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Abstract: Hepatitis B is one of the global health issues caused by the hepatitis B virus (HBV), producing
1.1 million deaths yearly. The acute and chronic phases of HBV are significant because worldwide,
approximately 250 million people are infected by chronic hepatitis B. The chronic stage is a long-term,
persistent infection that can cause liver damage and increase the risk of liver cancer. In the case of
multiple phases of infection, a generalized saturated incidence rate model is more reasonable than a
simply saturated incidence because it captures the complex dynamics of the different infection phases.
In contrast, a simple saturated incidence rate model assumes a fixed shape for the incidence rate curve,
which may not accurately reflect the dynamics of multiple infection phases. Considering HBV and
its various phases, we constructed a model to present the dynamics and control strategies using the
generalized saturated incidence. First, we proved that the model is well-posed. We then found the
reproduction quantity and model equilibria to discuss the time dynamics of the model and investigate the
conditions for stabilities. We also examined a control mechanism by introducing various controls to the
model with the aim to increase the population of those recovered and minimize the infected people. We
performed numerical experiments to check the biological significance and control implementation.
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1. Introduction

The liver is a vital organ in a living body. Several diseases caused due to the consequences of liver
infections. Hepatitis B is the liver inflammation produced by hepatitis B virus (HBV) [1]. Hepatitis
B damages the liver cells and, as a result, produces liver inflammation [2, 3]. Hepatitis B is a multi-
infection disease causing acute and chronic hepatitis infection, which leads to a long-term existence
of infection and risk of liver cancer. The initial stage is up to six months of the infection known as
the acute HB-infection in which, usually, the immune system is capable of surviving the infection, but
there may also be a chance for the infection to become more severe and lead to chronic hepatitis B
infection [4]. More than two hundreds and fifty million individuals have chronic hepatitis B worldwide
as per WHO information. Moreover, every year the infection of hepatitis B causes approximately 1
million deaths worldwide due to cirrhosis of liver and liver cancer. Particularly in the Western Pacific
region and Africa, the burden of hepatitis B infection is high because an estimated 6.2% and 6.1% of
the population, respectively, live with chronic hepatitis B infection. Nevertheless, the infection is not
limited to the Western Pacific region and Africa only, but is a global health problem, and the infection
rates are also significant in other ares such as Southeast Asia and the Eastern Mediterranean.

HBV transmits in various ways, but the critical transmission routes are vaginal secretions, transfu-
sion of semen as well as blood, sharing razors without care, sexual interaction, and drug equipment
contaminated with infected blood of the virus of hepatitis B. Another primary source of this virus is
vertical or parental transmission, i.e., the infected mother can transmit it to their baby at birth. Children
of ages 1–6 years have a 90% chance of getting the infection of hepatitis B after exposure to the
virus [5]. However, the virus cannot transmit due to casual contact like drinking water, eating, kissing,
and hugging. Similarly, the virus cannot be transmitted through general gatherings like in universities,
schools, colleges, or other places [6, 7]. Symptoms of this virus may include nausea, fatigue, vomiting,
muscle and joint aches, yellow skin and dark urine, diarrhea, easy bruising, tiredness, etc.

Modeling the epidemiology of infectious disease is one of the important and emerging areas of
applied mathematics as well as applied science that will be used to forecast the long dynamical behavior
of various epidemics [8–15]. Several biologists, mathematicians, and researchers used the concept of
mathematical modeling to investigate the dynamics of contagious diseases. Daniel Bernoulli was the
first one in mathematical epidemiology to present a model describing smallpox dynamics in 1766 [16].
Kermack and Mckandrik presented the susceptible-infected-recovered (SIR) epidemiological model
to represent the dynamics of infectious disease among three groups of the population [17]. In order to
control the spread of HIV, a model with protection awareness is investigated by Zhai et al. [18]. As a
global issue, numerous models are investigated to study the dynamics of HB [19–21]. Furthermore, a
control strategy has been investigated by Medley et al. [22] to eliminate the contagious viral infection of
HBV. Likewise, an age-structured model reported for the dynamics of HBV in China by Zhao et al. [23].
Similarly, the temporal dynamics of HBV with controls analysis have been investigated in [24, 25].
Motivated by the work reported in [25], we study the dynamics of hepatitis B under the effect of various
infectious phases and generalized incidence rate.

The disease incidence parameter is a critical term in epidemiological models that help researchers and
policymakers correctly understand the burden and spread of diseases. Notably, it can measure disease
frequency, helps with disease surveillance and assessment of disease prevention, enables resource
allocation, evaluates the effectiveness of interventions, etc. The simple incidence rate is bilinear, βS I,
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which has been frequently exercised in numerous epidemiological models [26–28], where β is the
contact rate, S is the amount of susceptible, and I is the amount of infected. The concept of saturated
incidence rate, βIS

1+γI has been introduced by Capasso et al. [29], where β is the disease transmission ratio,
while γ is the parameter which captures the effect of behavioral changes on the spread of the disease.
Afterward, many authors have been used the concept of saturated incidence rate while formulating
epidemic models (see, for instance, [30, 31]). Usually, when a disease outbreak occurs, individuals
may change their behavior in various ways, such as practicing better hygiene, avoiding crowded places,
or wearing masks, which ultimately reduce the transmission of the disease and slow its spread. The
parameter 1

1+γI measures the degree to which susceptible individuals change their behavior in response
to the outbreak. Overall, the saturated incidence rate is more beneficial for studying the spread of
infections and investigating behavioral changes’ impact on disease transmission [32]. However, the
saturated incidence rate may not work well for a disease with multiple infection phases because this
formula assumes only a single infected group of individuals, which may not be accurate for infection
with various phases or stages. We will try to fill this gap by introducing a more general form of saturated
incidence rate as β{I1+I2+...,In}S

1+γ{I1+I2+...,In}
, where I1, I2, . . . , In represent the different infection phases of the disease.

