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Abstract: Attention deficit hyperactivity disorder (ADHD) is a common childhood developmental
disorder. In recent years, pattern recognition methods have been increasingly applied to neuroimaging
studies of ADHD. However, these methods often suffer from limited accuracy and interpretability,
impeding their contribution to the identification of ADHD-related biomarkers. To address these
limitations, we applied the amplitude of low-frequency fluctuation (ALFF) results for the limbic
system and cerebellar network as input data and conducted a binary hypothesis testing framework
for ADHD biomarker detection. Our study on the ADHD-200 dataset at multiple sites resulted in
an average classification accuracy of 93%, indicating strong discriminative power of the input brain
regions between the ADHD and control groups. Moreover, our approach identified critical brain
regions, including the thalamus, hippocampal gyrus, and cerebellum Crus 2, as biomarkers. Overall,
this investigation uncovered potential ADHD biomarkers in the limbic system and cerebellar network
through the use of ALFF realizing highly credible results, which can provide new insights for ADHD
diagnosis and treatment.
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1. Introduction

Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder that is
diagnosed in childhood. It is characterized by impulsivity, inattention, and hyperactivity [1], which
have a detrimental impact on children’s learning, emotions, and social relationships. In recent years,
pattern recognition has been applied to neurological disease diagnosis, and significant progress has
been made in ADHD diagnosis through the develpopment of various classification approaches that
utilize machine learning (ML) and deep learning (DL) techniques [2, 3]. Nowadays, improving
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diagnosis accuracy remains a practical challenge for current ADHD classification methods, primarily
due to complex factors such as limited data size and noise disturbance in sampled data. Furthermore,
the identification of discriminative biomarkers for ADHD represents an essential application
requirement. These biomarkers can serve as keys to uncover the mechanisms underlying ADHD and
facilitate more convenient and accurate diagnosis and treatment. Accomplishing this task requires
achieving satisfactory accuracy and effectively addressing the challenge of interpreting features
obtained through the use of learning algorithms.

As we know, the type of biosignal is crucial in ADHD classification and biomarker detection.
Suitable biosignals can extremely improve ADHD classification accuracy and yield highly credible
biomarker results. Here, the magnetic resonance imaging (MRI) technique provides plenty of metrics,
such as cortical thickness, gray matter probability, regional homogeneity (ReHo), amplitude of
low-frequency fluctuation (ALFF), and functional connectivity (FC), to elucidate the brain status of
patients. Voxel-level metrics describe the detailed brain state at a high spatial resolution. For example,
complementary features can be extracted from voxel-level functional MRI (fMRI) and structural MRI
(sMRI) data to characterize differences among subjects [4], while binary voxel-level ALFF feature
maps are employed and input to an attention-based DL classification network [5]. However, the
extraction of features from voxel-level data has significant problems, as learned features often suffer
from noise interference due to the limited consideration of relationships among these voxel-level data.
As a result, the performance of voxel-based ADHD classification methods is poor, greatly reducing
the reliability of biomarker detection in these studies. Region-level metrics can be obtained by
matching the original resolution fMRI data with a certain brain template, which preserves the
functional similarity of the voxels within the region and effectively elevates the classification
accuracy, while providing better interpretability for ADHD disease. Therefore, region-level metrics
are preferred. For example, region-level FC has been frequently utilized for accurate ADHD
classification and biomarker analysis [6–8]. However, FC is a numerical measure that assesses the
correlation between different brain regions. Consequently, when utilized, the identified biomarkers
are dispersed in practice [7], making it difficult to in focus on specific brain regions and undermining
the interpretability of the obtained outcomes. Studies have shown that spontaneous low-frequency
(< 0.08 Hz) fluctuations are highly synchronized between the motor cortices, while ALFFs imply
spontaneous neuronal activity within the region [9]. Therefore, region-level ALFF has better
functional aggregation, making it more suitable for the detection of biological markers of ADHD. We
employed region-level ALFF for ADHD classification and biomarker detection in this study, where
abnormal ALFF values serve as indicators of changes in ADHD-related brain regions.

