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Abstract: The increasing global incidence of glioma tumors has raised significant healthcare concerns 

due to their high mortality rates. Traditionally, tumor diagnosis relies on visual analysis of medical 

imaging and invasive biopsies for precise grading. As an alternative, computer-assisted methods, 

particularly deep convolutional neural networks (DCNNs), have gained traction. This research paper 

explores the recent advancements in DCNNs for glioma grading using brain magnetic resonance 

images (MRIs) from 2015 to 2023. The study evaluated various DCNN architectures and their 

performance, revealing remarkable results with models such as hybrid and ensemble based DCNNs 

achieving accuracy levels of up to 98.91%. However, challenges persisted in the form of limited 

datasets, lack of external validation, and variations in grading formulations across diverse literature 

sources. Addressing these challenges through expanding datasets, conducting external validation, and 

standardizing grading formulations can enhance the performance and reliability of DCNNs in glioma 

grading, thereby advancing brain tumor classification and extending its applications to other 

neurological disorders. 
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1. Introduction  

The brain is an incredibly complex organ, and its function relies on the well-coordinated activity 

of diverse cell types. The brain is composed of two main types of cells: neurons and glial cells. Neurons, 

also known as nerve cells, are responsible for transmitting electrical and chemical signals in the brain, 
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enabling functions such as thinking, feeling, and movement. Glial cells, or neuroglia, support and 

modulate the activity of neurons. There are several types of glial cells, including astrocytes, 

oligodendrocytes, ependymal and microglia, each with specific functions. Astrocytes regulate 

neurotransmission, form the blood-brain barrier, and support and nourish nerve cells. 

Oligodendrocytes are involved in the production of myelin, which insulates nerve fibers for rapid 

signal transmission. Ependymal cells serve as a lining for the ventricles of the brain and the central 

canal of the spinal cord. They contribute significantly to the homeostasis of the central nervous system 

(CNS) by regulating fluid balance, providing structural support, and participating in neurogenesis. 

Microglia act as the primary form of immune defense in the CNS, protecting the brain and spinal cord 

from infection and injury. The roles of glial cells are diverse and essential for maintaining brain 

homeostasis, supporting neuronal function, and regulating the brain response to injury and disease. 

Neurons and glial cells work together to ensure the proper functioning of the brain. Understanding the 

functions of both cell types is crucial for comprehending the complexities of brain function and the 

impact of various brain disorders. Glioma is one of the primary brain cancers that originates in the glial 

cells of the brain. Approximately one-third of CNS cancers are gliomas. Gliomas are categorized 

according to their subgroups and a numerical grading system. According to the American Cancer 

Society, three subtypes of gliomas are astrocytomas, oligodendrogliomas, and ependymomas [1]. The 

grade of a tumor relates to the microscopic appearance of these subtype cancer cells. The 2021 world 

health organization (WHO) classification of cancers of the CNS categorizes glioma tumors into four 

categories depending on the progression of malignancy aggressiveness [2,3]. Grade I tumors grow 

slowly and are sometimes entirely resectable with surgery, but grade IV tumors are aggressive, rapidly 

growing, and challenging to treat. The most frequent primary tumors were astrocytomas (38.7%), with 

high grade gliomas (HGGs) (59.5%) making up the majority [4]. The clinical course for a particular 

patient considers the tumor location, potential symptoms, and the viability of alternative treatment 

techniques. Hence early detection of tumor cells is crucial for treating patients. Due to the availability 

of cutting-edge diagnostic and therapeutic tools, physicians can now effectively diagnose patients and 

administer treatment without endangering their health. One of the most reliable approaches to 

accomplishing this goal is using medical imaging. Using imaging technology, doctors can look for 

anomalies in a patient's bones and tissues without cutting them open. Patients with brain tumors benefit 

significantly from the use of healthcare imaging methods such as X-ray, magnetic resonance imaging 

(MRI), ultrasound, magnetic resonance spectroscopy, and computed tomography [5]. MRI is one of 

the most preferred noninvasive neuroimaging techniques to diagnose brain tumors as it provides high-

contrast images, especially in the case of soft tissues [6]. 

One of the distinguishing features of modern healthcare operations is that, as the number of 

patients increases, they generate enormous amounts of data on various interconnected procedures. In 

comparison to other aspects of healthcare, the generation of data from medical imaging is by far the 

most prolific, and this production rate is accelerating at an exponential rate. On the other hand, the data 

volume often exceeds traditional analysis capacity. This is a critical problem to address because proper 

data interpretation is one of the fundamental building blocks for complex systems like medical imaging. 

The second problem with human interpretation is that it is prone to inaccuracy for several reasons, 

such as being under stress, not having enough background, and not having enough experience. 

Therefore, the solution that makes the most sense is to employ artificial intelligence (AI). Applications 

that use machine learning / deep learning (ML/DL) may perform data analysis substantially more 

accurately and quickly, making it much simpler for medical professionals to handle information and 
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carefully evaluate test results [7]. In medical image analysis, the deep convolutional neural network 

(DCNN) has recently gained the most popularity. A CNN can automate and optimize image 

segmentation procedures by utilizing a wide range of classification and segmentation algorithms that 

extract as many relevant details as required from the data. DL allows images to be fed directly to CNNs, 

and important features can be learned automatically. Simple features within images are learned at 

shallow layers and deeper layers near the output layer are known to learn more complex high-order 

features [8]. The quality and quantity of the dataset with annotations substantially influence the DL 

algorithm performance. However, annotating a large number of medical images is problematic since 

annotation can be time-consuming and is knowledge-specific [9]. In the case of a limited training 

dataset, transfer learning (TL) is a promising approach. It improves a network that has been previously 

trained on a vast labeled dataset from some other field. Applying learnt information to the target dataset 

speeds up network convergence while reducing computational costs during training [10]. Although DL 

algorithms can analyze medical images with high accuracy, they have yet to replace the role of a human 

specialist due to various challenges, such as a lack of sufficient data for training, a data imbalance 

problem, and a lack of a connection between clinicians and researchers. This structured review aims 

to assess recent advances in the automatic identification and classification of glioma tumors using a 

DL framework. In this review, we look at recent advances in DCNN techniques for glioma tumor 

classification, current research limitations, and future research directions in this field. 

 

Figure 1. The flow of the conceptual framework of this research paper. 
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Figure 2. Overview of screening and selection process. 

This comprehensive review aims to provide researchers with the most up-to-date information in 

the brain MRI image classification field, including the advantages and disadvantages of existing DL 

techniques and algorithms. Figure 1 depicts the conceptual framework presented in this review paper. 

In total, 7029 records were retrieved through the search process. After a comprehensive assessment, 921 

full-text articles were meticulously examined. Among these, 829 articles were deemed irrelevant and 

subsequently excluded, resulting in 92 studies that were considered for further analysis. The entire 

study screening and selection process is visually represented in Figure 2. For data collection, a 

meticulous approach was adopted wherein key data elements such as study purpose, methodology, 

model performance, and risk of bias were extracted and summarized for each of the 108 included 

studies. To ensure a comprehensive coverage of relevant literature, a variety of online scientific 

research repositories were consulted. This included well-regarded sources such as IEEE Xplore, 

Medline, Google Scholar, ScienceDirect, and ResearchGate. Notably, the search was refined to cover 

articles published between 2015 and 2023 to ensure relevance to the selected time frame. The search 

strategy employed a robust combination of domain-specific and methodological search terms, 

totaling 180 distinct combinations. 