In this work, we construct an epidemiological model with a rate of generalized incidence to represent
the dynamics of multi-infection disease of HBV. We develop the model according to the multi-infection
phases of HB and divide the whole population into five subgroups of the compartmental population.
We then discuss boundedness and positivity to show that the proposed epidemiological model is a
well-posed dynamical system. We also find the reproductive quantity and model equilibria to investigate
the qualitative analysis of the epidemic model. We discuss the local dynamical properties of the model
with the aid of the linear stability approach, while to discuss the global properties of the problem, we use
the Lyapunov theory. Based on the dynamics of the model, we then define a suitable control mechanism
to control the infection of HBV transmission with the aid of optimal control theory. Three control
measures, precautionary control measure, treatment of infected individuals, and vaccination control
measure, are suggested to reduce the infected individuals with multi-infection phases and maximize
the non-infected individuals. Finally, to show the validation of the analytical work and the effect of
the control measures, we present the detailed numerical simulation using the well-known numerical
procedure of the Runge-Kutta method.

The article structure is as follows: The detailed model formulation and its well-posedness are
discussed in the Section 2, then in Section 3, we discuss the qualitative analysis of the model to derive
the stability conditions. We then develop the control mechanism to eradicate the infection by taking the
extended version of the model in Section 4. The detailed existence analysis and the charecterization of
the optimal control problem are given in Section 5. Next, we present the model simulation to verify
our theoretical analysis and show the effect of control measures implemented in Section 6. We give a
conclusion in Section 7.

2. The mathematical structure of the model

We develop the model to investigate the transmission dynamics of HBV. Since obviously hepatitis
B is a multi-infection phase disease, we use the generalized saturated incidence β{I1+I2+...,In}S

1+γ{I1+I2+...,In}
, while

formulating the proposed model. Keeping in view the complex nature of the disease, we classify the
various classes of population into sub-groups of susceptible, acute, chronic, hospitalized and recovered
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individuals denoted by S(t), Ia(t), Ic(t),H(t), and R(t), respectively. Since, Ia(t) andH(t) respectively
represent the acute and hospitalized individuals, and usually do not transmit the disease to others, the
disease transmission co-efficient for Ia(t) andH(t) are assumed to be zero. So, the generalized saturated
incidence rate in this case looks like τS(t)Ic(t)

1+θ1Np(t) . In addition, because of the population dynamics, we
assume that all the model states variables and parameters are non-negative values. Moreover, moving
of the infected individuals (acute & chronic) leads to the hospitalized, while two types of recoveries
are assumed as per HBV characteristics, natural for acute and due to treatment for the chronic portion
of the population. We also assume the recovery is due to hospitalization. Natural death occurs in
every population group, so the outflow of natural death is assumed in all groups of the compartmental
population. In contrast, disease-induced death occurs due to the chronic infection. In addition, it is
clear that vaccines for hepatitis B are available and effective, therefore we assume that the vaccinated
individuals of the susceptible enter the recovered epidemiological group of the model. Thus, we present
the model as follows: 

dS(t)
dt
= Π −

τS(t)Ic(t)
1 + θ1Np(t)

− {α0 + ν} S(t),

dIa(t)
dt

=
τS(t)Ic(t)

1 + θ1Np(t)
− {α0 + θ2 + κ1 + τ1} Ia(t),

dIc(t)
dt

= θ2Ia(t) − {α0 + κ2 + ρ1 + τ2} Ic(t),

dH(t)
dt

= τ1Ia(t) + τ2Ic(t) − {α0 + ρ2 + τ3}H(t),

dR(t)
dt
= κ2Ic(t) + νS(t) + τ3H(t) − α0R(t) + κ1Ia(t),

(2.1)

with the initial compartmental population

S(0) > 0, Ia(0), Ic(0), H(0) ≥ 0, R(0) > 0. (2.2)

In Eq (2.1), Π is the birth rate, τ is the transmission coefficient of HBV, while θ2 is the parameter that
describes the rate at which acutely infected individuals enter the chronic group. ν is assumed to be
the vaccination rate. The parameter τ1 is the rate at which the acutely infected population enters the
hospitalized group of individuals, and ρ1 represents the death rate produced from the HBV infection.
The individuals who move from the chronic to the hospitalized group are symbolized by τ2 while
ρ2 is also the death caused by the HBV infection in a hospitalized group. Moreover, to define the
recovery of hospitalized individuals, we demonstrate it by τ3, and the natural death of all groups of the
compartmental population is denoted by α0. In addition, Np(t) is the sum of all infected population, i.e.,
Np(t) = Ia(t) + Ic(t) +H(t).

2.1. Validity of the model

In this subsection, we will provide the validity of the proposed model against regional data taken
from local hospitals of district Swat, Khyber Pakhtunkhwa, Pakistan, as shown by Figure 1(a). Since,
according to 2017, the total population of district Swat is 2.31 million and thus the demographic
parameter is calculated as Π/α0 = 2, 310, 000, where α0 = (1/67.7) is the average life span in Pakistan.
In addition, the procedure of ordinary least square (OLS) will be applied to obtain the best fit and to
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minimize the error between the reported data and the proposed model solutions. For this purpose, we
use the objective function is given by

L = arg min
n∑

i=1

(xi − x̂i) ,

where xi and x̂i respectively represent the actual cumulative hepatitis B reported cases and the associated
model solution, while n is the number of actual data points. Using the optimization algorithm, while
updating the parameters values to derive better agreement with the real data and to minimize the error.
The process is repeated until reaching the best model fit, as in Figure 1(b), which shows the validity of
the model in the case of application to a real scenario.
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(a) Reported data of HBV
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(b) Reported data vs model fitting

Figure 1. The graphs represent the number of hepatitis B reported cases from 2016 to 2023 in
district Swat, Khyber Pakhtunkhwa, Pakistan (1a) and the model fitting against reported data
(1b).