The effectivity of biomarker detection also depends on the detection approaches. As far as we
know, there exist two major ways to elucidate ADHD biomarkers. 1) One way is statistical analysis,
which compares the differences between ADHD group and control group data. Here, the
characteristics associated with credible brain region differences were found by various statistical
methods including the volumes of hippocampus and amygdala [10] and the activity intensity of the
cerebellum area [9]. Unfortunately, these statistical conclusions have limited capacity in ADHD
individual diagnosis, since the ADHD condition is different for each subject. 2) The other way is to
employ feature selection or learning strategies during the ADHD classification procedure. For
example, high-score FC vectors are determined using by a specific feature ranking method [6], and
the learned convolution kernels are mapped to three-dimensional space via reconstruction techniques
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to determine the location of highlighted brain regions [11]. But, it is highly challenging to design a
satisfactory classification method that is also capable of reliable biomarker detection. On one hand,
existing classification methods with ML are good at employing feature selection to find typical
features from the input raw data through the various effective algorithms, such as a support vector
machine with recursive feature elimination (SVM-RFE) [12], the least absolute shrinkage and
selection operator (LASSO) [13,14], and the elastic net [15]. However, ML-based methods frequently
use linear classifiers for ADHD prediction, and they cannot fully describe the complex relationship
between features and ADHD disease. Consequently, it has low accuracy [16] and does not provide
reliable biomarkers. On the other hand, DL methods exhibit remarkable classification performance, as
their flexible feature learning capability facilitates the learning of potential ADHD-related features.
For example, three-dimensional [4] and four-dimensional [17] convolutional neural networks (CNNs)
have been directly applied to sMRI and fMRI medical image data, exploring the time and spatial
patterns of ADHD features in MRI data. Several attention mechanisms have been adopted to
adaptively emphasize the learned discriminative features and thus improve the classification
performance [18, 19]. In addition, autoencoder (AE) networks have also been widely used in ADHD
classification. A deep variational AE (DVAE) network and its advanced version, the spatiotemporal
attention AE (STAAE) network, have yielded impressive classification results with an accuracy of
over 93% [20, 21]. However, in these cases, the learned features from DL-based methods are viewed
as high-level features, which have poor interpretability and cannot meet the biomarker detection
requirement. In summary, both methods for biomarker detection have limitations. However, it is an
interesting idea to combine the two, as it would introduce the prior knowledge obtained from
statistical analysis into the classification method to guide the classification and enhance the
interpretability of related derived biomarkers.

Attracted by the superior performance of the AENet-based binary hypothesis testing (BHT)
framework, we have employed this model to elucidate the related biomarkers from regional ALFF
data. The main contributions of the study are described as follows:

1) We use prior knowledge to guide the classification procedure. Since ADHD children suffer in
executive functions, cognitive and emotional control, we applied ALFF to the data on the 50 related
brain regions in the limbic system and cerebellum. Moreover, using the attributes of ALFFs as a basis,
we modified the existing AENet to be more suitable for feature learning on ALFF data. Considering
that the ALFF data on limited brain regions cause the AENet to exhibit unstable feature learning and
thus degenerate the classification performance, we have also introduced an ensemble learning strategy
to enhance the accuracy. As a result, we achieved remarkable results on multiple datasets with an
average accuracy of 93.3%.

2) Regarding high-level classification performance, biomarker detection was effectively carried out.
Several potential biomarkers were identified from the selected features by implementing an SVM-
RFE algorithm in the BHT framework. Then, we employed a two-sample t-test between groups and
correlation analysis based on the ADHD symptom scores to verify the rationality of these biomarkers.
We found that brain regions, including the thalamus, hippocampus, and cerebellar lobule X, were
most discriminative in our experiments, which is in line with the existing statistical analysis reports.
It further demonstrates that the biomarkers obtained via classification and statistical analyses exhibit
consistency in the limbic system and cerebellum.
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2. Related work

2.1. ADHD effect on limbic system and cerebellum

The limbic system involves a group of regions in the paleocortex that support various functions
related to emotion regulation and motivation [22]. In detail, it mainly consists of the amygdala,
hippocampus, striatum, and thalamus, which are known to be implicated in ADHD. Several studies
have confirmed significant statistical differences between ADHD and healthy control (HC) subjects in
the limbic system. For example, structural integrity is impaired in brain regions such as the
thalamus [23], caudate nucleus [24], and amygdala [25, 26] in children with ADHD. Additionally,
abnormal volumes have been observed in these above regions, as well as the hippocampus [27, 28].
Moreover, FC analysis has revealed significant variations in neural connections involving the
thalamus and hippocampus regions [29, 30].

Initially believed to be primarily involved in motor learning and coordination, the cerebellum is
now recognized to play a significant role in cognition and emotion, thus making a vital contribution to
the pathophysiology of ADHD [31]. Numerous studies have shown that the cerebellum undergoes the
most noticeable structural and functional changes for ADHD [32]. Children with ADHD also exhibit
a significant decrease in the ALFF signal in the bilateral cerebellum [9], accompanied by impaired
structural integrity [33, 34].

In summary, statistical differences associated with ADHD have been found in these brain regions,
which means that these findings highlight the potential of the limbic system and cerebellum to serve
as a source of biomarkers for ADHD detection and assist in its classification process. Hence, using
this prior knowledge, the limbic system and cerebellum can be used as input brain regions. In this
way, highly correlated input data can be obtained, and the interpretability of the intermediate features
generated via the classification method is also enhanced.

