengths or those carrying unidentified nucleotides, e.g., ‘NN’, ‘XX’, etc.
Then sequences were separated based on the months they were reported in, and in this study, we have
taken sequences from January 2020 until May 2021 for training and from June 2021 until March 2022
for evaluation purposes. There were a total of 876,554 sequences and we were left with 20,079
training sequences after removing duplicates. Contrary to this, for evaluation, we had 2,164,077
sequences which were reduced to 38,372 after removing duplicates. For further insights into the data,
please see Table S1. Since a single nucleotide in the sequence itself does not carry meaningful
information and appears just as a character, each nucleotide sequence was transformed into a
sequence of codons, i.e., a fusion of three consecutive nucleotides.
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Figure 3. Protein structures of (a) NSP1 (PDB ID: 7K7P) [37], (b) NSP3 (PDB ID:
7NFV) [38], (c) NSP5 (PDB ID: 7MHF) [39], (d) NSP8 (PDB ID: 7JLT) [40], (e) NSP9
(PDB ID: 7BWQ) [41], (f) NSP13 (PDB ID: 7RE1) [42], (g) NSP15 (PDB ID: 6VWW) [43].
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2.5.4. Clustering

For seq2seq translation, we need a pair of two sequences where the first one belongs to the
source language, and the other belongs to the target language, i.e., mutated/evolved sequences of
SARs-CoV-2. To create the dataset for our seq2seq machine translation task, we applied k-means
clustering on all sequences for every month and generated ‘N’ number of clusters in each month. We
computed immediate neighbors of sequences using nearest neighbors, i.e., cluster C j, j ∈ {1, ...,N}
from month mi can have two immediate neighbors (clusters Cl, l ∈ {1, ...,N}) from month mi + 1. To
consider only biologically realistic evolutionary behaviors, we computed Euclidean distance for each
sequence s from cluster C j of month mi to sequences from the two immediate neighbors (clusters)
from month mi + 1, i.e.,

0.5 ≤
∥∥∥s j,i − sl,i+1

∥∥∥ ≤ 3, (2.18)

where ∥·∥ represents the Euclidean norm and threshold values 0.5 and 3 are chosen for the selection of
sequences in a pair based on this assumption that a virus can have only a few mutations in a month. The
distances that are beyond the threshold may depict unrealistic mutations. The process is repeated for
all of the sequences of each selected NSP, thus forming a diverse dataset containing various mutations.
Please find the script in the supplementary information.

2.6. Training

All of the models have been trained on Nvidia V100 series GPUs. The training time varies according
to the length of the sequences and size of the batches. We have used Adam optimizer for all of our
models with a learning rate of 0.0001. We configured the optimizer with default values of decay
(0.9, 0.999) and eps (1e-08). For all seven datasets (selected target proteins), the baseline models
have been trained for 8000 epochs. The train and test split ratio has been 75 and 25, respectively, for
each protein. For smaller sequence lengths, the models show convergence of validation loss but, for
longer sequence lengths, models are prone to overfitting and poor learning capabilities, not ensuring
any convergence in terms of validation loss even at a higher number of epochs. Figure 4 shows the
training of the baseline models for NSP1 ((a)–(c)) and NSP3 ((g)–(i)) being the smaller and larger
protein length sequences from our targeted proteins, respectively. Training of the baseline models
with the other five datasets is shown in Figures S1–S3. For stacked bidirectional GRUs, models for
individual proteins have been trained for 2200 epochs. The shorter the length of the protein, the faster
the validation loss of the model converges. Figure 4 (m),(n) shows model loss convergence for NSP1
and NSP3, and Figure S4 shows the remaining five proteins. Negative log-likelihood is used as the
loss function for all of the baseline models. Bilingual evaluation understudy (BLEU) scores have been
incorporated to evaluate the models.
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Figure 4. Baseline models and BiGRUs (a) vanilla RNN loss convergence with NSP1, (b)
simple LSTM loss convergence with NSP1, (c) simple GRU loss convergence with NSP1,
(d) BLEU scores for vanilla RNN with NSP1, (e) BLEU scores for simple LSTM with NSP1,
(f) BLEU scores for simple GRUs with NSP1, (g) vanilla RNN loss convergence with NSP3,
(h) simple LSTM loss convergence with NSP3, (i) simple GRU loss convergence with NSP3,
(j) BLEU scores for vanilla RNN with NSP3, (k) BLEU scores for simple LSTM with NSP3,
(l) BLEU scores for simple GRUs with NSP3, (m) BiGRUs loss convergence with NSP1, (n)
BiGRUs loss convergence with NSP3, (o) BLEU scores for BiGRUs with NSP1, (p) BLEU
scores for BiGRUs with NSP3.
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2.7. Evaluation

