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Abstract: The novel coronavirus disease (COVID-19) pandemic has profoundly impacted the global
economy and human health. The paper mainly proposed an improved susceptible-exposed-infected-
recovered (SEIR) epidemic model with media coverage and limited medical resources to investigate
the spread of COVID-19. We proved the positivity and boundedness of the solution. The existence
and local asymptotically stability of equilibria were studied and a sufficient criterion was established
for backward bifurcation. Further, we applied the proposed model to study the trend of COVID-19 in
Shanghai, China, from March to April 2022. The results showed sensitivity analysis, bifurcation, and
the effects of critical parameters in the COVID-19 model.
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1. Introduction

The COVID-19 is an acute respiratory infectious disease caused by SARS-CoV-2 virus. The main
transmissions are direct, aerosol, and contact. The clinical manifestations of confirmed cases are fever,
fatigue, dry cough, and a few patients with upper airway symptoms such as nasal congestion and runny
nose. In severe cases, the infection can lead to pneumonia, acute respiratory syndrome, renal failure,
and even death [1]. With the mobility of human beings, the COVID-19 epidemic soon spread around
the world, causing a significant impact on the global economy and human health. According to the
World Health Organization (WHO), as of September 14, 2023, there are 770,563,467 confirmed cases
worldwide, of which 6,957,216 are confirmed deaths [2]. The continued spread of COVID-19 threatens
human health. Given this, a deeper understanding of COVID-19 is necessary. As an effective tool,
mathematical modeling plays a crucial role in studying COVID-19 transmission and control strategies.
Since Kermack and McKendrick [3] first used the theory of the ordinary differential equation (ODE)
to study the dynamics of the epidemic, many important models have been proposed based on the
transmission and pathogenicity of the disease in the past 100 years, such as susceptible-infected-
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recovered (SIR) [4–6], susceptible-infected-recovered-susceptible (SIRS) [7–9], susceptible-infected-
susceptible (SIS) [10, 11], susceptible-infected-recovered-infected (SIRI) [12], SEIR models [13, 14],
and so on [15–17]. These models have been extended to study the spread of COVID-19 from different
perspectives, for example, the epidemiological dynamics [18–20], transmission characteristic [21, 22],
clinical classification [23], and prevention and control strategies [24].

However, most of the models mentioned above often ignore the impact of media coverage and share
a common assumption that medical resources are sufficient, which is often not valid in practice. In the
early stages of the epidemic, due to a lack of understanding of the disease, biomedical interventions
are insufficient to protect people from disease invasion. Thanks to the increasingly developed internet,
radio, and television technology, media coverage is a convenient, fast, and effective measure to curb
the spread of disease. The most frequently used method is to inform people of nonpharmacological
interventions [25, 26]. Studies suggest that media coverage dramatically influences people’s behav-
iors [27–29]. Under the guidance of media publicity, people gradually pay attention to diseases and take
necessary preventive measures to reduce the possibility of infection [30]. Maji et al. [31] considered
a COVID-19 model with social media campaigns. Khajanchi et al. [32] showed that media coverage
had a positive influence in controlling COVID-19 spreading during the initial phase of the epidemic. In
general, infectious diseases are typically transmitted through direct contact between susceptible and
infected individuals. Let S (t) and I(t) be the numbers of susceptible and infectious individuals at time t,
respectively. Because of the media coverage, the direct contact rate decreases. Based on this point,
Li and Cui [11] proposed a contact transmission rate, denoted by B(I(t)), to describe the effect of the
media coverage as follows:

B(I(t)) = β1 −
β2I(t)
α + I(t)

,

where β1 is the usual contact rate without the media coverage, β2 is the maximum contact rate that the
media coverage can reduce, and α (> 0) is a constant to reflect the speed with which people react to
the media coverage. The contact rate reaches its minimum β1 − β2 when I(t)→ +∞. Since the media
coverage cannot make the disease extinct, it is reasonable to assume that β1 − β2 > 0 [13]. Compared
with the classical contact rates, B(I(t)) can reflect the inhibitory effect of media coverage on the spread
of infectious diseases. Thus, a nonlinear incidence with the media coverage is expressed by

g(S (t), I(t)) = B(I(t))S (t)I(t) =
(
β1 −

β2I(t)
α + I(t)

)
S (t)I(t).

On the other hand, medical resources are often limited during the epidemic. For example, some na-
tions and regions have successively experienced material shortages at the beginning of the COVID-19
outbreak. To explore the influence of limited medical resources, Wang and Ruan [33] first proposed
a piecewise treatment function h(I) = r if I > 0, otherwise 0. Here, r represents the saturation level
of medical resources. Further, Wang [34] modified the treatment function, that is, if 0 ≤ I ≤ I0, then
h(I) = rI, and if I > I0, then h(I) = rI0. It means that before the medical resources reach saturation,
the cure rate is proportional to the number of infected individuals. After the medical resources reach
saturation, the cure rate remains at the rI0 and does not increase with the increase in the number of
infected individuals. However, the above two treatment functions are not differentiable everywhere. To
overcome this limitation, Zhang and Liu [35] provided a treatment function

h(I(t)) =
cI(t)

1 + bI(t)
,
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where b (≥ 0) is the saturation factor measuring the impact of delayed treatment on infected individuals
and c (> 0) is the cure rate. It is easy to verify that h(I(t)) can be approximated by cI(t) when I(t) is
small. That is to say, the function h(I) characterizes the limited medical resources in that the cure rate is
proportional to the number of infected individuals. In contrast, when the number of infected individuals
is large, the cure rate reaches a saturation level of c/b. The item 1/(1 + bI) describes the reverse effect
of the infected individuals being delayed for treatment. In addition, when b = 0, h(I) degenerates into
the linear form.