The structure of the review is as follows: Sections 2 and 3 contain detailed information regarding 

the glioma tumor grades, MR imaging, and available imaging databases for tumor classification. In 

Section 4, we delve into the DL paradigm in imaging and discuss the evolution of techniques utilized 
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by DCNN architectures and in medical imaging. Moving to Section 5, we outline the fundamental 

stages of DCNN approaches for classifying glioma tumors and present an overview of pertinent 

primary studies, datasets, and computational methods utilized for developing glioma classification 

models, along with their respective performance evaluations. Section 6 is dedicated to discussing the 

implementation challenges associated with the studied architecture. Finally, Sections 7 and 8 

encompass the limitations of this study and our concluding remarks. In Section 9, we offer 

recommendations for enhancing future research in this domain. 

2. Glioma grading 

Glioma is an umbrella term for primary brain tumors that are categorized based on their putative 

cell of origin. The WHO classification is the international standard for glioma diagnosis [3]. According 

to histology criteria [11], glioma tumors are classified into four categories based on the degree of 

aggressiveness. The histological features that contribute to each glioma grade include cellularity (cell 

number), mitotic activity (cell division rate), pleomorphism (cell size/shape variation), necrosis (dead 

tissue presence), and vascularity (blood vessel density) and endothelial proliferation (increased blood 

vessel growth). Knowing the type of glioma before surgery or other therapies is crucial for clinical 

planning and decision-making. Figure 3 describes glioma grades and their characteristics according to 

WHO [3]. The 5-year survival statistics for each glioma grade are detailed in Table 1. 

Grade I gliomas are slow-growing astrocytomas made up of pilocytic cells that do not spread to 

other organs of the body. They exhibit minimal mitotic activity and lack necrosis. These tumors are 

the safest because they grow slowly, have clear borders, and have the best chance of survival. So, they 

can be removed surgically and cured with a low chance of returning [12]. Most of the time, these 

gliomas are found in children and young adults. Grade I gliomas are also called low grade gliomas 

(LGGs). Grade II gliomas are harmless and more common in adults. These gliomas tend to spread into 

nearby healthy tissue and have fuzzy edges. Because of this, it is hard to get rid of them with surgery. 

They show increased cellular atypia (abnormalities) and mitotic activity compared to Grade I, with 

rare focal necrosis permissible. Depending on the location and size, chemotherapy and radiation can 

be used as treatments [13]. Since the outlook is better than grades III-IV, they are in the LGG group. 

Grade III are types of glioma tumors that are cancerous. They display marked cellular atypia, frequent 

mitoses, and widespread necrosis, indicating their malignant nature. They are also called anaplastic 

gliomas. The word “anaplastic” is used to describe glioma brain tumor cells that divide quickly. Some 

cases of astrocytoma or oligodendroglioma transform into the aggressive form. It is harder to deal with 

than LGGs [14], also known as HGGs. Grade III tumors tend to spread rapidly and are likely to become 

grade IV tumors. Grade IV are the most malignant glioma tumors and have the lowest survival rate. 

They exhibit extreme cellular atypia, brisk mitoses, extensive necrosis, and microvascular proliferation 

(new blood vessels), hinting at their invasive potential. Primary glioblastomas grow quickly, while 

LGGs can turn into secondary glioblastomas. They often happen to older people and rarely to 

children [15]. The 2021 WHO classification emphasizes a layered approach that integrates molecular 

markers such as isocitrate dehydrogenase (IDH) mutation and 1p/19q codeletion alongside traditional 

histopathological features for a more accurate diagnosis and prognosis [3]. 
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Figure 3. Glioma grades and their characteristics according to WHO [3]. 

Table 1. Classification of gliomas into WHO grades, types, characteristics, and 5-year 

survival rate [16,17] 

Glioma 

Grades 

Grade 

Type 

Glioma Type  Characteristics Prognosis (5 Year 

Survival Rate in Adults) 

I LGG pilocytic astrocytomas [18] • slow growing, 

• well-defined borders, 

• good prognosis. 

~95% 

II LGG diffuse astrocytomas 

oligodendroglioma [19] 

• slow growing,  

• invades neighbouring tissue, 

• good prognosis. 

~48–80% 

III HGG anaplastic astrocytoma 

anaplastic 

oligodendroglioma [20] 

• tumor cells do not have a uniform 

appearance, 

• fastest growing, 

• invades neighbouring tissue, 

• poor prognosis. 

~34–62% 

IV HGG Gliobastoma [21] • composed of numerous different cell 

types, 

• fastest growing, 

• more than half of all gliomas are 

gliobastoma, 

• can occur or as a result of a lower 

grade astrocytoma or 

oligodendroglioma, 

• poor prognosis. 

~11% 



5256 

Mathematical Biosciences and Engineering  Volume 21, Issue 4, 5250–5282. 

3. MRI 

The use of imaging technology is essential for treating intracranial tumors. In recent years, 

numerous medical imaging tools have been developed to aid clinicians in diagnosing the character and 

location of the disease. MRI has become the benchmark for diagnosing and monitoring brain 

malignancies, and its uses continue to expand [22]. Improved neuro-oncological imaging not only 

enhances the detection of various lesions in the CNS but also permits the formulation of a more 

nuanced treatment approach. Both structural and functional MRI were found to have significant 

correlations with disease stage and prognosis in cancer patients. In recent years, MRI has received a 

lot of interest and appreciation because it is noninvasive and provides the finest contrast in cellular 

structure [23–25]. An MR scanner can capture many images of the subject under investigation from 

multiple viewpoints, with varying contrast and physical properties; this is known as multiple modality 

imaging [26]. Brain malignancies are often diagnosed using four MRI imaging sequences: T1W (T1 

weighted), T2W (T2 weighted), T1Wc (T1 weighted post contrast), FLAIR (fluid-attenuated inversion 

recovery). Figure 4 shows sample MR sequences from the BraTS (brain tumor segmentation) 

challenge 2018 dataset. These sequences provide complementary information about the morphology 

and physiology of gliomas and enable a comprehensive assessment of the tumor, highlighting features 

like vascularity, edema, and infiltration patterns. In most segmentation approaches, T2 MRI is utilized. 

Due to the complicated structure and anatomy of the human brain, the radiologist uses all four MRI 

techniques to diagnose and classify the type of brain tumor. T1W scans can differentiate between 

healthy and diseased tissues.T2W scans delineate edematous areas. T1Wc pictures are utilized to locate 

the tumor boundary. FLAIR imaging can differentiate between edematous and cerebrospinal fluid-

filled regions. The changes in the images produced by different MR modalities can be used to establish 

a contrast between the edema tissue, neoplastic tissue, necrosis tissue, and the unaffected brain, thus 

forming a tumor border. In addition, functional MRI (fMRI) and diffusion tensor imaging (DTI) are 

sometimes used to evaluate the alterations in brain function and connectivity induced by gliomas. 

These techniques provide insights into neuronal activity and the integrity of white matter, which are 

crucial for identifying eloquent brain areas and assessing the response to treatment. When compared 

to conventional imaging methods, such as computed tomography (CT) and positron emission 

tomography (PET), MRI offers superior soft tissue contrast, which enables the precise delineation of 

gliomas and their surrounding structures. This high contrast resolution is instrumental in facilitating 

accurate tumor localization and characterization, which are critical for diagnosis and treatment 

planning. Moreover, the noninvasive nature of MRI and the absence of ionizing radiation make it safe 

for repeated imaging, a feature that is particularly advantageous for pediatric and vulnerable 

populations. The use of gadolinium contrast in MRI can highlight areas with a disrupted blood-brain 

barrier, often indicative of tumor presence and activity. This further enhances the diagnostic accuracy 

and helps assess tumor aggressiveness. Although modalities such as PET and CT scans have their 

strengths, such as speed and affordability for initial evaluation or bone involvement and the ability to 

assess tumor metabolism respectively, they primarily excel in gross anatomical visualization. MRI 

offers exceptional detail, diverse imaging sequences, functional insights, and safety. This makes MRI 

an invaluable tool for comprehensive diagnosis, treatment planning, and monitoring of gliomas [27]. 

