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Abstract: In this paper, we have proposed and investigated an intraguild predator-prey system
incorporating two delays and a harvesting mechanism based on the Michaelis-Menten principle, and it
was assumed that the two species compete for a shared resource. Firstly, we examined the properties
of the relevant characteristic equations to derive sufficient conditions for the asymptotical stability of
equilibria in the delayed model and the existence of Hopf bifurcation. Using the normal form method
and the central manifold theorem, we analyzed the stability and direction of periodic solutions arising
from Hopf bifurcations. Our theoretical findings were subsequently validated through numerical
simulations. Furthermore, we explored the impact of harvesting on the quantity of biological resources
and examined the critical values associated with the two delays.
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1. Introduction

Lotka and Volterra introduced a system of differential equations known as the Lotka-Volterra
equations, which have served as a foundation for studying predator-prey dynamics in ecology [1–3].
Intraguild predation, an ecological phenomenon where competition and predation coexist in the food
web, has garnered significant attention for its profound influence on populations, impacting their
abundance, distribution, and even evolution [4–6]. In a seminal paper, Polis et al. [7] initially
introduced a concept involving a two-species predator system, where one species consumes the other
while they compete for shared resources. Subsequent scholars have made substantial advancements in
this area [8]. For instance, Hart [9] focused on marine ecosystems, investigating top-down and
bottom-up characteristics in model food webs to explain outcomes observed in trophic cascade
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experiments in lakes. Moeller et al. [10] proposed a mathematical model demonstrating how two
plankton species, acting as mixotrophs, can coexist through resource competition. Safuan et al. [11]
developed an intraguild predation model where resources are shared among predators and prey,
introducing a carrying capacity proportional to biological resources. Resource availability, impacted
by both predators and prey, plays a crucial role in system behavior [12–14]. Abundant and
high-quality resources lead to stability, while scarce or degraded resources result in chaotic dynamics,
limit cycles, or even chaos [15, 16].

External factors such as harvesting also influence this ecological interaction [17, 18]. Harvesting’s
impact on resource and fishery management is significant both economically and ecologically [19,20].
Chaudhuri [21] examined harvesting in the context of two competing species, providing a detailed
analysis of equilibrium solutions. Das et al. [22] explored bioeconomic fish extraction in predator-prey
fishery models, while Ang and Safuan [23] considered independent harvesting strategies for predators
and prey with their own economic values. To address limitations of the unit harvest concept, Clark
introduced Michaelis-Menten-type harvesting [24]. Research on the combination of this harvesting
type in ecological models has revealed various bifurcation behaviors [25–27]. Sharif and Mohd [28]
conducted a comprehensive analysis of harvesting and enrichment effects on intraguild predator fishery
ecosystems, highlighting diverse dynamic behaviors.

In predator-prey systems, factors like food digestion, gestation, disease transmission, capture, and
defense involve time delays [29–31]. Time delay differential equations exhibit intricate dynamics,
especially when delays exceed a critical threshold, leading to Hopf bifurcation and oscillations in
population sizes [32, 33]. For example, Li et al. [34] investigated spatial memory and Allee effects in
prey-predator systems with time delays. Other researchers have explored various delays and analyzed
local stability, Hopf bifurcation, and stability paths using methods like the center manifold and
paradigm theory [35–37].

To our knowledge, prior research has not explored a double-delayed predator-prey model with a
Michaelis-Menten-type harvesting. This article specifically focuses on gestation delays in prey and
predator populations. In Section 2, we establish the model’s framework. Section 3 examines
equilibrium points and their local stability under varying time delays, including Hopf bifurcation
analysis. Section 4 investigates conditions affecting bifurcation direction and stability factors crucial
to Hopf bifurcation. In Section 5, we employ numerical simulations to explore the system’s complex
behavior. Finally, we summarize key findings, draw conclusions, and discuss the significance of our
analytical results to conclude the paper in Section 6.

2. Model description and equilibrium

Ang and Safuan in [27] presented an intricate ecological model that comprehensively captures the
complex interplay among different species and their respective habitats:

dX
dt
= r1X

(
1 −

X
mZ

)
− aXY ,

dY
dt
= r2Y

(
1 −

Y
nZ

)
+ bXY −

cEY
d1E + d2Y

,

dZ
dt
= Z(g − uX − vY).

(2.1)
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This model not only elucidates the dynamics of predator and prey but also incorporates the dimension
of human predation on the predator species, where X(t) and Y(t) denote the populations of a prey
species and predator species over time, respectively. r1 and r2 represent the intrinsic growth rates of
the prey, denoted as X, and the predator, denoted as Y , respectively. In this context, Z is used to signify
a shared resource accessible to both prey and predator populations, with growth rates of m and n,
respectively (0 < m < 1, 0 < n < 1), satisfying the constraint m+ n = 1. The parameter g characterizes
the growth rate of biotic resources, and u and v represent the consumption rates of resources by prey
and predator species, respectively. Furthermore, parameters a and b quantify the strength or intensity
of the interaction between the prey and predator species. The catchability coefficient of predator fish is
denoted as c, while E represents the harvesting effort applied to predator fish, with d1 and d2 as positive
constants.

The primary focus of this work centered on exploring the long-term behavior of the system,
utilizing the harvest of predator fish as a bifurcation parameter and examining the associated
economic implications using Pontryagin’s maximum principle. The bistable behavior within the
system was leveraged to derive the optimal threshold for predator harvest, aiming to strike a balance
between maintaining fishery resources and maximizing economic profit. In this study, our objective
was to delve into an unexplored aspect of system dynamics, with a particular emphasis on the impact
of time delays. We have thoroughly investigated the predator-prey model within an intraguild setting,
incorporating the Michaelis-Menten harvest style and introducing two significant time delays. A key
highlight of our research lied in our careful consideration of the gestation time delays for both
predator and prey. This approach represents a promising avenue for gaining deeper insights into
ecological relationships and mechanisms that yields the following model:

dX
dT
= r1X

(
1 −

X(T − T1)
mZ(T − T1)

)
− aXY ,

dY
dT
= r2Y

(
1 −

Y(T − T2)
nZ(T − T2)

)
+ bXY −

cEY
d1E + d2Y

,

dZ
dT
= Z(g − uX − vY).

(2.2)

Here, the constants T1 and T2 account for the gestation time delays of X and Y , respectively. T1(T2)
represents the gestation delay in the presence of the prey (predator), i.e., after consuming the shared
resource, the prey X (the predator Y) takes some time to convert the shared resource Z into prey
(predator) biomass [38]. Now, let’s introduce dimensionless variables: x = anX/mr2, y = aY/r2,
z = anZ/r2, and t = r2T so we obtain the following dimensionless system:

dx
dt
= αx

(
1 −

x(t − τ1)
z(t − τ1)

)
− xy,

dy
dt
= y

(
1 −

y(t − τ2)
z(t − τ2)

)
+ βxy −

δy
σ + y

,

dz
dt
= z(ρ − εx − µy),

(2.3)

where the dimensionless parameters are α = r1/r2, β = bm/an, δ = acE/d2r2
2, ρ = g/r2, ε = mu/an

and µ = v/a. To ensure that the system is biologically feasible, it is assumed that all the parameters are
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positive. By the biological senses, the initial conditions are chosen as

x(θ) = ϕ1(θ) ≥ 0, y(θ) = ϕ2(θ) ≥ 0, z(θ) = ϕ3(θ) ≥ 0, ϕi ≥ 0, i = 1, 2, 3, θ ∈ [−τ, 0], (2.4)

where τ = max{τ1, τ2}, (ϕ1(θ), ϕ2(θ), ϕ3(θ) ∈ C([−τ, 0],R3
+) is a continuous vector function in the

Banach space mapping [−τ, 0]→ R3
+ and R3

+ = {(x1, x2, x3) : xi ≥ 0, i = 1, 2, 3}.
Notice that in the absence of delays, i.e., τ1 = τ2 = 0, model (2.3) is reduced to the one considered

by Sharif and Mohd in [28]. Since the presence of delays does not affect the number and existence of
equilibria, we can have the following lemma (see [28] for details).