2.2. Positivity and boundedness

The proposed epidemiological model (2.1) represents the dynamics of compartmental populations;
therefore, we need to check whether the state of the considered problem is non-negative for all t with
the initial compartmental population given in Eq (2.2). We also investigate that the considered model is
bounded. For this, we study the results as given below.

Theorem 2.1. All the solutions (S(t),Ia(t),Ic(t),H(t),R(t)) of the model (2.1) with the initial compart-
mental sizes (2.2) remain non-negative and are uniformly bounded in the positively invariant region Ω
for all non-negative t.

Proof. The solution of the model (2.1), first equation, can be written as

S(t) = exp
{
−

∫ t

0
ψ(y)dy

}
S(0) + Π exp

{
−

∫ t

0
ψ(y)dy

} ∫ t

0
exp

{∫ y

0
ψ(x)dx

}
dy, (2.3)
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where ψ(t) =
{

τIc(t)
1+θ1Np(t) − (α0 + ν)

}
S(t). From the epidemiological model (2.1), second equation, we

have
dIa(t)

dt
≥ − {α0 + θ2 + κ1 + τ1} Ia(t),

which leads to

Ia(t) ≥ Ia(0) exp
{
−

∫ t

0
{α0 + θ2 + κ1 + τ1} ds

}
≥ 0. (2.4)

In a similar fashion, the third equation of the model takes the following form:

dIc(t)
dt

≥ − {α0 + κ2 + ρ1 + τ2} Ic(t).

After that, integration gives

Ic(t) ≥ Ic(0) exp
{
−

∫ t

0
{α0 + κ2 + ρ1 + τ2} ds

}
≥ 0. (2.5)

By following the same steps, we may write the fourth and fifth equations of the model as

dH(t)
dt

≥ − {α0 + ρ2 + τ3}H(t),
dR(t)

dt
≥ −α0R(t),

which implies that

H(t) ≥ H(0) exp
{
−

∫ t

0
{α0 + ρ2 + τ3} ds

}
≥ 0, (2.6)

and

R(t) ≥ R(0) exp
{
−

∫ t

0
α0ds

}
≥ 0. (2.7)

We observed from the above equations that the system (2.1) satisfying the conditions (2.2) remains
non-negative for every t ≥ 0.

To proceed further, let N(t) demonstrate the size of whole population, then

dN(t)
dt
≤ Π − α0N(t),

which yields that

0 < N(t) ≤
Π

α0

{
1 − e−α0t} +N(0)e−α0t. (2.8)

From the Eq (2.8), we note thatN(t) becomes less than or equal to Π
α0

as time grows unboundedly. Thus
it follows that the total population in the region {R5

+\{0}} is bounded by Π
α0

with growing time (t → ∞),
therefore, the solution trajectories of the model satisfying the initial conditions are bounded.

Since the model state variables are non-negative and N(t) ≤ Π
α0

, it is implied that the proposed
problems (2.1) and (2.2) is well-posed. Further, we assume that N(0) ≤ Π

α0
, then from Eq (2.8),

we conclude that N(t) ≤ Π
α0

, and thus every solution of the proposed epidemic problem with initial
conditions in R5

+ remains in Ω as

Ω =

{
(S(t),Ia(t),Ic(t),H(t),R(t)) ∈ R5

+ : N(t) ≤
Π

α0

}
. (2.9)
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3. Qualitative analysis

We discuss the dynamics of the proposed model by investigating the model equilibria. Clearly,
the disease-free state (DFE) of the system (2.1) is represented by Ed f and written as Ed f =

(S0,I0
a,I

0
c ,H

0,R0) =
(
Π

α0+ν
, 0, 0, 0, νΠ

α0(α0+ν)

)
. Before calculating the hepatitis B endemic state, we

find the reproductive parameter, denoted by R0, defined to be the threshold quantity (basic reproductive
number), while demonstrating the average of newly infected caused by an infected after introducing
them into a susceptible population. In the case of classical epidemiological models, when R0 < 1, the
disease dies out. If R0 > 1, then it will be expected that the disease is spreading. We use the next-
generation method to investigate this quantity as reported in [33,34]. Upon using the same methodology
as adopted by [34], we assume that Y = (Ia,Ic,H)T . Then

dY
dt
= (F −V)Y,

where

V =


α0 + θ2 + κ1 + τ1 0 0

−θ2 α0 + κ2 + ρ1 + τ2 0
τ1 −τ2 α0 + ρ2 + τ3

 ,
F =


0 τS0 0
0 0 0
0 0 0

 , Y =


Ia

Ic

H

 .
The reproductive number, R0 is defined to be the spectral radius of the matrix FV−1, thus it is given by

R0 =
θ2τΠ

ψ1ψ2ψ3
, (3.1)

where ψ1 = α0 + ν, ψ2 = α0 + θ2 + κ1 + τ1, and ψ3 = α0 + κ2 + ρ1 + τ2. The reproductive number
is a dimensionless rate representing the average of secondary hepatitis B cases produced whenever a
hepatitis B-infected person is introduced into the susceptible population. Thus, it is clear that if R0 < 1
and the initial sizes of the population’s compartments are in the hepatitis-free state, then the hepatitis B
disease vanishes. For this, we prove the subsequent result.