Table 2 summarizes the sources of the MRI datasets utilized in this review. 
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Figure 4. Examples of MR sequences from the BRATS 2018 HGG samples of a single 

subject. (a) T1W (b) T2W (c)T1Wc (d)FLAIR. 

Table 2. An overview of commonly utilized publicly available datasets for brain tumor analysis. 

4. Deep learning paradigm  

While there has been progress in glioma treatment, it is far from sufficient. Before initiating 

therapy for gliomas, it is critical to determine the tumor stage accurately. The complex and diverse 

nature of gliomas, characterized by their multidimensional and heterogeneous features, necessitates 

the development of advanced, automated systems for accurate diagnosis. This urgent need stems from 

the inherent risks associated with traditional surgical methods like biopsies, especially for tumors 

located in critical brain regions. Automated systems, such as computer-aided diagnosis (CAD) and AI 

Name Modalities Size (No. of Patients) Sources 

TCGA-GBM  T1W, T1Wc,  

T2W, FLAIR 

199  [28–30] 

TCGA-LGG T1W, T1Wc, 

T2W, FLAIR 

299  [31–33] 

REMBRANDT T1W, T2W,  

FLAIR, DWI 

112  [34,35] 

BraTS T1W, T1Wc,  

T2W, FLAIR  

2019: 335 (259 HGG, 76 LGG); 

2018: 284 (209 HGG, 75 LGG); 

2017: 285 (210 HGG, 75 LGG) 

[36–38] 

ClinicalTrials.gov T1W, T1Wc,  

T2W, FLAIR 

113 (52 LGG, 61 HGG) [39] 

Radiopaedia 

 

T1W, T1Wc, 

T2W, 

FLAIR 

121 (36 Grade I,32 Grade II ,25 Grade III,28 Grade IV) [40] 
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algorithms, offer promising solutions by enhancing both tumor localization and classification precision. 

They can assist in glioma detection, grading, segmentation, and even knowledge discovery, leveraging 

extracted features to predict tumor characteristics. This provides invaluable insights to clinicians, 

guiding treatment decisions and optimizing patient outcome. Furthermore, automation streamlines the 

diagnostic process, reducing the burden on healthcare professionals and potentially expediting 

treatment initiation for glioma patients. In the past decade, ML has seen substantial expansion in its 

applications to the field of neuro-oncology, with the diagnosis of glioma tumors using MRI, emerging 

as a prominent focus of interest. Several authors have used traditional ML approaches, which entail a 

sequence of steps beginning with preprocessing, continuing with feature extraction and feature 

selection, and concluding with applying a classification algorithm to offer a result [41]. Several 

approaches were used to extract the features, including discrete wavelet transform, gray level co-

occurrence matrix, histogram of oriented gradients, genetic algorithm, and zernike moments. Particle 

swarm optimization and principal component analysis have been used by several authors in this 

discipline to help them decide which features to include. The most extensively utilized classification 

strategy for classification was SVM (support vector machine), which multiple authors adopted. Other 

authors use random forest, adaboost technique, instance-based k-nearest with log and Gaussian weight 

kernels, extreme learning machine, and sequential minimal optimization as categorization strategies [42]. 

However, the quality of the classification process in ML studies largely depends on manually created 

features discovered by feature extraction techniques, which is a time-consuming and error-prone 

process. There are limitations to employing these manually created features, as they cannot be changed 

during model training, and it is uncertain if they are the most effective attributes for classification. 

Additionally, these features require rigorous validation and often exhibit limited generalizability, 

struggling to adapt to new patient populations or imaging protocols. This significantly hinders their 

applicability across diverse datasets and clinical scenarios [43,44]. Moreover, traditional ML 

architectures often encounter difficulties in integrating and effectively leveraging multimodality data 

such as MRI, PET, and genetic information, due to the complex relationships existing between these 

modalities. These challenges are particularly pronounced in glioma classification. Glioma datasets 

often vary in terms of imaging modalities, acquisition parameters, and tumor phenotypes, making it 

challenging for manually engineered features to adapt to such variability. Consequently, the 

performance of traditional ML models relying on manually created features may degrade when applied 

to new datasets or clinical scenarios. DL with its ability to automatically learn features directly 

from data, offers a promising solution to these challenges. By eliminating the need for manual 

feature engineering, DL models can capture more subtle and complex patterns in the data, 

potentially leading to improved glioma classification performance. Furthermore, DL models can 

be designed to effectively integrate multimodal data, thereby fully exploiting the complementary 

information provided by each modality.  

DL is a subfield of ML. Here the processes of selecting features from images and classifying them 

are carried out concurrently by a single algorithm and learning does not require the participation of 

humans during the training process. Feature extraction is accomplished by a multilayer, nonlinear 

processing architecture. As we proceed deeper into the network, data abstraction is aided by the fact 

that each layer output serves as the input to the layer below it [45]. The usage of CNNs in various 

image processing problems is becoming increasingly common due to their prominence as a DL 

technique. CNNs ability to discern patterns has made it popular, especially in the image processing 

field. A CNN generally has three layers stacked on top of one another. The convolutional layer is 
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responsible for extracting features from images. It delivers visual knowledge of the dataset images to 

the network and addresses the use of learnable kernels. Each kernel is typically convolved across the 

spatial dimensions of the input by the convolutional layer to produce a feature map as an output. The 

pooling layer is responsible for minimizing the dimensionality of the features obtained in order to 

reduce the number of parameters and computational complexity of the model. The last layer employs 

multiple fully-connected layers that focus on converting the 2D feature maps of the preceding levels 

into 1D vectors. A learning or optimizer algorithm is utilized to modify network weights during training. 

The learning process uses loss to update the network’s filters and weights. At the output layer, an 

activation function normalizes the output total, so all numbers add up to one [46,47].  

The evolution of DCNN began in 1989, with the introduction of LeNet [48]. At the time, CNNs 

were limited to digit identification tasks, which could not be applied to other image analysis problems. 

From the 1996 to 2000, various developments in CNN architecture were created in order to make it 

scalable to large multi-class problems. CNN-based applications became popular following AlexNet’s 

remarkable performance on the ImageNet dataset in 2012 [49]. Significant advancements have been 

made since then. Zeiler and Fergus [50] introduced a layer-by-layer representation of CNN to enhance 

comprehension of feature extraction stages, which shifted the paradigm toward feature extraction at 

low spatial resolution in DL architecture, as accomplished in VGG [51]. VGG stands for visual 

geometry group, which is a part of the department of science and engineering at oxford university. The 

Google DL group pioneered the concept of a split, transform and merge with the connecting block 

known as the inception block in GoogLeNet. These blocks introduced the concept called branching 

inside a layer, allowing for the abstraction of features at several spatial scales [52]. The idea of skip 

connections, proposed by residual network ResNet [53] for DCNN training, rose to prominence in 2015. 

Following that, most succeeding networks embraced this concept, like Inception-ResNet, Wide ResNet, 

and others [54]. A new network architecture called ResNeXt [55] was developed for image 

classification, focusing on increasing cardinality as a key factor for improving accuracy outperforming 

its ResNet counterpart on various datasets. MobileNet, designed for efficient mobile and embedded 

vision applications, brought a new level of model efficiency and portability to the field [56]. The neural 

architecture search (NAS) approach led to the creation of NASNet, which automates the design of CNN 

architectures and has produced competitive models for various tasks [57]. EfficientNet, proposed by Tan 

and Le in 2019, demonstrated remarkable efficiency-accuracy trade-offs by scaling model width, 

depth, and resolution simultaneously. It has become a popular choice for resource-constrained 

applications [58]. The evolution of DL architectures continued with the emergence of NFNet 

(normalizer-free ResNets) which built upon the success of Squeeze-and-Excitation blocks and the 

ReLU(rectified linear unit) activation function to achieve both computational efficiency and state of 

the art results in computer vision [59]. TResNet, inspired by the efficient combination of depthwise 

separable convolutions and spatial pyramid pooling, offers competitive performance on various 

computer vision tasks, including image classification [60], The landscape of DL and CNNs has 

continued to evolve with the introduction of various novel architectures. Table 3 lists an overview 

of popular CNN architectures for image analysis. 
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Table 3. A summary of CNN architectures, their contribution, and limitations in image analysis. 

