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Abstract: Resistance to treatment poses a major challenge for cancer therapy, and oncoviral treatment
encounters the issue of viral resistance as well. In this investigation, we introduce deterministic
differential equation models to explore the effect of resistance on oncolytic viral therapy. Specifically,
we classify tumor cells into resistant, sensitive, or infected with respect to oncolytic viruses for our
analysis. Immune cells can eliminate both tumor cells and viruses. Our research shows that the
introduction of immune cells into the tumor-virus interaction prevents all tumor cells from becoming
resistant in the absence of conversion from resistance to sensitivity, given that the proliferation rate of
immune cells exceeds their death rate. The inclusion of immune cells leads to an additional virus-free
equilibrium when the immune cell recruitment rate is sufficiently high. The total tumor burden at this
virus-free equilibrium is smaller than that at the virus-free and immune-free equilibrium. Therefore,
immune cells are capable of reducing the tumor load under the condition of sufficient immune strength.
Numerical investigations reveal that the virus transmission rate and parameters related to the immune
response significantly impact treatment outcomes. However, monotherapy alone is insufficient for
eradicating tumor cells, necessitating the implementation of additional therapies. Further numerical
simulation shows that combination therapy with chimeric antigen receptor (CAR T-cell) therapy can
enhance the success of treatment.
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1. Introduction

Malignant tumors, recognized as one of the most lethal diseases globally, arise from uncontrolled cell
growth [1,2]. Traditional treatment approaches encompass surgery, chemotherapy, and radiotherapy. An
emerging strategy in the field is cancer immunotherapy, a therapeutic approach that entails stimulating
and leveraging the immune system to combat the cancer [3].

Certain viruses possess the remarkable ability to precisely select and invade cancer cells while
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leaving normal cells unharmed. These specialized viruses are referred to as oncolytic viruses (OVs) and
are pivotal in oncoviral therapy (OVT). OVT has demonstrated significant anti-tumor effects in diverse
mouse models and clinical studies [3]. Apart from their oncolytic potential to direct towards cancer
cells and destroy them, OVs can be engineered to incorporate specific genes or cytokines, enhancing
their ability to activate T cell responses [3].

Cancer therapies encounter several formidable challenges, with drug resistance emerging as a major
concern. Drug resistance is a frequent outcome in cancer treatment and is categorized as acquired or
primary (inherent) resistance. Inherent resistance is intrinsic, whereas acquired resistance develops after
exposure to drugs. In [4], Noll et al. presented significant confirmation of inherent resistance in the
measles vaccine virus (MeV) against NCI-60 solid cancer cells. The authors concluded that inherent
resistance in oncolytic viral therapy may be linked with epigenetic and genetic alterations following
malignant transition.

While several computational and mathematical models have been devised to investigate chemotherapy
resistance [5–10], there has been relatively less exploration of models focused on other therapeutic
resistances. Notably, studies such as [10, 11] delve into acquired/primary resistance in targeted therapy,
while [12] utilizes spatial probabilistic models to investigate resistance in oncolytic virotherapy. In their
investigation, Bhatt et al. [12] developed probabilistic, cell-based models to explore the dynamics of
resistance in OVT. The model encompasses four distinct populations: normal healthy cells, infected cells,
infection-sensitive cancer cells, and infection-resistant cancer cells. The authors systematically explored
the model’s outcomes, analyzing their dependence on various parameter values and assumptions. Key
aspects investigated include the impact of the ratio of the death rate of infected cells to the viral spread
rate on cancer eradication, the influence of the timing of virotherapy, and the effects of parameters such
as the production rate of resistant cancer cells, virus diffusion distance, and the probability of virus
infection.

The study [12] utilized simulations based on three different types of cell-based models: 2D lattice,
3D lattice, and Voronoi, demonstrating that the results exhibit qualitative similarity with some variations.
Furthermore, the authors examined the scenario of allowing normal healthy cells to become infected.
They found that while this approach may increase the likelihood of complete cancer elimination,
representing a successful outcome, it comes with the risk of elevating the population of resistant cancer
cells, potentially leading to therapy failure. The study suggests that improved therapeutic efficacy can
be achieved by sensitizing healthy normal cells to infection [12].

Despite being relatively unexplored, resistance to OVT significantly limits therapeutic effectiveness.
The article [13] extensively explores a spectrum of mechanisms contributing to resistance in OVT,
shedding light on the multifaceted challenges faced in utilizing viruses as therapeutic agents against
cancer. For example, interferon-mediated resistance stands out as a formidable obstacle, as host cells
activate interferon pathways to establish an anti-viral state. In addition, epigenetic modifications,
encompassing changes in DNA methylation and histone modifications, have been implicated in altering
the gene expression landscape, potentially limiting the permissiveness of host cells to oncolytic viruses.
The hypoxic microenvironment within tumors presents another layer of complexity, with low oxygen
concentrations inhibiting viral replication. Furthermore, virus-entry barriers pose challenges by hin-
dering efficient entry into target cells, while spatiotemporal restrictions to viral spread highlight the
intricate dynamics within tumors that may limit the uniform distribution of therapeutic viruses. These
identified mechanisms underscore the need for a nuanced understanding to develop strategies that can
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effectively overcome OVT resistance and enhance the therapeutic potential of oncolytic viral therapies
in the realm of cancer treatment.

The viral cycle in oncolytic viral therapy typically consists of several stages, including attachment
and entry, uncoating and gene expression, and replication and assembly [14]. Once the virus attaches
to specific receptors on the surface of cancer cells, it enters the cancer cell, either through the cell
membrane or via receptor-mediated endocytosis. Inside the cancer cell, the viral genome is released
from its protein coat. The virus then utilizes the cellular machinery to express its genes. The viral
genome is replicated, and new viral components are synthesized within the host cell. The components
are assembled to form new viral particles. These processes take time to complete [14].

To our knowledge, the study [15] represents a pioneering use of deterministic models to explore
OVT resistance, although it adopts a generic approach without considering specific mechanisms of
resistance. In [15], the authors developed systems of differential equations to study the effects of OVT
resistance, with the time delay associated with the infection process. The research presented conditions
for the existence of equilibria and their stability, deriving critical delays for Hopf bifurcations. The Hopf
bifurcation marks the point at which a stable equilibrium in the model becomes unstable, leading to the
emergence of periodic oscillations. This can correspond to the transition from steady tumor growth to
oscillatory tumor dynamics, where tumor size fluctuates over time. Understanding the occurrence of
Hopf bifurcation in cancer models can provide insights into how tumors respond to different treatment
strategies.

The study [15] concluded that if tumor cells resistant to treatment cannot revert naturally to sensitive
cells or through other mechanisms, every cancer cell will inevitably develop resistance to the OVT,
even when a time delay in the viral infection is present. Additionally, the authors proved that the delay
in infection process cannot destabilize those equilibria with no viruses. The numerical investigations
conducted by the authors showed that the existence of resistant cancer cells, along with time delay in
the virus infection, substantially amplifies the number of tumor cells, particularly during periods of
instability in the population interaction, i.e., when the interaction is not at equilibrium.

The immune system, a complex network of organs, cells, and proteins, serves as the body’s defense
against infections [1]. Malignant tumors often express antigens that can trigger an immune response,
creating an anti-tumor effect [1, 2]. According to the Tumor Immuno-Surveillance Hypothesis, the
immune system can potentially inhibit the growth of small tumors, eliminating them before they become
clinically evident [1, 2]. Building upon the work in [15], this study introduces effector cells into the
tumor-virus interaction. These immune cells, activated by tumor cells [16–18], have the ability to
eliminate both tumor cells and viruses in oncolytic viral therapy. The primary objective is to investigate
the impact of immune cells on the dynamics of the tumor-virus interaction. In addition, as the immune
activation process in response to the presence of the tumor is not instantaneous, we introduce a time
delay in the activation of immune cells. This results in a model formulated as delay differential equations
(DDEs). In contrast to [15], where delay is incorporated into the viral cycle, this study considers a
delay in immune activation, as it takes days or even weeks for the adaptive immune response to become
established. We derive critical delays for which Hopf bifurcations occur at certain boundary equilibria,
where one or more populations become extinct.

Contrary to the findings in [15], the introduction of immune cells in the tumor-virus interaction
prevents all tumor cells from becoming resistant when there is no conversion from resistance to
sensitivity, provided that the proliferation rate of immune cells exceeds their death rate. However, if
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the immune cells have a smaller recruitment rate, then eventually all tumor cells will become resistant.
In [15], the model exhibits a unique positive equilibrium, whereas the model with the addition of
immune cells into the interaction may have three positive equilibria. This new phenomenon can lead to a
more complex interaction. Additionally, the numerical simulations conducted in this study demonstrate
that the inclusion of immune cells significantly reduces the total tumor count in both stable and unstable
scenarios compared to the results presented in [15]. Furthermore, this study includes global sensitivity
analysis and numerical bifurcation analysis. In particular, combined therapies of OVT and CAR T-cell
therapy are considered in Section 5.

The subsequent sections unfold as follows: model development is presented in Section 2, followed
by the analysis of ordinary differential equations and DDE models in Sections 3 and 4, respectively.
Section 5 delves into the numerical investigation, and the final section concludes with a brief discussion.
Appendixes A and B discuss the models of special cases, while Appendix C presents the proofs of some
analytical results.

2. Model formulation

Cancer cells are categorized as either infected or uninfected. The uninfected tumor cells are further
separated into resistant or sensitive to OVT. Let Tr and Ts denote the numbers of uninfected resistant
and sensitive cancer cells, respectively. The variable Ti denotes the class of infected tumor cells, and V
represents the compartment of free viruses. The number of immune cells at the tumor site is denoted by
Z. A non-sensitive cancer cell will produce resistant descendants except if it transforms into sensitivity
before birth occurs. We assume that the resistant and sensitive tumor cells have logistic growth with
intrinsic growth rates rr and rs, respectively, and a carrying capacity denoted by K. While resistant and
sensitive tumor cells may differ in their response to oncolytic viral therapy, they still share the same
physical environment within the tumor. This environment provides the necessary resources for cell
growth and imposes limitations on cell proliferation. Therefore, both types of tumor cells are subject
to the same constraints imposed by factors such as nutrient availability and spatial limitations, and
consequently, they have the same carrying capacity.

Several researchers propose that non-sensitive cancer cells exhibit a smaller growth rate in comparison
to cancer cells that are not resistant due to the associated costs of resistance [5, 12]. To incorporate
this finding, we will assume rr < rs in numerical simulations. The rate of mutation from sensitivity to
resistance is represented by the parameter a. Because infected cancer cells have a short life duration and
do not require substantial materials, their geographical occupancy, proliferation, and nutrient absorption
are not considered. Refer to [19, 20], in which the tumor’s carrying capacity does not include infected
cancer cells.

Immune cells are capable of killing sensitive, resistant, and infected tumor cells. Regarding the
killing of viruses, it typically involves a separate immune response, such as the innate immune response
mediated by phagocytes and the adaptive immune response mediated by antibodies and cytotoxic T
cells [21]. The immune cells considered in the model include both innate and adaptive systems, where
the immune cells are not activated by viruses directly but through infected tumor cells. This modeling
aspect is consistent with the works [16–18]. Additionally, [22] distinguishes adaptive immune cells into
those that are either tumor-specific or virus-specific, where virus-specific adaptive immune cells do kill
viruses. Therefore, even the adaptive immune cells are capable of killing viruses according to Murphy

Mathematical Biosciences and Engineering Volume 21, Issue 5, 5900–5946.



5904

et al. [21] and the studies by Vithanage et al., and Storey et al. [17, 18, 22]. The killings of sensitive,
resistant, and infected tumor cells, as well as viruses, by immune cells are modeled using a simple mass
action approach, with maximal rates denoted by ks, kr, ki, and kv, respectively.

The interaction between sensitive cancer cells and viruses obeys the simple law of mass action where
β denotes the maximum rate. The parameter b denotes an extra mortality rate of infected cancer cells
due to infection, which quantifies pathogenicity of the virus. When infected cancer cells die, new viral
progeny are discharged. The number of viruses released per infected tumor cell is represented by q. The
viral clearance rate is represented by the parameter c. Every parameter is positive except potentially
for d and a. Here, d ≥ 0 denotes the rate of transition from resistance to sensitivity. Parameters a
and d are identified as the Darwinian effect in [5] when studying acquired resistance in chemotherapy.
With respect to resistance in OVT, the transition from resistance to sensitivity could be influenced by
the solid tumor’s geometric characteristics. After the demise of certain infected cancer cells, specific
resistant cancer cells may become susceptible to infection and consequently transition to a sensitive
state. Moreover, the drug ruxolitinib is employed to deal with pancreatic ductal adenocarcinoma (PDAC)
cells that are not sensitive to oncolytic vesicular stomatitis virus (VSV), improving the susceptibility of
resistant pancreatic cancer cells to VSV [23]. This treatment may result in an increase in d because of
resistance therapy.

The immune cells are recruited by tumor cells using a Michaelis-Menten function
α(Ts + Tr + Ti)Z
m + Ts + Tr + Ti

,

where α represents the maximal proliferation rate, and m is the half-saturation constant. Immune cells
can be eliminated or depleted through various processes, such as cell death (apoptosis), clearance by
other immune cells, or inhibition of immune cell production [3]. We assume that this eliminate rate is
constant and is denoted by the parameter γ. To incorporate the time delay between the encounter with
tumor cells and the proliferation of immune cells, we introduce a discrete delay parameter, denoted as τ,
into the activation term.