Theorem 3.1. If R0 < 1, then the epidemiological problem (2.1) is stable locally and globally at the
hepatitis-free state, Ed f =

(
Π

α0+ν
, 0, 0, 0, νΠ

α0(α0+ν)

)
, otherwise Ed f is unstable and is a saddle point.

Proof. We calculate the linearized matrix of the system (2.1) at hepatitis-free state (Ed f ) as

J(Ed f ) =


−ψ1 0 −τS0 0 0

0 −ψ2 τS0 0 0
0 θ2 −ψ3 0 0
0 τ1 τ2 −ψ4 0
v κ1 κ2 τ3 −α0


.

Calculating the eigenvalues of J(Ed f ) implies that three eigenvalues are negative, i.e., ψ1, ψ4 and α0 are
negative. For the remaining two eigenvalues, we take a 2 × 2 matrix given as

B =

(
−ψ2 τS0

θ2 −ψ3

)
.
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It is enough to show that the trace ofB isB < 0 and the determinant of B is B > 0 for the Routh-Hurwitz
criteria, thus whenever R0 < 1, then

trace(B) = − (ψ2 + ψ3) ,

and

determinant(B) = ψ2ψ3 (1 − R0) ,

imply that the above criteria hold subject to the condition of R0 < 1. Clearly, trace(B) < 0 and
determinant(B) > 0 when R0 < 1. However, in case of R0 > 1, the trace(B) < 0 as well as
determinant(B) < 0, which implies that the eigenvalues of B have the alternative sign, i.e., positive as
well as negative, so the Ed f is an unstable equilibrium point.

We calculate the global dynamics properties of the model (2.1) at Ed f , and therefore define a
Lyapunov function, such that

φ(t) = λ1(S − S0) + λ2Ia + λ3Ic, (3.2)

where λi for i = 1, 2, 3, 4 are constants assumed to be positive. The derivative of the function (3.2) with
the use of values from the model (2.1), leads to

dφ
dt
= λ1

{
Π −

τSIc

1 + θ1Np
− ψ1S

}
+ λ2

{
τSIc

1 + θ1Np
− ψ2Ia

}
+ λ3 {θ2Ia − ψ3Ic} . (3.3)

By assuming the positive constants in such a way that λ1 = λ2 = ψ1 and λ3 = τΠ in Eq (3.3), we get the
following equation:

dφ
dt
= ψ1 {ψ1S0 − ψ1S} − ψ1ψ2Ia + τΠθ2Ia − ψ2Ic.

Algebraic manipulation gives that

dφ
dt
= −ψ2

1

{
S − S0

}
− ψ1ψ2

{
1 −

τΠθ2

ψ1ψ2

}
Ia − ψ2Ic,

which implies that
dφ
dt
= −ψ2

1

{
S − S0

}
− ψ1ψ2 {1 − R0} Ia − ψ2Ic.

Therefore, dφ
dt is negative, if R0 ≤ 1. Moreover, dφ

dt = 0, whenever S = S0,I0
a = 0,I0

c = 0,H0 = 0.

Next, we examine the properties of the hepatitis B endemic state for the considered epidemic problem.
To shorten our calculation, we assume that ψ4 = α0 + ρ2 + τ3 and Eee =

(
Sσ,Iσa ,I

σ
c ,H

σ,Rσ
)

is the
endemic state of the model, then

Sσ =

{
1 + θ1Np

}
θ2τ

ψ2ψ3, Iσa =
ψ1

{
1 + θ1Np

}
{R0 − 1}

θ2τ
ψ3,

Iσc =
1
τ
ψ1

{
1 + θ1Np

}
{R0 − 1} , Hσ =

ψ1

{
1 + θ1Np

}
τψ4

{
τ1

θ2
ψ2 + τ2

}
{R0 − 1} ,

Rσ =
1
α0

[ψ1

{
1 + θ1Np

}
τ

{
κ1

τθ2
ψ2 + κ2 +

τ1τ3

θ2ψ3
ψ3 +

τ2τ3

ψ4

}
{R0 − 1} +

ν
{
1 + θ1Np

}
ψ2ψ3

θ2τ

]
.

(3.4)

To present the dynamics of the hepatitis B endemic state, we prove the result as given below.
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Theorem 3.2. The proposed problem (2.1) is stable at Eee = (Sσ,Iσa ,I
σ
c ,H

σ,Rσ), if R0 > 1.

Proof. Calculating the Jacobian at the Eee of the proposed model, we may obtain

J(Eee) =



−
θ2τΠNp

(1+θ1Np)ψ2ψ2
0 −

ψ2ψ3
θ2

0 0
θ2τΠNp

(1+θ1Np)ψ2ψ3
−ψ2

ψ2ψ3
θ2

0 0
0 θ2 −ψ3 0 0
0 τ τ2 −ψ4 0
v κ1 κ2 τ3 −α0


.

It is clear from the above matrix that −α0 and −ψ4 are the two negative eigenvalues. To find the
eignvalue’s nature, we may define

G =


−

θ2τΠNp

(1+θ1N)pψ2ψ3
0 −

ψ2ψ3
θ2

θ2τΠNp

(1+θ1Np)ψ2ψ3
−ψ2

ψ2ψ3
θ2

0 θ2 −ψ3

 .
Calculating the characteristic polynomial of the above matrix G, we have

f (y) = y3 + k1y2 + k2y + k3,

where

k1 = {α0 + ν} + ψ2 + ψ3 + {α0 + ν} {R0 − 1} , k2 = {ψ1 + ψ2} {α0 + ν} + {ψ1 + ψ2} {α0 + ν} {R0 − 1} ,
k3 = ψ1ψ2 {α0 + ν} {R0 − 1} .