Architecture Year Depth 

Range* 

Contribution Limitation 

LeNet [48] 1998 Shallow Pioneering CNN architecture for handwritten 

digit recognition 

Limited capacity for complex image analysis 

tasks 
 

AlexNet [49] 2012 Shallow Popularized deep CNNs and won ImageNet 

competition 

Prone to overfitting due to limited regularization 
 

VGG [51] 2014 Shallow Simplicity and uniform architecture led to 

strong performance 

High computational requirements and memory 

usage 
 

GoogLeNet 

(Inception) [52] 
 

2014 Moderate Introduced inception modules for efficient 

feature extraction 

Complex architecture, challenging to optimize 

Highway Network 

[61] 

2015 

 

Moderate Use of multipath concept cross-layer 

connectivity mechanism 

Because gates are data dependent, they may 

become expensive 

ResNet [53] 
 

2015 

 
 

Very Deep  
 

Introduced residual connections, enabling 

training of very deep networks 

Some variants may suffer from overfitting 

DenseNet [62] 2016 

 

Moderate 

 

Introduced dense connectivity patterns for 

feature reuse 

Memory consumption increases with network 

growth 

ResNeXt [55] 2016 

 

Moderate 

 

Introduced cardinality to improve 

representational power 

Larger models can be computationally intensive 

MobileNet [56] 2017 
 

Shallow  Utilized depth-wise separable convolutions for 

lightweight networks 
 

Reduced capacity for complex tasks 

NASNet [57] 2017 
 

Variable Leveraged neural architecture search for 

automatic design 
 

Computationally expensive search process 

EfficientNet [58] 2019 

 
 

Variable Achieved high efficiency and accuracy via 

compound scaling 
 

Some versions might require careful tuning 

NFNet [59] 2020 

 

 
 

Variable Highly efficient due to the use of Squeeze-and-

Excitation blocks and the FReLU activation 

function 

Fine-tuning may require careful hyperparameter 

tuning, which can be time-consuming 

TResNet [60] 2021 Variable Efficient due to the combination of depthwise 

separable convolutions and spatial pyramid 

pooling. 

Interpretability can be a challenge with TResNet, 

especially in larger variants, as it involves 

intricate operations 

*Architectural depth classifications range from shallow (typically 1 to 10 layers), moderate (around 10 to 100 layers), very deep (often exceeding 100 

layers), to variable, allowing significant depth variations beyond predefined ranges. 
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Figure 5. A timeline illustrating the development of techniques utilized by DCNN 

architectures and in medical imaging. 

TL is currently the most widely utilized DL methodology. Training a CNN from scratch requires 

many labeled training samples and substantially more time and computational resources as compared 

to the already trained CNNs. Fine-tuning and freezing are the two main approaches [63] used in TL. 

Fine-tuning involves using the weights and biases of a pretrained CNN. The pretrained CNN layers 

are regarded as a fixed feature extractor in the freezing approach. The convolutional layer weights and 

biases are fixed in this case, but the fully connected layers are fine-tuned across the target dataset. 

Frozen layers can be any subgroup of convolutional or fully connected layers; however, the more 

superficial convolutional layers are usually frozen. If the training dataset is too small, an overfitting 

problem may occur during the training [64]. As a result, numerous research [65,66] addresses this issue 

by slicing 3D MRI volume into 2D slices, increasing the sample size of the original dataset and 

reducing the class imbalance issue. Additionally using morphological techniques such as rotation, 
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scaling, mirroring, translation, mirroring, and cropping [67] is another efficient technique for 

expanding the quantity and diversity of training data. This is known as data augmentation. Overfitting 

also occurs when the learning capacity of a network is so vast that it learns false characteristics rather 

than real patterns. This occurs when there is an abundance of information to learn. A validation dataset 

can be utilized throughout the training process to avoid overfitting and to achieve a steady potential of 

the tumor classification system on a new dataset that has not been observed in clinical practice.  

Similar to TL, ensemble algorithm-based architectures [68] have gained prominence in the realm 

of DL due to their ability to enhance model performance and robustness. Ensembles combine the 

predictions of several individual models, often using techniques like bagging, boosting or stacking [69,70]. 

Bagging trains models on distinct data subsets, reducing overfitting risk. Boosting iteratively 

emphasizes weak learners, constructing a robust ensemble. Stacking combines diverse models' 

predictions via a meta-learner for intricate decision-making. These ensembles elevate DL model 

accuracy and generalization, especially in complex or data-scarce scenarios. Nonetheless, they demand 

additional computational resources and meticulous tuning. As with TL, selecting the best ensemble 

strategy hinges on the specific task, available resources, and managing overfitting using validation 

data. Figure 5 illustrates a chronological timeline depicting the utilization of different techniques by 

DCNN architectures and in medical imaging. 

4.1. Performance metrics 

Performance metrics are specific guidelines that give us scientific proof of the authenticity of a 

particular model. The metrics most used by multiple authors for classification in this study are outlined 

in Table 4, along with their respective functionalities. 

Table 4. Performance metrics [71,72] used to evaluate studies in this review. 

Metrics Formula* 

Accuracy (Ac) 𝑇𝑝 + 𝑇𝑛

𝑇𝑝+𝐹𝑛 + +𝐹𝑝 + 𝑇𝑛

 

Specificity (Sp) 𝑇𝑛

𝑇𝑛+𝐹𝑝

 

Sensitivity (Sn)/Recall 𝑇𝑝

𝑇𝑝+𝐹𝑛

 

Precision (Pr) 𝑇𝑝

𝑇𝑝+𝐹𝑝

 

F1 Score (F1) 2 ∗ 𝑇𝑝

2 ∗ 𝑇𝑝+𝐹𝑝 + +𝐹𝑛

 

AUC 
∫ 𝑆𝑛(𝑆𝑝)−1𝑑(𝑆𝑝)

1

0

 

*𝑇𝑝 = True Positive, 𝑇𝑛 = True Negative, 𝐹𝑝 = False Positive, 𝐹𝑛 = False Negative, AUC = Area under the Curve 
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5. DL in glioma grading 

The application of DCNNs to the classification of gliomas is an area of current investigation in 

the field of imaging science. To create a predictive model that can effectively categorize an image, a 

CNN may learn radiologic properties and their relative relevance with enough high-quality data [73]. 

The flowchart in Figure 6 provides an overview of a brain tumor diagnostic system, employing a 

generic DCNN. The process initiates with the collection involves collecting MRI scans of the brain. 

These scans are typically obtained from various sources, including hospitals, research institutions, and 

public datasets. Following data acquisition, the dataset is split into training and testing sets to facilitate 

model development and evaluation. Preprocessing steps are then employed to enhance the quality and 

utility of the MRI images. This includes normalization to ensure consistent intensity values across 

images and augmentation techniques to expand the dataset and improve model robustness. Additionally, 

preprocessing may involve cropping to focus on relevant brain regions and bias correction to mitigate 

inconsistencies in image acquisition. The subsequent stage involves model training, where different 

DCNN architectures are considered based on the specific task and data characteristics. Hyperparameter 

optimization is conducted to fine-tune the model parameters, such as learning rate, batch size, and 

number of epochs, aiming to maximize its ability to accurately classify brain tumors while minimizing 

errors and biases. This iterative process typically employs techniques like grid search or random search. 