2.2. FC-based BHT classification framework

To the best of our knowledge, two commonly employed classification frameworks exist in the field
of ADHD diagnosis: the training-test framework and the hypothesis-test framework [7]. The
training-test framework dominates ADHD classification, involving the learning of features from
training data their comparison with those of test data to predict labels. However, this strategy proves
inadequate for small-sized datasets, leading to unsatisfactory performance. These learned
training-data features fail to fully encompass the characteristics of test data, resulting in a significant
hindrance to accuracy improvement due to the limitation of sample number [7]. In contrast, the
hypothesis-test framework follows a semi-supervised approach, where we have successfully designed
a BHT framework for ADHD classification [35–37]. The core idea behind the BHT framework is to
incorporate the test data, along with an assumed label, into the feature learning process for the training
data. In scenarios in which the assumed label is incorrect, this feature learning process becomes
disrupted because the test data introduces noise-like elements that are not present in the training data.
As a result of comparing the training features learned under different assumptions, predicting the
labels of the test data becomes easier. Therefore, the BHT framework is suitable for research on the
ADHD-200 dataset due to its anti-noise ability and ability to overcome the limitation of sample size.

Figure 1 depicts the flowchart of the existing BHT framework, which utilizes FC as the raw data
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input (more details can be found in reference [7]). The test data were initially categorized as either
HC (H0) or ADHD (H1) data. For feature selection, the SVM-RFE approach is employed to choose
the N most characteristic connections for both the training and test data, wherein only the connections
from the training data are retained to form two typical feature sets, XH0 and XH1 . Subsequently, a
feature extraction process is performed by using a modified AE network to process these feature sets
and generate the corresponding high-level feature sets, X̃H0 and X̃H1 . During the ADHD decision step,
the inter-class and intra-class variability scores, DH0 and DH1 , are computed for the high-level feature
sets and compared. The assumption with a smaller variability score is identified as the true hypothesis,
H̃true, with the corresponding label assigned to the test data.

Figure 1. Flowchart of BHT framework. H0 and H1 correspond to different assumptions.
Typical feature sets (XH0 and XH1) and high-level feature sets (X̃H0 and X̃H1) are obtained in
the feature selection and feature extraction stages, respectively. Then, the variability scores
(DH0 and DH1) are calculated in the decision stage for ADHD and the correct hypothesis
(H̃true) is selected based on the score.
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It should be noted that this FC-based model suffers from two problems in biomarker detection.
Firstly, during feature selection, a total of 4005 connections are used, resulting in scattered
characteristic connections. This severely undermines the meaningfulness of the identified biomarkers,
as we believe that biomarkers should be localized in specific regions. Second, no prior knowledge is
considered during feature selection. As a result, this purely data-driven framework may introduce bias
and compromise the reliability of the biomarkers. To overcome these problems, we propose using a
limited number of regional ALFFs in the limbic system and cerebellum for biomarker detection.

3. Methodology

3.1. Data preprocessing

All the data used in this study were taken from the Athena pipeline in the ADHD-200
preprocessed dataset of the (http://preprocessed-connectomes-project.org/adhd200/), which contains
data of seven sites from the ADHD-200 competition dataset. Note that the University of Pittsburgh
and Washington University in sT. Louis sites only contain HC samples, while there is relatively little
research on the Oregon Health & Science University sites. Thus, we ultimately chose the remaining
four sites for the experiment, including New York University Medical Center (NYU), Peking
University (PU, comprising three PU sub-sites), Kennedy Krieger Institute (KKI), and NeuroIMAGE
(NI). Detailed information on the samples from these four datasets is recorded in Table 1.

Table 1. Summary of several ADHD-200 sites.

Site Age Female/Male Control ADHD Total
NYU 7–18 76/140 98 118 216
PU 8–17 52/142 116 78 194
KKI 8–13 37/46 61 22 83
NI 11–22 17/31 23 25 48

Table 2. Used brain regions in limbic system and cerebellum.

Region name Region index Region name Region index
Olfactory cortex 21–22 Amygdala 41–42
Insula 29–30 Caudate 71–72
Anterior cingulate 31–32 Putamen 73–74
Middle cingulate 33–34 Pallidum 75–76
Posterior cingulate 35–36 Thalamus 77–78
Hippocampus 37–38 Cerebellum 91–108
Parahippocampal 39–40 Vermis 109–116

We utilized a meticulous approach to extract regional ALFFs from the downloaded time course
values of blood-oxygen-level-dependent (BOLD) signals recorded from the subjects in our study.
To derive the voxel-based ALFFs, we implemented several standard operations, including filtering
(band-pass 0.009–0.08 Hz) to eliminate noise, performing a fast Fourier transform, and calculating
the power spectrum proportionally. Subsequently, we employed the automated anatomical labeling
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(AAL-116) atlas to divide the brain into distinct regions. Finally, regional ALFF values were obtained
by averaging the voxel-based ALFF values within the regions of interest (ROIs), where a total of 50
ROIs are provided in Table 2 with their brain indices. But please note that there might be a slight
deviation for the limbic system, which contains the entire cingulate gyrus including the anterior,
middle, and posterior cingulate gyri.