Lemma 2.1. For model (2.3) with τ1 = 0 and τ2 = 0, the following statements are true.

(a) If µσ + ρ − δµ > 0, there is a prey-free equilibrium E1 =
(
0, ρ

µ
, ρ(µσ+ρ)
µ(ρ+µσ−δµ)

)
, which is locally stable

provided ρ − αµ > 0 and (ρ + µσ)2 − δµ2σ − 2δµρ > 0 hold.

(b) There is always a predator-free equilibrium E2 =
(
ρ

ε
, 0, ρ

ε

)
, which is locally stable provided δε −

βρσ − εσ > 0 holds.

(c) Coexistence equilibrium E∗ is given by the expression: E∗=
(
ρ−µŷ
ε
, ŷ, α(µŷ−ρ)

ε(ŷ−α)

)
, where ŷ is the positive

solution to the cubic equation Aŷ3 + Bŷ2 +Cŷ + D = 0, satisfying ρ − µŷ > 0 and α − ŷ > 0. Here,

A = αβµ2 + ε2, B = αβµ2σ + ε2σ − 2αβµρ − αε2 − αεµ,

C = αβρ2 + αδεµ + αερ − 2αβµρσ − αε2σ − αεµσ, D = αβρ2σ + αερσ − αδερ.

It has been revealed in [28] that in the absence of delay, model (2.3) can have up to three possible
equilibria and exhibit complex dynamics, including tri- or bistability phenomena and multi-type
bifurcations. In this paper, we will turn our main attention to the investigation of the effects of delay
on the dynamics of model (2.3).

3. Local stability and Hopf bifurcation

In this section, we will explore the local stability of the equilibrium point/s of model (2.3), as
well as investigate whether or not a Hopf bifurcation can occur at any arbitrary equilibrium point
where coexistence is achieved. By linearizing model (2.3), we can derive the characteristic equation
at the equilibrium point E∗(x∗, y∗, z∗). This equation determines the behavior of the system near the
equilibrium point and provides insight into the stability properties of the system. The representation of
the characteristic equation can be stated as follows:

det


λ − α + y∗ +

αx∗
z∗

(e−λτ1 + 1) x∗ −
αx2
∗

z2
∗

e−λτ1

−βy∗ λ − 1 − βx∗ +
δσ

(σ + y∗)2 +
y∗
z∗

(e−λτ2 + 1) −
y2
∗

z2
∗

e−λτ2

εz∗ µz∗ λ − ρ + εx∗ + µy∗


= 0. (3.1)

According to (3.1), we first study the local stability of the prey-free equilibrium E1 and the predator-
free equilibrium E2.

Theorem 3.1. Consider system (2.3) for any τ1 > 0 and τ2 > 0. We have
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(i) If there exists a prey-free equilibrium E1 (i.e., µσ + ρ − δµ > 0), the prey-free equilibrium E1 =(
0, ρ

µ
, ρ(µσ+ρ)
µ(ρ+µσ−δµ)

)
is stable when ρ − αµ > 0 and 0 < τ1 < τ20 . Otherwise, it is unstable.

(ii) If εδ − εσ − βρσ > 0 and 0 < τ1 < τ10 , the predator-free equilibrium E2 =
(
ρ

ε
, 0, ρ

ε

)
is stable.

Otherwise, it is unstable.

Proof. (i) If the feasible criterion of µσ + ρ − δµ > 0 is met, equilibrium E1 always exists. The
characteristic equation (3.1) at E1 is of the form

(λ − α +
ρ

µ
)
[
λ2 −

ρδµ

(µσ + ρ)2λ −
µσ + ρ − δµ

µσ + ρ
(λ − ρ)e−λτ2

]
= 0. (3.2)

Obviously, α − ρ

µ
is one root of Eq (3.2). Let G(λ) := λ2 −

ρδµ

(µσ+ρ)2λ −
µσ+ρ−δµ

µσ+ρ
(λ − ρ)e−λτ2 and assume

that λ = iω(ω > 0) is a root of G(λ) = 0. Then it follows that
µσ + ρ − δµ

µσ + ρ
ρ cos(ωτ2) −

µσ + ρ − δµ

µσ + ρ
ω sin(ωτ2) = ω2,

µσ + ρ − δµ

µσ + ρ
ω cos(ωτ2) +

µσ + ρ − δµ

µσ + ρ
ρ sin(ωτ2) = −

ρδµ

(µσ + ρ)2ω,
(3.3)

which leads to

ω4 +

 ρ2δ2µ2

(µσ + ρ)4 −

(
µσ + ρ − δµ

µσ + ρ

)2ω2 −
(µσ + ρ − δµ)2

(µσ + ρ)2 ρ2 = 0. (3.4)

Notice that when −
(µσ+ρ−δµ)2ρ2

(µσ+ρ)2 < 0, Equation (3.4) has a unique positive root

ω2
0 =

1
2

[(
µσ+ρ−δµ

µσ+ρ

)2
−

ρ2δ2µ2

(µσ+ρ)4 +
√
∆1

]
, where ∆1 =

[(
µσ+ρ−δµ

µσ+ρ

)2
−

ρ2δ2µ2

(µσ+ρ)4

]2
+

4(µσ+ρ−δµ)2ρ2

(µσ+ρ)2 . Substituting ω2
0

into Eqs (3.3), we obtain

τ2n =
1
ω0

arccos
ω2

0

[
ρ − ρδµ

(µσ+ρ)2

]
µσ+ρ−δµ

µσ+ρ
(ρ2 + ω2

0)
+ 2nπ

 , n = 0, 1, 2, . . . . (3.5)

Substituting λ(τ2) into the left-hand side of G = 0 and taking the derivative with respect to τ2, we have(
dλ
dτ2

)−1

=

µσ+ρ−δµ

µσ+ρ
−

(
2λ − ρδµ

(µσ+ρ)2

)
eλτ2

µσ+ρ−δµ

µσ+ρ
(λ − ρ)λ

−
τ2

λ
, (3.6)

which leads to

ℜ

( dλ
dτ2

)−1
λ=iω0

= ℜ

[
1

(λ − ρ)λ

]
λ=iω0

−ℜ


(
2λ − ρδµ

(µσ+ρ)2

)
eλτ2

µσ+ρ−δµ

µσ+ρ
(λ − ρ)λ


λ=iω0

=
2ω2

0 +
ρ2δ2µ2

(µσ+ρ)4 −
(
µσ+ρ−δµ

µσ+ρ

)2

(ω2
0 + ρ

2)
(
µσ+ρ−δµ

µσ+ρ

)2 =

√
∆1

(ω2
0 + ρ

2)
(
µσ+ρ−δµ

µσ+ρ

)2 > 0.
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This suggests that the root crosses the imaginary axis from left to right at τ2 = τ20 , indicating that E1

becomes unstable.
(ii) The characteristic equation of system (2.3) at E2 is(

λ −
εσ + βρσ − εδ

εσ

)
(λ2 + (αλ + ρα)e−λτ1) = 0. (3.7)

Obviously, εσ+βρσ−εδ
εσ

is a characteristic root of Eq (3.7), which is positive if εσ+βρσ−εδ > 0, indicating
that E2 is unstable. If εσ + βρσ − εδ < 0, we only need to consider T(λ) := λ2 + (αλ + ρα)e−λτ1 = 0.
Assume that λ = iξ(ξ > 0) is a root of T(λ) = 0. Then we have{