According to the above analysis, some of the studies focused on media coverage, while some
concentrated on limited medical resources. However, there are few types of research on both media
coverage and limited resources. Moreover, the COVID-19 vaccine is also a powerful way and should
be considered in the model. Motivated by this, this paper aims to design a new epidemic model with
vaccination for reflecting not only the impact of media coverage, but also limited medical resources on
the spread of COVID-19. The rest of the paper is organized as follows. We first present the SEIR model
with media coverage and limited medical resources in Section 2, then we analyze the model theoretically
in Section 3. We use daily confirmed, cured, cumulative, and existing cases in Shanghai from March
to April 2022 as an application. The numerical simulations for COVID-19 data are carried out to
explore the inhibitory effect of media reports, medical resources, and vaccination on the transmission of
COVID-19 in Section 4. A brief conclusion is given in the last section.

2. Model formulation

Since the human body is not immediately contagious after COVID-19, the individuals often become
infected after incubation. Divide the total population N(t) into four classes: susceptible, exposed,
infected, and recovered individuals. The number of people in these four classes at time t is denoted by
S (t), E(t), I(t), and R(t), respectively. Combined with the fact that the virus has an incubation period, it
is more suitable for the SEIR model to describe the spread of COVID-19.

Figure 1. The compartmental chart of an improved SEIR model.

As mentioned above, the media coverage and limited medical resources are two factors that cannot
be ignored in the spread of COVID-19. However, as far as we know, the research about the epidemic
model with media coverage and limited medical resources is still an opening problem. As an extension
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of the above results, an improved SEIR model with media coverage, limited medical resources, and
vaccination is proposed as follows:

dS (t) =
[
Λ − (µ + v)S (t) −

(
β1 −

β2I(t)
α + I(t)

)
S (t)I(t)

]
dt,

dE(t) =
[(
β1 −

β2I(t)
α + I(t)

)
S (t)I(t) − (β + µ)E(t)

]
dt,

dI(t) =
[
βE(t) − (ε + δ + µ)I(t) −

cI(t)
1 + bI(t)

]
dt,

dR(t) =
[
δI(t) − µR(t) +

cI(t)
1 + bI(t)

+ vS (t)
]

dt.

(2.1)

The meanings of all parameters assumed to be nonnegative in the model are listed in Table 1. The
compartmental chart of the model is shown in Figure 1. Although δI and cI(t)

1+bI(t) both flow from the
compartment I to R, δI is the self-healing of infected individuals, while cI(t)

1+bI(t) represents the recovery of
infected individuals through hospital treatment.

Table 1. Definition of parameters in the model (2.1).

Parameter Definition
Λ Recruitment rate of susceptible individuals
µ Natural mortality rate
ε Disease-related mortality rate
β1 Usual contact rate without media alert
β2 Maximum contact rate that can be reduced by the media coverage
v Vaccination rate

α
A constant that reflects the speed with which people
react to the media coverage

b Saturation factor measuring the impact of delayed treatment
c Cure rate
β Prevalence rate of exposed individuals
δ Recovery rate

Since the first three equations are independent of the fourth equation, the model (2.1) can be
simplified as 

dS (t) =
[
Λ − (µ + v)S (t) −

(
β1 −

β2I(t)
α + I(t)

)
S (t)I(t)

]
dt,

dE(t) =
[(
β1 −

β2I(t)
α + I(t)

)
S (t)I(t) − (β + µ)E(t)

]
dt,

dI(t) =
[
βE(t) − (ε + δ + µ)I(t) −

cI(t)
1 + bI(t)

]
dt.

(2.2)

To facilitate calculation and representation, let ϕ1 = µ + v, ϕ2 = β + µ, and ϕ3 = ε + δ + µ. The

Mathematical Biosciences and Engineering Volume 21, Issue 4, 5283–5307.



5287

model (2.2) then can be equivalently represented as

dS (t) =
[
Λ − ϕ1S (t) −

(
β1 −

β2I(t)
α + I(t)

)
S (t)I(t)

]
dt,

dE(t) =
[(
β1 −

β2I(t)
α + I(t)

)
S (t)I(t) − ϕ2E(t)

]
dt,

dI(t) =
[
βE(t) − ϕ3I(t) −

cI(t)
1 + bI(t)

]
dt.

(2.3)

3. Basic properties

In this section, some basic properties of model (2.1) are provided to illustrate its epidemiologi-
cal meaning.

3.1. Positivity and boundedness

Theorem 1. If the initial value (S (0), E(0), I(0),R(0)) is nonnegative, then the solution
(S (t), E(t), I(t),R(t)) of the model (2.1) is nonnegative for all t ∈ [0,+∞).

Proof. Since the solution is continuous concerning the initial value, we only need to prove that for any
positive initial value (S (0), E(0), I(0),R(0)), the solution (S (t), E(t), I(t),R(t)) of model (2.1) is also
positive for all t ∈ (0,+∞). From the first equation of model (2.1), we have

dS (t)
dt
> −

[
(µ + v) +

(
β1 −

β2I(t)
α + I(t)

)
I(t)

]
S (t).

Hence, as S (0) > 0, we directly get that S (t) > 0 for all t ∈ [0,+∞).
Next, define χ(t) = min{S (t), E(t), I(t),R(t)}. Clearly, χ(0) = min{S (0), E(0), I(0),R(0)} > 0. To

prove the theorem, we only need to prove that χ(t) > 0 for all t ∈ [0,+∞). Suppose there exists a
moment t0 such that χ(t) > 0 when t ∈ [0, t0) and χ(t0) = 0, then the following three cases need to be
considered: (i) χ(t0) = E(t0); (ii) χ(t0) = I(t0); and (iii) χ(t0) = R(t0).

Let χ(t0) = E(t0). Since χ(t) > 0 when t ∈ [0, t0), then from the second equation of model (2.1),
we have

dE(t)
dt
> −(β + µ)E(t) for all t ∈ [0, t0).