Once the model is trained, it undergoes evaluation on the testing set using various performance metrics, 

including accuracy (Ac), specificity (Sp), sensitivity (Sn)/recall, precision (Pr), F1 score (F1), and area 

under the curve (AUC). These metrics provide insights into overall performance and its capability to 

correctly classify brain tumors across different classes. Throughout the process of configuring the 

model hyperparameters, the validation set gives an objective evaluation of a classification model on 

the training dataset. 

Recent advancements in DL have significantly advanced the field of medical imaging, particularly 

in the areas of segmentation and classification. Researchers have been dedicated to improving the 

accuracy and efficiency of DL models for medical image segmentation. For example, Rehman et al. [74] 

introduced BU-Net, a modified U-Net architecture for brain tumor segmentation, which leverages 

residual extended skip and wide context to extract diverse features and enhance the valid receptive 

field. The researchers also employed a custom loss function to extract contextual information, resulting 

in improved segmentation performance. Addressing the challenge of information loss in deeper layers, 

Rehman et al. [75] proposed BrainSeg-Net, an encoder-decoder model that strategically shares 

pertinent details from shallow layers with deeper ones, enhancing tumor identification. Additionally, 

Rehman et al. [76] introduced a novel encoder-decoder architecture, RAAGR2-Net, which utilizes 

residual spatial pyramid pooling and attention gate modules to capture rich feature representations and 

retain local information, particularly in fine segmentation. Another study by Lin et al. [77] explored 

the integration of EfficientNetV2 as an encoder in combination with U-Net for brain tumor 

segmentation, significantly enhancing the model’s performance. Furthermore, DL models have been 

successfully applied to tasks such as supraspinatus extraction from MRI, demonstrating high 

segmentation accuracy by Wang et al. [78]. Additionally, Yin et al. [79] proposed a double-branch flat 

bottom U-Net for efficient medical image segmentation, which achieved outstanding performance in 

the challenging task of pancreatic segmentation. These recent studies highlight the potential of DL 

models for medical image segmentation and underscore the importance of developing efficient and 

accurate models for clinical applications. Much of the ongoing research is confined to brain 
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segmentation, with only a limited amount of work done for tumor grading. Therefore, there is 

considerable potential to explore grade estimation for brain tumor DL approaches. In this section, we 

have discussed some of the existing DL-based glioma grading methods. 

Recent studies have found that utilizing DCNNs to predict tumor grade and long-term survival is 

highly successful. Banerjee et al. [80] investigated the feasibility of using DL-based techniques to 

grade gliomas from MRIs. They used VGGNet and ResNet architectures to assess the appropriateness 

of transfer learning, achieving an accuracy of 84 and 90%, respectively. The study by Muneer et al. [81] 

contrasts the glioma classification performance of two DL systems, WNDCHRM (weighted neighbor 

distance using compound hierarchy of algorithms representing morphology) and VGG-19 DCNN. It 

was observed that VGG-19 CNN achieved higher accuracy than WNDCHRM. Ge et al. [82] proposed 

a glioma classification multistream CNN and fusion network. T1Wc, T2W, and FLAIR images were 

extracted from the BraTS 2017 dataset and put in their own CNN. The collected information was then 

combined with the extracted features. They were able to achieve a precision of 90.87% by using three 

distinct data points. Individually, the T1Wc images were the best at distinguishing between HGGs and 

LGGs. In another study, Yang et al. [83] investigated AlexNet and GoogLeNet’s ability to distinguish 

between LGGs and HGGs. They compared the accuracy of these two CNNs when trained from scratch 

versus pretrained CNNs with fine-tuning using T1Wc images from glioma patients. According to the 

results, pretrained CNNs outperform untrained CNNs, with GoogleNet outperforming AlexNet. Gutta 

et al. [84] built a DCNN model and compared it to ML models trained solely on traditional radiomic 

data. With an accuracy of 87%, the proposed DCNN model significantly outperforms ML models. 

Lu et al. [85] classified gliomas using the ResNet model. Pyramid dilated convolution is added to 

ResNet to increase classification performance. The proposed method achieves 80.1% accuracy; 

however, this method can only interpret 2D MRI. Also, manual labeling of the training set was required. 

Mzoughi et al. [86] proposed a fully automatic 3D CNN architecture with a T1Wc sequence to 

distinguish between LGGs and HGGs. The accuracy of this 3D-CNN model was 96.49%. Zhuge 

et al. [87] used conventional MRI to compare 3DConvNet and 2D Mask R-CNN (region-based CNNs) 

for glioma classification. The results showed that the 3DConvNet outperformed the 2D Mask R-CNN, 

with a test accuracy of 97.1% versus 96.3%. Khawaldeh et al. [88] utilizes a modified version of 

AlexNet. The 12-layer ConvNet model proposed in this research study comprises convolutional, 

subsampling, dense, and fully connected layers. Overall accuracy achieved by this model is 91.16 % 

on FLAIR MRIs. Chenjie et al. [89] proposed an MRI-based multimodality glioma classification 

system. To make use of unlabeled data, the authors used deep semi-supervised learning. Generative 

adversarial networks generated synthetic MRIs to mitigate overfitting in the intermediate dataset. 

Using CNN, the suggested system achieved a test accuracy of 86.53% on the TCGA (the cancer 

genome atlas program) dataset and 90.70% on the BraTS dataset. Liang et al. [90] proposed the more 

advanced DenseNet to predict IDH mutations. Their approach was also used to grade gliomas, with 

a 91.4% accuracy. As a result, its potential application can be extended to additional multimodal 

radiogenomics challenges. Some recent applications of DCNN-based methods for automated glioma 

grading research are summarized in Table 5. 
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Figure 6. A flowchart of a generic DCNN-based brain tumors diagnosing system. 

Table 5. An overview of DCNN-based high-accuracy glioma grading studies featuring 

dataset specifics, class labels, sample sizes, MRI modalities, architectural methods, 

validation techniques, performance metrics, and study limitations. 

Study Dataset 

 

Class 

Label 

Sample 

Size 

MRI 

Modalities 

Architecture Validation Performance Limitations 

[91] BraTS 

2017 

LGG 

HGG 

LGG: 75 

HGG: 

210 

T1Wc 3D Multiscale 

CNN 

unspecified Ac = 89.47 Limited literature 

available to validate 

the results. 

[92] Radiopaedi

a 

Grade I 

Grade II 

Grade III 

Grade IV 

Grade I: 

1080 

Grade II: 

960 

Grade 

III: 750 

Grade 

IV: 840 

T1Wc Pretrained 

VGG-19 

 

unspecified Ac = 90.67 

Grade I = 

95.54 

Grade II = 

92.66 

Grade III = 

87.77 

Grade IV = 

86.71 

Without data 

augmentation accuracy 

is very low compared 

to the literature. 

continued on next page 
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Study Dataset 

 

Class 

Label 

Sample 

Size 

MRI 

Modalities 

Architecture Validation Performance Limitations 

[83] ClinicalTria

l.org 

LGG 

HGG 

LGG: 52 

HGG: 61 

T1Wc Pretrained 

AlexNet 

 

5-fold Ac = 92.7 

 

No automated tumor 

extraction before 

classification. 

Pretrained 

GoogLeNet 

Ac = 94.7 

[93] Private LGG 

HGG 

LGG: 50 

HGG: 54 

T2W 

FLAIR 

Modified 

DCNN 

5-fold Ac = 97.1 

Sn = 98.0 

Sp = 96.3 

Pr = 96.1 

F1 = 97.0 

Difficult to classify 

glioma with 

heterogenous lesions 

containing cystic 

morphological 

formation. 