αρ cos(ξτ1) + αξ sin(ξτ1) = ξ2,

αξ cos(ξτ1) − αρ sin(ξτ1) = 0,
(3.8)

which leads to
ξ4 − α2ξ2 − α2ρ2 = 0. (3.9)

Because −α2ρ2 < 0, Equation (3.9) has a unique positive root ξ2
0 =

α2+
√
∆2

2 ,∆2 = α4 + 4α2ρ2.
Substituting ξ2

0 into Eq (3.8), we obtain

τ1n =
1
ξ0

{
arccos

ρξ2
0

α(ρ2 + ξ2
0)
+ 2nπ

}
, n = 0, 1, 2, . . . (3.10)

Moreover, we can compute from T(λ) = 0 that(
dλ
dτ1

)−1

=
2λeλτ1 + α

(αλ + ρα)λ
−
τ1

λ
, (3.11)

which leads to

ℜ

( dλ
dτ1

)−1

λ=iξ0

 = 2αξ2
0(ρ cos(ξ0τ1) + ξ0 sin(ξ0τ1)) + α2ξ2

0

α2ξ4
0 − ρ

2α2ξ2
0

=
2ξ2

0 − α
2

α2ξ2
0 + ρ

2α2
=

√
∆2

α2ξ2
0 + ρ

2α2
> 0.

This suggests that the root crosses the imaginary axis from left to right at τ1 = τ10 , indicating that E2

becomes unstable. □

Next, let us delve into the local stability of E∗(x∗, y∗, z∗) and explore the possible Hopf bifurcations
at E∗. E∗ satisfies the equation 

α

(
1 −

x∗

z∗

)
− y∗ = 0,(

1 −
y∗

z∗

)
+ βx∗ −

δ

σ + y∗
= 0,

ρ − εx∗ − µy∗ = 0.

(3.12)
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To simplify the analysis, let x̄(t) = x(t) − x∗, ȳ(t) = y(t) − y∗, z̄(t) = z(t) − z∗, and still denote
x(t), y(t), z(t), respectively. The linearized part of the system (2.3) at E∗(x∗, y∗, z∗) is

dx
dt
= −x∗y(t) −

αx∗

z∗
x(t − τ1) +

αx∗2

z∗2
z(t − τ1),

dy
dt
= βy∗x(t) +

δy∗

(σ + y∗)2 y(t) −
y∗

z∗
y(t − τ2) +

y∗2

z∗2
z(t − τ2),

dz
dt
= −εz∗x(t) − µz∗y(t).

(3.13)

Therefore, the corresponding characteristic equation of system (3.13) is given by:

λ3 + m2λ
2 + m1λ + (b2λ

2 + b1λ + b0)e−λτ1 + (c2λ
2 + c1λ + c0)e−λτ2 + (d1λ + d0)e−λ(τ1+τ2) = 0, (3.14)

where

m2 = −
δy∗

(σ + y∗)2 ,m1 = βx∗y∗, b2 =
αx∗

z∗
, b1 =

εαx∗2

z∗
−

αδx∗y∗

(σ + y∗)2z∗
, b0 =

αβµx∗2y∗

z∗
−

αδεx∗2y∗

(σ + y∗)2z∗
,

c2 =
y∗

z∗
, c1 =

µy∗2

z∗
, c0 =

−εx∗y∗2

z∗
, d1 =

αx∗y∗

z∗2
, and d0 =

αεx∗2y∗ + µαx∗y∗2

z∗2
.

In the following, we apply the method used in Ruan and Wei [39] to investigate the distribution of
roots of the transcendental equation (3.14). As system (2.3) has two time delays, τ1 and τ2, we
consider the following four cases.

Case 1: τ1 = τ2 = 0.
The characteristic equation (3.14) becomes:

λ3 + m12λ
2 + m11λ + m10 = 0, (3.15)

where

m10 =
αβµx∗2y∗

z∗
+
αεx∗2y∗ + µαx∗y∗2

z∗2
−

αδx∗y∗

(σ + y∗)2z∗
−
εx∗y∗2

z∗
,

m11 = x∗βy∗ +
αx∗

z∗
+
µy∗2

z∗
+
εαx∗2

z∗
−

αδx∗y∗

(σ + y∗)2z∗
, m12 =

αx∗

z∗
+

y∗

z∗
−

δy∗

(σ + y∗)2 .

By Routh-Hurwitz criterion, we can conclude that all of the roots of Eq (3.15) have negative real parts
if and only if

(H1) m12 > 0,m10 > 0, m11m12 > m10

are satisfied. Namely, when τ1 = τ2 = 0, the coexistence equilibrium E∗ is locally asymptotically
stable provided (H1) is satisfied.

Case 2: τ1 > 0, τ2 = 0.
The characteristic equation (3.14) becomes:

λ3 + m22λ
2 + m21λ + m20 + (b22λ

2 + b21λ + b20)e−λτ1 = 0, (3.16)
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where

m22 = m2 + c2, m21 = m1 + c1, m20 = c0, b22 = b2, b21 = b1 + d1, and b20 = b0 + d0.

Assume that λ = iω1(ω1 > 0) is a root of Eq (3.16). By separating the real part and imaginary part, we
obtain  (b20 − b22ω

2
1) cos(ω1τ1) + b21ω1 sin(ω1τ1) = m22ω

2
1 − m20,

b21ω1 cos(ω1τ1) + (b22ω
2
1 − b20) sin(ω1τ1) = ω3

1 − m21ω1,
(3.17)

which yields
ω6

1 + e22ω
4
1 + e21ω

2
1 + e20 = 0, (3.18)

where

e22 = m2
20 − b2

20, e21 = m2
21 − b2

21 − 2m20m22 + 2b20b22, and e20 = m2
22 − b2

22 − 2m21.

Let ω2
1 = x. Then Eq (3.18) becomes

h(x) := x3 + e22x2 + e21x + e20 = 0. (3.19)

We need only study the existence and number of positive roots for Eq (3.19). We can compute that

dh(x)
dx
= 3x2 + 2e22x + e21. (3.20)

If △ = e2
22 − 3e21 ≤ 0, we have dh(x)

dx ≥ 0, and thus h(x) monotonically increases for x ∈ [0,+∞). If
△ > 0, Equation (3.20) has two different real roots:

x1
∗ =
−e22 +

√
e2

22 − 3e21

3
, x2

∗ =
−e22 −

√
e2

22 − 3e21

3
. (3.21)

Obviously, x∗2 < x∗1, and x∗2 and x∗1 are respectively the local maximum point and local minimum point.
Notice the geometric characteristics of the cubic polynomial equation and also that h(0) = e20 and
lim

x→+∞
h(x) = +∞. We can make clear the number and existence of positive roots of Eq (3.19). The

detailed analyses are provided in Appendix A. Without loss of generality, we assume the conditions in
(H2) hold, that is,

(H2) e20 < 0, ∆ > 0 and x∗2 > 0; h(x∗2) > 0 and h(x∗1) < 0.