According to the comparison principle, one gets that E(t) > E(0)e−(β+µ)t, t ∈ [0, t0). Letting t → t0

yields 0 = E(t0) > E(0)e−(β+µ)t0 > 0, which is a contradiction. Similarly, we can also derive the
contradiction in cases (ii) and (iii). Therefore, the solution of model (2.1) is positive for all t ∈ [0,+∞).

Theorem 2. The solution (S (t), E(t), I(t),R(t)) of model (2.1) are bounded.

Proof. Adding all the four equations of (2.1) yields

dN
dt
= Λ − µN − εI ≤ Λ − µN.

Thus, lim sup
t→+∞

N ≤ Λ
µ

, that is, the (S (t), E(t), I(t),R(t)) of the model (2.1) are bounded.
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Furthermore, according to the comparison theorem, one can obtain that N(t) ≤ (N(0)−Λ/µ)e−µt+Λ/µ,
then N(t) ≤ Λ/µ if N(0) ≤ Λ/µ. Thus, the positively invariant region of model (2.1) is

Ω =

{
(S , E, I,R) ∈ R4

+ : S + E + I + R ≤
Λ

µ

}
.

By the way, if N(0) > Λ/µ, then N(t) ≤ N(0).

3.2. Disease-free equilibrium (DFE) and its local stability

The model (2.3) is equivalent to the model (2.1). For convenience, we consider the model (2.3) in
the following. Clearly, the model (2.3) always exists a DFE P0 = (Λ/ϕ1, 0, 0).

The basic reproduction number, denoted by R0, is a vital threshold in the epidemic model and
determines whether the epidemic breaks out. There is more than one way to calculate the basic
reproduction number, and the most common method is the next-generation matrix method. Denote by F
and V the new infection compartment and transition terms of model (2.3), respectively, then

F =
[
FE

FI

]
=

(β1 −
β2I
α+I

)
S I

0

 , V =
[
VE

VI

]
=

[
ϕ2E

ϕ3I + cI
1+bI − βE

]
.

The Jacobian matrix for the infection components E and I at the DFE P0 are, respectively, given by

F = DF(P0) =
[
∂FE
∂E |P0

∂FE
∂I |P0

∂FI
∂E |P0

∂FI
∂I |P0

]
=

[
0 β1Λ

ϕ1

0 0

]
,

V = DV(P0) =
[
∂VE
∂E |P0

∂VE
∂I |P0

∂VI
∂E |P0

∂VI
∂I |P0

]
=

[
ϕ2 0
−β ϕ3 + c

]
,

then the basic reproduction number for model (2.3) is

R0 = ρ(FV−1) =
β1βΛ

ϕ1ϕ2(ϕ3 + c)
.

Next, the local stability of the DFE P0 will be studied. To begin with, model (2.3) is linearized at P0

by using the Jacobian matrix as follows

J(P0) =


−ϕ1 0 −

β1Λ

ϕ1

0 −ϕ2
β1Λ

ϕ1

0 β −(ϕ3 + c)

 .
It has negative eigenvalues, if and only if, β1βΛ < ϕ1ϕ2(ϕ3 + c), i.e., R0 < 1. Given the above

discussion, the following stability criterion is derived.

Theorem 3. The DFE P0 of model (2.3) is locally asymptotically stable if R0 < 1, and unstable if
R0 > 1.
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3.3. Existence of the endemic equilibrium point (EEP)

The EEP P∗(S ∗, E∗, I∗) of model (2.3) can be given by letting

0 =Λ − ϕ1S −
(
β1 −

β2I
α + I

)
S I,

0 =
(
β1 −

β2I
α + I

)
S I − ϕ2E,

0 =βE − ϕ3I −
cI

1 + bI
,

which equals to 

S =
ϕ2E

(β1 −
β2I
α+I )I

,

E =
ϕ3I + cI

1+bI

β
,

0 = Λ − ϕ1S −
(
β1 −

β2I
α + I

)
S I.

(3.1)

Denote

G =
β1ϕ1(ϕ3 + c) + bαβ1ϕ1ϕ3 + αβ

2
1(ϕ3 + c)

ϕ1(ϕ3 + c)(β1 − β2 + αbβ1)
,

K =
1
β1

(β1 − β2 + αbβ1)ϕ1ϕ2(ϕ3 + c).

Substituting S and E into the third equality of (3.1) yields an equation of the form

AI3 + BI2 +CI + D = 0, (3.2)

where
A =(β1 − β2)bϕ2ϕ3,

B = − (β1 − β2)βbΛ + (β1 − β2)ϕ2(ϕ3 + c) + αβ1bϕ2ϕ3 + bϕ1ϕ2ϕ3,

C = − (β1 − β2 + αβ1b)βΛ + ϕ1ϕ2(ϕ3 + c) + bαϕ1ϕ2ϕ3 + αβ1ϕ2(ϕ3 + c),

=
1
β1

(β1 − β2 + αbβ1)ϕ1ϕ2(ϕ3 + c)(G −R0)

=K(G −R0),
D = − αβ1βΛ + ϕ1ϕ2α(ϕ3 + c) = ϕ1ϕ2α(ϕ3 + c)(1 −R0).

It is obvious that A > 0; C > 0⇔ R0 < G; D > 0⇔ R0 < 1, and G = 1 equals to

b =
(ϕ3 + c)(ϕ1β2 + αβ

2
1)

ϕ1αβ1c
:= b∗.

Furthermore, it is decreasing for G with respect to b.
Let ∆ := q2/4 + p3/27 be the discriminant of (3.2), where p = (3AC − B2)/(3A2) and q =

(27A2D−9ABC+2B3)/(27A3), then the existence of the equilibria is summarized as the following result.

Theorem 4. (I) When 0 ≤ b ≤ b∗, the following results hold.
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(i) If R0 > G or 1 < R0 < G and B > 0, the model (2.3) has a unique EEP.
(ii) If R0 < 1 and B > 0, the model (2.3) has no EEP.