3.2. ALFF-based BHT framework

We introduce the ALFF-based BHT framework for ADHD classification, wherein regional ALFFs
replace FC data as the input raw data. Similar to the FC-based framework, we focus on enhancing the
feature extraction step within the utilized AE network. The architecture of our ALFF-based AE
network is illustrated in Figure 2. Within this diagram, the typical features (i.e., characteristic ALFF)
of the training data are shown to undergo encoding via an encoder subnetwork to derive their
high-level representations. These representations are then passed through a decoder subnetwork for
reconstruction. Simultaneously, a classification subnetwork supervises the labeling of high-level
features acquired through the encoder subnetwork. This strategy aims to retain category information
related to the training data within the high-level features.

Figure 2. Structure of ALFF-based AE network. The proposed AE network includes
encoding, decoding, and classification subnetworks. At the same time, the details of ResNet
block in the classification subnetwork are also given.
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In contrast to the FC-based AE network [7], we have introduced several targeted modifications to
our network architecture, making it specifically tailored to harness the attributes of ALFF. Notably,
we have incorporated a subsequent ReLU into the dense layer within the decoding subnetwork. This
adjustment ensures that the reconstructed ALFF maintains non-negative values. Furthermore, in
practical implementation, our AE network employs the ALFF-based selected features with an output
dimension (i.e., the output dimension of SVM-RFE) that has been reduced to 25, as opposed to the 50
dimensions pf the FC-based features. This conscious reduction mitigates the risk of overfitting that
might arise when directly inputting these features into the FC-based AE network. Consequently, we
have optimized the architecture of the classification subnetwork. Presently, the classification
subnetwork employs just two residual network (ResNet) blocks, designed to process an input vector
with dimensions of 8 × 1. This departure from the 20 × 1 input used in the FC-based AE network
results in the generation of more efficacious high-level features. Lastly, we have meticulously detailed
the parameters for each dense unit within our AE network in Table 3, note that the size of each dense
layer is determined by grid search. The loss functions applied for the reconstructing of the selected
features and prediction of the corresponding labels closely align with those employed in a previous
study [7], ensuring methodological consistency.

Table 3. Size of dense layers.

Layer size*
Dense 1 (25, 10)
Dense 2 (10, 25)
Dense 3 (10, 8)
Dense 4 (8, 8)
Dense 5 (8, 2)

* The parameters (a, b) describe a dense unit with input size of a and output size of b.

3.3. Enhanced classification with ensemble learning

Although adjusting the AE network to accommodate ALFF data represents a positive step, a
prominent challenge persists. It centers around the inherent instability of the AE network, which
directly impacts the final prediction outcomes. Throughout network training, the initial configuration
of learned parameters wields substantial influence. Optimal initial values possess the capacity to
expedite the training process and guide the network toward a state of stability. However, when
handling a small-sized dataset, the effect of these initial values is disproportionately amplified,
thereby compromising the network’s robustness and introducing an element of uncertainty. In
practical implementation, our ALFF-based AE network is susceptible to this uncertainty. Even when
holding the ALFF input constant for both training and test data, the resulting ADHD prediction
outcomes may exhibit minor variances with a low probability. This uncertainty significantly impedes
the pursuit of refined ADHD classification accuracy, consequently undermining the efficacy of
biomarker detection endeavors.

In this study, we have employed ensemble learning as a powerful tool to address this challenge.
Ensemble learning stands as a classical strategy that is renowned for mitigating issues related to data
imbalance, model robustness, and uncertainty estimation. Its basic idea is to integrate several weak
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classifiers and build a fortified classifier, which engenders heightened reliability within the
classification outcomes. The existing examples involve the collection of classifiers from the fields of
ML and DL for application in various medical diagnostic scenarios, such as Parkinson’s disease
classification [38], anticancer peptide prediction [39], and virulence factor detection [40]. This
strategy was also successfully utilized for ADHD diagnosis, where solid decision-making can be
realized based on multimodal data [41].

The proposed ensemble classification method is illustrated in Figure 3. For a given test data, the
process involves generating the typical features sets (XH0 and XH1) of training data based on opposite
test label assumptions in the feature selection step. Then, multiple pairs of AE networks are utilized,
each initialized with random parameters, to acquire multiple pairs of high-level feature sets, X̃H0 and
X̃H1 . Subsequently, pairwise high-level features sets are compared to determine the true hypothesis and
corresponding hypothesis labels (Ltrue), which compares the intra-class and inter-class distances ratios
of each feature set. The hypothesis label is considered as the prediction result of a baseline classifier.
Finally, a hard voting strategy is then applied to these hypothesis labels. By assessing the frequency
of label values (0 for ADHD and 1 for HC), class labels of the data are assigned higher frequency
label values.

Figure 3. ALFF-based BHT framework. Different from the existing BHT framework, the
voting strategy is applied to the output label (Ltrue) of the ADHD decision stage, which
improves the reliability of results. The ensemble label obtained by voting is regarded as
the final prediction label of test data.
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3.4. Extraction strategy for biomarkers

As described for the BHT framework in Section 2.2, typical feature sets were selected by the SVM-
RFE algorithm in the feature selection stage. Meanwhile, reliability weights W ji of typical feature sets
can be obtained during this process. Specifically, the SVM-RFE algorithm trains a linear SVM in one
iteration to obtain a weight vector that fits to the input feature set. Then, the square of the weight vector
is used as the criterion for judging the usefulness of features, and the feature with the smallest-valued
criterion is removed. After removing a certain number of features over multiple iterations, a typical
feature set with the expected dimensions is obtained. The square of the fitted linear SVM weight vector
on this feature set is considered to comprise the reliability weights of the features.