All ki > 0 for i = 1, 2, 3 and k1k2 > k3, which ensure the criteria of Routh-Hurwitz because k1 > 0,
k3 > 0 and k1k2 > k3, whenever R0 > 1. Thus, f (y) has negative roots whenever R0 > 1, and so Eee is
the stable state of the model that is under consideration.

We now discuss the properties of global analysis of the proposed problem (2.1) at the hepatitis B
endemic state. To investigate the global properties of the problem at the hepatitis B endemic state, we
define the following function:

ξ(t) =
1
2

{
(S − Sσ) + (Ia − I

σ
a ) + (Ic − I

σ
c ) + (H −Hσ)

}2 . (3.5)

The temporal derivative of Eq (3.5) with respect to t, and using model (2.1), gives

dξ
dt
=

{
(S − Sσ) +

(
Ia − I

σ
a
)
+

(
Ic − I

σ
c
)
+ (H −Hσ)

}{
Π − ψ1S

− (α0 + κ1)Ia − (α0 + κ2 + ρ1)Ic − (α0 + ρ2 + τ3)H
}
, (3.6)

which implies that

dξ
dt
=

{
(S − Sσ) +

(
Ia − I

σ
a
)
+

(
Ic − I

σ
c
)
+ (H −Hσ)

}{
(α0 + κ1)Iσa

+ θ2I
σ
a + τ1I

σ
a + (α0 + ν)Sσ − (α0 + ν)S − (α0 + κ1)Ia
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− (α0 + κ2 + ρ1)Ic − (α0 + ρ2 + τ3)H
}
,

or equivalently we can write

dξ
dt
= −

{
(S − Sσ) +

(
Ia − I

σ
a
)
+

(
Ic − I

σ
c
)
+ (H −Hσ)

}{
(α0 + ν) (S − Sσ)

+ (α0 + κ1)
(
Ia − I

σ
a
)
+

1
τ

(α0 + ν)
(
1 + θ1Np

)
(α0 + κ2 + ρ1) (R0 − 1)

+ (α0 + κ2 + ρ1)Ic +
τ2

τ
(α0 + ν)

(
1 + θ1Np

)
(R0 − 1)

+
τ1

θ2τ
(α0 + ν)

(
1 + θ1Np

)
(α0 + κ2 + ρ1) (R0 − 1) + (α0 + ρ2 + τ3)H

}
.

The re-arrangement with full simplification leads to the following assertion:

dξ
dt
= −

{
(S − Sσ) +

(
Ia − I

σ
a
)
+

(
Ic − I

σ
c
)
+ (H −Hσ)

}{
(α0 + ν) (S − Sσ)

+ (α0 + κ1)
(
Ia − I

σ
a
)
+ (α0 + κ2 + ρ1)Ic + (α0 + ρ2 + τ3)H

+
1
τ

(α0 + ν)
(
1 + θ1Np

) {
(α0 + κ2 + ρ1 + τ2) +

τ1

θ2
(α0 + κ2 + ρ1)

}
(R0 − 1)

}
.

By simplifying and re-writing, we obtain

dξ
dt
= −

{
(S − Sσ) +

(
Ia − I

σ
a
)
+

(
Ic − I

σ
c
)
+ (H −Hσ)

}{
(α0 + ν) (S − Sσ)

+ (α0 + κ1)
(
Ia − I

σ
a
)
+ (α0 + κ2 + ρ1)Ic + (α0 + ρ2 + τ3)H

+
1
τθ2

(α0 + ν)
(
1 + θ1Np

)
{(θ2 + τ1) (α0 + κ2 + ρ1) + θ2τ2} (R0 − 1)

}
.

Hence, dξ
dt < 0 for all S, Ia, Ic,H , R, and dξ

dt = 0 at the endemic state, so the hepatitis B endemic state
Eee is the positively invariant set only containing

{
(S,Ia,Ic,H ,R) : S = Sσ,Ia = I

σ
a ,Ic = I

σ
c ,H =

Hσ,R = Rσ
}
, which implies that Eee is a stable state.

4. Optimal control

Optimal control theory is a powerful mathematical technique through which we can develop control
strategies to control different infectious diseases, i.e., hepatitis B virus. We make a control mechanism
for the infection of hepatitis B with the objective to reduce the number of infective by taking into
account the maximization of S(t) as well as R(t) populations while to minimizing Ia(t) and Ic(t). For
this purpose, three control measures dependent over time will be used, i.e., ui(t), ut(t), and uv(t), which
physically represent the preventive measures of hepatitis B, treatment of infected individuals, as well as
vaccination, respectively. Clearly, there are five state variables, i.e., S(t), Ia(t), Ic(t),H(t), and R(t),
therefore, we then assume the above three control measures to design the control problem as

Y (ui, ut, uv) =
∫ L

0

{
C1S(t) +C2(t)Ia(t) +C3Ic(t) +

1
2

(
D1u2

i (t) + D2u2
t (t) + D3u2

v(t)
) }

dt, (4.1)
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subject to 

dS(t)
dt
= Π −

τS(t)Ic(t)
1 + θ1Np(t)

{1 − ui(t)} − {α0 + uv(t)} S(t),

dIa(t)
dt

=
τS(t)Ic(t)