(iii) If 1 < R0 < G, B < 0 and ∆ < 0, the model (2.3) has three EEPs.
(iv) If R0 < 1 and B < 0, then

(iv1) when ∆ < 0, there are two EEPs of the model (2.3);
(iv2) when ∆ > 0, there is no EEP of the model (2.3);
(iv3) when ∆ = 0 and R0 > G − B2

3AK , there is an EEP of the model (2.3).

(II) When b > b∗, the following results hold.

(i) If R0 > 1, the model (2.3) has an EEP.
(ii) If G < R0 < 1, then

(ii1) when ∆ < 0, there are two EEPs of the model (2.3);
(ii2) when ∆ > 0, there is no EEP of the model (2.3);
(ii3) when ∆ = 0, there is an EEP of the model (2.3).

(iii) If R0 < G and B > 0, the model (2.3) has no EEP.
(iv) If R0 < G and B < 0, then

(iv1) when ∆ < 0, there are two EEPs of the model (2.3);
(iv2) when ∆ > 0, there is no EEP of the model (2.3);
(iv3) when ∆ = 0, there is an EEP of the model (2.3).

Proof. The theorem can be proved using Descartes’ rule of signs. Let

f (I) := AI3 + BI2 +CI + D.

For the conclusion (I)(i), when 0 ≤ b ≤ b∗, we have G > 1. Since R0 > G ≥ 1, we get C < 0 and
D < 0. f (I) only changes sign once whether B > 0 or B < 0. Hence, from Descartes’ rule of signs, it
has a real positive root and model (2.3) has an EEP. If 1 < R0 < G and B > 0, then C > 0 and D < 0. In
this case, f (I) changes sign once, too, then the model (2.3) has an EEP. Conclusion (I)(i) is then proved.
The proofs of conclusions (I)(ii), (II)(i), and (II)(iii) are similar to conclusion (I)(i) and then omitted.

Next, we prove the conclusions (I)(iii) and (I)(iv).
1) The condition 1 < R0 < G yields C > 0 and D < 0. Combined with B < 0, f (I) changes

its sign three times, meaning that it may have three positive roots or one positive root. On the other
hand, f (−I) = −AI3 + BI2 − CI + D, which does not change the sign, then f (I) has no negative root.
Furthermore, ∆ < 0 follows that f (I) has three different real roots. Hence, f (I) has three different
positive real roots, which means that model (2.3) has three EEPs. Conclusion (I)(iii) is then proved.

2) If R0 < 1 and B < 0, f (I) then changes sign twice and f (−I) changes sign once, which means f (I)
has a negative root. Further, if ∆ < 0, then f (I) has two positive roots and one negative root, indicating
that model (2.3) has two EEPs. If ∆ > 0, only one negative root indicates that the model (2.3) has no
EEP. If R0 > G − B2

3AK , then B2 − 3AC > 0. Combining with ∆ = 0, f (I) has a positive double root,
which indicates that model (2.3) has an EEP. It completes the proof of (I)(iv). The proofs of several
other conclusions are similar, so we omit them.

According to Theorem 4, Tables 2 and 3 show the distribution of EEP of the model (2.3) under 0 ≤
b ≤ b∗ and b > b∗, respectively.
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Table 2. Real positive roots for 0 ≤ b ≤ b∗, depending on the sign of B,C,D and ∆.

Cases B C D The number of real positive roots
(i) R0 > G +(−) − − 1
or 1 < R0 < G + + − 1
(ii) R0 < 1 + + + 0
(iii) 1 < R0 < G − + − 3 if ∆ < 0

(iv) R0 < 1
− + + 2 if ∆ < 0
− + + 0 if ∆ > 0
− + + 1 if ∆ = 0 and R0 > G − B2

3AK

Table 3. Real positive roots for b > b∗ depending on the sign of B,C,D and ∆.

Cases B C D The number of real positive roots
(i) R0 > 1 +(−) − − 1

(ii) G < R0 < 1
+(−) − + 2 if ∆ < 0
+(−) − + 0 if ∆ > 0
+(−) − + 1 if ∆ = 0

(iii) R0 < G + + + 0

(iv) R0 < G
− + + 2 if ∆ < 0
− + + 0 if ∆ > 0
− + + 1 if ∆ = 0

Remark 1. In Theorem 4, b is an important parameter that determines the distribution of the equilibria
of the model. If b = 0, (3.2) degenerates to

B̄I2 + C̄I + D = 0, (3.3)

where
B̄ =(β1 − β2)ϕ2(ϕ3 + c),

C̄ =
1
β1

(β1 − β2)ϕ1ϕ2(ϕ3 + c)(Ḡ −R0),

Ḡ =
β1ϕ1 + αβ

2
2

ϕ(β1 − β2)
.

Note that B̄ is larger than zero and Ḡ is larger than unity. Hence, if R0 < 1, all coefficients of Eq (3.3)
are positive and there is no positive root, which means that there is no EEP in this case. If R0 > 1, then
D < 0. Whether C̄ is greater than zero or not, there always exists a unique positive root of the equation,
which means that there exists a unique EEP. If R0 = 1, then D = 0 and C̄ > 0, there is unique positive
root of (3.3) I = −C̄/B̄ < 0, and the model has no EEP. Therefore, when b = 0, a forward bifurcation
exhibits in model (2.3), which is consistent with Theorem (4) (I)(i).
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3.4. Locally asymptotical stability of EEP

In Theorem 4 (I)(i),(ii), and (II)(i), the model (2.3) has a unique EEP P∗(S ∗, E∗, I∗). This subsection
aims to investigate the locally asymptotical stability of P∗. Denote

H :=
ϕ2 (c + ϕ3 + b ϕ3I∗)

(
(β1 − β2)(I∗2 + 2αI∗) + α2β1

)
β (α + I∗) (1 + bI∗) (β1I∗ − β2I∗ + α β1)

> 0.