The BLEU score has been used as an evaluation metric that measures the similitude between a
reference and predicted sequence in machine translation tasks. It is a standard method for language
translation evaluation ranging between 1.0 and 0.0. A score closer to 1.0 means higher similarity while
a score closer to 0.0 means higher dissimilarity. It is language-independent, efficient, computationally
inexpensive, and shows a high correlation with human evaluation [44]. The BLEU score for given
and reference text corpus can be calculated by multiplying the brevity penalty (BP) with the geometric
average of n-gram precision scores (pn):

BLEU = BP · exp

 N∑
n=1

wnlogpn

 , (2.19)

where w represents positive weights for n-grams, and BP can be computed as:

BP =

1 if c > r

e1− r
c if c ≤ r

. (2.20)

Here, c shows the length of the predicted sequence, whereas r is the length of the reference sequence.
We set the BLEU score for 11 different n-grams (1 to 11). 1 to 10 are the usual n-grams, where the
number shows the pair length, but the last one is a mixture of all of the first 10-grams.

3. Results

3.1. Implementation

3.1.1. Baseline RNN, GRU, and LSTM

We have proposed three baseline models for seq2seq translation to predict mutations in the
SARS-CoV-2 genome. They are, namely, vanilla RNNs, simple LSTMs, and simple GRUs, and all
baseline models share the same architecture. They comprise of an encoder and a decoder similar to a
usual NMT-based sequence-to-sequence translation model. The encoder is comprised of a single
unidirectional layer of RNN and an embedding layer. The embedding layer takes tokens of linearly
encoded nucleotide trigrams and converts them into 128-sized 1-dimensional vectors. These vectors
are passed through the recurrent layers with a hidden state of size 256. The hidden states from the
RNN layer are passed to the decoder of the model. The decoder comprises an embedding and an RNN
layer. The RNN layer is coupled with a linear layer having a softmax function as the activation
function. The softmax function helps in identifying the most meaningful word (a trigram of
nucleotides) at a certain time stamp. In addition, the decoder is fed with the hidden states of the
encoder such that the most useful words can be retrieved during the process of translation by
computing the attention scores and context vector. The decoder-encoder architecture is trained with
the help of teacher forcing to have appropriate convergence.

3.1.2. Stacked bidirectional GRUs

Due to the simplicity and inability of baseline models to capture complex feature distribution, we
created stacked bidirectional GRUs by stacking the identical layers of the model to make a deep model.
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Such a model is capable enough to learn the complex feature patterns existing in the training data. The
model is comprised of an encoder and a decoder, where the encoder consists of one embedding layer
and two layers of bidirectional GRUs containing 256 neurons in each layer. Whereas, the decoder
contains embedding, attention, GRU, and linear layers. The embedding size is the same as the encoder
where a dropout of 0.2 is used. The regularized vectors are passed through linear layers inspired by
Luong’s attention. Followed by computation of the attention, these values are passed to the GRU
layers and ultimately to the linear layer where log softmax has been used as an activation function.
This makes the model solve a classification problem where the goal is to find the most probable word
in a specific time stamp. According to our experiments, the regularization does not affect the training
process a lot, but the length of the hidden size for the GRUs and the embedding size can affect the
overfitting of the model by reducing the size of the vectors.