In this situation, Equation (3.18) has three positive roots denoted respectively by ω1,i, i = 1, 2, 3 (ω1,1 <

ω1,2 < ω1,3). It then follows from Eq (3.17) that

cos(ω1τ1) =
(m22ω

2
1 − m20)(b20 − b22ω

2
1) + b21ω1(ω3

1 − m21ω1)

(b20 − b22ω
2
1)2 + b2

21ω
2
1

, (3.22)

from which we obtain that

τ(κ)
1,i =

1
ω1,i

arccos

 (m22ω
2
1,i − m20)(b20 − b22ω

2
1,i) + b21ω1,i(ω3

1,i − m21ω1,i)

(b20 − b22ω
2
1,i)

2 + b2
21ω

2
1,i

 + 2κπ
ω1,i

(3.23)
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for κ = 0, 1, 2, · · · ; i = 1, 2, 3.
Now we verify that the transversality condition holds. Differentiating both sides of Eq (3.16) with

respect to τ1, we can obtain(
dλ
dτ1

)−1

=
3λ2 + 2m22λ + m21

−λ(λ3 + m22λ2 + m21λ + m20)
+

2b22λ + b21

λ(b22λ2 + b21λ + b20)
−
τ1

λ
. (3.24)

Through some sophisticated calculations, we get

ℜ

{
d(λ)
dτ1

}−1

λ=iω1

=
h′(ω2

1)
b2

21ω
2
1 + (b20 − b22ω

2
1)2
. (3.25)

Lemma 3.2. Assume the conditions in (H2) hold. Then

sign
{

d(ℜλ)
dτ1

}
λ=iω1,1

= signh′(ω2
1,1) > 0,

sign
{

d(ℜλ)
dτ1

}
λ=iω1,2

= signh′(ω2
1,2) < 0,

sign
{

d(ℜλ)
dτ1

}
λ=iω1,3

= signh′(ω2
1,3) > 0.

Proof. 1) Based on (H2), we have h(0) = e20 < 0, h(x∗2) > 0, and h′(x) > 0 ∈ [0, x∗2]. By the
zero existence theorem, we know that there exists a unique ω2

1,1 ∈ (0, x∗2), and, in addition, we have
h′(ω2

1,1) > 0.
2) From (H2), we may obtain h(x∗2) > 0, h(x∗1) < 0, and h′(x) < 0 ∈ [x∗2, x

∗
1]. By the zero existence

theorem, we know that there exists a unique ω2
1,2 ∈ (x∗2, x

∗
1), so h′(ω2

1,2) < 0 is verified.
3) Finally, verify the symbol at h′(ω2

1,3). By the zero existence theorem, h(x∗1) < 0, lim
x→+∞

h(x) = +∞,

and h′(x) > 0 ∈ [x∗2,+∞), so we know that there exists a unique ω2
1,3 ∈ (x∗2,+∞), and in addition we

have h′(ω2
1,3) > 0. □

For the case when the characteristic equation (3.16) has three pairs of conjugate complex roots,
the process of analyzing stability and switching phenomena can be relatively complex. As the time
delay τ1 increases gradually and passes through the critical values of τ(κ)

1,1 and τ(κ)
1,3, the system may

undergo a transition from stable to unstable, and as the time delay τ1 passes through the critical values
of τ(κ)

1,2, the system may be switched from unstable back to stable. Thus, stability switch phenomena
may occur and the specific situations of stabilizing switches depend on the relative positions of these
critical time-delay values.

For the sake of narrative convenience, we reorder all the critical values {τ(κ)
1,i},

i = 1, 2, 3; κ = 0, 1, 2, · · · as {τ(κ)
1 }, κ = 0, 1, 2, · · · such that 0 < τ(0)

1 < τ(1)
1 < τ(2)

1 < · · · , and assume that
the system undergoes a stability switch from stable to unstable and then from unstable to stable, and
after finite times like this, the system becomes unstable eventually. We summarize these as the
following theorem.
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Theorem 3.3. For system (2.3) with τ1 > 0 and τ2 = 0, if (H1) and (H2) hold, then there exists a
M ∈ N such that when τ1 ∈ (0, τ(0)

1 )
⋃

(τ(1)
1 , τ(2)

1 )
⋃
· · ·

⋃
(τ(M−1)

1 , τ(M)
1 ), all the roots of Eq (3.16) have

negative real part, and thus the system of (2.3) is locally asympotically stable; when τ1 ∈ (τ(0)
1 , τ(1)

1 )
⋃

(τ(2)
1 , τ(3)

1 )
⋃
· · ·

⋃
(τ(M)

1 ,+∞), at least one root of Eq (3.16) has a positive real part, and thus the system
of (2.3) is unstable. In addition, the model undergoes a Hopf bifurcation at E∗ when τ1 = τ

(κ)
1 , κ ∈ N.

Case 3: τ2 > 0, τ1 = 0.
Analyzing similarly as in Case 2, we have the following theorem.

Theorem 3.4. For system (2.3) with τ2 > 0 and τ1 = 0, the equilibrium E∗ may undergo a finite
number of stability switches, that is there is a N ∈ N such that it is locally asymptotically stable for
τ2 ∈ (0, τ(0)

2 )
⋃

(τ(1)
2 , τ(2)

1 )
⋃
· · ·

⋃
(τ(N−1)

2 , τ(N)
2 ); and when τ2 ∈ (τ(0)

2 , τ(1)
2 )

⋃
(τ(2)

2 , τ(3)
2 )

⋃
· · ·

⋃
(τ(N)

2 ,+∞),
the equilibrium point E∗ is unstable. Additionally, model (2.3) undergoes a Hopf bifurcation at E∗ for
each τ2 = τ

(κ)
2 , κ ∈ N.

Case 4: τ1 > 0, τ2 > 0.
In this case, we choose τ1 as the bifurcation parameter and τ2 in one of its stable intervals, say

(0, τ(0)
2 ) (the same below). Assume that λ = iω∗1(ω∗1 > 0) is a characteristic root of Eq (3.14), then we

can obtain

N1(ω∗1, τ2) = K1(ω∗1, τ2) cosω∗1τ
∗
1 −K2(ω∗1, τ2) sinω∗1τ

∗
1,

N2(ω∗1, τ2) = K2(ω∗1, τ2) cosω∗1τ
∗
1 +K1(ω∗1, τ2) sinω∗1τ

∗
1,

(3.26)

where

K1(ω∗1, τ2) = b1ω
∗
1 + d1ω

∗
1 cos(ω∗1τ2) − d0 sin(ω∗1τ2),

K2(ω∗1, τ2) = −b2ω
∗2
1 + b0 + d1ω

∗
1 sin(ω∗1τ2) + d0 cos(ω∗1τ2),

N1(ω∗1, τ2) = ω∗31 − m1ω
∗
1 − c1ω

∗
1 cos(ω∗1τ2) − c2ω

∗2
1 sin(ω∗1τ2) + c0 sin(ω∗1τ2),

N2(ω∗1, τ2) = m2ω
∗2
1 + c2ω

∗2
1 cos(ω∗1τ2) − c1ω

∗
1 sin(ω∗1τ2) − c0 cos(ω∗1τ2).

Then, adding the squares of the above two equations, we obtain

G1(ω∗1) +G2(ω∗1) sin(ω∗1τ2) +G3(ω∗1) cos(ω∗1τ2) = 0, (3.27)

where

G1(ω∗1) =ω∗61 + (c2
2 + m2

2 − b2
2 − 2m1)ω∗41 + (m2

1 + c2
1 − 2c0c2 − b2

1 − d2
1 + 2b0b2)ω∗21

+ c2
0 − d2

0 − b2
0,

G2(ω∗1) = − 2c2ω
∗5
1 + (2c0 + 2c2m1 − 2c1m2 + 2b2d1)ω∗31 + (2b1d0 − 2b0d1)ω∗1,

G3(ω∗1) =(−2c1 + 2c2m2)ω∗41 + (2c1m1 − 2c0m2 − 2b1d1 + 2b2d0)ω∗21 .