Theorem 5. The model (2.3) has a unique EEP, which is locally asymptotically stable if R0 > 1,

ϕ2

(
ϕ1 +

(β1 − β2)I∗ + β1α

α + I∗
I∗
) (
ϕ3 +

c
(1 + bI∗)2

)
> βHϕ1,

and [
ϕ1 + ϕ2 + ϕ3 +

c
(1 + bI∗)2 +

(β1 − β2)I∗ + β1α

α + I∗
I∗
] [(
ϕ2 + ϕ3 +

c
(1 + bI∗)2

)
×

(
ϕ1 +

(β1 − β2)I∗ + β1α

α + I∗
I∗
)
+ ϕ2

(
c

(1 + bI∗)2 + ϕ3

)
− βH

]
+ βHϕ1

> ϕ2

(
ϕ1 +

(β1 − β2)I∗ + β1α

α + I∗
I∗
) (
ϕ3 +

c
(1 + bI∗)2

)
.

Proof. The Jacobian matrix J(P∗) of the model (2.3) is given by

J(P∗) =


−ϕ1 −

(β1−β2)I∗+β1α

α+I∗ I∗ 0 −H
(β1−β2)I∗+β1α

α+I∗ I∗ −ϕ2 H
0 β − c

(1+bI∗)2 − ϕ3

 .
Through calculation, the characteristic equation of J(P∗) is

λ3 + a1λ
2 + a2λ + a3 = 0,

where

a1 =ϕ1 + ϕ2 + ϕ3 +
c

(1 + bI∗)2 +
(β1 − β2)I∗ + β1α

α + I∗
I∗,

a2 =

(
ϕ2 + ϕ3 +

c
(1 + bI∗)2

) (
ϕ1 +

(β1 − β2)I∗ + β1α

α + I∗
I∗
)

+ ϕ2

(
c

(1 + bI∗)2 + ϕ3

)
− βH,

a3 =ϕ2

(
ϕ1 +

(β1 − β2)I∗ + β1α

α + I∗
I∗
) (
ϕ3 +

c
(1 + bI∗)2

)
− βHϕ1.

Note that a1 > 0 and a3 > 0 whenever

ϕ2

(
ϕ1 +

(β1 − β2)I∗ + β1α

α + I∗
I∗
) (
ϕ3 +

c
(1 + bI∗)2

)
> βHϕ1.
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Furthermore,

∆′ = a1a2 − a3

=

[
ϕ1 + ϕ2 + ϕ3 +

c
(1 + bI∗)2 +

(β1 − β2)I∗ + β1α

α + I∗
I∗
]

×

[(
ϕ2 + ϕ3 +

c
(1 + bI∗)2

) (
ϕ1 +

(β1 − β2)I∗ + β1α

α + I∗
I∗
)

+ ϕ2

(
c

(1 + bI∗)2 + ϕ3

)
− βH

]
− ϕ2

(
ϕ1 +

(β1 − β2)I∗ + β1α

α + I∗
I∗
)

×

(
ϕ3 +

c
(1 + bI∗)2

)
+ βHϕ1.

Therefore, combining with the Routh-Hurwitz criterion, the EEP P∗ of the model (2.3) is locally
asymptotically stable.

3.5. The backward bifurcation

According to Theorem 4, the model (2.3) may exhibit a bifurcation for the values of R0 when
G < R0 < 1. Next, following Theorem 4 in [36], we look for the parameter conditions that lead to the
backward bifurcation. Letting R0 = 1 yields β1 = β

∗
1 := ϕ1ϕ2(ϕ3+c)

βΛ
. Denote b̂ = αϕ1ϕ

2
2(ϕ3+c)2+2β2Λ

2β2

2αΛβcϕ1ϕ2
.

Theorem 6. The model (2.3) has a backward bifurcation at R0 = 1 when b > b̂.

Proof. Let x1 = S , x2 = E and x3 = I, then the model (2.3) becomes

dx1

dt
= Λ − ϕ1x1 −

(
β1 −

β2x3

α + x3

)
x1x3 =: f1,

dx2

dt
=

(
β1 −

β2x3

α + x3

)
x1x3 − ϕ2x2 := f2,

dx3

dt
= βx2 − ϕ3x3 −

cx3

1 + bx3
:= f3.

Suppose β1 is the bifurcation parameter. When β1 = β
∗
1, the Jacobian matrix of the model (2.3) at

P0(Λ/ϕ1, 0, 0) is

J(P0, β
∗
1) =


−ϕ1 0 −

ϕ2(ϕ3+c)
β

0 −ϕ2
ϕ2(ϕ3+c)
β

0 β −(ϕ3 + c)

 .
The eigenvalues of J(P0, β

∗
1) are λ1 = 0, λ2 = −ϕ1, and λ3 = −ϕ2 − (ϕ3 + c). Obviously, λ2 < 0,

λ3 < 0, and λ1 is a simple zero eigenvalue of J(P0, β
∗
1).

The right eigenvector of J(P0, β
∗
1) for λ1 = 0 is denoted by w = (w1,w2,w3)⊤, then

w =


w1

w2

w3

 =

−
ϕ2(ϕ3+c)
ϕ1

ϕ3 + c
β

 ,
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which is from J(P0, β
∗
1)w = 0. Moreover, the left eigenvector v = (v1, v2, v3) meeting v · w = 1 can be

found by 
− ϕ1v1 = 0,
− ϕ2v2 + βv3 = 0,
ϕ2(ϕ3 + c)
ϕ1

v2 − (ϕ3 + c)v3 = 0.

