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Abstract: Sparse-view computed tomography (CT) is an important way to reduce the negative effect of
radiation exposure in medical imaging by skipping some X-ray projections. However, due to violating
the Nyquist/Shannon sampling criterion, there are severe streaking artifacts in the reconstructed CT
images that could mislead diagnosis. Noting the ill-posedness nature of the corresponding inverse
problem in a sparse-view CT, minimizing an energy functional composed by an image fidelity term
together with properly chosen regularization terms is widely used to reconstruct a medical meaningful
attenuation image. In this paper, we propose a regularization, called the box-constrained nonlinear
weighted anisotropic total variation (box-constrained NWATV), and minimize the regularization term
accompanying the least square fitting using an alternative direction method of multipliers (ADMM)
type method. The proposed method is validated through the Shepp-Logan phantom model, alongisde
the actual walnut X-ray projections provided by Finnish Inverse Problems Society and the human
lung images. The experimental results show that the reconstruction speed of the proposed method is
significantly accelerated compared to the existing L1/L2 regularization method. Precisely, the central
processing unit (CPU) time is reduced more than 8 times.

Keywords: sparse-view CT; computed tomography; box-constrained anisotropic TV; regularization;
inverse problems

1. Introduction

In clinical applications, X-ray computed tomography (CT) aims to visualize the internal structure
of the human body by reconstructing the tissues’ attenuation coefficients µ to X-rays. Depending on
diverse X-ray sources, there are parallel beam, fan beam, and cone beam CTs [1–4]. In this paper, for
ease of explanation, we focus on image reconstructions in parallel beam CT, even though the proposed
method can be used in other fan beam and cone beam CTs. In a parallel beam CT, parallel X-ray beams
in different directions are transmitted through the patient, who lies between the X-ray sources and the
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detectors (see Figure 1). The corresponding attenuated X-ray intensities are measured through the
detectors. The inverse problem of a parallel beam CT is to reconstruct the attenuation coefficient from
the received attenuated X-ray intensities. Given the perfect measured data, the reconstruction methods
include filtered back-projection, the algebraic reconstruction technique (ART) [1], and so on. Due to
the advantages of speed, accuracy, and excellence with bones and lungs for nondestructive testing,
X-ray CT is widely used in medical imaging to aid doctors in diagnosing diseases [1].

Nevertheless, exposure of the patients to the environment of radiation increases the risk of many
diseases such as leukemia, cancer, etc [5]. Low dose CT is an effective way to reduce such a risk. There
are generally three methods of low dose CT. The first is to reduce the tube voltage/currents, the second
is the limited angle CT reconstruction, and the third is the sparse-view CT reconstruction. For the first
method, to obtain a meaningful CT image, we need an efficient denoising algorithm [6]. For the second
method, visible singularities, invisible singularities, and artifacts exist [1]. For the third method, since it
violates the Nyquist/Shannon sampling criterion, strong streaking artifacts will occur [7]. In this paper,
we focus on removing the streaking artifacts in the sparse-view CT reconstruction. To this end, we need
to develop efficient ways to deal with the ill-posedness caused by the projection downsamplings [1].

To deal with the ill-posedness, the data-driven and model-driven methods exist. The data-driven
method includes the usage of a convolutional neural network (CNN) [8], U-Net [9], and the GoogLeNet
[10]. However, as pointed out in [11], there should be more evidence of such methods being used in
clinical applications. For the sparse-view CT, it is also very difficult to provide enough labeled data,
since we cannot produce the data with full projections without enough doses. Hence, the model-driven
method is still quite necessary.

For the model-driven method, note that the algebraic method [12] has the flexibility of incorporating
the a-priori information of µ. It is widely used in a sparse-view CT. To be precise, the reconstruction
of µ is recast into a minimization problem of an energy functional constructed by a (weighted) least
square fitting and a regularization.