Reliability weights not only measure the contribution of features to classification they also serve as
a criterion for subsequently extracting brain biomarkers. However, there are differences in the values
and ranks of reliability weights at different sites. Moreover, under the binary hypothesis framework, the
typical feature subset generated under the correct hypothesis is more valuable. Therefore, the weighted
average of the feature reliability weights were designed to be from the correct hypotheses for the four
sites, where the weighted value is the product of the number of people and the classification accuracy
for the site. The weighted average result is seen as a more comprehensive measure to evaluate each
feature, and it is called the feature score S i for each ROI. The feature score can be defined as follows:

S i =

∑4
j=0 Acc j × N j ×W ji∑4

j=0 Acc j × N j
, (3.1)

where Acc j and N j respectively denote the classification accuracy after ensemble learning and data size
of the j -th dataset, W ji represents the reliability weight for the i -th ROI of the j -th dataset. This feature
score provides enough convenience for finding ADHD biomarkers.

4. Experimental result

4.1. Classification performance

The classification performance of our BHT framework with ALFF-based AE network is presented in
Table 4, where the accuracies with and without ensemble learning are provided. Specifically, each site
was subjected to 50 leave-one-out cross-validation (LOOCV) trials, and the average accuracy without
ensemble learning strategies was obtained. The results with ensemble learning were derived from
the average of 1000 hard voting trials, where each trial entailed randomly selecting seven hypothesis
labels (Ltrue) from the 50 LOOCV trials. During the AE network learning, an Adam optimizer is
utilized to optimize the whole network. Hyperparameters of each site were determined through grid
search, including the learning rate, training epoch, and the rate of dropout. After a certain number
of epochs, the training loss converges and becomes stable. In addition, ablation experiments were
designed to verify the role of components of the ALFF-based AE network, as well as under the BHT
framework. 1) Default-classifier network: the classifier subnetwork was hidden, only the complete AE
network was retained, and the entire network was trained by using the reconstruction loss. 2) Default-
decoder network: the decoder subnetwork was hidden, the encoder degenerated into a dense layer,
and the whole network was trained by using the cross-entropy loss. Later, ADHD decisions were made
based on the encoder output features of the default-classifier network and the output features of the first
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dense layer of the default-decoder network, respectively. The results of ablation experiments are shown
in Table 5, which shows that the hyperparameter and experimental details were identical to those of
the ALFF-based AE network. The source code is available at https://github.com/BiolabHHU/ALFF-
based-BHT.

In Table 4, one can see that an evident distinction emerges in the classification performance
when comparing the results in the absence of ensemble learning to those in its presence, and it is
manifested in the differences in metrics, including accuracy, sensitivity, specificity, area under the
receiver operating characteristic curve (AUROC), area under the precision-recall curve (AUPRC),
F1 score (F1), and apply capitalization correlation coefficient (MCC). The absence of ensemble
learning resulted in notably inferior performance, as indicated by the average accuracy of 87.0%.
Notably, when confronted with the PU dataset, the accuracy decreased to an unsatisfactory 80.3%.
This decline is attributed to a high prevalence of comorbidity disorders among the ADHD children
within this dataset, affecting 44 out of 78 cases. Conversely, the application of ensemble learning
resulted in a marked enhancement in the accuracy metrics. The average accuracy significantly
increased, reaching 93.3%. This positive impact is particularly evident in the case of the PU dataset,
where accuracy improved dramatically from the aforementioned 80.3% to 88.8%. This result
effectively substantiates the ability of ensemble learning to augment the potency of weaker classifiers
and make them robust. Moreover, Table 4 also presents the results of measurements of the area under
the curve. Specifically, the average AUROC and AUPRC values were both around 0.93, underscoring
the excellent performance of the ALFF-based BHT framework on the ADHD-200 dataset.
Remarkably, this heightened level of accuracy was achieved through the utilization of a mere 25
selected features from 50 regional ALFFs. This outcome serves to reinforce the presumption that our
approach facilitates the biomarker detection endeavors. Additionally, we provide the receiver
operating characteristic (ROC) curves for the used datasets in Figure 4, which shows that the curve for
the KKI site had the largest area among these datasets.

Table 4. Classification performance for various datasets.