According to our experiments, the models perform quite well with the use of bidirectionality and
only 2 stacked layers. All of the models have been implemented using Pytorch and Scikit-learn with
Python as the base programming language. We evaluate our models based on the validation and training
loss and BLEU scores. The baseline models work in the usual way as the RNN-based encoder-decoder
architecture works, i.e., by simply passing the hidden states from the encoder to the decoder. In the
case of bidirectional models, the two hidden states, i.e., those based on past and future events, are
concatenated with each other from the deep layer of RNNs and then passed to the decoder. This way,
the stacked models can learn more about the hidden state vectors. The predictions from the baseline
models are not adequate for biological analyses as the models take longer to converge and show poor
BLEU scores. Training results for all of the baseline models with each non-structural protein are given
in Figures S1–S3.

The computational complexity for stacked bidirectional GRUs is O(2nd2) and for the attention
mechanism is O(nencndecd), which makes the total complexity of our model O((2nd2) + (nencndecd)).
Here, n is the sequence length, d is the size of the hidden states, nenc represents the length of the
encoder sequences, and ndec represents the length of the decoder sequences. The 2 in the notation
depicts that the complexity has been doubled because the input sequence is processed in both
directions, i.e., forward and backward. Since we have chosen seven non-structural proteins in the
current study and trained the models separately, the nenc and ndec will be different for each protein as
per the protein length. However, for each protein, the length of these variables will be the same. The
complexity of all seven stacked biGRU models is given in Table S2. Computational complexity
increases with an increase in the length of the input sequences, however, the computational scalability
in terms of resource utilization and model efficiency remains the same. In terms of time, it decreases.
The longer the sequences, the greater the time required to execute them.

3.2. Evaluation of the stacked BiGRUs

For the evaluation of the models, we created a new dataset by collecting nucleotide sequences of a
future (concerning the period considered for the training set) time duration, i.e., from June 2021 until
March 2022. Thus, obtained data not only consists of new unseen sequences but also consists of
mutations that were not present in the period, i.e., January 2020 until May 2021 considered for the
training set. Consequently, the evaluation sequence truly represents the evolved/mutated RNA
sequences of SARs-CoV-2. The collected data represent raw evaluation sequences which are then
subjected to the preprocessing and clustering steps outlined in Sections 2.5.3 and 2.5.4, respectively.
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Based on this, we obtain a labeled evaluation dataset consisting of a source sequence and its
associated mutated sequence for seven non-structural proteins, namely NSP1, NPS3, NSP5, NSP8,
NSP9, NSP13, and NPS15. Following this, we feed the (protein-specific) stacked-BiGRU model with
the corresponding protein input sequence to obtain a prediction of a most likely mutated nucleotide
sequence. The obtained predictions are compared with the ground truth sequence using the BLEU
score metrics. The obtained scores are shown in Table 1 and also depicted as bar plots in Figure 5.
Based on these scores, we see that the prediction of the stacked BiGRUs is good for all of the
proteins. For proteins NSP8 and NSP9, the 9 and 10-gram scores are relatively poor with NSP8
showing below-acceptable performance having values below 0.6 for 9 and 10-gram scores.

Table 1. Average BLEU scores of the stacked BiGRUs predictions with respect to the ground
truth sequences.

Protein 1-gram 2-gram 3-gram 4-gram 5-gram 6-gram 7-gram 8-gram 9-gram 10-gram 11-gram
NSP1 0.997 0.986 0.976 0.963 0.957 0.951 0.945 0.94 0.934 0.928 0.957
NSP3 0.998 0.996 0.991 0.982 0.971 0.96 0.951 0.944 0.937 0.93 0.966
NSP5 0.992 0.982 0.966 0.938 0.917 0.901 0.887 0.874 0.861 0.847 0.915
NSP8 0.976 0.953 0.914 0.861 0.785 0.702 0.648 0.607 0.57 0.542 0.74
NSP9 0.969 0.933 0.904 0.855 0.813 0.781 0.754 0.731 0.71 0.693 0.809
NSP13 0.999 0.998 0.997 0.996 0.995 0.994 0.993 0.992 0.991 0.99 0.994
NSP15 0.999 0.998 0.997 0.996 0.995 0.994 0.992 0.991 0.99 0.989 0.994