Hence, v = (0, 1
ϕ2+ϕ3+c ,

ϕ2
β(ϕ2+ϕ3+c) ). Evaluating the partial derivatives at P0, we have

∂2 f1

∂x1∂x3
= −
ϕ1ϕ2(ϕ3 + c)
Λβ

,
∂2 f1

∂x2
3

=
2Λβ2

αϕ1
,

∂2 f1

∂x3∂β1
= −
Λ

ϕ1
,

∂2 f2

∂x1∂x3
=
ϕ1ϕ2(ϕ3 + c)
Λβ

,
∂2 f2

∂x2
3

= −
2Λβ2

αϕ1
,
∂2 f2

∂x3∂β1
=
Λ

ϕ1
,

∂2 f3

∂x2
3

= 2bc,

and other partial derivatives equal to zero. Thus,

a =
3∑

i, j,k

vkwiw j
∂2 fk

∂xi∂x j
(P0, β

∗
1)

= −
ϕ2

2(ϕ3 + c)2

Λ(ϕ2 + ϕ3 + c)
−

2Λβ2β
2

αϕ1(ϕ2 + ϕ3 + c)
+

2bcϕ2β

ϕ2 + ϕ3 + c
,

b =
3∑
k,i

vkwi
∂2 fk

∂xi∂β1
(P0, β

∗
1) =

Λβ

ϕ1(ϕ2 + ϕ3 + c)
.

Obviously, b > 0. When b > b̂, a > 0. Therefore, the model (2.3), when b > b̂, exhibits a backward
bifurcation at R0 = 1.

Remark 2. Combining Theorems 4 and 6, we note that parameter b determines not only the existence
of EEP, but also the bifurcation of the model (2.3).

Remark 3. The existence of backward bifurcation suggests that the disease may persist even if we
make the basic reproduction number less than 1. This makes it more difficult to control the epidemic.
From the proof of Theorem 6, we note that the timely treatment of infected individuals is an essential
factor for backward bifurcation. In order to eradicate COVID-19, it is necessary to ensure that patients
can receive timely treatment.

4. Model analysis of COVID-19

4.1. Model calibration

In this part, we perform computer simulations of the model (2.1). First, we calibrate our model to the
COVID-19 data from Shanghai, China. The data is from Shanghai Municipal Health Commission [37]
and National Health Commission of the People’s Republic of China [38]. In 2021, the total population
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of Shanghai is about 24,894,300 [39]. By February 2022, the cumulative number of confirmed cases
is 4388, the number of existing cases is 510, and the cumulative number of cured cases is 3871. The
detailed data is shown in Figure 2. The natural mortality rate of Shanghai in 2021 is 0.00559 [39]. Thus,
we can obtain that µ = 0.0000153 per day. The disease-related mortality rate is ε = 0.00173 [37]. Λ can
be estimated by µN, that is, Λ = 381. We don’t know the exact vaccination rate in the crowd, and because
the COVID-19 virus mutates, the effectiveness of the vaccine is unknown. Considering that many people
who have been vaccinated have later contracted COVID-19, we chose a small value of v = 0.00003. In
the model (2.1), the initial value is (S (0), E(0), I(0), R(0)) = (24,894,300, 108, 480, 3863). Other model
parameters are estimated.
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Figure 2. The COVID-19 data in Shanghai for 49 days starting from March 1, 2022. (a) The
cumulative confirmed cases, (b) the newly confirmed cases, (c) the newly cured cases, and (d)
the existing cases.

To estimate the relevant parameters, we utilize the Nelder-Mead search algorithm, one of the most
renowned algorithms for solving multidimensional unconstrained nonlinear minimization problems [40],
to search for the local minima of the model (2.1) with initial condition (S (0), E(0), I(0), R(0)) =
(24,894,300, 108, 480, 3863), and capture the relevant parameters so that the model outcome is a better
fit to the real data. The fitting is done for 49 days starting from March 1, 2022. The relevant results
are listed in Table 4. Figure 3 shows the output of the model and the existing infection cases, where
Figure 3(a) depicts the existing cases and the output I(t) of the model. From the subgraph, it can be
observed that the fitting results are very close to the data. Moreover, the basic reproduction number is
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R0 = 2.3899 in Shanghai, calculated from the parameter estimates listed in Table 4. As R0 > 1, the
disease-free equilibrium is unstable, and COVID-19 will break out in Shanghai.

Table 4. Parameters fitted with data.

Parameter Value Source
Λ 381 [39]
µ 0.00559/365 [39]
ε 0.00173 [37]
v 0.00003 Assumed
β1 2.585 × 10−7 Fitted
β2 3.56 × 10−8 Fitted
δ 2.64 × 10−2 Fitted
β 5.172 × 10−3 Fitted
α 1.614 × 103 Fitted
b 7.379 × 10−3 Fitted
c 0.8786 Fitted
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Figure 3. The fitting results of the model (2.1) with COVID-19 data in Shanghai for 49 days
starting from March 1, 2022. The red dotted line represents the actual data points observed.
The figure shows that the number of existing cases is increasing exponentially.

4.2. Sensitivity analysis

To describe how to reduce the number of COVID-19 infections, it is essential to see the relative
importance of various factors that lead to the spread of COVID-19. Since the initial spread of the disease
is completely related to the basic reproductive number R0, we calculate the sensitivity index of R0 to
the model parameters. Specifically, for parameters Θ = (β1, β,Λ, µ, v, c, ε, δ), the normalized forward
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sensitivity index vector for R0, say Υ, can be calculated by

Υ =
∂R0

∂Θ
·
Θ

R0
.

Using the values of each relevant parameter given in Table 4, Figure 4 shows the sensitivity index
of the parameters. The sensitivity index of R0 regarding β1 and Λ is 1, which indicates that these
two parameters are independent of other parameters. In other words, R0 is an increasing function
with respect to β1 (or Λ), and if β1 (or Λ) increases by 1%, R0 also increases by 1%. Obviously, the
sensitivity indices of β1, β, and Λ are positive. It implies that R0 will increase with the increase of
these parameters. It is worth noting that these three parameters have different degrees of impact on R0,
among which β1 and Λ have a strong impact on R0, and β has a weak impact on it. On the contrary, µ,
v, c, ε, and δ have negative sensitivity indices. It means that R0 decreases as these parameters increase.
The parameters µ, v, and c strongly impact R0, while ε and δ have a relatively weak impact.
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−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

li
ze

d
 f

o
rw

a
rd

 s
e

n
si

ti
v

it
y

 in
d

e
x

 f
o

r 
R

0

1

0.003

1

−0.3409

−0.662

−0.969

−0.0019 −0.0291

Figure 4. The normalized forward sensitivity indices of R0 with respect to the parameter
values used in Table 4.