Noting the piecewise constant structure of medical images, its gradient can be considered sparse.
The study performed in [13] proposed the total variation (TV) regularization method in sparse-view
CT. However, it is well known that TV will introduce new blocky/staircasing artifacts [14]. The study
performed in [15] proposed the anisotropic TV regularization method, that could produce distortions
along axes. To handle such problems, many variations of TV regularization have been proposed in the
last two decades. The study performed in [16] proposed an edge-preserving TV regularizer which used
the e−|∇µ|

2/σ2
as the edge detector, where σ was a prescribed parameter that represented the amount

of smoothing. Later, [17] proposed a similar discretized version to [16]. The similar methods can
be found in [18, 19]. Nevertheless, the ability of removing the streaking artifact and edge-preserving
can be further improved due to the fact that the amount of regularization near the edges and away
from that does not differ much since e−|∇µ|

2/σ2
∈ [0, 1]. The study performed in [20] proposed the

total generalized variation (TGV) regularizer, which used the second order derivative of the unknown
µ. While this method can avoid the blocky artifacts, it assumes the piecewise linear structure of the
image. It is well known that the piecewise constant is commonly used for a medical image. The
study performed in [21] proposed a directional TV regularizer in which a directional derivative was
considered, rather than just using ∇µ. However, different weights can employed in different directions
to improve the performance of this method. The study performed in [22] proposed the Lp(0 < p < 1)
regularization method. However, the images heavily relied on the parameter p.
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L1/L2 is a recently proposed regularization technique [23]. This method is based on updating the
regularization parameter in each iteration. However, the updating parameter is not region-dependent,
that is, in each iteration, the minimization problem is isotropic. The study performed in [24] proposed
a nonlinear weighted anisotropic TV (NWATV) regularization method and used it in electrical
impedance tomography, which is a low resolution imaging modality. In this paper, a box-constrained
NWATV method was used in sparse-view CT, which produced a significantly improved
reconstruction compared with directly using NWATV and box-constrained L1/L2 methods. Precisely,
across the internal edges where ∇µ → ∞, we set the regularization to be small to preserve the edge,
while near the smooth region, we set a normal regularization to make the ill-posed problem better
posed. We found a significant convergence behavior of the iteration process with the box constraint
(set the reconstruction value lies in a proper interval). We validated the proposed algorithm using the
Shepp-Logan phantom, the walnut X-ray data provided by Finnish Inverse Problems Society
(http://fips.fi/dataset.php), and the clinical lung image provided by The Cancer Imaging Archive
(TCIA: https://www.cancerimagingarchive.net/collection/lungct-diagnosis/).

The rest of the paper is organized as follows. In Section 2, we provide a brief introduction of
the parallel beam CT. In Section 3, we introduce the proposed box-constrained nonlinear weighted
anisotropic TV regularization and provide an iterative reconstruction algorithm. In Section 4, we
validate the performance of the proposed regularization method using the Shepp-Logan phantom, the
actual walnut CT experiment data, and the clinical lung image. In Section 5, we discuss the rules of
the choice of regularization parameters. In Section 6, we conclude the paper and provide some future
research topics.

2. Preliminaries of parallel beam CT

In parallel beam CT, we restrict our explanations to the two-dimensional space because the parallel
beam always lies in a plane, and each time, the X-ray can only pass through a slice of the object. Let
Ω ⊂ R2 represent a bounded region of the imaging object. Denote µ as the attenuation coefficient of Ω,
which is generally a piecewise constant function in medical imaging. In parallel beam CT, an incident
X-ray beam along the direct lines Lθ,s := {x ∈ R2 : Θ · x = s} passes through the object, which lies
between the X-ray sources and the detectors (see Figure 1). Here, s ∈ R denotes the signed distance of
Lθ,s to the original point O(0, 0) and Θ = (cos θ, sin θ), with θ ∈ [0, π) denoting the angle of a directly
line l and x-axis, where l is perpendicular to Lθ,s. We assume that the incident X-ray intensity is I0.
For a fixed θ and s, the attenuated X-ray intensity I(θ, s) can be measured through the detector. The
relation between the measured I(θ, s) and the unknown µ is described by the Lambert-Beer law [1, 2]:

I(θ, s) = I0 exp {−Rθ[ f ](s)},

where Rθ[ f ](s) is the Radon transform [25] of f , which is defined as follows:

Rθ[ f ](s) =
∫

Lθ,s
µ(x)dℓx

with dℓx denoting the length element.
In medical imaging, we assume that a parallel beam contains J X-rays, and hence J-detectors are

employed to detect the corresponding attenuated X-rays. We assume that the J X-rays are equidistantly
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Figure 1. Schematic diagram of a parallel X-ray beam CT system.

distributed. To be precise, we assume that the signed distances of the X-rays to the original point lie
in [s, s̄], and the signed distance of the j-th ( j ∈ {1, 2, · · · , J}) X-ray to the original point is s j =

s + ( j − 1)(s − s)/(J − 1). Moreover, we utilize K angles θk = (k − 1)π/K for 1 ≤ k ≤ K and k ∈ Z+.
Then, through the detectors M := JK, projection datum I(θk, s j) (1 ≤ j ≤ J and 1 ≤ k ≤ K) can be
measured.