From the above discussion, the interaction between various types of tumor cells, viruses, and immune
cells can be captured by the following system:

T ′s(t) = rsTs(t)
(
1 −

Ts(t) + Tr(t)

K

)
− aTs(t) − βTs(t)V(t) + dTr(t) − ksTs(t)Z(t)

T ′r(t) = rrTr(t)
(
1 −

Ts(t) + Tr(t)

K

)
+ aTs(t) − dTr(t) − krTr(t)Z(t)

T ′i (t) = βTs(t)V(t) − bTi(t) − kiTi(t)Z(t)

V ′(t) = qbTi(t) − cV(t) − kvV(t)Z(t)

Z′(t) =
α
(
Ts(t − τ) + Tr(t − τ) + Ti(t − τ)

)
Z(t − τ)

m + Ts(t − τ) + Tr(t − τ) + Ti(t − τ)
− γZ(t).

(2.1)

The initial data on [−τ, 0] are given by

Ts(t) = ϕ1(t), Tr(t) = ϕ2(t), Ti(t) = ϕ3(t), V(t) = ϕ4(t), Z(t) = ϕ5(t), t ∈ [−τ, 0],

ϕ j(t) ∈ C([−τ, 0],R+), 1 ≤ j ≤ 5, ϕ1(0) > 0, ϕ1(0) + ϕ2(0) ≤ K,
(2.2)

where C([−τ, 0],R+) represents the Banach space of all continuous functions mapping the interval
[−τ, 0] into R+ = {x ∈ R : x ≥ 0}. A conceptual diagram of model (2.1) is given in Figure 1.
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Figure 1. A schematic diagram of model (2.1), illustrating the interactions between different
populations, is presented. Specifically, Ts, Tr, and Ti in blue boxes represent sensitive, resistant,
and infected tumor cell compartments, respectively. The variable V in a green box denotes
free viruses, and Z in a purple box represents the immune cell compartment. Parameters rs and
rr are the growth rates of sensitive and resistant tumor cells, respectively. Parameter c is the
viral clearance rate, and β denotes the virus transmission rate. The parameter q represents the
virus burst size per infected tumor cell, while a is the rate of mutation of sensitive cancer cells.
The parameter d is the rate of transition from resistance to sensitivity. Parameters ks, kr, ki,
and kv denote the maximal killing rates of Ts, Tr, Ti, and V , respectively, due to immune cells.
γ is the death rate of immune cells, and α represents the maximal immune cell proliferation
rate. Traditional arrows denote the activation/transition/growth from one compartment to
another, while block-head arrows denote killing or inhibition.

Let
X = (x1, x2, x3, x4) = (Ts(t), Tr(t), Ti(t), V(t))

Y = (y1, y2, y3, y4) = (Ts(t − τ), Tr(t − τ), Ti(t − τ), V(t − τ)),
(2.3)

and denote the right hand side of (2.1) as

f (X,Y) = ( f1(X,Y), f2(X,Y), f3(X,Y), f4(X,Y)). (2.4)

In the following, we verify that model (2.1) is well-posed and ensure that the model is biologically
feasible. Its proof is relegated to Appendix C.

Theorem 2.1. The solution to the systems (2.1) and (2.2) exists for t > 0, and is nonnegative and
bounded.

We next proceed to study model (2.1) without considering the delay in the activation of immune
cells.
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3. Analysis of ODE models

In this section, we shall investigate model (2.1) without delay, τ = 0. Specifically, we study the ODE
model without OVT in Section 3.1. The full system (2.1) with τ = 0 is investigated in Section 3.2. The
models of the special cases d = 0 and no resistant tumor cells are briefly discussed at the end of this
section, and a more detailed discussion is presented in Appendix A.

3.1. The model with no viral therapy

Suppose d > 0. When τ = 0 and there is no viral therapy, Ti(0) = 0 = V(0), Ti(t) = 0 = V(t) for
t > 0, and (2.1) is reduced to

T ′s(t) = rsTs(t)
(
1 −

Ts(t) + Tr(t)

K

)
− aTs(t) + dTr(t) − ksTs(t)Z(t)

T ′r(t) = rrTr(t)
(
1 −

Ts(t) + Tr(t)

K

)
+ aTs(t) − dTr(t) − krTr(t)Z(t)

Z′(t) =
α(Ts(t) + Tr(t))Z(t)

m + Ts(t) + Tr(t)
− γZ(t)

Ts(0) > 0, Tr(0) ≥ 0, Ts(0) + Tr(0) ≤ K, Z(0) ≥ 0.

(3.1)

In addition, Z(0) = 0 implies Z(t) = 0 for t > 0, and (3.1) reduces to the two-dimensional TsTr system.
The TsTr subsystem of (3.1) has been studied in [15]. The subsystem has two equilibria: (0, 0) and
(T̂s, T̂r), with

T̂s =
dK

a + d
, T̂r =

aK
a + d

, (3.2)

where (T̂s, T̂r) is globally asymptotically stable as shown in [15]. Consequently, (3.1) always has two
equilibria (0, 0, 0) and (T̂s, T̂r, 0). The Jacobian matrix of (3.1) evaluated at (0, 0, 0) and (T̂s, T̂r, 0) is
given respectively by


rs − a d 0

a rr − d 0
0 0 −γ

 , and


−rsT̂s/K − a −rsT̂s/K + d −ksT̄s

−rrT̂r/K + a −rrT̂r/K − d −krT̂r

0 0
αK

m + K
− γ

 . (3.3)

It is evident that the stability of the equilibrium point (0, 0, 0) hinges on the eigenvalues of the matrix[
rs − a d

a rr − d

]
.

In the proof of Proposition 3.1 in [15], it is established that the eigenvalues of this matrix have positive
real parts. Therefore, it follows that the equilibrium point (0, 0, 0) is unstable. From (3.3), the stability
of (T̂s, T̂r, 0) is determined by the eigenvalues of the left upper 2×2 submatrix, which is Eq (3.3) of [15],
and the sign of

αK

m + K
− γ.
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It was shown in [15, Proposition 3,1] that the eigenvalues of the submatrix have negative real parts. As

a result, (T̂s, T̂r, 0) is asymptotically stable if
αK

m + K
< γ and unstable if

αK
m + K

> γ. Let

Γ = {(x, y, z) ∈ R3
+ : 0 < x + y ≤ K}. (3.4)

Based on the proof provided in Appendix C, we can conclude that (T̂s, T̂r, 0) is globally asymptotically

stable in Γ if
αK

m + K
< γ.

Proposition 3.1. Let τ = 0, d > 0, and
αK

m + K
< γ. The equilibrium (T̂s, T̂r, 0) is globally asymptotically

stable in Γ for (3.1).

The fraction
αK

m + K
is the maximal proliferation rate of immune cells induced by cancer cells. If this

maximal rate is lower than the rate of immune cell death γ, the effector cells cannot sustain themselves,
and the immune-free equilibrium (T̂s, T̂r, 0) becomes globally asymptotically stable.

A positive equilibrium is an equilibrium in which each of its components is positive. To study the

existence of positive equilibria, we assume
αK

m + K
> γ by Proposition 3.1, since if the inequality is

reversed, solutions all converge to (T̂s, T̂r, 0), and a positive equilibrium cannot exist. It follows that
α > γ. Define

ξ =
mγ
α − γ

. (3.5)

Setting Z′ = 0 and Z > 0, we obtain Ts + Tr = ξ. Next, T ′s = 0 and T ′r = 0, imply respectively,

Z =
rsTs(1 − ξ/K) − aTs + d(ξ − Ts)

ksTs
and Z =

rr(ξ − Ts)(1 − ξ/K) + aTs − d(ξ − Ts)
kr(ξ − Ts)

.

Setting the above two expressions of Z equal, leads to the following second degree polynomial equation
in Ts:

g(Ts) := a1T 2
s + a2Ts + a3 = 0, (3.6)

where
a1 =

[(a + d − rs)kr − ks(a + d − rr)]K + ξ(krrs − ksrr)
K

,

a2 = −ξ
[(a + 2d − rs)kr − ks(d − rr)]K + ξ(krrs − ksrr)

K
,

a3 = ξ
2dkr.

(3.7)

In addition, g(ξ) = −ksξ
2a < 0, and g(0) = a3 > 0. Since Tr = ξ − Ts holds for the two components of

any positive equilibrium, we therefore require the root Ts < ξ as well. Also, setting 0 = T ′s +T ′r , we have

Z =
(rsTs + rrTr)(1 − ξ/K)

ksTs + krTr
> 0

provided ξ < K. i.e., ξ < K is a necessary condition for the existence of a positive equilibrium. Notice

ξ < K is equivalent to
αK

m + K
> γ, under which (T̂s, T̂r, 0) is unstable.
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We separate the discussion of g(Ts) = 0 into the cases of a1 < 0, a1 > 0, and a1 = 0. If a1 < 0, then
it is evident that (3.1) exhibits an interior equilibrium uniquely since g(ξ) < 0. If a1 > 0, then since
g(ξ) < 0, g(x) = 0 has 2 positive roots x1 and x2 with x1 < ξ < x2. It follows that (3.1) also has a unique
positive equilibrium. If a1 = 0, then a2 = −ξ(aks + dkr) < 0, and thus there exists a unique positive

equilibrium. We conclude that (3.1) exhibits a unique interior steady state (T̄s, T̄r, Z̄) if
αK

m + K
> γ.

Let
αK

m + K
> γ and let J = ( j̄i j) denote the Jacobian matrix of (3.1) at (T̄s, T̄r, Z̄), where

j̄11 = −rs
T̄s

K
− d

T̄r

T̄s
, j̄12 = d − rs

T̄s

K
, j̄13 = −ksT̄s,

j̄21 = a − rr
T̄r

K
, j̄22 = −rr

T̄r

K
− a

T̄s

T̄r
, j̄23 = −krT̄r,

j̄31 =
αmZ̄

(m + T̄s + T̄r)2
, j̄32 = j̄31, j̄33 = 0.

(3.8)

Observe that

j̄11 j̄22 − j̄21 j̄12 =
(T̄s + T̄r)

(
rrd(T̄r)2 + rsa(T̄s)2

)
KT̄sT̄r

> 0

and the characteristic polynomial is given by

P̄2(λ) = λ3 + b1λ
2 + b2λ + b3, (3.9)

where
b1 = −( j̄11 + j̄22) > 0, b2 = ( j̄11 j̄22 − j̄12 j̄21) − ( j̄13 + j̄23) j̄31 > 0,

b3 = j̄31

(
j̄11 j̄23 + ( j̄22 − j̄21) j̄13 − j̄12 j̄23

)
.

(3.10)

Notice

j̄11 j̄23 + ( j̄22 − j̄21) j̄13 − j̄12 j̄23 =
(T̄r + T̄s)((T̄r)2dkr + (T̄s)2aks)

T̄s + T̄r
> 0,

and thus b3 > 0.
By the Routh-Hurwitz condition [24], Re(λ) < 0 for all roots of P̄2(λ) = 0 if and only if b1 > 0,

b3 > 0, and b1b2 > b3. Since b1 > 0 and b3 > 0, (T̄s, T̄r, Z̄) is locally asymptotically stable for system
(3.1) if the condition

b1b2 > b3 (3.11)

is satisfied. We cannot obtain a simplified expression of (3.11) involving components of the equilibrium,
so we leave (3.11) as it is. The above discussion is summarized as follows.

Proposition 3.2. Let d > 0 and
αK

m + K
> γ. Then, (3.1) exhibits a unique interior steady state (T̄s, T̄r, Z̄),

which is asymptotically stable if (3.11) is valid, and unstable if (3.11) is reversed.

The existence condition of a unique interior equilibrium implies that

T̄s + T̄r = ξ < K = T̂s + T̂r,
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and therefore the total tumor load in (T̄s, T̄r, Z̄) is smaller than the corresponding tumor burden in
(T̂s, T̂r, 0). The immune cells are able to reduce the total tumor load if their maximal proliferation rate is
greater than their death rate.

3.2. The full model

We assume d > 0 and investigate the full system (2.1) without delay by examining the existence and
stability of equilibria. The Jacobian matrix has the following entries:

j11 = rs(1 −
2Ts + Tr

K
) − a − βV − ksZ, j12 = −rs

Ts

K
+ d, j13 = 0,

j14 = −βTs, j15 = −ksTs, j21 = −rr
Tr

K
+ a, j22 = rr(1 −

Ts + 2Tr

K
) − d − krZ,

j23 = 0, j24 = 0, j25 = −krTr, j31 = βV, j32 = 0, j33 = −b − kiZ,

j34 = βTs, j35 = −kiTi, j41 = 0, j42 = 0, j43 = qb, j44 = −c − kvZ,

j45 = −kvV, j51 =
αmZ

(m + Ts + Tr)2, j52 = j51, j53 = j51,

j54 = 0, j55 =
α(Ts + Tr + Ti)

m + Ts + Tr + Ti
− γ.

(3.12)

Denote the two equilibria by E0 = (0, 0, 0, 0, 0) and E1 = (T̂s, T̂r, 0, 0, 0), where T̂s + T̂r = K. At E0, the
Jacobian matrix becomes

J(E0) =


rs − a d 0 0 0

a rr − d 0 0 0
0 0 −b 0 0
0 0 qb −c 0
0 0 0 0 −γ


.

Eigenvalues of J(E0) are the eigenvalues of[
rs − a d

a rr − d

]
, −b, −c, and − γ.

Therefore, E0 is always unstable. At E1,

J(E1) =



−rs
T̂s

K
− a −rs

T̂s

K
+ d 0 −βT̂s −ksT̂s

−rr
T̂r

K
+ a −rr

T̂r

K
− d 0 0 −krT̂r

0 0 −b βT̂s 0

0 0 qb −c 0

0 0 0 0
αK

m + K
− γ


.
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The eigenvalues consist of the eigenvalues of the upper left 2 × 2 and the lower right 3 × 3 submatrices.
It follows that E1 is locally asymptotically stable if

c > βqT̂s and
αK

m + K
< γ.