Figure 5. Average BLEU scores of the stacked BiGRUs on the evaluation set.
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Figure 6. Mutation frequency at different amino acid positions of the reference genome. The
top subplot indicates the mutation frequency of the input sequence (green stem plots) while
the lower subplot denotes the mutation frequency of the target (gray) and predicted sequences
(magenta) stem plots, respectively.
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After performing the above direct evaluation between the predicted and the ground truth sequence,
we next want to evaluate the qualitative difference in the translated amino-acid (AA) sequence. To
this end, for the above-mentioned seven proteins, we translate the predicted nucleotide sequence to
the corresponding AA sequence corresponding to the respective protein. Next, we compare the so-
obtained mutated AA sequence (Âp

seq) with that of the reference AA sequence (Ap
seq) obtained from the

base reference (protein specific indexed by p) nucleotide sequence of SARS-CoV-2 and aim to obtain
frequency/number of mutations at a given amino acid position of the reference genome. To this end, we
perform a string matching of the two sequences, i.e., Ap

seq with Âp
seq, and determine the positions where

there are differences between the two. This provides the count/frequency f of mismatch at a particular
position x of the reference AA sequence Ap

seq. Thus, by summing the mutation counts at a given
position across all predicted sequence samples, we obtain the mutation frequency/density f (t, x) for
some future time t > t0 and position x of an AA chain representing the protein. Accordingly, we have
that f (t0, x) denotes the mutation frequency corresponding to the source/input nucleotide chain, f (t, x)
for t > t0 denotes the mutation frequency corresponding to the target/output/ground-truth/measured
nucleotide chain, and f̂ (t, x) for t > t0 denotes the mutation frequency of the predicted nucleotide
sequence. It is worth noting that the source/input nucleotide sequence (i.e., the sequence fed to the
network as input) may have non-zero mutation frequency since the obtained data is that of a mutated
virus, thus having differences with respect to the reference nucleotide sequence. Figure 6 depicts stem
plots for the mutation frequency of the predicted sequences and the ground truth nucleotide sequences
for all seven proteins. Based on this, we see that the obtained predictions are able to detect some of
the point mutations in the amino-acid chain. In the case of NSP3, we see that the location of several
point mutations, i.e., x ∈ {183, 646, 890, 1159, 1412, 1682, 1867}, were correctly predicted although the
counts (i.e., the actual frequency) vary a bit from the ground truth. Similarly, for NSP5, the location
of the point mutations matches for x ∈ {157, 213, 242}, for NSP15 at x ∈ {11, 132, 264}, and so on.
Predicted frequently occurring point mutations for all targeted proteins are shown in Figures S5–S11.

Correspondingly, the precision and recall scores depicted in Table 2 indicate the high reliability of
the model within 2–3 units of positional error. This is confirmed by the precision score, where we
see above 80% precision for detecting the point mutations within the 2 units of accuracy and 100%
precision for detecting within 3 units of accuracy for all of the target proteins. On the other hand, the
recall scores (for detecting point mutations) are pretty low with less than 20% for proteins with an
AA sequence length of more than 200. However, NSP8 and NSP9, which have AA sequence lengths
less than 200, have recall scores up to 87% and 73% (for point mutations of at most 3 units of error).
This indicates that the model is highly selective, especially for proteins with higher sequence lengths
(> 300) of its corresponding AA (indicated by the Selectivity column of Table 2), and only detects
mutations that are positionally precise.