[63] BraTS 

2019 

LGG 

HGG 

LGG: 76 

HGG: 

259 

T1W 

T2W 

T1Wc 

Pretrained 

AlexNet 

 

unspecified AUC = 82 Maynot be generalized 

to other medical 

imaging dataset. 

 

[89] BraTS 

2017 

LGG 

HGG 

LGG: 75 

HGG: 

210 

T1W 

T2W 

T1Wc  

FLAIR 

Graph based 

semi-

supervised 

learning 

 

unspecified Ac = 90.70 

Sn = 84.35 

Sp = 93.01 

 

Imbalance of training 

data between two 

classes affected 

average test 

performance. 

[86] BraTS 

2018 

LGG 

HGG 

LGG: 75 

HGG: 

209 

T1Wc Multiscale 3D 

CNN 

unspecified Ac = 96.49 Not enough state of 

the art literature for 

CNN available to 

validate the result. 

[87] TCIA 

BraTS 

2018 

LGG 

HGG 

LGG: 

108 

LGG: 75 

HGG: 

210 

T1W 

T2W 

T1Wc 

 FLAIR 

3D ConvNet 5-fold Ac = 97.1 

Sn = 94.7 

Sp = 96.8 

GPU limitation 

 

 

[94] BraTS 

2019 

LGG 

HGG 

LGG: 75 

HGG: 

210 

T1W 

T2W 

T1Wc  

FLAIR 

T1-GD 

7 stacked 

pretrained 

CNN  

10-fold Ac = 98.06 

Sn = 98.64 

Sp = 98.67 

Pr = 98.67 

F1 = 98.62 

Dataset heterogeneity. 

[95] TCIA 

 

LGG 

GBM 

LGG:121 

GBM:16

4 

T1Wc  

T2W 

FLAIR 

3D UNet 

CNN 

unspecified Ac = 90.0 

Sn = 93.48 

Sp = 87.04 

False positive of the 

model in case IDH 

mutant astrocytoma. 

 

Private LGG 

GBM 

LGG:49 

GBM:91 

Ac = 90.0 

Sn = 90.16 

Sp = 89.80 

Small dataset. 

continued on next page 
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Study Dataset 

 

Class 

Label 

Sample 

Size 

MRI 

Modalities 

Architecture Validation Performance Limitations 

[96] TCIA Grade II 

Grade III 

Grade IV 

Grade II: 

30 

Grade III: 

43 

Grade IV: 

57 

T1Wc Pretrained 

DCNN 

10-fold Ac = 97.9 

AUC = 99.9 

Use of data 

augmentation with 

transfer learning is 

questionable. 

[81] Private Grade I 

Grade II 

Grade III 

Grade IV 

Grade I: 

130 

Grade II: 

269 

Grade III: 

103 

Grade IV: 

155 

T2W Pretrained 

Vgg-19 

5-fold Ac = 98.25 Smaller dataset was 

used. No data 

augmentation was 

done to improve data 

size. 

[97] TCIA[REM

BRANDT] 

LGG 

HGG 

LGG: 484 

HGG: 631 

T2W MajVot 5-fold Ac = 98.43 Classification was 

performed without 

segmentation. 

 

[98] TCIA LGG-

GRADE 

I 

LGG-

GRADE 

II 

Unknown 

GRADE 

LGG-

GRADE I: 

50 

LGG-

GRADE II: 

58 

Unknown 

GRADE: 2 

T1W 

T1Wc 

FLAIR 

Pretrained 

VGG-19 

 

5-fold  Ac = 95.0 

Sn = 93.0 

Sp = 98.0 

No independent 

dataset available for 

testing. 

[88] TCIA[REM

BRANDT] 

LGG 

HGG 

Healthy 

Subjects 

LGG: 41 

HGG: 67 

Healthy 

Subjects:22 

FLAIR 12layer 

AlexNet 

unspecified Ac = 91.1 

Pr = 91.79 

Re = 92.25 

F1 = 92.05 

Ground truth was only 

provided for 126 

subjects. 

[99] Radiopaedi

a 

Grade I 

Grade II 

Grade III 

Grade IV 

Grade I: 36 

Grade II: 

32 

Grade III: 

25 

Grade IV: 

28 

Unspecified DCNN 5-fold Ac = 93.71 

Grade I = 

96.32 

Grade II = 

95.31 

Grade III = 

96.81 

Grade IV = 

99.61 

Smaller dataset  

continued on next page 
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Study Dataset 

 

Class 

Label 

Sample 

Size 

MRI 

Modalities 

Architecture Validation Performance Limitations 

[100] BraTS 

2019 

LGG 

HGG 

LGG: 

259 

HGG: 76 

 

T1CE,  

T2, 

FLAIR 

EfficientNetB

0 

unspecified Ac = 98.8 Due to hardware 

limitations each image 

is processed to 50 

epochs only. 

[101] TCIA LGG 

GBM 

LGG:159 

GBM: 

163 

T2W Fusion of 

ResNet/18/50/

101/152 using 

DST 

Dempster-

shafer theory 

5-fold Ac = 95.87 

Pr = 89.12 

Re = 95.12 

F1 = 91.91 

Smaller dataset. 

[102] REMBRA

NDT 

Grade I 

Grade II 

Grade III 

Grade IV 

Grade I: 

2 Grade 

II: 110, 

Grade 

III: 93 

Grade 

IV: 140 

T1W  

T2W 

FLAIR 

DCNN unspecified Ac = 98.91 No data augmentation 

was done to improve 

data size. 

[103] TCIA 

(REMBRA

NDT) 

LGG  

HGG 

LGG: 44 

HGG: 68 

T1W  

T2W 

FLAIR 

MajVot 

(AlexNet, 

VGG16, 

ResNet18, 

GoogleNet, 

ResNet50) 

5-fold Ac = 97.21 Very small dataset 

from a single 

institution. 

 

[104] BratTS 

2020 

LGG  

HGG 

LGG :76 

HGG: 

293 

T1W 

T2W 

T1Wc  

FLAIR 

DenseNet121 monte carlo Ac = 97 Dataset heterogeneity  
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Figure 7. Comparative analysis of glioma grading accuracy across different DCNNs. 

Figure 7 presents a comparative evaluation of the efficacy of various DCNN architectures in the 

task of glioma grading. The graph highlights the high level of accuracy attained by several DCNNs 

using TL, underlining their expertise in grading gliomas. Moreover, EfficientNetB0 [100] also proves 

to be a robust performer with an accuracy rate of 98.8%, signifying its capability in managing this 

intricate task. The ensemble algorithm, which employs majority voting (MajVot), demonstrates 

remarkable accuracy [97,103]. This superior performance can be ascribed to the ensemble approach 

capacity to utilize the strengths of multiple models, thereby augmenting the overall predictive 

ability. The custom-built DCNN [102] demonstrates the highest accuracy of 98.91% in the task of 

glioma grading.  

These findings indicate that DL models, particularly those that incorporate ensemble techniques 

and custom architectures, exhibit substantial potential in improving the accuracy and reliability of 

glioma grading. This enhancement is pivotal as it directly influences clinical decision-making and 

patient care. By delivering more precise grading, these models can support clinicians in formulating 

more effective treatment strategies, ultimately leading to better patient outcomes. However, it is 

important to note that while these DCNNs shows promising results, further validation and testing on 

broader datasets are necessary to confirm its effectiveness and generalizability in real-world 

clinical settings. 