The stability of E0 and E1 is summarized below.

Proposition 3.3. Let τ = 0 and d > 0. System (2.1) always has two equilibria E0 = (0, 0, 0, 0, 0) and
E1 = (T̂s, T̂r, 0, 0, 0), where E0 is unstable. The equilibrium E1 is asymptotically stable if c > βqT̂s and
αK

m + K
< γ, and unstable if either c < βqT̂s or

αK

m + K
> γ.

In the following, we show that there will be no viruses and infected tumor cells if the viral death rate
c is sufficiently large. Since the proof is similar to that given in [17], it is omitted.

Proposition 3.4. If c > βqK, then solutions of (2.1) with τ = 0 satisfy lim
t→∞

Ti(t) = 0 = lim
t→∞

V(t).

Based on Proposition 3.4, we provide a global asymptotic stability result of E1 under some constraints.
Its proof is presented in Appendix C. Let

D = {(X,Y,Z,V,W) ∈ R5
+ : 0 < X + Y ≤ K}. (3.13)

Theorem 3.1. Let τ = 0 and d > 0. If c > βqK and
αK

m + K
< γ, then E1 = (T̂s, T̂r, 0, 0, 0) is globally

asymptotically stable in D.

The lump parameter βqK can be viewed as the maximal virus production rate. If this rate is smaller
than the viral clearance rate c, and the maximal proliferation rate of immune cells is not large enough,
αK

m + K
< γ, then neither the effector cells nor the viruses can persist in the system.

Suppose now the maximal proliferation rate of effector cells exceeds their death rate,
αK

m + K
> γ.

Then (2.1) has an equilibrium of the form E2 = (T̄s, T̄r, 0, 0, Z̄), where (T̄s, T̄r, Z̄) is the positive
equilibrium of the virus-free subsystem (3.1). Its stability depends on the eigenvalues of

J(E2) =



j̄11 j̄12 0 j14 j̄13

j̄21 j̄22 0 0 j̄23

0 0 j33 j34 0

0 0 j43 j44 0

j̄31 j̄31 j̄31 0 0


, (3.14)

where J̄ik, 1 ≤ i, k ≤ 2, and j̄13, j̄23, j̄31 are defined in (3.8). By interchanging columns 3 and 5, and the
corresponding rows, J(E2) is similar to

j̄11 j̄12 j̄13 j14 0

j̄21 j̄22 j̄23 0 0

j̄31 j̄31 0 0 j̄31

0 0 0 j44 j43

0 0 0 j34 j33


. (3.15)
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It follows that the characteristic polynomial of J(E2) is the product of P̄2(λ) defined in (3.9) and

λ2 − ( j33 + j44)λ + j33 j44 − j34 j43.

Since j33 < 0, j44 < 0, j34 > 0 and j43 > 0, in addition to the condition of (3.11), one would also require
j33 j44 − j34 j43 > 0, i.e.,

(b + kiZ̄)(c + kvZ̄) − βqbT̄s > 0 (3.16)

for E2 to be locally asymptotically stable.

Proposition 3.5. Let τ = 0 and
αK

m + K
> γ. Then, (2.1) has the equilibrium E2 = (T̄s, T̄r, 0, 0, Z̄), where

E2 is asymptotically stable if (3.11) and (3.16) are satisfied, and E2 is unstable if the inequality in
(3.11) or (3.16) is reversed.

Observe that system (2.1) has an equilibrium of the form E3 = (T ∗s ,T
∗
r ,T

∗
i ,V

∗, 0), provided c < βqT̂s,
where (T ∗s ,T

∗
r ,T

∗
i ,V

∗) is the unique positive equilibrium in the tumor-virus subsystem without immune
cells by a previous analysis [15]. In particular,

T ∗s =
c

βq
, T ∗r =

K(rr − d − rrT ∗s /K) + K
√

(rr − d − rrT ∗s /K)2 + 4aT ∗s rr/K

2rr
,

V∗ =
(rsT ∗s + rrT ∗r )(1 −

T ∗s + T ∗r
K

)

βT ∗s
, T ∗i =

βT ∗s V∗

b
.

The equilibrium E3 has the Jacobian matrix given by

J(E3) =



a11 a12 0 a14 a15

a21 a22 0 0 a25

a31 0 a33 a34 a35

0 0 a43 a44 a45

0 0 0 0 a55


, (3.17)

where

a11 = −(
dT ∗r
T ∗s
+

rsT ∗s
K

), a12 = d −
rsT ∗s

K
, a14 = −βT ∗s , a15 = −ksT ∗s ,

a21 = a −
rrT ∗r

K
, a22 = −(

aT ∗s
T ∗r
+

rrT ∗r
K

), a25 = −krT ∗r , a31 = βV∗,

a33 = −b, a34 = βT ∗s , a35 = −kiT ∗i , a43 = qb,

a44 = −c, a45 = −kvV∗, a55 =
α(T ∗s + T ∗r + T ∗i )

m + T ∗s + T ∗r + T ∗i
− γ.

(3.18)

The characteristic polynomial of J(E3) can be expressed by

P3(λ) = (λ − a55)(λ4 + a1λ
3 + a2λ

2 + a3λ + a4),
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where ai, 1 ≤ i ≤ 4, are given as

a4 =
(
(a33a44 − a34a43)a11 + a31a14a43

)
a22 − a12a21(a33a44 − a34a43) > 0,

a3 =
(
− (a33 + a44)a11 − a33a44 + a34a43

)
a22 + (−a33a44 + a34a43)a11

+ a12a21a44 + a12a21a33 − a14a43a31 > 0,

a2 = (a11 + a33 + a44)a22 + a33a44 − a12a21 − a34a43 + (a33 + a44)a11 > 0, (3.19)

a1 = −(a11 + a22 + a33 + a44) > 0.

By the Routh-Hurwitz criterion [24], E3 is asymptotically stable if

a55 < 0 and a1a2a3 > a2
3 + a4a2

1. (3.20)

We now summarize the stability properties of equilibrium point E3.

Proposition 3.6. Let τ = 0 and βqT̂s > c. Then, (2.1) has an equilibrium of the form E3 =

(T ∗s ,T
∗
r ,T

∗
i ,V

∗, 0), where E3 is asymptotically stable if the inequalities in (3.20) are satisfied, and
E3 is unstable if a55 > 0 or a1a2a3 < a2

3 + a4a2
1.

The conditions for the existence and local stability of the boundary equilibria of (2.1) with τ = 0 are
summarized in Table 1.

Table 1. The existence and stability conditions of boundary equilibria of system (2.1) with
τ = 0. The stability column provides sufficient conditions for the asymptotic stability of the
corresponding equilibrium.

Boundary equilibrium (Ts,Tr,Ti,V,Z) Existence Stability

E0 = (0, 0, 0, 0, 0) Always Unstable

E1 = (T̂s, T̂r, 0, 0, 0) Always c > βqT̂s and
αK

m + K
< γ

E2 = (T̄s, T̄r, 0, 0, Z̄)
αK

m + K
> γ (3.11) and (3.16)

E3 = (T ∗s ,T
∗
r ,T

∗
i ,V

∗, 0) c < βqT̂s (3.20)

In the cases where resistant tumor cells cannot be converted to sensitivity, for example, if there are
no drugs available to reverse the resistance with OVT for a certain tumor type, then the parameter d is
set to 0. We can provide a similar analysis as in the previous discussion and obtain some biological
conclusions. In particular, according to Theorem A.1, every sensitive tumor cell becomes resistant, and
there are no immune cells involved in the interaction if the following two conditions are met: First,
the death rate c of viruses must exceed its maximum production rate βqK. Second, the immune cell

activation rate
αK

m + K
must be smaller than its clearance rate γ. This result differs from the findings

presented in [15], where it was shown that every tumor cell becomes resistant if c > βqK, as there were
no immune cells to control the tumor.
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For the situation of no resistant tumor cells, it represents the best-case scenario where the tumor
cells are not resistant to OVT. From the analysis given in Appendix A.2, we conclude that even in the
absence of resistance to OVT, therapy can fail if the virus death rate is high and the immune activation
rate is low, as demonstrated in Theorem A.2.

4. Analysis of DDE models

The main goal of this section is to study the effects of delay τ on the stability of equilibria of model
(2.1). Our discussion parallels the ODE model discussed in Section 3. Specifically, the model of no
OVT is studied in Section 4.1, and Section 4.2 investigates the full system (2.1). The models with d = 0
and with no resistant tumor cells are briefly summarized at the end of Section 4.2, with a more detailed
presentation given in Appendix B. For an analysis of the local stability of equilibria in DDE models, we
refer the reader to the works of Hale [25], Kuang [26], and Smith [27].

4.1. The model of no OVT

Let d > 0. The three-dimensional model of delay differential equations without infected cancer cells
is given as

T ′s(t) = rsTs(t)
(
1 −

Ts(t) + Tr(t)

K

)
− aTs(t) + dTr(t) − ksTs(t)Z(t),

T ′r(t) = rrTr(t)
(
1 −

Ts(t) + Tr(t)

K

)
+ aTs(t) − dTr(t) − krTr(t)Z(t),

Z′(t) =
α(Ts(t − τ) + Tr(t − τ))

m + Ts(t − τ) + Tr(t − τ)
Z(t − τ) − γZ(t),

Ts(t) = ψ1(t), Tr(t) = ψ2(t), Z(t) = ψ3(t), t ∈ [−τ, 0],

ψ j(t) ∈ C([−τ, 0],R+), 1 ≤ j ≤ 3, ψ1(0) > 0, ψ1(0) + ψ2(0) ≤ K.

(4.1)

The stability of an equilibrium (X̂0, X̂0) of (4.1) depends on the stability of the linearized system

X′(t) = ÂX(t) + B̂X(t − τ)

at the zero equilibrium. Here,

Â = f̂X̂(X̂0, X̂0), and B̂ = f̂Ŷ(X̂0, X̂0),

where f̂ refers to the right-hand side of (4.1) with X̂ and Ŷ similarly defined as in (2.3). The characteristic
equation for the linearized system is given as

det(λI − Â − B̂e−λτ) = 0.

At X̂0 = (0, 0, 0), since

Â + B̂e−λτ =


rs − a d 0

a rr − d 0
0 0 −γ
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does not depend on τ, (0, 0, 0) remains unstable for τ > 0. At X̂0 = (T̂s, T̂r, 0),

Â + B̂e−λτ =


−rsT̂s/K − a −rsT̂s/K + d −ksT̂s

−rrT̂r/K + a −rrT̂r/K − d −krT̂r

0 0
αK

m + K
e−λτ − γ

 ,
where the upper left 2 × 2 submatrix is the Jacobian matrix of the two-dimensional TsTr ODE system
evaluated at (T̂s, T̂r), which was analyzed in [15, Proposition 3.1] with eigenvalues consisting of negative
real parts. Therefore, the stability of (T̂s, T̂r, 0) depends on the zeros of

αK
m + K

e−λτ − γ.

Assume
αK

m + K
< γ, i.e., (T̂s, T̂r, 0) is stable asymptotically for the corresponding non-delay system.

Consider
αK

m + K
e−λτ − γ − λ = 0. (4.2)

It is known that λ =
αK

m + K
− γ < 0 when τ = 0. If (T̂s, T̂r, 0) alters its stability for some τ > 0, then

(4.2) will possess a pair of purely imaginary roots ±iω, ω > 0, at some τ > 0. Replacing λ by iw in
(4.2), we obtain the following two equations:

αK

m + K
cos(ωτ) − γ = 0 and

αK

m + K
sin(ωτ) + ω = 0.

Then, from the trigonometric identity cos2(θ) + sin2(θ) = 1 for θ ∈ R, it follows that ω > 0 must satisfy

(m + K)2ω2 + γ2(m + K)2 − α2k2 = 0.

The quadratic equation has a unique root

ω2 =
(αK − γ(m + K))(αK + γ(m + K))

(m + K)2 < 0

by the assumption. We obtain a contradiction and conclude that all the roots λ of (4.2) satisfy Re(λ) < 0.

Therefore, (T̂s, T̂r, 0) is asymptotically stable for all τ ≥ 0 if
αK

m + K
< γ. The proof of the last part of

Proposition 4.1(b) is presented in Appendix C.

Proposition 4.1. The following statements hold for system (4.1).

(a) (0, 0, 0) is always unstable for τ ≥ 0.

(b) (T̂s, T̂r, 0) is asymptotically stable for all τ ≥ 0 if
αK

m + K
< γ, and it is is unstable for all τ ≥ 0 if

αK
m + K

> γ.
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Let
αK

m + K
> γ and the condition in (3.11) be satisfied. That is, (3.1) has the unique positive

equilibrium (T̄s, T̄r, Z̄) by Proposition 3.2 and is moreover asymptotically stable for the ODE model
(3.1). Since

α(T̄s + T̄r)
m + T̄s + T̄r

= γ,

the stability of (T̄s, T̄r, Z̄) depends on the eigenvalues of
j̄11 j̄12 j̄13

j̄21 j̄22 j̄23

j̄31e−λτ j̄31e−λτ −γ + γe−λτ

 , (4.3)

where j̄ik, 1 ≤ i, k ≤ 2, j̄13, j̄23, and j̄31, defined in (3.8), are the entries of the Jacobian matrix of the
ODE model (3.1) evaluated at (T̄s, T̄r, Z̄). The determinantal equation for (4.3) can be written as

λ3 + p1λ
2 + p2λ + p3 + (−γλ2 + q1λ + q2)e−λτ = 0, (4.4)

where
p1 = γ − j̄11 − j̄22 > 0, p2 = ( j̄11 j̄22 − j̄12 j̄21) − γ( j̄11 + j̄22) > 0,

p3 = ( j̄11 j̄22 − j̄12 j̄21)γ > 0, q1 = ( j̄11 + j̄22)γ − j̄31( j̄13 + j̄23),

q2 = (− j̄11 j̄22 + j̄12 j̄21)γ + j̄31( j̄11 j̄23 − j̄12 j̄23 − j̄13 j̄21 + j̄13 j̄22).