It is difficult to discuss the roots of Eq (3.27). To get the main conclusion, we assume that Eq (3.27)
has a finite number of positive real roots ω∗1,i(i = 1, 2, · · · , h) and that for each ω∗1,i, there is a series of
{τ

(ζ)
1,i |i = 1, 2, · · · , h; ζ = 0, 1, 2, · · · } satisfying Eq (3.27), where

τ
(ζ)
1,i (τ2) =

1
ω∗1,i

arccos

N1(ω∗1,i, τ2)K1(ω∗(i)1 , τ2) +N2(ω∗1,i, τ2)K2(ω∗1,i, τ2)

K 2
1 (ω∗1,i, τ2) +K 2

2 (ω∗1,i, τ2)

 + 2ζπ
ω∗1,i

. (3.28)
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Let τ∗10(τ2) = min{τ(ζ)
1,i (τ2)| i = 1, 2, · · · , h; ζ = 0, 1, 2, · · · }. When τ1 = τ∗10(τ2), Equation (3.28)

has a pair of purely imaginary roots iω∗10 for τ2 in its stable intervals. Of course, we should verify
the transversality condition. Taking the derivative on both sides of Eq (3.14) with respect to τ1 and
substituting λ = iω∗10, we get

ℜ

(
dλ
dτ1

)−1

λ=iω∗10

= ℜ

(
R1 + iM1

R2 + iM2

)−1

λ=iω∗10

=
R1R2 + M1M2

R2
2 + M2

2

, (3.29)

where

R1 =(−3ω∗210 + m1) cos(ω∗10τ
∗
10) − 2m2ω

∗
10 sin(ω∗10τ

∗
10) + (c2τ2ω

∗2
10 − c0τ2 + c1) cos(ω∗10(τ∗10 − τ2))

+ (c1ω
∗
10τ2 − 2c2ω

∗
10) sin(ω∗10(τ∗10 − τ2)) + (d1 − d0τ

∗
10) cos(ω∗10τ2) − d1ω

∗
10τ
∗
10 sin(ω∗10τ2) + b1,

M1 =2m2ω
∗
10 cos(ω∗10τ

∗
10) + (−3ω∗210 + m1) sin(ω∗10τ

∗
10)(2c2ω

∗
10 − c1ω

∗
10τ2) cos(ω∗10(τ∗10 − τ2))

+ (ω∗210c2τ2 − c0τ2 + c1) sin(ω∗10(τ∗10 − τ2)) − d1ω
∗
10 cos(ω∗10τ2) + (τ∗10d0 − d1) sin(ω∗10τ2) + 2b2ω

∗
10,

R2 = − b1ω
∗2
10 − d1ω

∗2
10 cos(ω∗10τ2) + d0ω

∗
10 sin(ω∗10τ2),

M2 = − b2ω
∗3
10 + b0ω

∗
10 + d1ω

∗2
10 sin(ω∗10τ2) + d0ω

∗
10 cos(ω∗10τ2).

We make the following hypothesis:

(H3) sign
{[

d(ℜλ)
(dτ1)

]−1
}
λ=iω∗10

= R1R2 + M1M2 , 0.

Using the same logic as above, model (2.3) can exhibit the phenomenon of stability switches. For
convenience, here we assume that once E∗ loses its stability, it will be unstable forever. Then we will
see the following results.

Theorem 3.5. For model (2.3) with τ1 > 0 and τ2 in its stable intervals, if (H1) and (H3) hold, then
the equilibrium E∗ is asymptotically stable when τ1 ∈ (0, τ∗10(τ2)) and unstable for τ1 ∈ (τ∗10(τ2),+∞).
Moreover, model (2.3) undergoes a Hopf bifurcation at the equilibrium E∗ for each τ1 = τ

∗
10(τ2).

4. Direction and stability of the Hopf bifurcation

In this section, we shall discuss the direction and stability of the Hopf bifurcation periodic solution
of system (2.3) with respect to τ1 and τ2 ∈ [0, τ(0)

2 ). Using the normal method of Hassard [40] and the
center manifold theory, for τ2 ∈ [0, τ(0)

2 ), we derive explicit formulas to determine the properties of the
Hopf bifurcation at the critical value τ1 = τ

∗
10. For the readability of the article, we defer the detailed

derivation to Appendix B.
Using Hassard’s method [40], we can calculate g21 and compute the following values determining

the qualitative behavior of the bifurcating periodic solutions at τ = τ∗10:

c1(0) =
i

2τ∗10ω
∗
10

(
g11g20 − |2g11|

2 −
|g02|

2

3

)
+

g21

2
,

µ2 = −
ℜ{c1(0)}
ℜ{λ′(τ∗10)}

,

β2 = 2ℜ{c1(0)},

T2 = −
ℑ{c1(0)} + µ2ℑ{λ

′

(τ∗10)}
τ∗10ω

∗
10

,

(4.1)
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where µ2 determines the direction of the Hopf bifurcation: if µ2 > 0 (µ2 < 0), then the Hopf bifurcation
is supercritical (subcritical). The stability of the bifurcating periodic solutions is determined by the sign
of β2: if β2 < 0 (β2 > 0), the bifurcating periodic solutions are stable (unstable). The period of the
bifurcating periodic solutions is determined by the sign of T2: if T2 > 0 (T2 < 0), the bifurcating
periodic solutions increase (decrease).

5. Numerical examples and simulations

Based on the results of the stability analysis and bifurcation discussed in Sections 2 and 3, we
will conduct numerical simulations to examine the impact of time delays on the stability and periodic
solutions of system (2.3). These simulations will allow us to observe the effect of delay on the behavior
of the system and the effect of changes in harvest rate on latency. By studying these aspects, we can
better understand the dynamics of the system in different situations [41, 42].

Let the parameters of system (2.3) be α = 0.7, β = 0.08, δ = 0.215, σ = 0.2, ρ = 1.165, ε = 0.75,
and µ = 3.55. (If more data details are required, please refer to [27]), then we can get the following
prey-free equilibrium E1 = (0, 0.32817, 0.55347), predator-free equilibrium E2 = (1.6643, 0, 1.6643)
and the coexistence equilibrium E∗= (0.293, 0.2704, 0.4774). By Theorem 3.1, because α − ρ

µ
≈

0.3718 > 0, and εσ+βρσ− εδ ≈ 0.0074 > 0, we know prey-free E1 and predator-free E2 are unstable.
For τ1 = 0, τ2 = 0, under the above parameters, we can check that the conditions in (H1) are satisfied,
and therefore the coexistence equilibrium E∗ of system (2.3) is asymptotically stable (see Figure 1).
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Figure 1. When τ1 = τ2 = 0, E∗= (0.293, 0.2704, 0.4774) is asymptotically stable.

When the time delay τ1 is within the range [0, τ(0)
1 ), the coexistence equilibrium E∗ is still

asymptotically stable (see Figure 2) . However, once τ1 surpasses the critical value τ(0)
1 = 2.7415 (at

this point ω1,1 = 0.5618), the coexistence equilibrium E∗ becomes unstable, leading to a Hopf
bifurcation. This bifurcation results in the emergence of a family of periodic solutions originating
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from the coexistence equilibrium E∗. In summary, the stability of E∗ changes at τ(0)
1 , and this change

triggers the appearance of periodic solutions (see Figure 3).

Figure 2. When τ2 = 0, E∗ is asymptotically stable for τ1 = 2.6 < τ(0)
1 = 2.7415.

Figure 3. When τ2 = 0, E∗ undergoes a Hopf bifurcation for τ2 = 0, τ1 = 2.9 > τ(0)
1 = 2.7415.

Similarly, we have ω1,2 = 0.8895, τ(0)
2 = 0.5856, and the corresponding figures are Figures 4 and 5.
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Figure 4. When τ1 = 0, E∗ is asymptotically stable for τ2 = 0.53 < τ(0)
2 = 0.58.

Figure 5. When τ1 = 0, E∗ undergoes a Hopf bifurcation for τ2 = 0.59 > τ(0)
2 = 0.58.