For ease of explanation, we denote ym = ln I0

I(θk ,s j)
for m = J(k− 1)+ j. Then, we have the following:

ym =

∫
Lθk ,s j

µ(x)dℓx (2.1)

for 1 ≤ m ≤ M. Suppose the field of view (FOV) is the square, and FOV = [a, b] × [a, b] which
satisfies Ω ⊂ FOV. We discretize FOV to be N × N pixels Pqt (1 ≤ q, t ≤ N). Then, from Eq (2.1), the
reconstruction of µ can be recast to solve the following linear system:

y = Au. (2.2)

Here, A = (amp) is an M × n matrix for n = N2, y = (ym) is an M × 1 vector, and u = (up) is an
n × 1 vector. To be precise, amp is the length of the projection line which lies in the pixel Pqt, i.e.,
amp = |Lθk ,s j ∩ Pqt| for p = N(t − 1) + q, up = µ(q, t) and ym is defined in Eq (2.1).

3. Nonlinear weighted anisotropic TV regularization with box constraint

Note that for the sparse-view CT, we generally have M ≪ n; hence, to solve Eq (2.2), we
reformulate it to the following least squares problem:

u∗ = arg min
u
∥Au − y∥2ℓ2 , (3.1)
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where ∥ · ∥ℓ2 denotes the standard Euclidean norm in RM. Since AT A is ill-conditioned, where ·T

represents the transpose of ·, we approximate Eq (3.1) by the following well-conditioned problem:

u∗ = arg min
u

{
1
2
∥Au − y∥2ℓ2 + λReg(u)

}
. (3.2)

The first term on the right-hand side of Eq (3.2) is the data fidelity term, the second term Reg(u) is the
regularization term, and λ is the regularization parameter that balances the fidelity and the
regularization terms. Precisely, instead of seeking the solution in the space ℓ2, where there may be
infinitely many solutions, we seek the solution in its subspace, which is characterized by Reg(u).

Since the edge of the internal structure is a key feature in medical imaging, the choice of the term
Reg(u) should obey the following rule:

• Near the local edges of µ or u where |∇µ| ≈ ∞, do as little regularization as possible to preserve
the edges.
• Perform a normal regularization when µ is smooth (i.e., |∇µ| is small to make Eq (3.2) well-posed).
• The range of the reconstructed u coincides with the range of its true value.

Combining the above three considerations, we define Reg(u) as follows:

Reg(u) = ∥p · Du∥ℓ1 +
γ

λ
Π[c1,c2](u), (3.3)

where γ is the indicator of using box constraint, that is, γ = 1 if the box constraint is used, while
γ = 0 if no box constraint is employed. Here, p =

(
ω(Dxu);ω(Dyu)

)
∈ R2n,Du = (Dxu;Dyu) ∈ R2n,

whereDx, Dy ∈ R
n×n are the first-order difference operators along the x and y directions, respectively,

ω(·) = 1
|·|2+β

with β > 0 a small positive number to avoid zero being the denominator; Π[c1,c2](u) is an
indicator function, which equals to 0 if for all i ∈ {1, 2, · · · , n}, where u[i] ∈ [c1, c2], and equals to +∞
otherwise. Note thatΠ[c1,c2] is capable of enforcing u into the range of the actual attenuation coefficient.

The augmented Lagrangian functional of Eq (3.2), together with Eq (3.3), can be expressed as
follows:

L(u,d,p, v; b, e) =
1
2
∥Au − y∥2ℓ2 + λ∥p · d∥ℓ1+ < b,Du − d >

+
ρ

2
∥Du − d∥2ℓ2 + Π[c1,c2](v)+ < e,u − v > +

α

2
∥u − v∥2ℓ2 ,

(3.4)

where d, v are the auxiliary variables, b, e are the Lagrangian multipliers, and ρ, α are the scalar penalty
parameters.