Therefore, to completely eliminate COVID-19, we must control the growth of the parameters having
positive indices, especially Λ and β1. An effective way to control Λ, i.e., the recruitment rate of
susceptible individuals, is to blockade the region and eliminate the migration of people from outside
the region. However, such a measure is not a long-term solution, as it will seriously hinder the socio-
economic development and cause a lot of inconvenience to people’s lives. In contrast, in order to control
the increase of the number of infected people, reducing the contact rate between susceptible and infected
people β1 is a very reasonable and effective method. On the one hand, this can be achieved by isolating
the infected population on a small scale, and on the other hand, from the expression of B(I(t)), it is easy
to see that increasing β2 or decreasing α, which are the parameters related to the media reports, can help
to reduce the actual contact rate between susceptible and infected people. In other words, fully utilizing
media reports can make people more conscious of taking effective protection measures, thus helping to
reduce the infection level. Relevant authorities should fully recognize the role of media coverage and
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use the media to disseminate information on disease prevention and treatment, so that people are aware
of current health problems and their possible solutions.

At the same time, the increase of the parameters having negative indices cannot be ignored, especially
the cure rate c. As we mentioned in the introduction, the saturation level of medical resources in a
region can be expressed as c/b. An increase in c means, on the one hand, an increase in the cure rate
and, on the other hand, an increase in medical resources. Both can lead to a decrease in R0, which in
turn can lead to the extinction of the disease. Therefore, it is intuitive to conclude that adequate medical
resources can help contain disease outbreaks. Additionally, as can be seen in Figure 4, widespread
vaccination also helps to control disease epidemics.

4.3. Impact of critical parameters

To begin, we select the parameter v related to vaccination and draw the time series diagram of the
infected compartment I by changing the value of v. It is evident from Figure 5(a) that increasing the
vaccination rate can significantly reduce the number of infected individuals.
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Figure 5. Simulation of the effect of (a) v and (b) β2 on compartment I.

Next, we study the impact of media coverage on the spread of COVID-19. In the introduction, two
key parameters are closely related to the effects of media coverage. One is the maximum reduction in
contact rate β2 that can be achieved by media coverage, and the other is the parameter α that characterizes
the response speed of people to media coverage. We change the values of these two parameters and
plot the time series of the infected compartment I. Figure 5(b) shows that the curve of I(t) gradually
decreases. The black curve represents the trend of I(t) without the influence of media coverage. The
more significant the maximum reduction in contact rate achieved by media coverage, the stronger its
ability to control COVID-19. Thus, it is essential to maintain intensive media coverage during the
epidemic period. Figure 6 displays the trend of I(t) when α continuously ranges from 0 to 5000. As
α rises, so does the I(t) trend, suggesting that the faster people respond to media reports, the fewer
infected individuals. When α ranges from [0, 1000], the trend of I(t) is apparent, whereas when α is
within the range [4000, 5000], the alteration of I(t) becomes less noticeable as α increases. When α = 0,
the level of I(t) is the lowest. Although I(t) does not show a trend toward 0, compared to the case where
α > 0, the number of infections is the lowest when α = 0 at each time node. This shows that the faster
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people respond to media coverage, the more conducive to reducing the prevalence of COVID-19 and
keeping the number of existing cases at a low level.

Figure 6. Simulation of the effect of α for compartment I.

As illustrated in Figure 7(a), when b decreases, both the growth rate and the overall level of I(t)
decrease. This indicates that timely treatment of infected individuals can significantly reduce the number
of infected individuals. As shown in Figure 7(b), the smaller the value of c, the faster the growth rate of
I(t). This suggests that increasing the cure rate can also effectively control the disease. Figure 8 presents
the temporal impact of b and c on compartment I(t). Figure 8(a) indicates that when b is relatively tiny,
I(t) exhibits sensitivity to variations in b. However, Figure 8(b) demonstrates that as the parameter
c approaches 1, I(t) experiences almost no change, while when c is relatively tiny, I(t) experiences
significant changes.
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Figure 7. Simulation of the effect of parameters (a) b and (b) c on compartment I.
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(a) (b)

Figure 8. Simulation of the effect of (a) b and (b) c with respect to time t for compartment I.

The number of infected individuals on the 30th day (i.e., I(30)) is the dependent variable to investigate
the joint impact of b and c on I. The following conclusion can be drawn from Figure 9: (i) For a fixed
parameter c (, 0), I(30) will increase as b increases; (ii) for a fixed parameter b, I(30) will decrease as c
increases; (iii) I(30) is sensitive to both small b and c; (iv) in order to prevent and control COVID-19,
measures should be taken to increase c and reduce b. On the one hand, larger c and smaller b represent
timely and efficient treatment; on the other, they represent sufficient medical resource supply. Both of
these aspects play an important role in curbing the epidemic.

Figure 9. The interrelationship of b and c on I.

Figure 10(a),(b) shows the values of R0 when β1 and β change, as well as when β1 and c change,
respectively. The blue surface is R0 = 1. Since R0 = 2.3899 > 1, the COVID-19 pandemic will persist.
To reduce R0 below 1, it can be seen from Figure 10 that reducing β1 or increasing c is an effective way.