For τ1 > 0, τ2 = 0.2 ∈ (0, τ(0)
2 ), we have ω∗10 = 0.1269, τ∗10 = 0.2885. According to Theorem

3.5, E∗ is asymptotically stable when τ1 ∈ [0, 0.2885) (see Figure 6) and unstable when τ1 > τ∗10.
After the computation of formula (4.1), we can obtain c1(0) = −0.2225 + 1.3699i, β2 = −0.4449 < 0,
µ2 = 3.2038 > 0, and T2 = −0.5009 < 0. The Hopf bifurcation is characterized as a supercritical
bifurcation, where the periodic solutions are stable. This can be visually represented in Figure 7.

Mathematical Biosciences and Engineering Volume 21, Issue 4, 5687–5711.



5701

Figure 6. E∗ is asymptotically stable for τ1 = 2.8 < τ∗10 = 2.89 and τ2 = 0.2.

Figure 7. E∗ undergoes a Hopf bifurcation for τ1 = 2.9 > τ∗10 = 2.89 and τ2 = 0.2.

For an intraguild predator-prey fishery model, a stable positive equilibrium indicates a balance
among the prey, predators, and the resource they are competing for. This essentially means the fishery
resources are being used in a sustainable way. On the flip side, when the positive equilibrium E∗ loses
its stability, it will lead to an emergence of a stable periodic solution.

Next, we consider the effect of the predator harvest parameter δ on the dynamics of the system. We
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can see from Figure 8 that the predator harvest parameter δ can have a significant effect on the sizes of
two species and the quantity of resources, and meanwhile it can also affect the critical values of two
delays: as δ increases, x∗ and z∗ increase, and y∗ decreases, suggesting that the degree of depredation
by the predator changes the numbers of predators and prey. Keeping τ2 = 0.2 constant, the higher the
degree of predator capture, the smaller the corresponding τ1 critical value τ∗10 will be, indicating that
the degree of capture destabilizes the corresponding system (2.3).

0.18 0.2 0.22 0.24 0.26 0.28

 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p
o
p
u
la

ti
o
n

prey x
predator y
shared resource z

(a)

0.18 0.2 0.22 0.24 0.26 0.28

 

2.8

2.82

2.84

2.86

2.88

2.9

2.92

2.94

2.96

2.98

3

1
0

*

10
*

(b)

Figure 8. (a) The relationship between populations and predator harvest δ, (b) The
relationship between τ∗10 and predator harvest δ.

6. Conclusions

In this paper, we have explored an intraguild prey-predator model (2.3) featuring two delays and a
Michaelis-Menten-type harvesting. First, we analyzed the corresponding characteristic equation and
discussed the stability of the prey-free equilibrium E1 and the predator-free equilibrium E2.
According to the Hopf bifurcation theorem, we investigated the conditions for equilibrium stability
and the existence of Hopf bifurcations. We employed the normal form theory and the center manifold
theorem and obtained some explicit results. Specifically, when τ2 ∈ [0, τ(0)

2 ), we explored the stability
and direction of Hopf bifurcations for varying values of τ1. Finally, we validated our theoretical
findings through numerical simulations.

In ecological systems, the predator, the prey, and the shared resources are expected to persist within
a given set of parameters. The local bifurcation observed in such systems has ecological significance.
This means that changes in the parameters can result in ecologically relevant shifts in the population
dynamics of the predator and prey, along with their interactions with shared resources. In addition,
when both delays surpass their critical values, they can have a significant impact on the stability of the
system and cause various changes in its properties and behaviors. An increase in predator harvesting
parameter δ may lead to unstable behaviors and phenomena that will influence the efficient use of
shared resources by prey and predators, even if the number of predators has decreased.

To maintain sustainable fishing practices without depleting resources or driving predator species to
extinction, it is crucial to employ qualitative analysis and numerical simulations in research. These
methods provide insights into the dynamic behavior of ecosystems, enabling us to set limits and strike
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a balance. In essence, they help determine the level of fishing that is sustainable without harming
the ecosystem. Overfishing can disrupt marine ecosystems, so selecting an appropriate value for δ
to achieve a balance between resource sustainability and maximizing benefits in the presence of time
delays is a critical concern, which we leave for future research to address.
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Appendix

A. Detailed analysis on the positive root distribution of Eq (3.19)

1) If e20 > 0, then we have

(a) If ∆ ≤ 0, then Eq (3.19) has no positive roots.

(b) If ∆ > 0, then we have

• when x∗1 ≤ 0, then Eq (3.19) has no positive roots.
• when x∗1 > 0 and h(x∗1) > 0, then Eq (3.19) has no positive roots.
• when x∗1 > 0 and h(x∗1) = 0, then Eq (3.19) has one positive double root (i.e., x∗1).
• when x∗1 > 0 and h(x∗1) < 0, then Eq (3.19) has two different positive roots.

2) If e20 = 0, then we have

(a) If ∆ ≤ 0, then Eq (3.19) has no positive roots.

(b) If ∆ > 0, then we have

• when x∗1 ≤ 0, then Eq (3.19) has no positive roots.
• when x∗2 ≤ 0 < x∗1, then Eq (3.19) has one positive root.
• when x∗2 > 0 and h(x∗1) > 0, then Eq (3.19) has no positive roots.
• when x∗2 > 0 and h(x∗1) = 0, then Eq (3.19) has one positive double root (i.e., x∗1).
• when x∗2 > 0 and h(x∗1) < 0, then Eq (3.19) has two different positive roots.

3) If e20 < 0, then we have

(a) If ∆ ≤ 0, then Eq (3.19) has one positive root.

(b) If ∆ > 0, then we have
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• when x∗2 ≤ 0, then Eq (3.19) has one positive root.
• when x∗2 > 0 and h(x∗1)h(x∗2) > 0, then Eq (3.19) has one positive root.
• when x∗2 > 0, h(x∗2) = 0 (respectively, h(x∗1) = 0), then Eq (3.19) has one positive double

root x∗2 (respectively, x∗1) and one positive root.
• when x∗2 > 0, h(x∗2) > 0 and h(x∗1) < 0, then Eq (3.19) has three positive roots.

To summarize, we can have the following results on Eq (3.18).

Lemma A.1. The following statements are true.

1) If one of the following four conditions holds, Equation (3.18) will have on positive roots.

(i) e20 ≥ 0 and ∆ ≤ 0;
(ii) e20 ≥ 0, ∆ > 0 and x∗1 ≤ 0;
(iii) e20 > 0, ∆ > 0 and min{x∗1, h(x∗1)} > 0;
(iv) e20 = 0, ∆ > 0 and min{x∗2, h(x∗1)} > 0.

2) If one of the following three conditions is satisfied, Equation (3.18) will have only one positive root.

(i) e20 = 0, ∆ > 0 and x∗2 ≤ 0 < x∗1.
(ii) e20 < 0, ∆ > 0 and x∗2 ≤ 0.
(iii)e20 < 0, ∆ > 0 and min{x∗2, h(x∗1)h(x∗2)} > 0.

3) If either of the following two conditions is satisfied, Equation (3.18) will possess two positive roots:

(i) e20 > 0, ∆ > 0 and x∗1 > 0 and h(x∗1) < 0;
(ii) e20 = 0, ∆ > 0 and x∗2 > 0 and h(x∗1) < 0;

4) Equation (3.18) has three positive roots provided the following conditions hold:

(H2) e20 < 0, ∆ > 0, x∗2 > 0, h(x∗2) > 0, and h(x∗1) < 0.

5) Equation (3.18) has one double positive root provided one of the following two conditions holds:

(i) e20 > 0, ∆ > 0, x∗1 > 0, and h(x∗1) = 0; (ii) e20 = 0, ∆ > 0, x∗2 > 0, and h(x∗1) = 0;

6) Equation (3.18) has two positive roots (a single root and a double root) provided the following
conditions hold:

e20 < 0, ∆ > 0, x∗2 > 0, and h(x∗2) = 0 (or h(x∗1) = 0).