To minimize Eq (3.4), we use the alternating direction method of multipliers (ADMM) [26]. To be
precise, for an initial guess (d(0),p(0), v(0),b(0), e(0)), u is iteratively updated via the following scheme:

u(k+1) = arg min
u
L(u,d(k),p(k), v(k); b(k), e(k)); (3.5a)

d(k+1) = arg min
d
L(u(k+1),d,p(k), v(k); b(k), e(k)); (3.5b)

p(k+1) =
(
ω(Dxu(k+1));ω(Dyu(k+1))

)
; (3.5c)

b(k+1) = b(k) + ρ
(
Du(k+1) − d(k+1)

)
; (3.5d)
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v(k+1) = min{max{u(k+1) +
1
α

e(k), c1}, c2}; (3.5e)

e(k+1) = e(k) + α(u(k+1) − v(k+1)). (3.5f)

For Eq (3.5a) and Eq (3.5b), the minimizers have the following closed form:

u(k+1) =
[
AT A + ρDTD + αI

]−1[
AT y + ρDT d(k) −DT b(k) − e(k) + αv(k)

]
,

(3.6)

and

d(k+1)[i] = h λ|p(k)[i]|
ρ

(
Du(k+1)[i] +

1
ρ

b(k)[i]
)
. (3.7)

Here, I is an n × n identity matrix; b(k)[i], p(k)[i], u(k+1)[i], and d(k+1)[i] are the i-th element of b(k),
p(k), u(k+1), and d(k+1), respectively, and hg(·) represents the soft threshold formula, which is defined as
follows [27]:

hg(·) =

· − gsgn(·), if | · | > g

0, otherwise,

where sgn is the sign function.
We end this section by summarizing the aforementioned process as the reconstruction algorithm in

the form of the pseudocode shown in Algorithm 1.

Algorithm 1 The box-constrained NWATV method
Require: Projection matrix A, observed data y, and a bound [c1, c2] for the original image.

Parameters: ρ, λ, β, α, ∈ R+, a tolerance ϵ̄ and the maximum iteration number kMax∈ Z+.
Ensure: the reconstructed image u

1: Initialize: d(0) = 0,p(0) = ( 1
β
)1,b(0) = 0, v(0) = 0, e(0) = 0,u(0) = 0.

2: for k=0:kmax-1 do
3: Update u(k+1) using (3.6).
4: Update d(k+1) using (3.7).
5: Update p(k+1) using (3.5c).
6: Update b(k+1) using (3.5d).
7: Update v(k+1) using (3.5e).
8: Update e(k+1) using (3.5f).
9: if ∥u(k+1) − u(k)∥ℓ2 < ϵ̄ then

10: break
11: end if
12: end for

4. Experiments

In this section, to validate the advantages of the proposed regularization, we perform experiments
using the Shepp-Logan numerical model, the walnut actual CT model provided by Finnish Inverse
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Problems Society (http://fips.fi/dataset.php), and the clinical CT image provided by The Cancer
Imaging Archive (https://www.cancerimagingarchive.net/collection/lungct-diagnosis/). Additionally,
the walnut CT data is provided in ZENODO (https://zenodo.org/record/1254206). The experimental
models are shown in Figure 2 .

(a) Shepp-Logan
model

(b) Walnut model (c) Clinical lung
image

Figure 2. Experimental models we used. (a) is the Shepp-Logan phantom model in
numerical experiment, (b) shows the walnut model in actual CT experiment which is obtained
in Finnish Inverse Problems Society (FINNISH), and (c) is a clinical lung image provided by
the Cancer Image Archive (TCIA).

4.1. Experiment setup

To show the advantages of the proposed regularization, we compare the reconstructions of the
most recently proposed gradient-based L1/L2 [23] with box constraint and the nonlinear weighted
anisotropic TV regularization [24] with box constraint. To compare the performance of the
reconstructions, we compute the relative errors (including the L2 relative errors RE(k) and the H1

relative errors R̃E(k)) and mean square errors MSE(k) for the k-th step as follows:

RE(k) =
∥u(k) − u0∥ℓ2

∥u0∥ℓ2
,

R̃E(k) =

√
∥u(k) − u0∥

2
ℓ2
+ ∥D(u(k) − u0)∥2ℓ2√

∥u0∥
2
ℓ2
+ ∥Du0∥

2
ℓ2

,

and

MSE(k) =
∥u(k) − u0∥

2
ℓ2

n
.