(4.5)

If (T̄s, T̄r, Z̄) undergoes a stability change for some τ > 0, then (4.4) will have a pair of purely
imaginary eigenvalues λ = ±iω, ω > 0, at some τ > 0. Replacing λ by iω in (4.4), we arrive at

p1ω
2 − p3 = (γω2 + q2) cos(ωτ) + q1ω sin(ωτ), (4.6)

ω3 − p2ω = q1ω cos(ωτ) − (γω2 + q2) sin(ωτ). (4.7)

By squaring both sides of (4.6) and (4.7), and adding the resulting two equations, we have

ω6 + (p2
1 − 2p2 − γ

2)ω4 + (p2
2 − 2p1 p3 − 2γq2 − q2

1)ω2 + p2
3 − q2

2 = 0. (4.8)

In terms of x = ω2, Eq (4.8) becomes a polynomial equation of degree three:

F(x) := x3 + (p2
1 − 2p2 − γ

2)x2 + (p2
2 − 2p1 p3 − 2γq2 − q2

1)x + p2
3 − q2

2 = 0. (4.9)

Further, Eqs (4.6) and (4.7) imply

sin(ωτ) =
p1q1ω

3 − p3q1ω + (γω2 + q2)(p2ω − ω
3)

(γω2 + q2)2 + q2
1ω

2
:= ρs, (4.10)

cos(ωτ) =
q1ω(ω3 − p2ω) + (p1ω

2 − p3)(γω2 + q2)
(γω2 + q2)2 + q2

1ω
2

:= ρc. (4.11)
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If (4.9) has no positive roots, then (4.4) has no pure imaginary roots, and (T̄s, T̄r, Z̄) remains stable for
all τ > 0. Applying the Routh-Hurwitz criterion [24], all roots of (4.9) have negative real parts if and
only if the following conditions are satisfied:

p2
1 − 2p2 − γ

2 > 0, p2
3 − q2

2 > 0,

(p2
1 − 2p2 − γ

2)(p2
2 − 2p1 p3 − 2γq2 − q2

1) > p2
3 − q2

2.
(4.12)

We conclude the following with respect to the stability of (T̄s, T̄r, Z̄).

Proposition 4.2. Let
αK

m + K
> γ and suppose (3.11) holds true. Then, (T̄s, T̄r, Z̄) is asymptotically

stable for τ > 0 if the inequalities in (4.12) are satisfied.

On the other hand, if F(x) = 0 has a simple positive root, the following result is valid. The proof is
presented in Appendix C.

Theorem 4.1. Let
αK

m + K
> γ and assume (T̄s, T̄r, Z̄) is asymptotically stable for (3.1). If (4.9) has at

least one positive simple root, then one can find τ0 > 0 for which (T̄s, T̄r, Z̄) is asymptotically stable for

τ ∈ [0, τ0) and Sign(
dRe(λ)

dτ
|τ=τ0) , 0.

It is expected that a Hopf bifurcation occurs at τ = τ0, causing the equilibrium (T̄s, T̄r, Z̄) to become
unstable.

4.2. The full model

We assume d > 0. To study the effect of delay τ on the equilibria for the full model (2.1), we examine
the eigenvalues of the Jacobian matrix A + Be−λτ, where A = fX(X0, X0), B = fY(X0, X0), and (X0, X0) is
an arbitrary equilibrium. At E0 = (0, 0, 0, 0, 0),

A + Be−λτ =


rs − a d 0 0 0

a rr − d 0 0 0
0 0 −b 0 0
0 0 qb −c 0
0 0 0 0 −γ


does not depend on τ, and therefore E0 is always unstable for τ ≥ 0. At E1 = (T̂s, T̂r, 0, 0, 0),

A + Be−λτ =



−rsT̂s/K − a −rsT̂s/K + d 0 −βT̂s −ksT̂s

−rrT̂r/K + a −rrT̂r/K − d 0 0 −krT̂r

0 0 −b βT̂s 0
0 0 qb −c 0

0 0 0 0
αK

m + K
e−λτ − γ


has eigenvalues consisting of the eigenvalues of the upper left 2×2 and the lower right 3×3 submatrices.

We assume βqT̂s < c and
αK

m + K
< γ to ensure that E1 is asymptotically stable for the ODE system
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(2.1) with τ = 0. It follows that the stability of E1 for the DDE model (2.1) then depends on Eq (4.2).

By Proposition 4.1, we conclude that if βqT̂s < c and
αK

m + K
< γ, all of the eigenvalues of A + Be−λτ

have negative real parts, and E1 = (T̂s, T̂r, 0, 0, 0) is asymptotically stable for all τ ≥ 0. If βqT̂s > c, then

E1 is clearly unstable. If
αK

m + K
> γ, one can also show that E1 is unstable by the proof of Proposition

3.5(b). The above discussion is summarized as follows.

Proposition 4.3. The following statements are valid for system (2.1).

(a) E0 = (0, 0, 0, 0, 0) is always unstable for τ ≥ 0.

(b) E1 = (T̂s, T̂r, 0, 0, 0) is asymptotically stable for τ ≥ 0 if βqT̂s < c and
αK

m + K
< γ, whereas E1 is

unstable for all τ ≥ 0 if βqT̂s > c or
αK

m + K
> γ.

Observe that Proposition 4.3 implies the delay in the immune activation has no effect on the tumor-
free equilibrium E0 as well as the immune-free equilibrium E1.

Let
αK

m + K
> γ. Then, E2 = (T̄s, T̄r, 0, 0, Z̄) exists, and its stability depends on the eigenvalues of

j̄11 j̄12 0 j14 j̄13

j̄21 j̄22 0 0 j̄23

0 0 j33 j34 0

0 0 j43 j44 0

j̄31e−λτ j̄31e−λτ j̄31e−λτ 0 −γ + γe−λτ


(4.13)

with j̄i j given in (3.8). The characteristic equation can be written as(
λ2 − ( j33 + j44)λ + j33 j44 − j34 j43

)(
λ3 + p1λ

2 + p2λ + p3 + (−γλ2 + q1λ + q2)e−λτ
)
= 0,

where pi, 1 ≤ i ≤ 3, and qi, 1 ≤ i ≤ 2, are defined in (4.5).
Assume E2 is asymptotically stable for the ODE model, i.e., both conditions (3.11) and (3.16) hold.

Then the two roots of
λ2 − ( j33 + j44)λ + j33 j44 − j34 j43 = 0

have negative real parts. The stability of E2 therefore depends on the roots of (4.4), and we have the
following conclusions.

Theorem 4.2. Let d > 0 and let
αK

m + K
> γ. Then, E2 = (T̄s, T̄r, 0, 0, Z̄) exists. Suppose (3.11) and

(3.16) are satisfied. In addition, if (4.12) is true, then E2 is asymptotically stable for τ ≥ 0.

The delay may not affect the stability of the virus-free equilibrium E2 in the presence of immune
cells, provided that the parameters satisfy the conditions outlined in Theorem 4.2. On the other hand, if
F(x) = 0 has positive root, then the following is true.

Theorem 4.3. Let d > 0 and let
αK

m + K
> γ, and (3.11) and (3.16) be satisfied. Assume F(x) = 0

exhibits at least one simple positive root. Then, one can find τ0 > 0 such that E2 = (T̄s, T̄r, 0, 0, Z̄) is

asymptotically stable for τ ∈ [0, τ0) and
dRe(λ)

dτ
|τ=τ0 , 0.
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It follows that the delay τ in the immune cell proliferation can destabilize the equilibrium E2. As
τ increases beyond the critical value τ0, the virus-free equilibrium E2 becomes unstable, leading to
oscillations in the tumor-virus-immune interaction as a result of the delay in immune recruitment.

Let c < βqT̂s. Then, E3 = (T ∗s ,T
∗
r ,T

∗
i ,V

∗, 0) exists, and the stability of E3 depends on the corre-
sponding Jacobian matrix, written as

a11 a12 0 a14 a15

a21 a22 0 0 a25

a31 0 a33 a34 a35

0 0 a43 a44 a45

0 0 0 0 −γ + (a55 + γ)e−λτ


, (4.14)

where ai j, 1 ≤ i, j ≤ 5, are defined in (3.18). The characteristic equation is given by(
λ + γ − (a55 + γ)e−λτ

)(
λ4 + a1λ

3 + a2λ
2 + a3λ + a4

)
= 0,

with ai, 1 ≤ i ≤ 4, defined in (3.18). Assume a55 < 0 and a1a2a3 > a2
3 + a2

1a4 such that E3 is
asymptotically stable for the ODE model. That is,

λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0

has only roots with negative real parts. Let

g(λ) = λ + γ − (a55 + γ)e−λτ,

where τ > 0 is fixed. If g(λ) has a pair of pure imaginary roots λ = ±iw, w > 0, then w2 = a55(a55 + 2γ),
where a55 < 0 and a55 + 2γ > 0. We obtain a contradiction and conclude that all roots of g(λ) have
negative real parts. On the other hand, if a55 > 0, then g(0) = −a55 < 0, g(∞) = ∞, and g′(λ) > 0 for
λ ≥ 0. Thus, g(λ) = 0 has one positive root. Therefore, E3 is unstable. Further, E3 is clearly unstable if
a1a2a3 < a2

3 + a2
1a4. Below is a summary of the discussion.

Theorem 4.4. Let βqT̂s > c. Then, the equilibrium E3 = (T ∗s ,T
∗
r ,T

∗
i ,V

∗, 0) exists, and the following
statements hold true.

(a) E3 is asymptotically stable for τ ≥ 0 if a55 < 0 and a1a2a3 > a2
3 + a2

1a4.
(b) E3 is unstable for τ ≥ 0 if either a55 > 0 or a1a2a3 < a2

3 + a2
1a4.

Comparing Theorem 4.4 with Proposition 3.6, we observe that the delay τ in immune cell proliferation
does not affect the stability of the immune-free tumorous equilibrium E3.

For the scenario of no conversion from resistance to sensitivity, it is concluded from Appendix B that
the delay in the immune activation has no effects on the stability of the two equilibria E0 = (0, 0, 0, 0, 0)

and E0
1 = (0,K, 0, 0, 0). In addition, if

αK

m + K
> γ, then E0

2 = (0, ξ, 0, 0, Z̃0) exists, where ξ =
mγ

α − γ
and

Z̃0 =
rr

kr
(1 −

ξ

K
). It follows from Appendix B.1 that the delay can destabilize E0

2.
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In the best scenario where there is no resistance to OVT, the four-dimensional TsTiVZ system is
further reduced to the two-dimensional TsZ system, as shown in (A.5), if no viruses and infected tumor

cells are present. System (A.5) possesses an equilibrium of the form (ξ, Z̃), provided that
αK

m + K
> γ,

where ξ is defined in (3.5) and Z̃ is given in (A.6). Therefore, the four-dimensional system has an
equilibriun of the form (ξ, 0, 0, Z̃). This equilibrium is no longer asymptotically stable for τ > 0.
The time delay τ can destabilize this equilibrium. However, it can be verified that the delay has no
destabilization effects on the equilibria E0 = (0, 0, 0, 0) and Ẽ1 = (K, 0, 0, 0). In addition, when the
parameters satisfy the conditions given in Theorem B.2(b), the tumorous equilibrium Ẽ2 = (ξ, 0, 0, Z̃)
in the presence of immune cells becomes unstable, as the delay τ passes beyond the critical value τ0.
Consequently, the tumor-virus-immune interaction may exhibit oscillations due to the time delay in the
immune activation. For the equilibrium Ẽ3 = (T̃s, T̃i, Ṽ , 0), since there are no immune cells present in
the equilibrium, it is trivial to verify that the delay cannot have any effect on its stability.

5. Numerical simulation

In this section, we employ numerical tools to study system (2.1), addressing the effects of immune
cells compared to the previous work in [15] in Section 5.1, incorporating global sensitivity analysis
as discussed in Section 5.2, and covering numerical techniques for bifurcation analysis in Section 5.3.
Section 5.4 explores the impact of parameters such as the virus transmission rate and half-saturation
constant of immune activation on treatment success. Additionally, Section 5.5 considers a combination
therapy of OVT and CAR T-cell therapy.

5.1. Effects of immune cells

In our prior study [15], we explored the interactions between tumor cells and oncolytic viruses. This
section now focuses on demonstrating the impact of immune cells, in comparison with our previous
work. Initially, we compare the outcomes of models that do not incorporate delays in either viral
infection or immune cell activation. For this comparison, we set the common parameter values in both
the four-dimensional and five-dimensional systems to be identical to those in the parameter set given
in [15, Eq (4.1)], as follows:

K = 1/(1.02 × 10−9), rs = 0.45, rr = 0.01 × rs, b = 1.333,

q = 250, c = 0.1, d = 10−3, a = 1 × 10−5, β = 7 × 10−12.