B. Computation of the Coefficients µ2, β2, and T2

Let τ1 = τ∗10 + µ, µ ∈ R, then µ = 0 is the Hopf bifurcation value of the system. Let t = sτ1,
x(sτ1) = x̂(s), y(sτ1) = ŷ(s), z(sτ1) = ẑ(s), and denote x = x̂(s), y = ŷ(s), z = ẑ(s), and t = s, then
system (2.3) can be written as a functional differential equation in C = C([−1, 0],R3):

Ẋ(t) = LµXt + f (µ, Xt), (B.1)

where X(t) = (x(t), y(t), z(t))T ∈ R3, Xt(θ) = X(t + θ) = (x(t + θ), y(t + θ), z(t + θ))T ∈ C, and
Lµ : C → R3,F : R ×C → R3 are given by

Lµ(ϕ) = (τ∗10 + µ)
[
Aϕ(0) + Bϕ(−1) +Cϕ

(
−
τ2

τ∗10

)]
, (B.2)
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and

F(µ, ϕ) = (τ∗10 + µ)


F1

F2

F3

 , (B.3)

where

A =


0 −x∗ 0

βy∗
δy∗

(σ + y∗)2 0

−εz∗ −µz∗ 0

, B =

−
αx∗

z∗
0

αx∗2

z∗2
0 0 0
0 0 0

,C =


0 0 0

0 −
y∗

z∗
y∗2

z∗2
0 0 0

 ,
F1 =h1ϕ1(0)ϕ2(0) − h2ϕ1(0)ϕ1(−1) + h3ϕ1(0)ϕ3(−1) + h3ϕ1(−1)ϕ3(−1) + h4ϕ

2
3(−1)

+ h5ϕ1(0)ϕ1(−1)ϕ3(−1) + h6ϕ1(0)ϕ2
3(−1) + h6ϕ1(−1)ϕ2

3(−1) + h7ϕ
3
3(−1),

F2 =k1ϕ1(0)ϕ2(0) + k2ϕ
2
2(0) + k3ϕ2(0)ϕ2

(
−
τ2

τ∗10

)
+ k4ϕ2

(
−
τ2

τ∗10

)
ϕ3

(
−
τ2

τ∗10

)
+ k4ϕ2(0)ϕ2

(
−
τ2

τ∗10

)
+ k5ϕ

2
3

(
−
τ2

τ∗10

)
+ k6ϕ

3
2(0) + k7ϕ2(0)ϕ2

(
−
τ2

τ∗10

)
ϕ3

(
−
τ2

τ∗10

)
+ k8ϕ2(0)ϕ2

3

(
−
τ2

τ∗10

)
+ k8ϕ2

(
−
τ2

τ∗10

)
ϕ2

3

(
−
τ2

τ∗10

)
+ k9ϕ

3
3

(
−
τ2

τ∗10

)
,

F3 =l1ϕ2(0)ϕ3(0) + l2ϕ1(0)ϕ3(0),

where

h1 = −1, h2 = −
α

z∗
, h3 =

αx∗

z∗2
, h4 = −

αx∗2

z∗3
, h5 =

α

z∗2
,

h6 = −
αx∗

z∗3
, h7 = −

αx∗2

z∗4
, k1 = β, k2 =

σδ

(σ + y∗)3 , k3 =
−1
z∗
, k4 =

y∗

z∗2
,

k5 = −
y∗2

z∗2
, k6 = −

δσ

(σ + y∗)4 , k7 =
−1
z∗2
, k8 = −

y∗

z∗3
, k9 = −

y∗2

z∗4
, l1 = −µ, l2 = −ε.

By the Riesz representation theorem, there exists a 3× 3 matrix function η(θ, µ) of bounded variatation
for θ ∈ [−1, 0], such that

Lµϕ =
∫ 0

−1
dη(θ, µ)ϕ(θ), f or ϕ ∈ C. (B.4)

In fact, we can choose

η(θ, µ) = (τ∗10 + µ)
[
Aδ(θ) + Bδ(θ + 1) +Cδ

(
θ +

τ2

τ∗10

)]
, (B.5)

where δ(θ) is the Dirac delta function.
For ϕ ∈ C([−1, 0],R3), define

A (µ)ϕ =


dϕ(θ)

dθ
,−1 ≤ θ < 0,∫ 0

−1
dη(θ, µ)ϕ(θ), θ = 0,
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and

R(µ)ϕ =

0,−1 ≤ θ < 0,
F(µ, ϕ), θ = 0.

Then this can be transformed into the following operator equation

Ẋt = A (µ)Xt + R(µ)Xt, (B.6)

which is a functional differential equation in C([−1, 0]; R3).
Denote A = A (0),

A ∗(µ)ϕ =


−

dψ(s)
ds

, 0 < s ⩽ 1,∫ 0

−1
dηT (t, 0)ψ(−t), s = 0,

and

< ψ(s), ϕ(θ) >= ψ(0)ϕ(0) −
∫ 0

−1

∫ θ

ξ=0
ψ(ξ − θ)dη(θ, 0)ψ(ξ)dξ,

where ψ ∈ C∗([0, 1], (R3)∗). Then A ∗ are adjoint operators of A . If ±iω1kτ1k are eigenvalues of A , they
are eigenvalues of A ∗. Suppose that q(θ) = (1, q2, q3)T eiω10

∗τ10
∗θ is the eigenvector of A corresponding

to iω∗10τ
∗
10, that is A q(θ) = iω∗10τ

∗
10q(θ). Then we can obtain that

q2 = −
(αεx∗2z∗ + αx∗z∗iω∗10)e−iω∗10τ

∗
10 − ω∗10z∗2

x∗z∗2iω∗10 + αµx∗2z∗e−iω∗10τ
∗
10

,

q3 =
iω∗10(−εx∗z∗2 + αµx∗z∗e−iω∗10τ

∗
10 + iω∗10)

−x∗z∗ω∗210 + αµx∗2iω∗10e−iω∗10τ
∗
10

.

Let q∗(s) = D(1, q∗2, q
∗
3)eiω∗10τ

∗
10 s be an eigenvector of A ∗corresponding to −iω∗10τ

∗
10, then we have

q2
∗ =

ω∗210z∗2 + (iω∗10αx∗z∗ − αεx∗2z∗)eiω∗10τ
∗
10

βy∗z∗2iω∗10 + εy∗2z∗eiω∗10τ
∗
2

,

q3
∗ =

(
−αx∗y∗2eiω∗10τ

∗
10 + iω∗10

)
eiω∗10τ2 + αβx∗2y∗z∗eiω∗10τ

∗
10

βy∗z∗3iω∗10 + εy∗2z∗2eiω∗10τ2
.

For this equation, we can get

< q∗(s), q(θ) > = q∗(0)q(0) −
∫ 0

−1

∫ θ

ξ=0
q∗(ξ − θ)dη(θ)q(ξ)dξ

= D(1, q∗2, q
∗

3)(1, q2, q3)T − D
∫ 0

−1

∫ θ

ξ=0
(1, q∗2, q

∗

3)eiω∗10τ
∗
10(θ−ξ)dη(θ)(1, q2, q3)T eiω∗10τ

∗
10ξdξ

= D
[
1 + q∗2q2 + q∗3q3 −

∫ 0

−1
(1, q∗2, q

∗

3)θeiω∗10τ
∗
10θdη(θ)(1, q2, q3)T

]
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5710

= D
[
1 + q∗2q2 + q∗3q3 + τ

∗
10

(
αx∗

z∗
−
αx∗2

z∗2
q3

)
e−iω∗10τ

∗
10 + τ2

(
y∗

z∗
q2q∗2 −

y∗2

z∗2
q3q∗2

)
e−iω∗10τ2

]
.