5.1. Computing environment 

The utilization of CNN classifiers in complex image classification tasks such as grading brain 

tumors offers distinctive advantages. CNNs autonomously extract relevant features, eliminating the 

need for separate feature extraction and classification steps. Despite their compact architecture, CNNs 

excel in intricate classification, although they entail higher computing complexity compared to 

traditional methods like SVM or logistic regression. In the realm of high-level programming 

environments, Python and MATLAB are prominent choices for DL implementation due to user-
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friendliness. Two primary approaches for evaluating ML models are development-based and 

production-based. Python, particularly when used with platforms like Google Colab, has an advantage 

over MATLAB due to its faster training times, made possible by accessible GPUs (graphics processing 

units) and cloud-based storage. However, the longer training times in MATLAB can be offset by a 

powerful workstation. The performance of glioma grading algorithms is significantly influenced by 

computing power. Adequate memory is essential for loading and preprocessing large medical imaging 

datasets, which include intermediate activations and gradients. GPUs, which perform essential matrix 

operations in parallel, speed up the training process. Workstations equipped with substantial memory 

and multiple GPUs can hasten the training, tuning, and evaluation processes. Factors such as model 

complexity, dataset size, hardware, batch size, and optimization techniques all influence training time. 

Despite their parallel processing capabilities, GPUs often necessitate manual synchronization in 

frameworks like OpenMP (open multi-processing) and CUDA (compute unified device architecture). 

Nevertheless, the use of GPUs for parallel algorithms holds potential for efficient big data 

processing, especially in high-performance computing applications such as cancer research and AI [105]. 

In terms of GPU vs CPU (central processing unit) performance, it has been observed that GPUs are 

generally faster than CPUs. However, for smaller networks with only two hidden layers, CPUs can be 

faster than GPUs if there are less than 1000 neurons in each hidden layer. This highlights the 

importance of considering the specific requirements and characteristics of the model when choosing 

between GPU and CPU for prediction.  

6. Implementation challenges 

Brain tumors remain a popular research topic in medical image processing. Advanced glioma 

classification techniques in HGGs and LGGs are constantly evolving. For such problems, DL has 

emerged as a critical research tool for improving the performance of standard ML approaches. DL 

facilitates multiple levels of representation and abstraction, thereby providing more comprehensive 

information about MRIs and their attributes [98]. This research focused on the DCNN-based glioma 

classification architectures. Table 5 summarizes the findings of several studies that show that DCNN-

based architectures can handle a wide range of glioma classification tasks effectively and efficiently. 

It demonstrates that TL using DCNN models such as ResNet, VGG, and GoogleNet outperforms other 

models developed from scratch. However, some challenges must be resolved before DL can be used 

in oncology as, shown in Figure 8.  

The lack of an objective dataset was one of the most common issues identified in this study. 

DCNNs are based on supervised learning techniques, requiring a large volume of labeled data to learn 

properly. The problem with small datasets is that the DL algorithm may produce absurdly inflated 

algorithm accuracy due to the millions of parameters that must be overfit to a single specialized training 

population [83]. This issue is critical given the scarcity of curated datasets, particularly in 

radiography research. In addition to collecting large, heterogeneous datasets, various methods have 

been developed to solve this issue, such as the addition of feature dropout, L2 regularization and 

batch normalization [106,107]. 
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Figure 8. Major challenges in adopting DCNN-based classification algorithms for glioma 

grading in clinical settings. 

This review also revealed a startling gap in precision among certain researchers when defining 

the dataset, tumor type, and the accuracy, sensitivity, and specificity performance measures of the 

algorithm. In addition, research based on meticulously managed datasets, such as BraTS or TCIA (the 

cancer imaging archive), demonstrated algorithms trained without external validation that might not 

produce reproducible findings in clinical practice despite their consistently high accuracy. Most 

publications did not do validation, which is the most significant problem with ML and DL that 

should be considered. In some cases, only cross-validation was done. Validation is essential in 

accordance with the standards for constructing and reporting ML/DL prediction models in 

biomedical research [108]. 

Although this analysis highlighted several contributions that independently concentrate on the 

three primary phases of tumor identification, it did not identify any diagnostic approaches that 

encompass all the phases. The absence of a comprehensive diagnostic system in a single package 

presents two issues: the lack of a fully automated procedure and the lack of integration between the 

three processes. The development of a complete and automated system should facilitate the process of 

diagnosing brain tumors for physicians and radiologists, as well as translating research-based 

diagnostic algorithms into clinical practice. Additionally, uniform criteria of glioma grade should be 

utilized when developing DL models. It is interesting to note that there were discrepancies between 

the LGGs and HGGs definitions, with some research identifying Grade III gliomas as HGGs and others 

as LGGs. Lack of a standard classification strategy may hinder the performance on independent 

datasets given that the images used for segmentation, feature extraction, and model training/testing are 

labelled as LGGs or HGGs based on nonuniform criteria. As glioma grade influences clinical therapy, 

it is vital that the outputs of LGG and HGG algorithms reflect a universal definition congruent with 

current WHO standards. Another key observation regarding the DL architecture is that in the current 

context, GPU-based systems with a lot of memory are essential since DL models need a lot of data [37], 

which is linked to millions and trillions of parameters [71]. Also, to enable practical deployment of 
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well-trained DL models, addressing their extensive memory and computational demands is essential. 

Particularly in data-intensive domains like healthcare and environmental science, these requirements 

limit their usage in resource-constrained settings, hindering healthcare applications due to escalating 

data complexity. Solutions like FPGA (field programmable gate arrays) and GPU hardware 

accelerators have emerged, while techniques like parameter pruning, knowledge distillation, compact 

filters, and low-rank factorization offer model compression strategies to mitigate computational 

challenges [109]. Table 6 summarizes the challenges encountered in DL based research related to 

glioma grading and their influence on algorithm performance. 

Table 6. Challenges in DL-based research on glioma grading and impact on algorithm performance. 

Challenge Description 

Lack of Objective Dataset 
 

DCNNs require large labelled datasets for supervised learning, which is problematic when dealing 

with limited data in radiography research. 
 

Precision Gap in Definitions 
 

Variation in dataset definitions, tumor types, and evaluation metrics leads to inconsistent algorithm 

performance assessment. 
 

Absence of Comprehensive Diagnostic 

Approaches 
 

The deep models lack in their ability of interoperability and automation. Very few architectures are 

available till date that are fully automated and can adapt to model changes  
 

Uniform Criteria for Glioma Grade 
 

Inconsistent classification of LGGs and HGGs across datasets due to non-standardized definitions. 

Model might fail on independent dataset due to grade inconsistency. 

Imbalanced Datasets Accuracy favoured majority class, leading to higher misclassification rates for minority classes. 

Model Compression 
 

DL model complexity demands intensive memory and computation, challenging deployment on 

limited computational-power machines, especially in healthcare. 

Lack of External Validation Many studies lack external validation, leading to limited generalizability of findings in real-world 

clinical practice. Algorithm might achieve high accuracy on in-house dataset, but fails in clinical 

setting due to unverified generalizability. 
 

Standard Pre-processing Technique Pre-processing is required to make data clean from every type of noise and more acceptable for the 

required task at hand. Lack of standardized pre-processing affects data quality; software choices 

degrade image quality. 

Gradient Explode and Gradient Vanishing Deep architectures, aimed at achieving high accuracy, encounter challenges such as gradient 

vanishing, where the error that needs to be propagated diminishes, and gradient explosion, caused 

by suboptimal optimizer selection. 