The initial conditions chosen are (7 × 106, 102, 0, 5 × 106) for the model with no immune cells and
(7× 106, 102, 0, 5× 106, 2× 103) for the five-dimensional system. In numerous mouse experiments, such
as those documented in [28, 29], researchers typically inoculate mice subcutaneously with either 106,
2 × 106, or 5 × 106 cancer cells. At the time of injection, it is generally assumed that no immune cells
are present in the mice. To allow the immune cells to proliferate to a quantity of 2 × 103, we increase
the tumor burden to 7 × 106 cells, while maintaining a small number of resistant tumor cells, around
100 in this case. The doses of oncolytic viruses (OVs) administered vary, ranging from 2 × 106 in [29]
to 108 pfu in [28]. For this part of the numerical simulation, we select 5 × 106, but slight variations in
the initial conditions should not impede our biological conclusions.
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Figure 2(a) depicts the outcome of the four-dimensional TsTrTiV model before incorporating immune
cells, while Figure 2(b)–(d) depicts the outcome of the ODE five-dimensional model (2.1) with τ = 0
for various parameter values. Specifically, the additional parameters for the five-dimensional TsTrTiVZ
model are set as follows: (b) γ = 0.03, ks = 1.9 × 10−4, kr = 1.9 × 10−4, ki = 4, kv = 0.025, m = 500
with varied α = 0.03, 0.035, 0.04; (c) α = 0.035, ks = 1.9 × 10−4, kr = 1.9 × 10−4, ki = 4, kv =

0.025, m = 500 with varied γ = 0.03, 0.035, 0.04; and (d) α = 0.035, γ = 0.03, ks = 1.9 × 10−4, kr =

1.9 × 10−4, ki = 4, kv = 0.025 with varied m = 500, 5000, 105.
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Figure 2. Total tumor load is plotted. (a) The four-dimensional system with no immune cells.
Plots (b), (c), and (d) depict the total tumor count of the five-dimensional TsTrTiVZ model
with parameter values given in the main text.

In Figure 2(b), the ratio
K

m + K
= 0.999, indicating that when α = 0.03 = γ, the immune system is

weak, and the total tumor load is large. As α is increased, the total tumor burden is significantly reduced.
This finding is further confirmed by the scenarios shown in plots (c) and (d). Obviously, the solutions of
those in Figure 2(b) with α = 0.03, and (c) with γ = 0.05 and 0.1 converge to an equilibrium level. By
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utilizing a three-dimensional TsTrZ plot, we can determine that the remaining solutions in Figure2(b)
with α = 0.035 and 0.4 converge to a periodic solution, and so does the solution in (c) with γ = 0.03.
Moreover, each solution presented in (d) also converges to a periodic solution.

Through further adjustments to these parameters, we compared the outcomes and consistently
observed that the immune-incorporated system maintained a lower total tumor count compared to the
four-dimensional model without immune cells, especially when the recruitment rate of immune cells
exceeds the death rate.
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Figure 3. The total tumor load is plotted in plots (a), (b), and (c), depicting the total tumor
count of the five-dimensional TsTrTiVZ delay model (2.1) with a delay τ = 5 in immune cell
activation and parameter values given in the main text.

Next, we compare the results of the corresponding five-dimensional delay model TsTrTiVZ with
the four-dimensional TsTrTiV ODE model, which does not include immune cells. Here, we consider
the delay in immune cell activation with τ = 5. In previous results without delay, as shown in Figure
2(b), an increase in the maximal immune cell proliferation rate α visibly lowered the total tumor
burden. However, as depicted in Figure 3(a), with a small α value of 0.03 and delay, the stability of the
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equilibrium remains unchanged. When α is increased to 0.035, the amplitude of oscillation is larger
in the delay model, and the total tumor load may exceed that for α = 0.03. A similar phenomenon is
observed as α is further increased to 0.04. However, the tumor burden is clearly smaller than that of the
model without immune cells.

Regarding the immune cell death rate γ, it is apparent from Figure 3(b) that immune cells are not
effective in controlling the tumor if the death rate γ = 0.1 is large. As γ is reduced to 0.03, it is evident
that the immune cells can lower the total tumor load even with a recruitment delay as shown in Figure
3(b). Further, the tumor load attains a larger maximum value with a delay compared to that without
delay presented in Figure 2(c). A similar conclusion is also obtained as m is varied. The time delay in
immune recruitment can increase the amplitude of the tumor burden.

5.2. Sensitivity analysis

The feasible parameter ranges of the model are compiled from the literature and presented in Table
2. The killing rate kr of resistant cancer cells by immune cells was estimated over a broader range of
10−4–10−2 cell−1 day−1, while the killing rate ks of susceptible tumor cells by immune cells is set at
10−5–10−3 cell−1 day−1. From the previous subsection, the initial conditions for Eq (2.1) with τ = 0 are
set as (7 × 106, 102, 0, 5 × 106, 2 × 103). For Eq (2.1) with τ > 0, the history function is set as

ϕ1(t) = 7 × 106, ϕ2(t) = 102, ϕ3(t) = 0, ϕ5(t) = 2 × 103, t ∈ [−τ, 0], (5.1)

and

ϕ4(t) = 0, t ∈ [−τ, 0), ϕ4(0) = 5 × 106. (5.2)

In OVT, OVs can be administered following single dose or multiple dose regimens [35]. In this paper,
single dose regimens are used, and OVs are administered at time t = 0. Population dynamics are solved
numerically using the built-in function ode23tb in Matlab for τ = 0, and a history for population levels
is created for solving Eq (2.1) with τ > 0.

Sensitivity analysis is a common method used to identify critical inputs in a model. Global sensitivity
analysis (GSA) is a method to analyze the impact of each input or parameter on the output uncertainty
when all model inputs or parameters change randomly [44]. In this subsection, we conduct GSA utilizing
the Partial Rank Correlation Coefficient (PRCC) to assess the relationship between each parameter and
tumor size, Ts + Tr. Furthermore, GSA aids in selecting parameters for the bifurcation analysis to be
performed in the next section. The parameter ranges are shown in Table 2. For the introduction and
implementation of this method, we refer to the works by Marino et al. [44] and Vithanage et al. [17, 18].
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Table 2. Meanings and plausible ranges of parameters.
Parameter Description Range Reference
K Carrying capacity of tumor 108–9.7 × 109 cells [19, 22]
rs Rate of growth of sensitive tumor cells 0.18–0.97 day−1 [18, 19, 36, 37]
β Virus transmission rate 6 × 10−12–0.862 pfu−1day−1 [22, 38]
rr Growth rate of resistant tumor cells rs × [0.01 0.97] day−1 [8, 39]
b Death rate of infected tumor cells 1.333–2.667 day−1 [16]
q Virus burst size per infected tumor cell 10–1350 pfu cell−1 [16]
c Viral clearance rate 0.024–24 day−1 [40]
a Rate of mutation of sensitive cancer cells 10−9–10−3 day−1 [12, 41]
d Rate of transition from resistance to sensitivity 0 − 1 day−1 guess

m Half-saturation constant of immune cell proliferation rate 40 − 105 cells [16, 22]

γ Death rate of immune cells 0.024–0.178 day−1 [22]

α Maximal immune cell proliferation rate 0.024–2.4 day−1 [22]

ks Killing rate of susceptible tumor cells 10−5–10−3 cell−1 day−1 [17]

kr Killing rate of resistant tumor cells 10−4–10−2 cell−1 day−1 guess

ki Killing rate of infected tumor cells 9.6 × 10−3–4.8 cell−1 day−1 [16, 22]

kv Killing rate of viruses 0.024 − 48 cell−1 day−1 [22]

τ Delay in the activation of immune cells 1–8 days [42, 43]

According to Liu et al. [45] and De Matos et al. [46], rapid immune-mediated clearance of oncolytic
viruses can affect the efficacy of OVT. Following virus administration, oncolytic virus infection and
replication within the tumor play a crucial role in the initial days [47, 48]. Selecting T = 7 for a short
time interval enables the identification of parameters potentially related to the early-stage anti-tumor
or anti-viral effects. In contrast, choosing T = 21 for a longer time interval helps pinpoint parameters
associated with the asymptotic tumor size and the treatment outcome. GSA will be conducted with two
endpoints, T = 7 and T = 21.

In Figure 4, PRCC is computed for each parameter. The criteria for the strength of a correlation
in [49] are used in this paper. A correlation is considered non-important if |PRCC| < 0.2, weak if
0.2 < |PRCC| < 0.5, strong if 0.5 < |PRCC| < 0.7, and very strong if 0.7 < |PRCC|. Figure 4(a),(b)
depicts the PRCC for each parameter in Eq (2.1) with τ = 0. The maximum immune cell proliferation
rate, α, shows a strong negative correlation with the tumor size at T = 7. The virus transmission rate,
β, exhibits a weak positive correlation with the tumor size when τ = 0. All other parameters show
unimportant correlations with the final tumor size.

It has been reported that the activation of the adaptive immune response takes at least several
days [43], and Pulendran et al. and Sun et al. have noted that after infection, T lymphocytes go through
an expansion phase, reaching their peak on day 8 in response to antigen stimulation [42,50]. To examine
the effect of delay in immune cell proliferation, we choose a larger delay in its range (Table 2). In Figure
4(c),(d), we consider Eq (2.1) with τ = 7. The maximum immune cell proliferation rate, α, and the
killing rate, ks, have strong negative correlations with the tumor size at T = 7. All other parameters
show weak or unimportant correlations with the final tumor size.
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Figure 4. Global sensitivity analysis based on Table 2. Initial conditions are the same as in
Eqs (5.1) and (5.2). The PRCC between each parameter and the final tumor size, Ts(T )+Tr(T )
at the endpoint T is shown in panels (a) and (b) for τ = 0 and panels (c) and (d) for τ = 7.

Figure 4 shows consistency of important parameters in all cases. Parameters α and ks related to
immune cell proliferation and immune response have strong correlations with the tumor size. We
explore the correlations by studying the tumor dynamics, Ts(t) + Tr(t) for 0 ≤ t ≤ 21, with selected
parameter values for α, ks, and β. All other parameter values are fixed as follows:

K = 109, rs = 0.45, rr = 0.3, b = 1.33, a = 0.01, c = 1.83, γ = 0.17, m = 105, (5.3)

d = 0.1, β = 10−6, q = 102, α = 0.2, kr = 10−4, ks = 10−5, ki = 1.8, kv = 0.15. (5.4)

Figure 5(a),(d) shows the tumor dynamics Ts + Tr for selected α values. Larger proliferation rates
result in smaller tumor sizes. Equation (2.1) models a delay in immune cell proliferation. Figure 5(d)
shows a delay in tumor cell elimination compared with Figure 5(a), which reflects a delay in immune
cell proliferation. Figure 5(b),(e) shows larger tumor killing rates, ks, resulting in smaller tumor sizes.
Interestingly, Figure 5(b),(e) suggests that the killing rate, ks, must exceed 5× 10−4 to effectively destroy
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the tumor cells. Hale et al. have reported that the immune response is important for the success of
treatment and preventing tumor recurrence [51].

Figure 5(c),(f) shows the same tumor dynamics when β < 10−6, implying that the virus transmission
rate is insufficient to induce an anti-tumoral effect if β < 10−6. In contrast, the tumor population drops
dramatically initially when β = 10−4 and β = 10−3, indicating that tumor cells are infected after viruses
are administered. As the virus transmission rate increases, more tumor cells are infected, leading to
a smaller population level of Ts + Tr. The tumor size for τ = 7 is slightly smaller than that for τ = 0,
implying that a delay in immune cell proliferation may reduce anti-viral response. Based on the above
numerical result, we assume β ≥ 10−6 from this point onward.
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Figure 5. The tumor size Ts(t) + Tr(t) for 0 ≤ t ≤ 21 at various parameter values for α, ks,
and β which have strong correlations with the tumor size. (a) τ = 0, (b) τ = 0, (c) τ = 0, (d)
τ = 7, (e) τ = 7, and (f) τ = 7.

5.3. Numerical methods for bifurcation analysis

Bifurcation analysis is the study of changes in the asymptotic behavior of a model under parameter
variation and can provide a complete picture of asymptotic dynamics on a parameter domain. Bifurcation
analysis usually begins with the identification of equilibria. Given a set of parameter values, the
numerical method constructed in [18] can be directly applied to locate the equilibrium E2 and all
positive equilibria. The mathematical analysis given in Section 3 can be used to find all other boundary
equilibria. The numerical method in [52,53] is then applied to compute the bifurcations of equilibria. To
study the effect of OVT, the virus transmission rate β is used as a bifurcation parameter. Note that Figure
5(c),(f) shows that the virus transmission rate β must be greater than 10−6. We use the range [10−6, 1]
for β. From GSA, the immune response is an important factor associated with the tumor size. The
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half-saturation constant, m, of the immune cell proliferation rate measures the steepness of the curve
for the activation of immune cells in response to the presence of tumor cells. A small half saturation
constant results in a sharp increase in immune cells with increasing tumor cells. We use m as the other
bifurcation parameter.

Mahasa et al. [16] have suggested a half saturation constant of 40 cells in their model. The term
describing immune cell proliferation in their model is independent of immune cells. With such a small
half-saturation constant in Eq (2.1), immune cell proliferation is almost constant in the presence of
tumor cells. The process of activation of immune cells involves the interaction between tumor cells and
APCs (antigen presenting cells) [54]. Once activated, CD8+ T cells undergo clonal expansion with
interleukin-2 (IL-2) stimulation [55]. Based on the biological mechanism of the activation and expansion
process, the immune cell proliferation term in the fifth equation of the ODE system is modeled as a
function of both tumor cells and immune cells. To match a similar proliferation rate in the model by
Mahasa et al. [16], the half-saturation constant m may be a large number. Storey et al. [22] has suggested
a range of 40 − 105 cells for m based on the work by Banerjee et al. [56]. The model considered in [56]
does not consider a half saturation constant in the recruitment term for immune cells. Thus, the range of
the half-saturation constant, m, has not been validated or justified in these works [16, 22, 56].