Here, u(k) represents the result of the reconstruction at the k-th step. In the Shepp-Logan phantom, u0

represents the ground truth image; in the walnut experiment, it represents the CT image reconstructed
using full projections and the filtered back-projection (FBP) method, since we do not know the ground
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truth image in the actual experiment; in the lung image, it represents the actual image from TCIA.
Figure 2(a)–(c) illustrate u0 of the Shepp-Logan phantom, the walnut, and the lung experiments.

Besides, we also compare the peak signal-to-noise ratio PSNR(k) and the structural similarity index
SSIM(k) [28] for the k-th step, which is defined as follows:

PSNR(k) = 10 log10
max(u(k) ⊙ u(k))

MSE(k)
,

and
SSIM(k) =

(2µkµ0 +C1)(2σk0 +C2)
(µ2

k + µ
2
0 +C1)(σ2

k + σ
2
0 +C2)

,

where · ⊙ · represents the componentwise multiplication, µk and σk represent the local mean and the
local standard deviation of uk, respectively, and µ0 and σ0 represent the local mean and the local
standard deviation of u0, respectively; moreover, σk0 denotes the cross-covariance of u(k) and u0, and
C1 = 10−4,C2 = 9 × 10−4 are set to be the default values in the Matlab build-in function “ssim”.

In the numerical experiment, we set the size of the reconstructed images to be 256× 256 pixels and
set the number of detectors to be J = 362. In the reconstruction of the actual walnut experiment, the
size of the reconstructed images is set to be 164 × 164, and the number of detectors is also 164. In
the lung image, we use the first image of patient R 172 in the dataset. The original size is 512 × 512,
though we evenly sample to get the ground truth image of 128 × 128. The number of detectors is set
to be 181. Using the Radon transform, we obtain the projection data corresponding to the lung image.
To solve Eq (3.6), we use the generalized minimal residual algorithm (GMRES) [29] to accelerate the
computation.

The reconstructions are carried out using Matlab 2018a (The MathWorks, Inc., Natick, MA, USA)
on a workstation with 1.60 GHz Inter (R) Core (TM) i5-8250U CPU, 8.00 GB memory, Windows 10
operating system. Additionally, we use the MATLAB package AIR Tools II to simulate the parallel
beam for the CT scanning [30].

4.2. Numerical experiment results

Under box constraints, we compare the results of L1/L2 method and nonlinear weighted TV
regularization. In all experiments, we set the maximum number of external and internal iterations in
the box-constrained L1/L2 to be 300 and 5, respectively. For fair comparisons, the ranges of other
parameters are set according to [23] to minimize the L2 relative error (RE) and to obtain the best
performance. The number of iterations in NWATV(without box constraint) and the box-constrained
NWATV regularization is set to be 300. We set the candidate set of parameters to be
λ ∈ {0.002, 0.004, 0.006, 0.008, 0.01}, ρ ∈ {20, 40, 60, 200, 400, 600}, and α ∈ {5, 20, 40, 60}. The
selection of parameters has been carefully optimized to achieve a balance between minimizing the RE
and optimizing the visual effects. Henceforth, in the figures and tables, we use L1/L2-box and
NWATV-box as the abbreviations of the box-constrained L1/L2 and the box-constrained NWATV,
respectively.

First, we consider the effect of box constraint for the NWATV regularization. We consider a parallel
beam CT reconstruction with 31 angles uniformly taken from 0◦ to 150◦, and the noise level is 0.5%.
The box constraint is [0,1]. Therefore, the sample size is set to be 362 × 31. We do our best to choose
the parameters such that RE attains the minimum value. Precisely, we choose ρ = 20, λ = 0.002, α =
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5 in the box-constrained NWATV, and ρ = 20, λ = 0.004 in NWATV. The reconstruction images are
shown in Figure 3, and the corresponding relative errors (RE and R̃E), mean square errors (MSE), peak
signal-to-noise rations (PSNR), SSIM values, and the CPU times are shown in Table 1.

NWATV-box NWATV
0

0.2

0.4

0.6

0.8

1

Figure 3. Effect of box constraint in NWATV reconstruction. The grayscale window is [0,1].
Left: Reconstruction result under box constraint. Right: Reconstruction result without box
constraint.