The above analysis can lead to some valuable conclusions. As is known to all, R0 represents the
average number of secondary infections in a single infected individual. Therefore, reducing the value of
R0 can effectively curb the development of the epidemic. From this perspective, six measures are taken.
(i) Limit crowd gathering and persuade people to reduce the exposure rate. (ii) Control the prevalence
of latent patients through early intervention treatment after high-risk close contact. (iii) Decrease the
recruitment rate of susceptibility by closing the entire epidemic area. (iv) Increase the vaccination rate
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so that most people have antibodies. (v) Improve the recovery rate of infected individuals through
hospital support treatment. (vi) Ensure adequate supply of medical resources.
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Figure 10. The value of R0 when parameter β1 and β, c varies.

4.4. Bifurcation analysis

Next, we give the numerical result of the bifurcation behavior of model (2.1) using R0 as
the bifurcation parameter. Applying the parameter values in Table 4, it can be calculated that
b∗ = 6 × 10−3 < b = 7.379 × 10−3. Combining R0 = 2.3899 > 1, Theorem 4 (II)(i) shows that
the model (2.1) has only one EEP. Meanwhile, b̂ = 2.1207 × 10−4 < b = 7.379 × 10−3, which implies
that model (2.1) exhibits a backward bifurcation at R0 = 1. Furthermore, ∆ = −2.8168 × 1020 < 0.
Hence, when G < R0 < 1, model (2.1) has two EEPs according to Theorem 4 (II)(ii1). Figure 11 depicts
the backward bifurcation of model (2.1), confirming the analysis above. As stated in Remark 3, the
emergence of backward branches makes it more difficult to control COVID-19. To avoid this situation,
we can reduce the value of b so that b < b̂.
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Figure 11. Bifurcation diagram in the plane (R0, I).

Mathematical Biosciences and Engineering Volume 21, Issue 4, 5283–5307.



5302

4.5. Long-term behavior

The previous subsection analyzed the effect of some of the key parameters on the model from a
microscopic point of view. In this subsection, we zoom in on the time scale and focus on two important
factors, namely, the impact of media coverage and limited medical resources on disease transmission.

Figures 12 and 13 show the changes in the population of infected persons over time. If no intervention
is made and the epidemic is allowed to develop, it will spread rapidly in Shanghai, resulting in more
than 3 million infections, before the number of infected people declines slowly and eventually reaches a
lower level of the epidemic (red curve). In order to study the effect of media coverage on the spread
of the disease, we plotted the change in the number of infected people by choosing different values
of β2 and α, as shown in Figure 12(a),(b). From the values of β2, it can be clearly seen that the larger
the maximum contact rate that can be reduced by media coverage, the smaller the number of infected
individuals and the lower the peak value. As β2 increases, the peak is delayed. However, changes in α
do not have the same effect on the infected individuals as β2, which only slightly delays the onset of
the peak.

Figure 13(a),(b) shows the changes in the infected individuals with different values of c and b. Similar
to the change in α, the change in c has a smaller impact on the peak, but it can greatly delay the time
of peak occurrence. The change in b has a more obvious and rich dynamical behavior. On the one
hand, the number of infected individuals will decrease with the decrease of b, and the decrease speed is
very fast, while the peak also drops very fast. On the other hand, the time of peak occurrence will also
be delayed.

To summarize, from a macroscopic point of view, we are inclined to take measures to make β2 very
large and α very small, and at the same time to make c very large and b very small. This would greatly
reduce the number of infected individuals and delay the peak so that people have more time to deal with
the threat of an epidemic.
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Figure 12. Variation of infective individuals (I(t)) with respect to time for different values of
(a) β2 and (b) α. Other parameters are list in Table 4.
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Figure 13. Variation of infective individuals (I(t)) with respect to time for different values of
(a) c and (b) b. Other parameters are list in Table 4.

5. Conclusions

In this paper, we propose a new SEIR model for COVID-19, which considers the impact of media
coverage and limited medical resources on the spread of COVID-19. For this model, we first demonstrate
the positive and boundedness of the solution. The next-generation matrix method derives the basic
reproductive number R0. As a critical threshold, the value of R0 determines whether the disease will go
extinct. We analyzed the equilibrium point of the model in detail and gave the distribution of equilibrium
points under the two conditions of 0 ≤ b ≤ b∗ and b > b∗. At the same time, we also explored the local
stability of the equilibrium point of the endemic disease. For the bifurcation phenomenon, we proved
that when b > b̂, the model exhibits a bifurcation at R0 = 1.

The proposed model applies to the confirmed case data of Shanghai from March 1, 2022 to
April 18, 2022. Using this data, seven important parameters were estimated. By calculating these
parameters, we obtained R0 = 2.3899, indicating that COVID-19 will continue to spread without mea-
sures being taken. The results of the sensitivity analyses explored the importance of media coverage in
reducing the spread of the disease, and also revealed that limited medical resources were an impediment
to controlling the epidemic, and that only an adequate supply of medical resources could help to curb the
development of the epidemic. In addition, a more comprehensive numerical analysis of some important
parameters was carried out. The analysis shows that susceptible populations must be widely vaccinated
and the media should maintain high-intensity coverage to influence more people. In addition, ensuring
that infected people can receive timely treatment also helps to control the disease. The bifurcation
analysis of the model illustrates this point, too. We also explored the changes of infected individuals
over a long period of time.

The results of this study suggest that media coverage plays an important role in suppressing the
spread of disease and is an effective strategy for controlling disease. Therefore, the authorities should
pay attention to it. When biomedical interventions are not sufficient to protect people from disease,
timely media coverage is often the best method. The limited availability of medical resources can
hinder efforts to contain the disease. The authorities should try their best to ensure sufficient medical
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resources, including medical personnel, medical expenses, medical institutions, medical beds, medical
facilities and equipment, knowledge and skills, and information to ensure that every patient can receive
timely treatment.

In the work, some problems are worth in-depth study, such as considering the influence of random
environmental perturbation on the model or the the imprecision of model parameters [41]. We will
focus on this in future studies.
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