Based on these observations, we can conclude that the stacked BiGRUs do a fairly good job at
predicting practically relevant predictions of plausible mutations. Furthermore, whenever the model
detects a mutation, it seems to be of high precision, with at most 3 units of positional error, thus
providing a good indication of the validity of the model and its usefulness.
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Table 2. Precision and recall scores for the position of point mutations detected by the
stacked BiGRUs. The array values of the true mutations, precision, and recall scores
correspond to the matches obtained as per different thresholds, ranging from 0 to 3 units,
for error in the position x of the detected point mutation.

Protein
AA sequence Mutation Predicted True

Precision Recall Selectivity
length count mutations mutations

NSP1 181 85 4 [2, 4, 4, 4] [0.5, 1, 1, 1] [0.0223, 0.046, 0.046, 0.046] 0.978
NSP3 1946 360 23 [7, 12, 19, 23] [0.3, 0.52, 0.83, 1.0] [0.02, 0.033, 0.052, 0.063] 0.99
NSP5 307 65 11 [3, 8, 11, 11] [0.27, 0.72, 1.0, 1.0] [0.04, 0.12, 0.17, 0.17] 0.967
NSP8 199 39 34 [9, 20, 31, 34] [0.26, 0.52, 0.91, 1.0] [0.23, 0.51, 0.79, 0.87] 0.844
NSP9 114 19 14 [2, 9, 14, 14] [0.14, 0.64, 1.0, 1.0] [0.11, 0.47, 0.73, 0.73] 0.87
NSP13 602 123 2 [0, 1, 2, 2] [0.0, 0.5, 1.0, 1.0] [0.0, 0.008, 0.016, 0.016] 0.99
NSP15 347 104 4 [3, 4, 4, 4] [0.75, 0.5, 1.0, 1.0] [0.029, 0.0385, 0.0385, 0.0385] 0.99

4. Discussion

Nucleotide changes in the genome are known as mutations. In this study, we are focusing on point
mutations, which are changes in the position of one nucleotide that can either be an insertion,
deletion, or transition/transversion. In viruses, mutations play a huge role in the emergence of various
viral strains, which either render them weak and in return wipe the entire viral strain or strengthen
them. As a result of favorable mutations, viruses can adapt to a wide range of hosts, increase their
virulence, better mask, and evade host immune responses. SARS-CoV-2 has created havoc since its
emergence and, due to its high mutation rate, it is hard to contain. Therefore, in this current work, we
have used recurrent neural networks to predict mutations in its genome. Predicted mutations will help
in designing inhibitory molecules to obstruct viral transmission in the future. We have selected
non-structural proteins for the mutation prediction task as these proteins tend to change their genomic
sequences less as compared to structural ones, thus proffering the designed respective inhibitory
molecules to hold their efficacy for a longer time.

In our study, mutation prediction has been defined as a machine translation task. We started with
vanilla RNNs, but due to their lack of ability to capture long-term dependencies in data, we tried
solving this problem with simple LSTMs and simple GRUs. Both performed better than vanilla RNNs
but their losses took longer to converge. Moreover, obtained BLEU scores were also not up to the
mark. Since simple GRUs performed slightly better than simple LSTMS, we chose to stack the two
bidirectional layers of GRUs and applied the attention mechanism to further exhilarate the predictions.

We trained our models using genomic sequence data of seven targeted proteins–NSP1, NSP3, NSP5,
NSP8, NSP9, NSP13, and NSP15–after finding nearest neighbors for sequences and clustering the data.
A separate model has been trained for each protein due to their varying sequence lengths. For model
training, the sequence data comes from 17 months (i.e., January 2020 to May 2021) and for model
evaluation, the sequence data comes from 10 months (i.e., June 2021 to March 2022). The BLEU
score has been used as a metric to evaluate the model outcomes. It shows quite good translation results
with an average of 0.9 for all of the targeted proteins except NSP8 and NSP9, where 9 and 10-gram
scores lie in the range of 0.5 and 0.7. Differences in the metric scores lie in the availability of data for
training since the training data for both NSP8 and NSP9 are smaller as compared to the other selected
proteins. Contrary to this, other protein models have performed very well, which is depicted in the
BLEU scores as well as in precision and recall scores.
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In our study, we have made sure that the input and output languages should have some evolutionary
relation to eliminate the bias in predictions, unlike other proposed studies where both languages have
common sequences. We achieved this by performing k-means clustering and nearest neighbor-joining
methods. Moreover, we have used attention mechanisms to enrich the mutation prediction models
for this task. We have focused on evaluating the predictions and model performance by using BLEU
scores. Implementing all of these features in this study will advance the scope of this work beyond that
of previously published work.