1 + θ1Np(t)
{1 − ui(t)} − {α0 + θ2 + κ1 + τ1 + ut(t) + uv(t)} Ia(t),

dIc(t)
dt

= θ2Ia(t) − {α0 + κ2 + ρ1 + τ2} Ic(t) − {uv(t) + ut(t)} Ic(t),

dH(t)
dt

= κ1Ia(t) + τ2Ic(t) − {α0 + ρ2 + τ3}H(t) − {ut(t) + uv(t)}H(t),

dR(t)
dt
= τ1Ia(t) + κ2Ic(t) + uv(t)S(t) − α0R(t)

+ {ut(t) + uv(t)} {Ia(t) + Ic(t)} + τ3H(t) + {ut(t) + uv(t)}H(t),

(4.2)

with
S(0) > 0, Ia(0) ≥ 0, Ic(0) ≥ 0, H(0) ≥ 0, R(0) > 0. (4.3)

In the earlier section, i.e., in Section (2.1), the description of parameters is discussed in detail, while in
the objective functional (4.1), C1, C2, and C3 illustrate the weight constants for the proposed control
strategies. The weight constants, D1, D2, and D3 are the constants relating to the control measures of
preventive measures, treatment of infected individuals, and vaccination, respectively. Moreover, the
terms 1

2 D1u2
i (t), 1

2 D2u2
t (t), and 1

2 D3u2
v(t) demonstrate the associated cost with the control measures. Thus,

we wish to find the control measures that minimize the objective function, such that

Y
(
uσi , u

σ
t , u

σ
v
)
= min {Y(ui, ut, uv), ui, ut, uv ∈ M} , (4.4)

subject to the system (4.2). The control set is described by

M =
{
(ui, ut, uv) : ui(t) is Lebesgue measurable on

[0, 1], 0 ≤ ui(t) ≤ 1, 0 ≤ ut(t) ≤ 1 and 0 ≤ uv(t) ≤ 1
}
.

5. Existence analysis

We discuss the existence analysis, and therefore assume the control system as stated by Eq (4.2)
with initial conditions. It is very clear that for Lebesgue measurable and bounded control measures,
initial conditions (positive) and bounded solutions (positive) to the proposed system exist. Moreover,
we go back to the control problem as stated by Eq (4.2), as well as Eq (4.4), to figure out the optimal
solution. We define the Lagrangian first and then the Hamiltonian for the said purposes, i.e., for the
optimal problem (4.2) and (4.4). Consequently, the Lagrangian takes the form

Lopt (S,Ia,Ic, ui, ut, uv) = C1S(t) +C2Ia(t) +C3Ic(t) +
1
2

{
D1u2

i (t) + D2u2
t (t) + D3u2

v(t)
}
.

In addition, for the minimal value of Lopt, we define the Hamiltonian, such that

Hopt = Lopt (S,Ia,Ic, ui, ut, uv) + χ1
dS(t)

dt
+ χ2

dIa

dt
+ χ3

dIc

dt
+ χ4

dH
dt
+ χ5

dR
dt
. (5.1)
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Thus, for the existence of such controls, first we prove the existence; therefore, regarding the existence,
we illustrate the following result.

Theorem 5.1. There exists an optimal control uσopt = (uσi , u
σ
t , u

σ
v ) ∈ M, such that

Y(uσi , u
σ
t , u

σ
v ) = min Y(ui, ut, uv), (5.2)

subject to the control system as reported in Eq (4.2).

Proof. Following the same methodology as used in [35, 36], we explore the existence analysis of the
optimal control functions. Clearly, the state, as well as control, are non-negative values. So, the
necessary condition of convexity for the objective functional (4.1) over ui(t), ut(t), and uv(t) holds. The
control variable set ui, ut, uv ∈ M is obviously closed as well as convex and so implies the optimal
system’s boundedness. This grants compactness. Also, the integrand C1S(t) +C2(t)Ia(t) +C3Ic(t) +
1
2

{
D1u2

i (t) + D2u2
t (t) + D3u2

v(t)
}

is convex over M.

Now the optimal solution will be determined to the proposed control problem. For this, the Pontryagin
Maximum Principle will be utilized. If

Hpmp(t, y, u, χ) = f (t, y, u) + χ(t)g(t, y, u), (5.3)

where y = (S(t),Ia(t),Ic(t),H(t),R(t)) and u = (ui, ut, uv), while f is the Lagrangian of the objective
function (4.1) and g = (g1, g2, g3, g4, g5) represent the right-hand side of the first, second, third, fourth,
and fifth equations of the control system (4.2). Thus, if (yσ, uσ) is an optimal solution, then a non-trivial
vector χ(t) (a set of adjoint variables) exists, such that χ(t) = (χ1(t), χ2(t), . . . , χ5(t)), satisfying

dy
dt
=
∂Hpmp(t, yσ, uσ, χ)

∂χ
, 0 =

∂Hpmp(t, yσ, uσ, χ)
∂u

, χ′(t) = −
∂Hpmp(t, yσ, uσ, χ)

∂y
. (5.4)

Moreover, the necessary condition will be applied to the Hamiltonian in terms of the following results.