It has been shown that a small half-saturation constant may cause destabilization and produce
sustained oscillations in population sizes [57–59]. Incorporating a delay in the ODE system can also
lead to population oscillations in the solution. Using a range of small half-saturation constants may
hinder the study of the destabilization effect caused by the time delay. Furthermore, as pointed out above,
the half-saturation constant m may be a large number, and it affects the tumor size in the equilibria.
Therefore, we use a wide range for m. Let [10−6, 1] × [105, 109] be the parameter domain for β and m.
Other parameters are fixed as in Eqs (5.3) and (5.4). An adaptive grid method in Section 2.1 in [52] is
applied with a 10 by 10 grid in the parameter domain. The regions containing bifurcation curves are
refined with 6 levels. The code is implemented in Matlab, where the Newton method is used to find the
equilibrium that has no analytic solution, and the built-in function eig is used to solve the eigensystem
of the Jacobian matrix. The bifurcation diagram is shown in Figure 6(a).

All six equilibria coexist in a region of the parameter domain. Proposition 3.3 has shown that the
tumor-free equilibrium E0 is unstable. From Eqs (3.2), (5.3) and (5.4), along with Proposition 3.3, the
equilibrium E1 is unstable in the parameter domain (Figure 6(a)). The numerical simulation agrees
with Proposition 3.3. There are one saddle node bifurcation curve S N, one Hopf bifurcation curve
Hop f0, and two transcritical bifurcation curves Tr1 and Tr2. Both positive equilibria appear through
saddle-node bifurcations on the curve S N. We use the notation E41 for the positive equilibrium that
might be stable. The equilibrium E42 is never stable. The positive equilibrium E41 changes its stability
through Hopf bifurcations on the curve Hop f0 when τ = 0. Other bifurcations such as bifurcations of
limit cycles may occur in the parameter domain. These bifurcations do not affect the stability property
of the equilibria shown in Figure 6(a) and are out of the scope of this paper. Therefore, they will not be
studied in this paper. The positive equilibria E41 loses its stability through transcritical bifurcations, Tr2,
and the equilibrium E3 becomes stable when m increases. Note that the region above Tr2 satisfies the
condition in Eq (3.20), and the curve Tr2 satisfies the condition a55 = 0 in Eq (3.20). The equilibrium
E2 is stable when (β,m) lies below the transcritical bifurcation curve Tr1 for τ = 0, and it is unstable
when (β,m) lies above Tr1. Our numerical computation agrees with Proposition 3.5. The conditions Eqs
(3.11) and (3.16) are satisfied in the region where E2 is stable, and the curve Tr1 satisfies the left hand
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side of Eq (3.16) equal to zero. Our numerical computation agrees with Proposition 3.6. Bistability
exists in a region below Tr1.

Consider Eq (2.1) with τ > 0. Recall that ODE and DDE systems have the same equilibria. The local
stability of an equilibrium depends on the signs of the real parts of the solutions to det(A−λI+Be−λτ) = 0,
where A and B are defined in Section 4.2. If λ = 0 is a solution to det(A − λI + Be−λτ) = 0, it is also a
solution to det(A + B − λI) = 0. System (2.1) goes through the same bifurcations as the ODE system
does on the bifurcation curves S N, Tr1, and Tr2. It is known that incorporating a time delay τ into the
ODE system may produce destabilization effects and cause fluctuations in population dynamics through
Hopf bifurcations [60]. A numerical method is proposed to identify such Hopf bifurcations for system
(2.1) in a parameter domain when τ is fixed.

Based on the bifurcation curves for τ = 0 shown in Figure 6, we focus on the Hopf bifurcations for
system (2.1) in the region where E41 is stable. At a Hopf bifurcation of E41 for τ > 0, det(A−λI+Be−λτ) =
0 has a pair of pure imaginary roots. All other solutions have negative real parts. Starting with any Hopf
bifurcation point on Hop f0, say (β0,m0), let ±iω0 be the pure imaginary eigenvalues for A + B. We fix
β0 and use ω0 and m0 as an initial guess to find ω and m for a Hopf bifurcation point of system (2.1)
with a fixed τ > 0. It may be assumed that all other solutions of det(A− λI + Be−λτ) = 0 at the parameter
point (β0,m) have negative real parts. Otherwise, another bifurcation curve other than Hop f0, S N, Tr1,
and Tr2 would appear in Figure 6(a). It is worth noting that ω and m appear in several entries of the
matrix A − iωI + Be−iωτ. The Newton method is not practical since it involves taking derivatives with
respect to ω and m. In this paper, the Nelder-Mead simplex method [61], which is a direct method, is
employed for finding ω and m. The detailed algorithm can be found in [61], or the built-in function
“fminsearch” in Matlab can be directly applied for this purpose.

Mahasa et al. [16] studied a mathematical model of OVT with a time delay in the stimulation of
virus-specific immune cells. The time delay τ in their work was fixed at 7 hours, and their work showed
that the time delay τ = 7 hours does not affect the stability of the virus-free equilibrium. In this work,
we use τ = 1 day and τ = 7 days, which are at both ends of the parameter range shown in Table 2.
When (β0,m) is not close enough to (β0,m0), the continuation technique with some smaller increments
in τ helps with the success of identifying m for τ = 1. With each point on Hop f0 as an initial guess for
the corresponding point on Hop f1, parallel computation helps accelerate the process. Hopf bifurcation
curves Hop f1 with τ = 1, Hop f2 with τ = 1, and Hop f3 with τ = 7 are computed and shown in Figure
6(b). The equilibrium E41 changes its stability on the curves Hop f1 and Hop f3 when τ = 1 and τ = 7,
respectively. The curve Hop f3 is above Hop f1 which is above Hop f0, indicating that the presence of
time delay destabilizes the system. For Eq (2.1) with τ = 1, the curve Hop f2 shows Hopf bifurcations
where E2 changes its stability. The equilibrium E2 is stable in the region bounded by the curves Tr1 and
Hop f2. This shows again time delay exhibits a destabilization effect in Eq (2.1). Theorem 4.2 gives
a condition for the stability of E2 when τ > 0. The stability condition is given in Eq (4.12). Equation
(4.12) is independent of β. Therefore, we examine the condition with the parameter values used in
Figure 6. According to Theorem 4.2, the equilibrium E2 is stable for τ > 0 when m > 1.208 × 107.
We then use the numerical method proposed in this section to compute the Hopf bifurcation for E2 for
τ < 1000 and find that E2 is stable when m > 1.205 × 107 for τ < 1000. Our numerical computation
agrees with Eq (4.12). Since such large τ values are not within the plausible range of τ, the figure is not
shown in this paper.
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Figure 6. Bifurcation diagram using β and m as bifurcation parameters and Eqs (5.3) and
(5.4) for all other parameters. (a) Regions where the equilibria are stable. (b) Hopf bifurcation
for selected τ values to show the destabilization effect of time delay. The red curves represent
transcritical bifurcations (Tr), the green curve represents saddle-node bifurcations (SN), and
the rest of the curves represent Hopf bofurcations (Hopf).

5.4. Virus transmission rate and the steepness of immune cell proliferation

In this subsection, we study the effect of virus transmission rate β and the steepness of immune cell
proliferation m on the outcome of treatment. Let β = 0.1, which corresponds to a relatively large virus
transmission rate for the range of β in Table 2. Let m = 2 × 106. Note that this set of parameter values
lies in the region where both E2 and E41 are stable, as shown in Figure 6(a). The tumor persists with a
population size of Ts + Tr + Ti = γm/(α − γ). Furthermore, the tumor-free equilibrium E0 is unstable,
meaning that either the treatment may fail or tumor relapse may occur. This simulation can help identify
factors that may cause unsuccessful treatment or tumor recurrence and further help design strategies to
improve OVT treatment.

Consider the initial condition (7 × 106, 100, 0, 5 × 106, 2 × 103) for treating a tumor of 7 × 106 cells
with a therapeutic dose of 5 × 106 pfu. Figure 7(a) shows that the population dynamics approach the
stable equilibrium E41. The stability of E41 implies that the virus is persistent. Virus persistence has been
observed in experimental studies and proven as a means to slow down tumor growth [62]. The sensitive
tumor cells (red curve) are infected quickly after the treatment, and thus the infected tumor cells (black
curve) increase rapidly. The tumor cells respond to the treatment initially but develop resistance to the
therapy causing an increase in resistant tumor cells (blue curve). Note that the elimination of resistant
tumor cells relies on immune cells (green curve), and the immune system is not able to control the
resistant tumor cells. Strategies to reduce resistant tumor cells or enhance the immune response to
resistant tumor cells are required to overcome this challenge.

Let τ = 1, and all parameter values remain the same as used for Figure 7(a). Figure 7(b) shows
population oscillations. The equilibrium E41 becomes unstable, demonstrating the destabilization effect
caused by time delay. A slightly larger m value is used with τ = 1 and τ = 7. Let m = 3 × 106. The
equilibrium E41 is stable when τ = 1 and unstable when τ = 7, where the population dynamics are
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similar to the population dynamics in Figure 7(a),(b), respectively. Equation (2.1) with τ > 0 exhibits a
destabilization effect. Treatment is not successful in either case, τ = 0 or τ > 0.
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Figure 7. Population dynamics for (a) β = 0.1, m = 2 × 106, τ = 0, (b) β = 0.1, m = 2 × 106,
τ = 1, (c) a magnification of part (a) for t ∈ [0, 100], and (d) β = 0.1, m = 104, τ = 0. All
other parameter values are kept the same as in Eqs (5.3) and (5.4), and initial conditions are
the same as in Eqs (5.1) and (5.2).

Figure 7(a),(b) shows that the OVT is effective initially when the transmission rate β = 0.1, where
the susceptible tumor cells are infected and killed. The immune cells go through the contraction phase
after eliminating the infected cells. However, part of the susceptible tumor cells develop resistance to
treatment, as shown in Figure 7(c), which presents a closer look at Figure 7(a). The resistant tumor
population grows progressively, and the treatment ultimately fails. Consider m = 104, which corresponds
to a quicker immune cell proliferation in response to tumor growth. Figure 7(d) shows that a quicker
immune response eliminates infected cells and viruses but not the other two populations of tumor cells.
The anti-viral response, where viruses are cleared by the immune system, is a challenge in OVT [45,46].
Furthermore, a low half-saturation constant tends to cause an oscillation of populations [57, 58].
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Such persistent large scale oscillations are unlikely to be seen in tumor immune interactions [63].
Nevertheless, oscillations in tumor and immune cell populations may account for the transitional state
between elimination and equilibrium phases in immunoediting [63].

Let β = 10−6, which corresponds to a small virus transmission rate compared with the previous
simulation. Let m = 2 × 106. Figure 8 shows that the OVT is ineffective when the virus transmission
rate β is small. The infected tumor cell population is small and eliminated soon, but the immune system
is not able to eliminate the other two populations of tumor cells. This result agrees with the result shown
in Figure 5(c),(f). Again, a quicker immune response by using a smaller half saturation constant m or a
time delay τ > 0 does not improve the outcome of OVT but causes an oscillation of populations. The
figures are not shown here as the population dynamics are similar to those in Figure 7(d).
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Figure 8. Population dynamics for β = 10−6, m = 2 × 106, τ = 0. All other conditions are the
same as in Figure 7.

It is known that the interactions between the immune system and oncolytic viruses, resulting in
both anti-viral and anti-tumoral responses, can have both beneficial and detrimental effects on the
outcome of OVT [3, 45, 64]. Several studies have suggested the use of combination therapy with other
immunotherapeutic approaches to improve the efficacy of treatment [64–66]. Guedan and Alemany [67]
have published a review article addressing the potential role of combination therapy using OVT and
CAR T-cell therapy in fighting cancer. It is expected that combination therapy using OVT and CAR
T-cell therapy can improve the outcome of the OVT studied in this subsection.

5.5. Combination therapy using OVT and CAR T-cell therapy

Chimeric antigen receptor T-cell (CAR T-cell) immunotherapy is a novel revolutionary cancer
treatment. The process of CAR T-cell therapy involves deriving T cells from the patient and engineering
these T cells in vitro to promote the recognition of cancer cells and improve T-cell function. CAR T cells
are then expanded and infused back into the patient to enhance the elimination of tumor cells [68–70].
Preclinical studies in combination therapies of OVT and CAR T-cell therapy have been conducted
to investigate the synergistic effects [71], and the results have shown sustained anti-tumor immune
response yielding promising treatment outcomes [72].