7. Limitations 

The study presented here offers valuable insights into the performance of DL algorithms in terms 

of glioma grading. However, it is important to acknowledge certain limitations that might affect the 

generalizability and robustness of the findings. This study’s limitations include the possibility of 

missing recent and unpublished works due to the timing and criteria of the search, potentially affecting 

the comprehensiveness of the findings. Additionally, the focus on accuracy as the primary performance 

metric resulted in the exclusion of studies lacking accuracy results, limiting the overall assessment. 
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Furthermore, the presence of heterogeneity, inconsistent definitions, evolving standards, high 

variability across studies, and the absence of confidence intervals in the reviewed literature hindered 

the aggregation of results, introducing uncertainties in the study’s conclusions. These challenges are 

compounded by the sensitivity of DCNNs to subtle variations in medical images, stemming from 

factors such as patient anatomy, acquisition conditions, and disease presentation. While the human eye 

can adapt to such nuances effortlessly, DCNNs may struggle, resulting in misdiagnoses or missed 

diagnoses. This highlights the necessity for evaluation metrics that can capture the model’s ability to 

manage these complexities. The articles reviewed in our study primarily concentrate on conventional 

evaluation metrics such as accuracy, sensitivity, and specificity. These metrics provide a 

comprehensive evaluation of model performance across the entire dataset. However, they may not 

adequately highlight local discrepancies, potentially leading to misleading interpretations of model 

performance. A recent survey [110] reiterates these concerns, emphasizing the crucial role of model 

uncertainty and interpretability in building confidence in medical diagnoses. To overcome the 

limitations of traditional evaluation metrics, future research should also concentrate on local 

discrepancy analysis using localization metrics like intersection over union or dice similarity 

coefficient. These metrics measure the spatial overlap between predicted and actual regions. The 

incorporation of region-based evaluation techniques, such as precision-recall curves or localization 

error analysis, can offer a more nuanced understanding of model performance. Techniques like 

gradient-weighted class activation mapping (Grad-CAM) or attention mechanisms can provide visual 

explanations of the model’s decision-making process, assisting in comprehending the model’s behavior 

and identifying potential regions prone to errors. Additionally, task-specific metrics, customized for 

specific clinical tasks, can offer more pertinent insights than generic metrics, steering development 

towards clinically relevant applications. 

While our current work leverages traditional CNNs, we acknowledge the potential of fuzzy logic 

to address uncertainty challenges raised in glioma diagnosis, an area that has been scarcely explored. 

Medical images inherently contain ambiguity due to imaging artifacts, partial volume effects, and inter-

observer variability that can lead to misclassifications. Traditional performance metrics like accuracy 

may not adequately capture these nuances. Fuzzy logic, capable of handling ambiguity and 

incorporating expert knowledge, offers a promising alternative. A recent study [111] presents an 

intriguing application of fuzzy logic to address uncertainties in evaluating external loads on steel 

structures. This method, based on divergence computations, achieves better classification, and reduces 

ambiguity compared to traditional approaches. Similarly, rather than regarding ambiguous features as 

binary certainties, a DCNN empowered by fuzzy logic could interpret them as possibilities with 

varying degrees of truth. This could lead to more nuanced and robust classifications, particularly in 

cases with subtle variations or overlapping tumor regions. We believe exploring this integration holds 

immense potential for advancing glioma diagnosis. 

8. Conclusions 

The ability for medic specialists to categorize brain tumor scans quickly and accurately has never 

been more crucial. Recently CNNs have accomplished astonishing achievements in categorizing brain 

tumors such as gliomas. This study examined the most recent DCNN-based glioma classification 

architecture, datasets, and the efficacy of each suggested model for brain MRIs over the period 

from 2015 to 2023. Table 5 shows a compilation of pertinent data, applied approaches, DL networks, 



5274 

Mathematical Biosciences and Engineering  Volume 21, Issue 4, 5250–5282. 

and their performance. The research findings highlight the potential of DCNN architectures, 

particularly hybrid and ensemble DCNNs, which have achieved accuracy levels as high as 98.9%. 

These results underscore the considerable potential of advanced DL models in augmenting the 

accuracy and reliability of glioma grading. However, despite the undeniable successes of DCNNs, 

challenges remain in incorporating them into clinical practice. The study also found that preprocessing 

and segmentation were not always used in the surveyed articles before categorization. No single system 

can do all the functions automatically and with high precision. 

While there is ongoing work to enhance the utility of DL in tumor identification and classification, 

the need for standardized databases for these purposes remains evident. The varied use of databases 

and benchmarks by many researchers underscores the need for standardization. Additionally, the black-

box nature of DCNNs has constrained their application beyond research contexts. DL holds great 

promise for the future of brain tumor research. By focusing on the right strategies, these studies could 

transition from research labs to clinical settings. These methods could also be applied to the classification 

of other brain disorders, including alzheimer’s, parkinson’s, stroke, and autism. We hope that our review 

will guide researchers toward potential future directions for efficient grading techniques. 

9. Future directions 

Addressing the implementation challenges of DCNNs in radiography research requires a strategic 

approach. To mitigate the impact of limited datasets, collaborative efforts should focus on creating 

objective, diverse datasets, potentially incorporating data augmentation techniques. Establishing 

standardized definitions and evaluation metrics across tumor types would enhance algorithm 

assessment consistency. The development of a unified diagnostic framework spanning tumor 

identification phases holds promise for increased automation and integration. Overcoming the hurdle 

of inconsistent glioma grading could involve adopting universally accepted grading criteria. 

Additionally, to ensure broader applicability, it is essential to explore hardware-efficient solutions, such 

as model compression techniques, thereby ensuring accessibility to necessary resources. External 

validation is also very crucial for real-world utility; thus, incorporating rigorous external validation 

protocols in research design would enhance clinical relevance. As research progresses, accounting for 

these future directions will refine the robustness and practicality of DCNN implementation in 

radiography, ultimately benefiting patient care and diagnosis quality. 

We propose the following novel directions for shaping forthcoming models: 

• For robust clinical applicability, future investigations must embrace expansive multicenter 

datasets, gauging model efficacy across diverse populations independently. 

• Elevating CNN performance hinges on meticulous hyperparameter selection, underscoring their 

pivotal role. In future designs, adept optimization techniques must be employed to navigate this 

critical aspect. 

• Standardizing imaging methodologies [112] is still a crucial problem to solve since even the best 

CNNs may prove ineffective when tested on real-life data. This involves ensuring consistency 

across institutions and modalities, accounting for real-world variability, and enhancing 

robustness to achieve effective performance on diverse clinical data.  

• Incorporating explainability in AI models is essential for improving the trust and understanding 

of AI software. Future models should aim to provide clear, understandable reasoning for their 

predictions and decisions. This will not only enhance user trust but also facilitate troubleshooting 



5275 

Mathematical Biosciences and Engineering  Volume 21, Issue 4, 5250–5282. 

and refinement of the models. 

• In a dynamic landscape, the WHO has refined glioma classification, transitioning to molecular 

insights from conventional histopathology in 2016, further accentuated in 2021 by emphasis of 

cIMPACT-NOW (the consortium to inform molecular and practical approaches to CNS tumor 

taxonomy) on molecular markers. This evolving scenario introduces flux in defining LGGs and 

HGGs, impeding inter-comparison of ML/DL models anchored on differing grading criteria. To 

enhance accuracy and coherence, future research should converge on glioma grading standards 

alongside molecular subtypes, assuring enduring and accurate prognostications. 

• Developing precise data augmentation methods to expand and diversify training datasets for 

improved model performance. 

• Investigate integrating divergence-based fuzzy logic into existing DCNN architectures for 

glioma grading to improve classification robustness and address inherent image uncertainity. 

• Beyond these technical aspects, it is also important to address the clinical issues regarding the 

adoption of DCNNs for tumor grading. It is important to consider factors such as the 

interpretability of the model’s predictions, the integration of the model into existing workflows, 

and the training and support provided to healthcare professionals using the technology. 

Additionally, ethical considerations, such as patient consent and data privacy, must also be 

addressed. These factors are all critical for the successful adoption of AI technologies in 

clinical settings. 

These novel directions, coupled with the previously outlined strategies, underscore the evolving 

landscape of radiography research, and hold significant potential for advancing both diagnostic 

accuracy and patient care. 
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