Theorem 5.2. Let Sσ, Iσa , Iσc , Hσ, and Rσ be the optimal solution with associated optimal control
measures

(
uσi , u

σ
t , u

σ
v

)
for the problem (4.2)–(4.4), then the adjoint variables χ1(t), χ2(t), χ3(t), χ4(t),

and χ5(t) exist and satisfy

dχ1(t)
dt
= −C1 −

τIσc
1 + θ1Np

{χ2(t) − χ1(t)}
{
1 − uσi (t)

}
+ {χ1(t) − χ5(t)} uσv (t) + α0χ1(t),

dχ2(t)
dt
= −C2 + {χ2(t) − χ5(t)}

{
uσt (t) + uσv (t)

}
− {χ3(t) − χ2(t)} θ2

− {χ4(t) − χ2(t)} τ1 − {χ5(t) − χ2(t)} κ1 + α0χ2(t),
dχ3(t)

dt
= −C3 −

τS

1 + θ1Np
{χ2(t) − χ1(t)}

{
1 − uσi (t)

}
− {χ5(t) − χ3(t)}{

uσt (t) + uσv (t)
}
+ {χ3(t) − χ4(t)} τ2 + {χ3(t) − χ5(t)} κ2 + {α0 + ρ1} χ3,

dχ4(t)
dt
= {χ4(t) − χ5(t)}

{
uσt (t) + uσv (t)

}
+ {χ4(t) − χ5(t)} τ3 + {α0 + ρ2} χ4,

dχ5(t)
dt
= α0χ5,

(5.5)
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with boundary (transversality) conditions

χi(M) = 0, where i = 1, . . . , 5. (5.6)

Further, the optimal control measures uσi (t), uσt (t), and uσv (t) are defined as

uσi (t) = max
{

min
{ 1

D1(1 + θ1Np)
τSσIσc (χ2(t) − χ1(t)) , 1

}
, 0

}
,

uσt (t) = max
{

min
{ 1

D2
(χ2(t) − χ5(t))Iσa + (χ3(t) − χ5(t)) Iσc + (χ4(t) − χ5(t))Hσ, 1

}
, 0

}
,

uσv (t) = max
{

min
{ 1

D3
(χ1(t) − χ5(t))Sσ − (χ5(t) − χ2(t))Iσa

− (χ5(t) − χ3(t))Iσc − (χ5(t) − χ4(t))Hσ, 1
}
, 0

}
.

Proof. We use the Hamiltonian (5.3) for finding the adjoint system (5.5) as well as the transversality
condition (5.6). We set S(t) = Sσ, Ia(t) = Iσa , Ic(t) = Iσc , H(t) = Hσ, and R(t) = Rσ, while
the differentiation of Hpmp with respect to S(t), Ia(t), Ic(t), H(t), and R(t) leads to the system (5.5).
Moreover, to get uσi , uσt , and uσv ,Hpmp will be differentiated respectively with respect to ui, ut and uv,
and then the solution of ∂Hpmp

∂ui
= 0, ∂Hpmp

∂ut
= 0, and ∂Hpmp

∂uv
= 0, in the interior of control set with the

application of optimality condition. In the end, the use of the control property M gives the optimal value
of the control variables.

We recall the formula uσ = (uσi , u
σ
t , u

σ
v ) to characterize the optimal control problem, which consists

of the state system with the initial sizes of compartmental populations, the adjoint system with terminal
conditions and the optimal measures. We further use the iterative procedure to solve the proposed
optimal control problem.

6. Numerical simulations

We illustrate the numerical findings of the analytical results to demonstrate the feasibility of the
derived results graphically. We solve the proposed problem via the Runge-Kutta method of the 4th
order, along with various initial sizes of population and different sets of parameter values as given in the
captions of the figures. Moreover, the time unit is taken to be 0–100. Moreover, the parameters values
are taken in accordance with the theoretical results that have been carried out in Theorems 3.1 and 3.2,
and are given at the captions of the figures. We generate the following graphs as shown in Figures 2
and 3, which are respectively illustrating the verification of analytical results around disease–free and
endemic states. More specifically, Figure 2 represents the dynamics of the compartmental populations
of the model around the hepatitis free state, while the disease endemic state dynamics are represented
by Figure 3. In Figure 2, the graphs (a)–(e) respectively describe the dynamics of susceptible, acute,
chronic, hospitalized, and recovered populations, which show that all other individuals vanish except
susceptible and the recovered populations, whenever R0 < 1. However, if R0 > 1, the disease may reach
the endemic state as shown in Figure 3, implies that the infected individuals will always persist and
there is a need for interventions strategies to control the transmission of the contagious disease of HBV.
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(d) Hospitalized individuals
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(e) Recovered individuals

Figure 2. The view of computer generated pictures illustrating the dynamics of compartmental
populations of the proposed problem against various initial sizes of populations and the
parameters values: Π = 175, τ = 0.000000001, θ1 = 0.2, α0 = 0.0499567816, ν = 0.02,
θ2 = 0.01865, κ1 = 0.08567816, τ1 = 0.00204720925, κ2 = 0.01, ρ1 = 0.02, τ2 = 0.5532,
ρ2 = 0.015, and τ3 = 0.0404720925. This investigates disease-free equilibrium stability as
stated by Theorems 3.1.
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(d) Hospitalized individuals
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(e) Recovered individuals

Figure 3. The graphs visualize the dynamics of compartmental populations of the proposed
problem for various initial sizes of populations and the following parameters values: Π = 175,
τ = 0.000001, θ1 = 0.2, α0 = 0.029956, ν = 0.05, θ2 = 0.00001865, κ1 = 0.0008567816,
τ1 = 0.00010472, κ2 = 0.0001, ρ1 = 0.00002, τ2 = 0.0005532, ρ2 = 0.000015, and
τ3 = 0.0000404720925. This investigates the stability of endemic equilibrium as stated by
Theorem 3.4.
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(c) Chronic individuals

0 5 10 15 20
0

500

1000

1500

2000

Time (t)

H
o

sp
it

al
iz

ed
 P

o
p

u
la

ti
o

n
 (

H
(t

))

 

 

with control
without control

(d) Hospitalized individuals
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(e) Recovered individuals