Table 1. Numerical results of the Logan-Shepp model using the NWATV reconstruction with
and without box constraint.

RE R̃E MSE PSNR SSIM CPU time (s)
NWATV-box 0.042 0.077 1.0826 × 10−4 39.670 0.987 264.279
NWATV 0.046 0.079 1.3087 × 10−4 40.976 0.947 507.000

The results show that with a short reconstruction time, the box-constrained NWATV regularization
can perform better than that without the box constraint. In Figure 4, we illustrate the evolutions of
RE(k) and SSIM(k) with k, the iteration step. The figure clearly shows that the box constraint improves
the convergence behavior of the NWATV method.

Next, we show that the proposed regularization can reconstruct a satisfied image using different
sampling angles and is robust against the Gaussian random noise. We evenly take 90, 60, and 30
angles for comparisons from 0◦ to 179◦. For each case, we add different Gaussian random noises with
the levels 0.5%, 1%, 1.5%, and 2%. The box constraint is set to be [0,1].

We list the specific parameters selected in Table 2. The corresponding reconstruction results are
shown in Figures 5–7. We show the values of the corresponding numerical results in Table 3.

As we can see from the reconstructions, the box-constrained NWATV can achieve numerical results
similar to that of the box-constrained L1/L2 method at each sampling size. However, the CPU time is
reduced at least 8 times. Taking visual effects into account, in the case of small angles (362 × 30), as
the noise level increases, the box-constrained NWATV has more advantages than the box-constrained
L1/L2 in noise removal and detail recovery.

Mathematical Biosciences and Engineering Volume 21, Issue 4, 5047–5067.
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Figure 4. The effect of box constraint on the convergence of the iteration scheme of NWATV.
The left is the RE and the right is the SSIM.

4.3. Walnut CT experiment and human lung experiment

First, in this section, we validate the performance of the proposed regularization method using
the walnut data from the experimental datasets [31], which includes its complete projection matrix
Ā ∈ R19680×26896 and the projection data ȳ ∈ R164×120 (3◦ per projection). We evenly subsample 50
angles from 0◦ to 149◦ by employing the first 50 projections. Then, the corresponding projection
matrix A is also subsampled such that A ∈ R8200×26896. We use a high-resolution filtered back-projection
reconstruction [31], and then evenly sample the obtained image to obtain the reference image u0, which
is shown in Figure 2(b). From the reference image, we can estimate the box constraint is [0,0.6].
Considering the magnitudes of AT A and DTD, the parameters we take here are listed as follows:
ρ = 0.4, λ = 0.0001, and α = 5. For the parameters in the box-constrained L1/L2, we balance noise
removal and detail recovery, choosing a set of parameters with the best visual effects. The results
are shown in Figure 8, and the values of the corresponding numerical results are shown in Table 4.
The arrows in Figure 8 depict that the box-constrained NWATV method perfoms better than the box-
constrained L1/L2 in edges and details preserving.

Finally, we discuss the application of the two methods to clinical data [32]. We uniformly sample
the image of 512 × 512 to obtain the image of 128 × 128, which is shown in Figure 2(c), and we
represent it as the column vector u0 ∈ R

1282
. We consider parallel beam scanning and set the sampling

sizes as 181 × 60 and 181 × 30 to obtain the projection matrix A. The projection is y = Au0. Since
there is already noise in the lung image, we do not need to add additional noise any more. The box
constraint is taken as [0,0.06]. In the experiment of box-constrained NWATV, we set the parameters
as λ = 0.001, ρ = 3 × 10−9, and α = 0.01 for both the 30 and 60 degrees projections. As in the
box-constrained L1/L2, we balance noise removal and detail recovery, choosing a set of parameters to
make the reconstructed image have the best visual effect. The results are shown in Figure 9, and the
corresponding numerical results are shown in Table 5.