Site Accuracy (%) Sensitivity (%) Specificity (%) AUROC AUPRC MCC F1
Without ensemble learning
NYU 91.94 90.59 93.55 0.9207 0.8913 0.8396 0.9239
PU 80.32 78.87 81.29 0.8008 0.7984 0.5994 0.7697
KKI 88.19 87.45 88.46 0.8796 0.8817 0.7445 0.8256
NI 87.38 88.40 86.26 0.8733 0.8296 0.7488 0.8786
Average 86.96 86.33 87.39 0.8686 0.8503 0.7331 0.8495
With ensemble learning
NYU 96.20 96.88 95.38 0.9616 0.9400 0.9250 0.9660
PU 88.79 96.67 83.50 0.8982 0.9074 0.7801 0.8719
KKI 95.05 98.90 93.66 0.9656 0.9815 0.9033 0.9276
NI 93.23 98.32 87.70 0.9302 0.9174 0.8667 0.9374
Average 93.32 97.69 90.06 0.9389 0.9366 0.8688 0.9257
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Table 5. Comparison of classification accuracy of the three networks.

Network NYU (%) PU (%) KKI (%) NI (%) Average (%)
Without ensemble learning
Default-classifier network 69.00 53.69 42.82 67.67 58.29
Default-classifier network 89.83 80.26 86.84 86.79 85.93
ALFF-based AE network 91.94 80.32 88.19 87.38 86.86
With ensemble learning

Default-classifier network 75.01 52.38 35.51 75.49 59.60
Default-classifier network 95.14 85.45 91.29 92.39 91.07
ALFF-based AE network 96.20 88.79 95.05 93.23 93.32

To further validate the utilization of ensemble learning, we constructed a box-and-whisker plot to
show the accuracy distribution, as shown in Figure 5. It is evident that the adoption of ensemble
learning leads to an enhancement in the average accuracy. While this learning strategy may not
entirely eliminate the fluctuations in accuracy owing to the inherent uncertainty of the AE network,
can be ascertained from Table 4, there was a substantial reduction in the standard deviation of
accuracy. Especially, the enhancement of accuracy are obviously disclosed on the PU dataset. These
findings prove the effectiveness of ensemble learning as a tool to enhance the robustness of our
ALFF-based BHT framework.

Table 5 shows a comparison of the classification accuracy of the three networks. The accuracy of the
default-classifier network was only 42–76%, which may have been caused by the lack of information
learned from the label based on the guidance of the cross-entropy loss; thus, the extracted high-level
features had no inter-class discrimination. The classification accuracy of the default-decoder network
was 1–4% lower that of proposed ALFF-based AE network, indicating that the lack of reconstruction
loss may reduce the representation ability of high-level features.

Figure 4. ROC curves for various data sites.
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Figure 5. Accuracy distribution with and without ensemble learning, presented in the form
of a box-and-whisker plot. Each dataset is tagged with its accuracy’s mean and the standard
variation (SD) value. The absence of ensemble learning is colored with black, whereas the
application of ensemble learning is in blue.

We tested our method against other state-of-the-art methods the results are presented in Table 6.
The compared methods include ML-based methods such as R-Relief [42], L1BioSVM [43], and
Fusion fMRI [44], as well as DL-based methods such as the 3D CNN [4], DeepfMRI [45],
CDAE [46], DVAE [20], STAAE [21] and data augmentation [47]. In addition, our previous work
under the BH framework is also included in this comparison. These methods are referred to as
SP-BH [37] and SP-l2,1-BH [36], which use subspace learning and l2,1-norm subspace learning for
ADHD classification, respectively.

From Table 6, it is observed that the existing ML methods had the lowest accuracies, stemming
from their limited exploration of potential features for classification. Meanwhile, most examined DL
methods are confined to the traditional training-test framework, which causes the learned features from
the training data to inadequately representing the features of the test data. Among these methods, the
STAAE approach stands out because of its remarkable performance achievements and a commendable
biomarker detection capability. Its success benefits from the integration of an attention module that
captures temporal patterns from fMRI spatiotemporal features. Based on its accurate classification,
STAAE extends its application by projecting these temporal patterns onto corresponding brain regions,
effectively fulfilling the biomarker detection task. The listed methods within the BHT framework all
exhibited impressive classification performance, facilitated by the utilization of test data information
(without seeing its label). Among these methods, AENet leverages DL to effectively represent high-
level features, making it superior to the SP-BH, SP-l2,1-BH approaches. As an FC-based BHT method,
AENet incorporates a great number of connections, consequently leading to a widespread selection of
features across the entire brain. This, however, renders the identified biomarkers indiscriminate. In
contrast, our ALFF-based method achieved an average accuracy of 93.3%, even though it was slightly
inferior to that of AENet. A distinctive trait lies in the substantial reduction of both the used raw
and selected features. This implies that the features used and selected by our algorithm carry more
significance as potential ADHD biomarkers. Moreover, the selected features were tightly localized
within the limbic system and cerebellum, rendering our ALFF-based method exceedingly interpretable.
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Table 6. Accuracy comparison between our method and state-of-the-art methods.