According to Figure 5 (c),(d), the killing rate must be at least 5 × 10−4 to effectively fight tumor cells.
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From Section 5.4, the development of resistance to OV is a challenge to the success of OVT. Assume
that the engineered T cells have higher killing rates of susceptible and resistant cells than used in Section
5.4. Let ks = 5 × 10−4, kr = 5 × 10−3. Consider β = 0.1 , and m = 2 × 106. Gruber et al. studied the
relationship between tumor cells and T lymphocytes in breast cancer patients, and the patients had CTL
counts of 365 ± 194 cells/µL (Mean ± SD) [73]. Within two standard deviations of the mean, it is safe
to say that CTL counts for most patients range from several tens to 750 cells/µL. The dose levels for
CAR T-cell therapy are reported to range from 60 million to 600 million cells [74, 75]. For a person
with body weight of 70 kg, about 7.2 percent of body weight is blood [76]. That is about 5 liters of
blood. The concentration of CAR T cells in blood is about 12–120 cells/µL. The goal of CAR T cell
therapy is to generate a sufficient number of CAR T cells to go into the tumor site to effectively target
and attack the cancer cells [77]. From the simulation in the previous section, the numbers of effector
cells in the stable equilibria E2 (Figure 8) and E41 (Figure 7(a)) are 43,000 and 2000, respectively. In
this example, we simulate the concurrent administration of both agents. Using the initial condition
(7 × 106, 100, 0, 5 × 106, 8000), where the number of the initial immune cells is 8000, Figure 9(a) shows
that combination therapy is able to eradicate tumor cells. After the elimination of tumor cells, the
immune cells go through the contraction phase. Further simulation shows that monotherapy using either
CAR T-cell immunotherapy ((Figure 9(b)) or OVT (Figure 7(a)) is not able to eliminate the tumor. It
has been reported that CAR T cell therapy is ineffective for solid tumors [77]. Combination therapy
produces a synergistic effect [72].
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Figure 9. (a) Population dynamics for β = 0.1, m = 2 × 106, and τ = 0. All other parameter
values are kept the same as in Eqs (5.3) and (5.4) except for ks = 5 × 10−4 and kr = 5 × 10−3.
The initial conditions are (7 × 106, 100, 0, 5 × 106, 8000). (b) Monotherapy using CAR T cell
therapy.

Consider a larger tumor with 109 cells, which corresponds to a tumor of approximately 1 cm in
diameter [34]. It is known that virus clearance mediated by innate and adaptive immune cells is a
significant challenge in OVT [78]. The innate immune response acts rapidly [79, 80]. We use time delay
to simulate the strategy to circumvent this virus clearance in the initial days. Fu et al. [62] conducted
experiments to show that genetically coating oncolytic virus with CD47 allows OVs to evade the immune
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response and promotes virus persistence at the tumor site. We use a lower kv value to simulate evasion
of the immune response and to enhance virus persistence. Let kv = 0.03 in this simulation. Figure 10(a)
shows that the combination treatment is successful with a low dose of 5000 CAR T cells, compared
with the simulation in Figure 9(a). The results of further simulation of other cases are summarized in
Table 3. Combination therapy allows the use of lower doses of each agent and achieves better efficacy.
According to Eldar-Boock et al. [81], combination therapy can reduce the toxicity and side effects due
to lower doses.

Table 3. Efficacy of different combination treatments. Efficacy is measured by the largest
tumor size for which the treatment is successful. Ineffective means that the treatment is unable
to eradicate a tumor of 7 × 106 cells. The notation CD7 represents the strategy to enhance
virus persistence. Time delay τ > 0 represents the strategy to evade virus clearance in the
initial days.

Therapy Delay Number of Efficacy
Strategy 0 ≤ τ ≤ 7 CAR T cells Number of Tumor cells
OVT τ ≥ 0 — Ineffective (Figures 7 and 8)
CAR T cell τ ≥ 0 8000 Ineffective (Figure 9(b) )
CAR T cell+OVT τ = 0 8000 108

CAR T cell+OVT τ ≥ 4 5000 109

CAR T cell+OVT+CD7 τ = 0 8000 109

CAR T cell+OVT+CD7 τ ≥ 4 5000 109
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Figure 10. (a) Population dynamics for β = 0.1, m = 2 × 106, and τ = 4. All other parameter
values are kept the same as in Eqs (5.3) and (5.4) except for ks = 5 × 10−4, kr = 5 × 10−3, and
kv = 0.03. The initial conditions are (109, 100, 0, 5 × 106, 5000). (b) The same simulation as
part (a) for t ∈ [0, 1000]. If one tumor cell is formed, say at t = 1000, tumor recurrence will
occur.
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Recall that E0 is unstable. This implies a small perturbation may cause population dynamics to move
away from E0. In Figure 10(b) we simulate that one susceptible cell is formed at t = 1000. Note that
5–10% of T cells become memory T cells during the contraction phase [82, 83]. These memory T cells
can quickly respond to previously encountered pathogens [82]. The number of immune cells increases
in response to the presence of tumor cells. However, the immune cells cannot control the growth of
tumor cells leading to tumor recurrence. It has been reported that tumor recurrence is a formidable
challenge for cancer treatment [84].

6. Conclusions

Drug resistance is a common phenomenon encountered in cancer therapy, posing a critical barrier
that requires urgent overcoming. The issue of viral resistance is also encountered in oncolytic viral
therapy. While various mathematical and computational models that have appeared in the literature
focus on investigating resistance to chemotherapy, only one article [15] employs differential equations
to address resistance in OVT.

In this study, we extended the work of [15] by incorporating immune cells into the tumor-virus
interaction. These immune cells have the capability to eliminate both tumor cells and viruses. We
established the existence and stability of boundary equilibria and presented global stability results.
We proved that the delay in immune cell recruitment cannot destabilize boundary equilibria in which
immune cells are not present. For those boundary equilibria with the presence of immune cells, we
provided sufficient conditions based on model parameters for which the delay has no destabilization
effects. Additionally, we derived a critical delay value, under which a boundary equilibrium with the
presence of immune cells is destabilized when the delay passes through this critical value, leading to
tumor oscillations. The introduction of immune cells results in an additional virus-free equilibrium
when the recruitment rate of immune cells is sufficiently high. At this virus-free equilibrium, the total
tumor burden is smaller compared to the virus-free equilibrium without immune cells. Consequently,
we conclude that immune cells can effectively reduce the tumor load under conditions of sufficient
immune strength. We also demonstrated numerically, using reasonable parameter values in Section 5.1,
that the inclusion of immune cells can lower the tumor burden compared to the model where immune
cells are not included.

GSA showed that the virus transmission rate β and the parameters associated with immune response,
such as immune cell proliferation rate α and tumor killing rate ks, were important factors that affected the
final tumor population (Figure 4). Strengthening the immune system is crucial for treatment success and
preventing tumor recurrence [51]. The numerical simulation demonstrated that the virus transmission
rate must exceed a certain threshold to induce an anti-tumoral effect (Figure 5(c),(f)). A numerical
method of Hopf bifurcations was developed for system (2.1) with a time delay. Bifurcation analysis
(Figure 6), using the virus transmission rate and the half-saturation constant of immune cell proliferation
rate as bifurcation parameters, showed that the system (2.1) exhibited rich dynamics. The results of
bifurcation analysis agreed with the mathematical analysis in Sections 3 and 4. The time delay τ in the
activation of immune cells had a destabilization effect (Figures 6 and 7(a)–(d)).

Numerical simulation showed that the OVT was effective if the virus transmission rate was sufficiently
high; however, the treatment may ultimately fail due to the development of resistance (Figure 7(c)).
Resistance to oncolytic viruses has been reported to jeopardize the success of treatment [4]. Another
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simulation for a lower virus transmission rate showed that the viruses were cleared out before susceptible
cells were infected (Figure 8), and thus the OVT was ineffective. Virus clearance is known to be a
challenge in OVT [45,46]. Literature has suggested that OVT as monotherapy frequently fails to control
tumor progression and sustain a reduction in tumor masses due to anti-viral effect or development of
resistance [3, 45, 64, 85]; combination therapy is a preferable solution to overcome such challenges
[65, 67, 86, 87].

To enhance the success of treatment, combination therapy using OVT and CAR T-cell therapy
was considered in this paper. Numerical simulation showed that the combination therapy produced
synergistic effects and enhanced the success of treatment (Figure 9(a)). Monotherapy using either
OVT or CAR T-cell therapy is ineffective (Table 3). Further simulation studied treatment strategies to
improve the outcome of treatment (Table 3). Circumventing immune clearance of OVs in the initial
days allowed the use of a lower dose of CAR T cells and concurrently promoted the efficacy of the
combination therapy. This agrees with the viewpoint of experimental and clinical reports. Virus infection
and replication during the initial days of OVT significantly impact its efficacy. [47, 48]; one goal of
combination therapy is to improve efficacy while reducing toxicity [81]. Additional simulation showed
that Prolonged virus persistence enhanced the outcome of treatment, which agreed with the experimental
report that prolonging virus persistence improved the efficacy of OVT [62].

Finally, our simulation showed that cancer recurrence occurred after a tumor cell was formed
(Figures 10(b)). Evidence has suggested that cancer recurrence has been a major challenge after the
initial treatment response [88]. Our simulation results agreed with clinical and experimental research
studies. It is expected that these results can be applied to clinical practice. Further studies including
clinical tests are needed to further verify these results.

The immune cell assumptions made in this work were simplified. In future research, we intend
to introduce more complexity into the interaction. We propose segregating them into two groups:
tumor-specific immune cells and virus-specific immune cells. Tumor-specific immune cells will be
activated by both resistant and sensitive tumor cells, capable of targeting and eliminating both types of
cancer cells. On the other hand, virus-specific immune cells will be recruited by infected tumor cells
and viruses, focusing solely on eliminating infected tumor cells and viruses. This revised model will
encompass six nonlinear ordinary differential equations. Furthermore, we may introduce time delays,
either in the viral cycle or in immune cell recruitment, to further enhance the model’s accuracy.
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Appendix

A. Special cases of ODE models

The ODE models of the special cases d = 0 and no resistant cancer cells are briefly discussed in this
appendix.

A.1. The case of d = 0

Since d = 0, it follows that (T̂s, T̂r, 0, 0, 0) = (0,K, 0, 0, 0). If the maximal immune cell proliferation

rate
αK

m + K
is greater than its death rate γ, then the interaction is able to support another equilibrium,

E0
2 = (0, ξ, 0, 0, Z̃0), where

ξ =
mγ
α − γ

and Z̃0 =
rr(1 − ξ/K)

kr
. (A.1)
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It can be verified that E0
2 is asymptotically stable if

(rs − rr
ks

kr
)(1 −

ξ

K
) − a < 0, (A.2)

and unstable if the above inequality is reversed. Moreover, if

α > γ, (1 −
ξ

K
)(rs − rr

ks

kr
) > a, (A.3)

then the model (2.1) with τ = 0 and d = 0 has an equilibrium of the form E0
3 = (T̄ 0

s , T̄
0
r , 0, 0, Z̄

0), where

T̄ 0
s = ζ −

aζ

a +
(
1 −

ζ

K

) (krrs

ks
− rr

)
−

akr

ks

,

T̄ 0
r =

aζ

a +
(
1 −

ζ

K

) (krrs

ks
− rr

)
−

akr

ks

,

Z̄0 =
1
ks

(
rs

(
1 −

ζ

K

)
− a

)
.

(A.4)

Observe that the last inequality in (A.3) implies

(rs − rr
ks

kr
)(1 −

ξ

K
) − a > 0.

Therefore, the existence of E0
3 implies that E0

2 is unstable. The Jacobian matrix at E0
3 has the same

entries as J(E2) defined in (3.14). We can conclude that E0
3 is asymptotically stable if (3.11) and (3.16)

are satisfied with d being replaced by 0. The existence and stability of boundary equilibria of (2.1) with
τ = 0 and d = 0 are summarized in Table A1.

Table A1. The existence and stability conditions of boundary equilibria of system (2.1) with
τ = 0 and d = 0. The asterisk * represents the substitution of T̄s, T̄r, Z̄ in (3.11) and (3.16)
with T̄ 0

s , T̄ 0
r and Z̄0, respectively. The stability column provides sufficient conditions for the

asymptotic stability of the corresponding equilibrium.

Boundary equilibrium (Ts,Tr,Ti,V,Z) Existence Stability

E0 = (0, 0, 0, 0, 0) Always Unstable

E0
1 = (0,K, 0, 0, 0) Always

αK

m + K
< γ

E0
2 = (0, ξ, 0, 0, Z̃0)

αK

m + K
> γ (A.2)

E0
3 = (T̄ 0

s , T̄
0
r , 0, 0, Z̄

0) (A.3) (3.11)* & (3.16)*

Comparing Table A1 with Table 1, it is observed that E0
1 = E1 when d = 0, as in this instance T̂s = 0.

Therefore, the condition c > βqT̂s given in Table 1 is trivially true and the stability of E0
1 in Table A1
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reduces to
αK

m + K
< γ only. Further, the second inequality in (A.3) implies ξ < K, i.e.,

αK

m + K
> γ.

Thus, the equilibrium E0
3 given in Table A1 is the equilibrium E2 given in Table 1, and therefore the

stability of E0
3 is based on E2. The existence of E3 in Table 1 requires that c < βqT̂s, which is impossible

in the case d = 0, and there is no such corresponding equilibrium in Table A1.
Parallel to Theorem 3.1, we can also derive sufficient conditions for the global stability of E0

1 as
follows, without providing a proof.

Theorem A.1. Let τ = 0 and d = 0. The equilibrium E0
1 = (0,K, 0, 0, 0) is globally asymptotically

stable in D for (2.1) if
αK

m + K
< γ and c > βqK.