We have predicted some new mutations in the seven targeted proteins that did not exist in the training
and evaluation data before, see Table 3. Mutation statistics for the whole study are given in Table 4.
Further downstream analysis of predicted mutations will help in selecting suitable targeting protein
domains to design inhibitory molecules against viruses. This study adds a slightly new direction in
fighting the pandemics of the future by preparing beforehand. Our models are generic and will work
with any kind of genomic sequence coming from different sources.

Table 3. Unique predicted mutations that do not exist in training and evaluation data.

Protein Predicted new mutations
NSP1 W160T, T169G, G179C
NSP3 P511R, R645S, S691T, S696T, T762P, T969P, S1037T, T1045P, T1183P, S1205P, R1340S,

P1376R, P1557R, S1614T, S1681T, T1778P, S1806T, R1819S
NSP5 I151S, H162V, G173H, T195G, I212S, R221T, L241R, I248S, L249R, I280S
NSP8 Q23D, V25Q, N27V, G28N, V32Q, V33Q, N42V, D51G, Q72D, V82Q, Q87D, N99V, N108V,

G112N, V114Q, V129Q, N139V, G143N, Q157D, V158Q, N175V, N178V, N191V, Q197D
NSP13 S262C
NSP15 D131E

Table 4. Predicted mutation statistics, where t seq: training sequences, t mut: mutations in
training sequences, e seq: evaluation sequences, e mut: mutations in evaluation sequences,
p seq: predicted sequences, p mut: mutations in predicted sequences, pt mut: common
mutations in predicted and training sequences, pe mut: common mutations in predicted and
evaluation sequences, n mut: predicted new mutations.

Protein t seq t mut e seq e mut p seq p mut pt mut pe mut n mut
NSP1 864 375 2024 767 288 178 70 175 3
NSP3 13,347 2888 23,999 4195 840 559 295 541 18
NSP5 1002 456 2137 495 227 248 174 118 10
NSP8 577 394 852 384 125 110 40 83 24
NSP13 2674 680 6921 1063 472 218 111 217 1
NSP15 1232 512 2578 858 297 215 94 214 1
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5. Conclusions

This study focused on the mutation prediction in the SARS-CoV-2 genome using neural machine
translation. The sequence data was downloaded from GISAID comprising of sequences from
Germany only. The choice of non-structural proteins was made to prolong the efficacy of the designed
inhibitory molecules against viral proteins as non-structural proteins rear fewer mutations as
compared to structural proteins. To perform machine translation tasks, three models were used as
baseline models, i.e., vanilla RNNs, simple LSTMs, and simple GRUs. Since simple GRUs
performed much and slightly better than vanilla RNNs and simple LSTMs, respectively, they were
chosen to be stacked and implemented with an attention mechanism to further improve the prediction
results. The results showed that stacking the layers and attention mechanisms has indeed enhanced
the performance of the models. The prediction results highlighted the significance of certain
mutations in each of the seven proteins and also produced some new mutations that did not exist in
the data before. These findings may contribute to fighting the pandemics of the future by identifying
the critical mutations. Although our model can predict mutations in individual proteins, it is unlikely
to be any better at doing the same task on the whole genome. In the future, it will be interesting to
explore this problem using transformer models on larger protein sequences or whole viral genomes,
as transformers are more computationally expensive than stacked biGRUs and can perform such tasks
more effectively.
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