Thus, one can choose D as

D =
[
1 + q2q2

∗ + q3q∗3 + τ
∗
10

(
αx∗

z∗
−
αx∗2

z∗2
q3

)
eiω∗10τ

∗
10 + τ2

(
y∗

z∗
q2q∗2 −

y∗2

z∗2
q3q∗2

)
eiω∗10τ2

]−1

, (B.7)

which satisfies < q∗(s), q(θ) >= 1.
In the rest of this section, applying the methods from [40] along with similar computational

procedures should enable us to ascertain the coefficients for determining both the Hopf bifurcation’s
direction and the stability of the bifurcating periodic solutions.

g20 =2τ∗10D
(
h4q2

3e−2iω∗10τ
∗
10 + h3q3e−iω∗10τ

∗
10 + h1q2 +

(
(k4q2q3 + k5q2

3)e−2iω∗10τ2 + (k3q2
2 + k4q2q3)e−iω∗10τ2

+k2q2
2 + k6q2

2 + k1q2

)
q∗2 + (l1q2q3 + l2q3)q∗3

)
,

g11 =τ
∗
10D

(
2h4q3q3 + (h3q3 + h3q3)e−iω∗10τ

∗
10 + k4q2q3 + 2Re(h1q2) + k4q2q3e−iω10τ2 + (k4q3q2

+2k5q3q3 + k3q2q2(e−iω∗10τ2 + eiω∗10τ2) + k4q2q3eiω∗10τ2 + 2(k2 + k6)q2q2 + k1q2 + k1q2)q∗2
+(l1q2q3 + l1q2q3 + l2

2q3q3)q∗3
)
,

g02 =2τ∗10D
(
h4q2

3e2iω∗10τ
∗
10 + h3q3eiω∗10τ

∗
10 + h1q2 + (k4q2q3 + k5q2

3)e2iω∗10τ2 + k3q2
2eiω∗10τ2 + k4q2q3eiω∗10τ2

+(k2 + k6)q2
2 + k1q2)q∗2 + (l1q2q3 + l2q3)q∗3

)
,

g21 =τ
∗
10D

(
2h3q3W (1)

11 (0)e−iω∗10τ
∗
10 + h3q3W (1)

20 (0)eiω∗10τ
∗
10h3q3W (1)

20 (−1)eiω∗10τ
∗
10 + 2h4q3W (3)

20

(
−
τ2

τ∗10

)
eiω∗10τ

∗
10

+4h4q3W (3)
11

(
−
τ2

τ∗10

)
e−iω∗10τ

∗
10 + 2h3q3e−iω∗10τ

∗
10 + 2h3q3W (1)

11 (−1)e−iω∗10τ
∗
10 − 2h2W (1)

11 (−1) + h1W (2)
20 (0)

−h2W (1)
20 (−1) + h3W (3)

20

(
−
τ2

τ∗10

)
+ 2h1W (2)

11 (0) + 2h3W (3)
11

(
−
τ2

τ∗10

)
− 2h2 + 2h6q2

3e2iω∗10τ
∗
10 + 2h1q2W (1)

11 (0)

+h1q2W (1)
20 (0)

(
4h6q3q3 + 6h7q2

3q3e−iω∗10τ
∗
10

))
+

(
6k9q3q2

3e−iω∗10τ2 + 2k7q2
2q3 + 2k8q2q2

3e−iω∗10τ2

+2k7q2q2q3e−2iω∗10τ2 + k1W (2)
20 (0) + 2k1W (2)

11 (0) + k4q3W (2)
20

(
−
τ2

τ∗10

)
eiω∗10τ2 + 4k5q3W (3)

11

(
−
τ2

τ∗10

)
e−iω2τ

∗
10

+2k5q3W (3)
20

(
−
τ2

τ∗10

)
eiω∗10τ2 + 2k8q2q2

3e−2iω∗10τ2 + 2k3q2W (2)
11 (0)eiω∗10τ2 + 2k3q2W (2)

11 (0)e−iω∗10τ2

+k3q2W (2)
20 (0)eiω∗10τ2 + 2k4q3W (2)

11 (0)e−iω∗10τ2 + k4q3W (2)
20 (0)eiω∗10τ2 + 2k4q2e−iω∗10τ2W (3)

11

(
−
τ2

τ∗10

)
+k4q2W (3)

20

(
−
τ2

τ∗10

)
eiω∗10τ2 + 2k4q2W (2)

11

(
−
τ2

τ∗10

)
eiω∗10τ2 + 2k1q2W (1)

11 (0) + 4k2q2W (2)
11 (0) + 2k3q2W (2)

11

(
−
τ2

τ∗10

)
+2k4q2W (3)

11

(
−
τ2

τ∗10

)
+ 4k6q2W (2)

11 (0) + k1q2W (1)
20 (0) + 2k2q2W (2)

20 (0) + k3q2W (2)
20

(
−
τ2

τ∗10

)
+ k4q2W (3)

20

(
−
τ2

τ∗10

)
+2k6q2W (2)

20 (0) + 2k7q2q2q3 + 4k8q2q3q3 + 4k8q2q3q3e−iω∗10τ2
)

q∗2 +
(
l2W (3)

20 (0) + 2l2W (3)
11 (0)

+2l1q2W (3)
11 (0) + 2l1q3W (2)

11 (0) + 2l2q3W (1)
11 (0)q3 + l1q2W (3)

20 (0) + l1q3W (2)
20 (0) + l2q3W (1)

20 (0)
)

q∗3.

Mathematical Biosciences and Engineering Volume 21, Issue 4, 5687–5711.



5711

However,

W20(θ) =
ig20

ω∗10τ
∗
10

q(0)eiω∗10τ
∗
10θ +

ig02

3ω∗10τ
∗
10

q(0)e−iω∗10τ
∗
10θ + M1e2iω∗10τ

∗
10θ,

W11(θ) = −
ig11

ω∗10τ
∗
10

q(0)eiω∗10τ
∗
10θ +

ig11

ω∗10τ
∗
10

q(0)e−iω∗10τ
∗
10θ + M2. (B.8)

Here M1 = (M1
1 ,M

2
1 ,M

3
1)T ∈ R3 and M2 = (M1

2 ,M
2
2 ,M

3
2)T ∈ R3 are also constant vectors and can be

determined by the following equations, respectively.
2iω∗10 +

αx∗

z∗
e−2iω∗10τ

∗
10 x∗ −

αx∗2

z∗2
e−2iω∗10τ

∗
10

−βy∗ 2iω∗10 −
δy∗

(σ + y∗)2 +
y∗

z∗
e−2iω∗10τ2 −

y∗2

z∗2
e−2iω∗10τ

∗
2

εz∗ µz∗ 2iω∗10

M1 = 2


Q1

Q2

Q3

,

−
αx∗

z∗
−x∗

αx∗2

z∗2

βy∗
δy∗

(σ + y∗)2 −
y∗

z∗
y∗2

z∗2
−εz∗ −µz∗ 0

M2 = −


P1

P2

P3

, (B.9)

with

Q1 =h4q2
3e−2iω∗10τ

∗
10 + h3q3e−iω∗10τ

∗
10 + h1q2,

Q2 =(k4q2q3 + k5q2
3)e−2iω∗10τ2 + (k3q2

2 + k4q2q3)e−iω∗10τ2 + k2q2
2 + k6q2

2 + k1q2,

Q3 =l1q2q3 + l2q3,

P1 =2h4q3q3 + (h3q3 + h3q3)e−iω∗10τ
∗
10 + 2ℜ(h1q2),

P2 =(k4q3q2 + k4q2q3 + 2k5q3q3 + k3q2q2(e−iω∗10τ2 + eiω∗10τ2) + k4q2q3e−iω∗10τ2 + k4q2q3eiω∗10τ2

+ 2(k2 + k6)q2q2 + k1q2 + k1q2),
P3 =l1q2q3 + l1q2q3 + l2q3l2q3.
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