A.2. The scenario of no resistant tumor cells

Assume that there are no resistant tumor cells initially, Tr(0) = 0, and no mutation, a = 0. Then,
Tr(t) = 0 for all t > 0, and model (2.1) with τ = 0 becomes a four-dimensional system involving only
Ts,Ti,V , and Z. If, in addition, there are no infected tumor cells and viruses initially, Ti(0) = 0 = V(0),
then Ti(t) = 0 = V(t) for all t > 0, and we obtain the following two-dimensional system:

T ′s(t) = rsTs(t)
(
1 −

Ts(t)

K

)
− ksTs(t)Z(t)

Z′(t) =
αTs(t)Z(t)
m + Ts(t)

− γZ(t).
(A.5)

The system (A.5) has three equilibria, where (0, 0) and (K, 0) always exist, and (ξ, Z̃) is biologically

feasible only if
αK

m + K
> γ, with ξ =

γm
α − γ

defined in (3.5) and

Z̃ =
rs

ks

(
1 −

ξ

K
)
. (A.6)

It is straightforward to see that (0, 0) is always unstable, while (K, 0) is asymptotically stable if
αK

m + K
< γ and unstable if

αK
m + K

> γ. We assume
αK

m + K
> γ so that (ξ, Z̃) exists. It follows from the

Dulac criterion [24] that (A.5) has no positive periodic solutions, which implies that (ξ, Z̃) is globally
asymptotically stable in R̊2

+ for the two-dimensional model (A.5) by the Poincaré-Bendixson Theorem
[24]. As a result, we see that Ẽ2 = (ξ, 0, 0, Z̃) is asymptotically stable if

(b + kiZ̃)(c + kvZ̃) > qbβξ. (A.7)

Let c < βqK so that Ẽ3 = (T̃s, T̃i, Ṽ , 0) exists, where

T̃s =
c

βq
, Ṽ0 =

rs

β
(1 −

T̃s

K
), T̃i =

c

qb
Ṽ . (A.8)

See Section 3.3 of [15]. Applying the Routh-Hurwitz criterion [24], without delving into all the details,
Ẽ3 is locally asymptotically stable if it satisfies the following conditions

α(T̃s + T̃i)

m + T̃s + T̃i
< γ and

rs(b + c)

K
(b + c +

rsT̃s

K
) − β2qbṼ > 0. (A.9)
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The above results are summarized in the following table.

Table A2. Existence and stability conditions of boundary equilibria of system (2.1) of no
resistant tumor cells. The stability column provides sufficient conditions for the asymptotic
stability of the corresponding equilibrium.

Boundary equilibrium (Ts,Ti,V,Z) Existence Stability

E0 = (0, 0, 0, 0) Always Unstable

Ẽ1 = (K, 0, 0, 0) Always βqK < c and
αK

m + K
< γ

Ẽ2 = (ξ, 0, 0, Z̃)
αK

m + K
> γ (A.7)

Ẽ3 = (T̃s, T̃i, Ṽ , 0) βqK > c (A.9)

Parallel to Theorem 3.1, we can also derive sufficient conditions for the global stability of Ẽ1 as
follows, without providing a proof.

Theorem A.2. Let τ = 0, a = 0, and Tr(0) = 0. The equilibrium Ẽ1 = (K, 0, 0, 0) is globally

asymptotically stable in {(Ts,Ti,V,Z) ∈ R4
+ : Ts > 0} if

αK
m + K

< γ and c > βqK.

Notice the stability of Ẽ2 given in Table A2, (A.7), is the stability condition (3.16) for E2 in Table 1,
while the other condition (3.11) is trivially true for the case of no resistant tumor cells a = 0 and Tr ≡ 0.
In addition, the equilibrium Ẽ1 in Table A2 corresponds to the equilibrium point E1 = (T̂s, T̂r, 0, 0, 0) in
Table 1 with Tr ≡ 0, and they have the same existence condition. In addition, the inequalities (3.20) are
equivalent to those given in (A.9), and therefore both equilibria have the same stability conditions.

B. Special cases of DDE models

B.1. The case of d = 0

The resulting model always has equilibria E0 = (0, 0, 0, 0, 0), and E0
1 = (0,K, 0, 0, 0). Similar to

Section 4.2, it can be seen that E0 is always unstable for τ ≥ 0 and E1 is asymptotically stable for τ ≥ 0

if
αK

m + K
< γ, and unstable for τ ≥ 0 if

αK

m + K
> γ.

Let
αK

m + K
> γ. Then, E0

2 = (0, ξ, 0, 0, Z̃0) exits, where ξ =
mγ

α − γ
, and Z̃0 =

rr

kr
(1 −

ξ

K
). It can be

argued that E0
2 is asymptotically stable for τ ≥ 0 if certain conditions on the parameters are met. On the

other hand, under certain constraints on the parameters, there exists a critical delay τc beyond which E0
2

becomes unstable as τ increases. Indeed, let

p1 = (
rrζ

K
+ γ), p2 =

γrrξ

K
, q1 = −γ, q2 =

γmkrZ̃0

m + ξ
−
γrrξ

K
.

We summarize the following without proof as the proof is similar to that given previously.
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Theorem B.1. Let d = 0,
αK

m + K
> γ, a11 < 0, and p2 − q2 < 0. Then, there exists τ0 > 0 such that E0

2

is asymptotically stable for τ ∈ [0, τ0) and
d(Reλ)

dτ

∣∣∣∣
τ=τ0

> 0.

Assume (A.3) so that E0
3 = (T̄ 0

s , T̄
0
r , 0, 0, Z̄

0) exists. Suppose that (3.11) and (3.16) are satisfied with
d = 0, i.e., E0

3 is asymptotically stable for the ODE model with d = 0. Then, one can also find a critical
delay τc such that E0

3 is asymptotically stable for τ ∈ [0, τc), and the transversality condition for λ can
also be verified. We do not present the results here since the proof and conclusion are similar.

B.2. The scenario of no resistant tumor cells

The proof of the following proposition is routine and is omitted.

Proposition B.1. The following is true for system (2.1) with a = 0 and Tr(0) = 0.

(a) E0 = (0, 0, 0, 0) is unstable for τ ≥ 0.

(b) Ẽ1 = (K, 0, 0, 0) is asymptotically stable for τ ≥ 0 if c > βqK and
αK

m + K
< γ, and unstable if

either c < βqK or
αK

m + K
> γ.

Let

p̃2
1 − q̃2

1 − 2 p̃2 =
(rsζ

K

)2
, p̃2 + q̃2 =

ksmZ̃γ
m + ζ

,

p̃2 − q̃2 =
2rsζγ

K
−

ksmZ̃γ
m + ζ

.

The delay τ can affect the stability of Ẽ2 as illustrated below.

Theorem B.2. Let
αK

m + K
> γ. Then, Ẽ2 = (ζ, 0, 0, Z̃) exists, and

(a) Ẽ2 is asymptotically stable for τ ≥ 0 if (kiZ̃ + b)(kvZ̃ + c) > qbβζ and p̃2 − q̃2 > 0.

(b) If (kiZ̃ + b)(kvZ̃ + c) < qbβζ or p̃2 − q̃2 < 0, then there exists τ0 > 0 such that Ẽ2 is asymptotically

stable for τ ∈ [0, τ0) and
d(Reλ)

dτ

∣∣∣∣
τ=τ0
, 0.

C. Proofs of mathematical results

Proof of Theorem 2.1. Since f and
∂ f

∂X
exist and are continuous on R5

+ ×R
5
+, (2.1) has a unique solution

on [−τ, t0) for some t0 > 0. Moreover, if X,Y ≥ 0 with x j = 0, then f j(X,Y) ≥ 0, and thus solutions
remain nonnegative on [−τ, t0) by [27].

As

T ′s(t) + T ′r(t) ≤ (rsTs(t) + rrTr(t))(1 −
Ts(t) + Tr(t)

K
)

and
Ts(0) + Tr(0) ≤ K,
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we have Ts(t) + Tr(t) ≤ K on [0, t0). Next,

T ′s(t)+T ′r(t)+T ′i (t) ≤ (rsTs(t)+rrTr(t))(2−
Ts(t) + Tr(t)

K
)−rsTs(t)−rrTr(t)−bTi(t) ≤ C1−b1(Ts(t)+Tr(t)+Ti(t))

on [0, t0) for some C1 > 0 and b1 = min{rs, rr, b} > 0. It follows that Ti(t) ≤ Ĉ1 for 0 ≤ t < t0 for some
Ĉ1 > 0. Then, V ′(t) ≤ qbĈ1 − cV , and we have V(t) ≤ C2 on [0, t0) for some C2 > 0.

Notice

Z′(t) ≤
α

m

(
Ts(t − τ) + Tr(t − τ) + Ti(t − τ)

)
Z(t − τ) − γZ(t).

Let
M(t) = Ts(t − τ) + Tr(t − τ) + Ti(t − τ) + V(t − τ) + Z(t).

Then, by the given assumption,

M′(t) ≤ [rsTs(t − τ) + rrTr(t − τ)]
(
2 −

Ts(t − τ) + Tr(t − τ)

K

)
+ qbTi(t − τ) − rsTs(t − τ)

−rrTr(t − τ) − bTi(t − τ) − cV(t − τ) − γZ(t)

≤ M̂ − γ̂M(t)

on [0, t0) for some M̂ > 0, and
γ̂ = min{rs, rr, b, c, γ} > 0.

Hence, M(t) is bounded on [0, t0), and solutions cannot blow up as t ↑ t0. Therefore, solutions exist on
[0,∞) and remain nonnegative. Similar arguments can be applied to show that solutions are bounded on
[0,∞).

Proof of Proposition 3.1. Clearly, (T̂s, T̂r, 0) is asymptotically stable, and

Z′(t) ≤ (
αK

m + K
− γ)Z(t)

for all t ≥ 0 implies lim
t→∞

Z(t) = 0 by the assumption. Thus, (3.1) is asymptotically autonomous [30]

to the two-dimensional TsTr subsystem, under which (T̂s, T̂r) is globally asymptotically stable in the
region for which Ts(0) + Tr(0) > 0 by [15]. Therefore, (T̂s, T̂r, 0) is globally asymptotically stable in Γ.

Proof of Theorem 3.1. By Proposition 3.4, lim
t→∞

Ti(t) = 0 = lim
t→∞

V(t), and thus system (2.1) with

τ = 0 is asymptotically autonomous [30] to the three-dimensional model (3.1), where (T̂s, T̂r, 0) is

globally asymptotically stable in Γ by Proposition 3.1. Since c > βqK > βqT̂s and
αK

m + K
< γ, E1 is

asymptotically stable. It follows that E1 is globally asymptotically stable in D.

Proof of Proposition 4.1. We only need to prove the second part of (b) for τ > 0. Let

h(λ) =
αK

m + K
e−λτ − γ − λ

with τ > 0. Then,

h(0) =
αK

m + K
− γ > 0, h′(λ) < 0
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for λ ≥ 0, and
h(∞) = −∞.

Therefore, h(λ) = 0 has one positive root, and hence (T̂s, T̂r, 0) is unstable for all τ > 0.

Proof of Theorem 4.1 Suppose (4.9) has j positive roots xn, 1 ≤ j ≤ 3, each of which is simple. Then,
(4.4) has j simple pure imaginary roots

±i
√

xn, 1 ≤ n ≤ j.

Clearly, for each n, 1 ≤ n ≤ j, (4.10) and (4.11) have a unique solution ωnτ in (0, 2π], ωn =
√

xn. Let

τl
n =

1
ωn

[
arccos

(
q1ωn(ω3

n − p2ωn) + (p1ω
2
n − p3)(γω2

n + q2)
(γω2

n + q2)2 + q2
1ω

2
n

)
+ 2πl

]
, 1 ≤ n ≤ j, l = 0, 1, 2, ... (C.1)

if ρs > 0, and

τl
n =

1
ωn

[
2π − arccos

(
q1ωn(ω3

n − p2ωn) + (p1ω
2
n − p3)(γω2

n + q2)
(γω2

n + q2)2 + q2
1ω

2
n

)
+ 2πl

]
, 1 ≤ n ≤ j, l = 0, 1, 2, ...

(C.2)
if ρs ≤ 0. Define

τ0 = min{τl
n : 1 ≤ n ≤ j, l = 0, 1, 2, ...} = τl0

n0
, (C.3)

and set ω0 = ωn0 . We verify the transversality condition at τ = τ0, i.e.,
dRe(λ)

dτ
|τ=τ0 , 0, by using

Sign
(dRe(λ)

dτ

∣∣∣
τ=τ0

)
= Sign

(
Re(

dλ

dτ
)−1

∣∣∣
τ=τ0

)
.

The transversality condition is a necessary condition for a Hopf bifurcation to occur [27].
Implicitly differentiate (4.4) with respect to τ, and we obtain(

dλ
dτ

)−1

= −
τ

λ
+

−2γλ + q1

λ(−γλ2 + q1λ + q2)
−

3λ2 + 2p1λ + p2

λ(λ3 + p1λ2 + p2λ + p3)
.

It follows that(
Re

(
dλ
dτ

)−1

|τ=τ0

)
=

− 2γ2ω2
0 − 2γq2 − q2

1

γ2ω4
0 + 2γq2ω0 + q1ω

2
0 + q2

2

+
3ω4

0 + (2p2
1 − 4p2)ω2

0 − 2p1 p3 + p2
2

ω6
0 + (p2

1 − 2p2)ω4
0 + (p2

2 − 2p1 p3)ω2
0 + p2

3

,

and by (4.8),

ω6
0 + (p2

1 − 2p2)ω4
0 + (p2

2 − 2p1 p3)ω2
0 + p2

3 = γ
2ω4

0 + 2γq2ω
2
0 + q2

1ω
2
0 + q2

2.

As a result, (
Re(

dλ
dτ

)−1|τ=τ0

)
=

3ω4
0 + (2p2

1 − 4p2 − 2γ2)ω2
0 − 2γq2 − q2

1 − 2p1 p3 + p2
2

γ2ω4
0 + (2γq2 + q2

1)ω2
0 + q2

2

.

The denominator of the above expression is clearly positive, and the numerator is F′(x0), where x0 = ω
2
0

and F is defined in (4.9). Since x0 is a simple root, F′(x0) , 0, and the transversality condition is
satisfied.
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