NYU
(%)

PU
(%)

KKI
(%)

NI
(%)

Average
(%)

Material Raw
features

Selected
features*

Biomarker
detection

ML

Fusion fMRI (2018) 52.7 - 86.7 72.9 70.8 FC 4005 - No
L1BioSVM (2018) - 81.1 81.3 - 81.2 FC 6670 - No
R-Relief (2019) 70.7 68.6 81.8 76.0 74.3 fALFF 31 × 37 × 31 - No

DL

3D CNN (2017) 70.5 63.0 - 72.8 68.8 MRI image 90 × 117 × 100 1024 No
DeepfMRI (2020) 73.1 62.7 - 67.9 67.9 BOLD 90 32 No
CDAE (2021) 73.2 70.6 81.7 79.0 76.1 MRI image 60 × 72× 60 5 × 6 × 5 No
DVAE (2021) 62.4 67.0 78.1 68.8 69.1 BOLD 28,546 80 No
STAAE (2022) 93.5 92.7 90.4 91.7 92.1 BOLD 28,546 100 Yes
Data augmentation (2023) 75.6 76.5 76.0 - 76.0 FC 13,456 1856 No

BHT framework

SP-BH (2019) 96.2 95.8 86.7 91.6 92.6 FC 4005 100 No
SP-l2,1-BH (2020) 99.5 96.3 100 95.8 97.9 FC 4005 50 No
AENet (2022) 99.8 99.6 99.8 99.3 99.6 FC 4005 50 Yes
Our 96.2 88.8 95.1 93.3 93.3 ALFF 50 25 Yes

* The number of feature selected in the ML method is not fixed. And the DL method selects the learned high-level features, while the BHT method selects typical

features from the raw features.

4.2. Biomarker detection

Table 7 presents the top 10 brain regions obtained with the highest feature scores S i; their locations
are visualized in Figure 6. These identified regions are considered to be potential ADHD biomarkers.
To substantiate our findings, we conducted a correlation analysis between the ALFF data from these
regions and the symptom scores provided by the ADHD-200 dataset; the results are shown in Table 7.
Since the NI site did not give symptom assessment data, we performed correlation analysis for the
PU, KKI and NYU sites. Notably, only individuals with ADHD-simplex were included in these
analyses to mitigate the influence of comorbid disorders. In Table 7, it is evident that the majority of
detected biomarkers had a robust correlation with symptom scores from the PU dataset,
demonstrating significant values above 0.2, under the 95% confidence interval. This finding
underscores the potential of our identified biomarkers to capture ADHD-related characteristics.
However, an intriguing observation arose from the results obtained for the other two datasets. In this
case, the correlation between biomarkers and symptoms was notably weaker, especially for the NYU
site, as reflected by the higher P values over 0.05. This discrepancy can be attributed to the utilization
of distinct symptom assessment measures across these datasets. To elaborate, although three datasets
were derive from symptom measures based on questionnaires administered to parents and teachers,
the specific scales employed differ. The PU dataset employs the ADHD Rating Scale-IV (ADHD-RS),
whereas the KKI and NYU datasets utilize Conners’ Parent Rating Scale-Revised, Long version
(CPRS-LV). Despite the shared origin in parental and teacher reports, we posit that ADHD-RS offers
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advantages in terms of its ability to abnormalities within the limbic system and cerebellum. This
assertion underscores the potential for ADHD-RS to provide insights into these specific regions.

Figure 7 supplements our analysis and visualizes the results of correlation analysis for ADHD-RS
scales, encompassing regions the left hippocampal gyrus, left and right thalamus, and left
cerebellum Crus II gyri, which are the four regions with the highest correlation coefficients. It further
supports that these regions exhibit significant relevance to ADHD, thereby warranting consideration
as potential biomarkers.

Table 7. Detected biomarkers and their symptom score correlations for the PU, KKI and
NYU datasets.

Brian region Ranking order PU (ADHD-RS) KKI (CPRS-LV) NYU (CPRS-LV)
Name Abbrev Corr P-value Corr P-value Corr P-value
Middle cingulate gyrus (R) DCG.R 1 0.235 0.007 0.358 0.003 -0.035 0.660
Cerebellum IX (R) CRBL9.R 2 0.161 0.065 0.155 0.213 0.038 0.630
Amygdala (R) AMYG.R 3 0.198 0.023 0.057 0.648 -0.005 0.953
Thalamus (L) THA.L 4 0.245 0.005 0.150 0.229 0.044 0.572
Cerebellum X (R) CRBL10.R 5 0.244 0.005 0.241 0.051 0.021 0.787
Cerebellum Crus II (L) CRBL Crus2.L 6 0.245 0.005 0.259 0.036 0.128 0.102
Cerebellum Crus II (R) CRBL Crus2.R 7 0.214 0.014 0.236 0.057 0.123 0.115
Thalamus (R) THA.R 8 0.270 0.002 0.184 0.139 0.043 0.580
Hippocampus (L) HIP.L 9 0.274 0.001 0.273 0.027 0.021 0.786
Caudate (R) CAU.L 10 0.235 0.007 0.215 0.083 0.034 0.667

Figure 6. Visualization results for the top 10 regions. Here, the larger the node diameter, the
higher region feature score achieved.
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Figure 7. Relationship between ALFF value and symptom score for ADHD-RS on the PU
dataset. ADHD and HC subjects are colored with red and green, respectively.