Figure 4. These graphs represent the validity of control measure implementation to illustrate
the dynamics of compartmental populations of the proposed problem with and without
control, where the parametric values are chosen as: Π = 175, τ = 0.000000001, θ1 = 0.2,
α0 = 0.0499567816, v = 0.02, θ2 = 0.01865, κ1 = 0.08567816, τ1 = 0.00204720925,
κ2 = 0.01, ρ1 = 0.02, τ2 = 0.5532, ρ2 = 0.015, and τ3 = 0.0404720925.
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In addition to showing the effect of the proposed control mechanism by presenting the simulation of
the control analysis, we want to differentiate between the control and without control implementation.
Therefore, we use the forward Runge-Kutta method of the 4th order to solve the state system (4.2),
while the adjoint system (5.5) will be solved with the help of backward Runge-Kutta method of the
4th order. All the values for parameters are given in the captions of the figures representing the
control implementation analysis. Thus, as a result, we obtain the graphs as represented by Figure 4,
which describe the dynamics of susceptible (Figure 4(a)), acute (Figure 4(b)), chronic (Figure 4(c)),
hospitalized (Figure 4(d)), and recovered (Figure 4(e)) individuals with and without control measures.
The graphs clearly illustrate the effect of control strategies: to reduce the infected and to increase
the recovered populations. The difference between the two cases is clearly visible. We observed that
the collective implementation of the proposed control measures optimally leads to eradicating the
contagious disease of HBV transmission.

7. Conclusions

In this work, we presented a more generalized epidemiological model for HBV transmission by
including the new features according to the characteristic of the disease. The incidence parameter plays
an essential role in the dynamics and control of biological models; therefore, we use the generalized
saturated incidence rate β{I1+I2+I3+...+In}S

1+γ{I1+I2+I3+...+In}
to study the temporal dynamics of hepatitis B, which is more

suitable as compared to traditional incidence rates. Because hepatitis B is a multi-infection disease, the
traditional saturated incidence rate βS I

1+γI is not appropriate while investigating the dynamics of HBV
transmission. Thus, considering the disease’s characteristics, we formulated the model and discuss the
feasibility of the problem. We then calculate the disease-free equilibria and consequently the basic
reproductive number R0 with the help of a well-known technique of the next-generation matrix approach.
In a similar fashion, the endemic state is also derived using the reproductive number and then the
detailed stability analysis is discussed via various approaches to derive the stability conditions. For
this, the linearization, as well as the Lyapunov theory, are retrieved to discuss the local and global
properties of the newly constructed model. In addition, very importantly, we then use three control
measures and design a control mechanism with the aid of optimal control theory that, how to eliminate
the infection of hepatitis B. At last, all the theoretical as well as analytical findings are supported via
graphical representations with the help of numerical experiments to show the validity of the model and
the effects of control implementation.

In the future, we will consider the protection awareness to separate the susceptible individuals into
two groups, i.e., susceptible with protection awareness and susceptible without protection awareness.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work was supported by Research Supporting Project Number (RSP2024R421), King Saud
University, Riyadh, Saudi Arabia. The work has been also supported by the UAE University, fund

Mathematical Biosciences and Engineering Volume 21, Issue 4, 5207–5226.



5224

No. 12S107. Further, this work is supported by the University Innovation Foundation of China (Grant
No. 2022IT101) and the Basic Education Quality Improvement Research Center project Foundation of
Xinjiang province (Grant No. WKJDJSZD23002).

Conflict of interest

The authors declare there is no conflict of interest.

References

1. M. H. Chang, Hepatitis B virus infection, Semin. Fetal Neonatal Med., 12 (2007), 160–167.
https://doi.org/10.1017/CBO9781139012102

2. M. R. Hall, D. Ray, J. A. Payne, Prevalence of hepatitis C, hepatitis B, and human immunodeficiency
virus in a grand rapids, michigan emergency department, J. Emerg. Med., 38 (2010), 401–405.
https://doi.org/10.1016/j.jemermed.2008.03.036

3. W. Edmunds, G. Medley, D. Nokes, A. Hall, H. Whittle, The influence of age on the devel-
opment of the hepatitis B carrier state, Proc. R. Soc. Ser. B Biol. Sci., 253 (1993), 197–201.
https://doi.org/10.1098/rspb.1993.0102

4. J. Mann, M. Roberts, Modelling the epidemiology of hepatitis B in New Zealand, J. Theor. Biol.,
269 (2011), 266–272. https://doi.org/10.1016/j.jtbi.2010.10.028

5. M. Jakab, J. Farrington, L. Borgermans, F. Mantingh, Health Systems Respond to Noncommunicable
Diseases: Time for Ambition, World Health Organization, Regional Office for Europe, 2018.

6. D. Lavanchy, Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging
prevention and control measures, J. Viral Hepatitis, 11 (2004), 97–107.

7. B. J. McMahon, Epidemiology and natural history of hepatitis B, Semin. Liver Dis., 25 (2005), 3–8.
https://doi.org/10.1055/s-2005-915644

8. F. Brauer, Some simple epidemic models, Math. Biosci. Eng., 3 (2006).
https://doi.org/10.3934/mbe.2006.3.1

9. J. Wang, J. Pang, X. Liu, Modelling diseases with relapse and nonlinear inci-
dence of infection: a multi-group epidemic model, J. Biol. Dyn., 8 (2014), 99–116.
https://doi.org/10.1080/17513758.2014.912682

10. J. Wang, R. Zhang, T. Kuniya, The stability analysis of an SVEIR model with continu-
ous age-structure in the exposed and infectious classes, J. Biol. Dyn., 9 (2015), 73–101.
https://doi.org/10.1080/17513758.2015.1006696

11. B. Alten, C. Maia, M. O. Afonso, L. Campino, M. Jiménez, E. González, et al., Sea-
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