5. Biomarker discussion

We shall present some biological explanations for our biomarkers. Table 7 presents the findings,
highlighting significant associations within regions such as the amygdala, caudate nucleus,
hippocampus, and thalamus gyri. These regions are well-established in their role in shaping and
comprehending human emotions, as extensively documented in the existing literature [48, 49].
Notably, ADHD patients have consistently exhibited reduced amygdala and hippocampal volumes in
anatomical control experiments. Moreover, developmental delays and degenerative changes within
these regions have been unveiled through lifespan exploratory modeling [10]. Concurrently, the
caudate nucleus has emerged as a consistent focal point, with volumetric differences consistently
noted in ADHD research [50–52]. Particularly, a volume asymmetry analysis demonstrated
noteworthy links between caudate asymmetry and cumulative severity ratings of inattentive behaviors
in ADHD-afflicted children [24]. As we delve into the thalamus, its pivotal role in information
transmission, regulation, and participation in cognitive and behavioral processes such as attention,
emotion, and motor control cannot be understated. Morphological aberrations in the thalamus [23]
have been discovered and strongly correlated with ADHD symptom scores [53], further substantiating
our identified biomarkers within the limbic system.

Furthermore, our biomarkers extend to the cerebellum, particularly in the right inferior posterior
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lobe of the cerebellar hemisphere, encompassing cerebellum 9, 10, and Crus II. A longitudinal
case-control study revealed that ADHD participants with worse clinical outcomes exhibited a gradual
decrease in overall cerebellar volume, primarily caused by abnormalities in the posterior inferior
cerebellar hemisphere [54]. Moreover, a smaller volume in the cerebellar lobule X has been found in
children [55, 56]. Our findings align harmoniously with these reports. The lateral hemisphere of the
cerebellum has emerged as a pivotal player in executive functions [57, 58], spatial cognition, and
language processing [59]. Consequently, the identified abnormalities within the posterior inferior
cerebellar hemisphere may indeed contribute to the executive function deficits that constitute a
prominent symptomatology of ADHD.

Overall, the aforementioned evidence firmly supports the presence of our delineated ADHD
biomarkers within the limbic system and cerebellum. Here, the right middle cingulate gyrus is also
established as a biomarker, but there is also a consensus that it is part of the salience network.
Furthermore, when it comes to the cognitive function and emotional processing of ADHD patients,
the middle cingulate gyrus is considered to play an important role [60,61]. Some existing reports have
confirmed that the right middle cingulate gyrus is abnormal in ADHD patients. For example, a sex
difference study on the factors related to the symptoms of common mental disorders in adolescence
found that more prominent symptoms of hyperactivity/inattention were associated with lower grey
matter volume of the bilateral anterior and midcingulum among boys [62]. Another study showed that
compared with normal children, the increased degree centrality values for the right middle cingulate
gyrus indicated differences in functional network connectivity for ADHD children [63].

6. Limitations

Our research has two limitations. First of all, biomarker detection only involves the linear
relationship between features and does not take into account the nonlinear components. Our attempt
to validate the discrimination of these biomarkers through a two-sample t-test experiment did not
yield statistically significant results. This indicates no inter-group differences in the ALFF features of
a single brain region. However, the aggregate of brain region features still contributes to the
construction of excellent high-level feature space, which is due to the powerful feature extraction
ability of DL. Unfortunately, the contribution here is difficult to quantify, as it involves the amount of
classification information held by the brain region features and the details of non-linear fitting
performed by the neural network. This issue limits further exploration of biomarkers; thus, in the
future, we will attempt to explore this limitation by using other brain region features such as the
voxel-based morphometry and ReHo, as well as introduce the interpretability theory of neural
networks. In addition, our algorithm achieved good classification performance on limited brain
regions of the limbic system and cerebellum, indicating the importance of these brain regions for
ADHD. Moreover, we conducted biomarker detection, which revealed abnormal brain regions that are
consistent with previously reported anatomical abnormalities. However, it may be insufficient to
explore brain regions related to the biological mechanisms of ADHD solely through ALFF data. In
future studies, we will consider multi-modal features for to characterize brain regions.
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7. Conclusions

This study primarily combined existing statistical prior knowledge and pattern recognition
methods to elucidate critical ADHD biomarkers. Specifically, the ALFF in the limbic system and
cerebellum, which is highly related to ADHD in statistical analysis, was used as input for
classification, contributing to reduce the range of biomarker detection. The BHT framework and
ensemble learning methods were employed to ensure high accuracy in the classification results.
Consequently, we performed a highly credible biomarker detection task that achieved an average
accuracy of 93% on the ADHD-200 datasets. Several brain regions such as the thalamus,
hippocampus, amygdala, and cerebellum IX were extracted from the results of the SVM-RFE
algorithm as biomarkers. We validated them by analyzing the correlation among symptom scores.
Moreover, these findings extend previous findings and align with the existing reports on the
neurobiological contributions to ADHD, which demonstrates the effectiveness of our method.
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