For further comparison, we also illustrate profiles of the reconstructed walnut and human lung
images along the dash lines shown in Figure 10. From the profiles, it’s clear that the proposed model
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Table 2. Choices of parameters ρ, λ and α.

sampling size noise level (%) ρ λ α

362 × 90

0.5 20 0.004 60
1 200 0.01 5
1.5 400 0.01 5
2 600 0.01 40

362 × 60

0.5 20 0.004 60
1 200 0.01 5
1.5 400 0.01 5
2 600 0.01 5

362 × 30

0.5 60 0.002 60
1 200 0.002 5
1.5 400 0.002 20
2 600 0.002 20
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Figure 5. Reconstruction results using the box-constrained NWATV and the box-constrained
L1/L2 methods with the sampling size 362 × 90. The top row is the results of the box-
constrained L1/L2, while the bottom row is the results of the box-constrained NWATV. From
left to right are respectively the reconstructed results with noise levels of 0.5%, 1%, 1.5%
and 2%.
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Figure 6. Reconstruction results using box-constrained NWATV and box-constrained L1/L2

methods with the sampling size 362 × 60. Each figure has the similar meaning as that in
Figure 5.
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Figure 7. Reconstruction results using the box-constrained NWATV and the box-constrained
L1/L2 methods with the sampling size 362 × 30. Each figure has the similar meaning as that
in Figure 5.
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Table 3. Performance of the box-constrained L1/L2 and the box-constrained NWATV
regularization for Shepp-Logan phantom for different sampling sizes and noise levels.

sampling noise
RE R̃E MSE PSNR SSIM

CPU
size level (%) time (s)

L1/L2-box

362 × 90

0.5 0.014 0.025 1.2103 × 10−5 49.171 0.995 5284.530
1 0.029 0.051 4.9298 × 10−5 43.072 0.991 8825.227
1.5 0.035 0.064 7.5924 × 10−5 41.196 0.987 5238.058
2 0.054 0.099 1.7666 × 10−4 37.530 0.982 5544.499

362 × 60

0.5 0.016 0.029 1.4968 × 10−5 48.248 0.995 1383.701
1 0.041 0.073 1.0374 × 10−4 39.841 0.987 5755.229
1.5 0.072 0.136 3.1424 × 10−4 35.031 0.983 5202.258
2 0.090 0.169 4.8614 × 10−4 33.143 0.980 7313.060

362 × 30

0.5 0.022 0.040 2.8187 × 10−5 45.500 0.993 2419.169
1 0.049 0.085 1.4510 × 10−4 38.384 0.968 2537.593
1.5 0.090 0.156 4.9035 × 10−5 33.100 0.924 4705.849
2 0.144 0.247 0.0013 29.013 0.861 2627.596

NWATV-box

362 × 90

0.5 0.018 0.034 1.8941 × 10−5 47.229 0.996 239.414
1 0.035 0.066 7.5532 × 10−5 41.222 0.991 172.661
1.5 0.052 0.099 1.6508 × 10−4 37.829 0.988 150.948
2 0.073 0.138 3.2454 × 10−4 34.909 0.982 134.970

362 × 60

0.5 0.024 0.045 3.4026 × 10−5 44.728 0.994 161.004
1 0.042 0.077 1.0837 × 10−4 39.651 0.988 148.216
1.5 0.068 0.129 2.7866 × 10−4 35.575 0.984 130.353
2 0.088 0.166 4.6514 × 10−4 33.344 0.979 140.322

362 × 30

0.5 0.039 0.071 9.1074 × 10−5 40.415 0.989 91.777
1 0.073 0.136 3.1929 × 10−4 34.982 0.979 136.941
1.5 0.105 0.196 6.6875 × 10−4 31.783 0.968 125.862
2 0.134 0.248 0.0011 29.658 0.956 137.372

behaves better in edges and details preserving.
In conclusion, through the aforementioned experiments, the box-constrained NWATV method can

produce similar and visually better results than the recently developed box-constrained L1/L2 method,
while the CPU time is significantly decreased.

5. Discussion

Sparse-view CT and limited angle CT are two important ways to reduce the risk of radiation
exposure in medical CT scanning. The recent development of artificial intelligence promotes the
medical applications of low dose CT [33]. However, recent research has reported the instabilities of
such methods [11, 34]. Moreover, to gather the high quality training data, the conventional
regularization-based reconstruction methods are still quite necessary. This is because to get the
labeled data, without using an elegant regularization, data obtained from the full projections should be
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Figure 8. CT reconstruction of walnut. The image size is 164 × 164 and the grayscale
window is [0,0.6]. Left: Reconstruction of L1/L2-box. Right: Reconstruction of NWATV-
box.

Table 4. Comparisons of the performances of two box-constrained methods using the walnut
data.

RE R̃E MSE PSNR SSIM CPU time (s)
L1/L2-box 0.174 0.352 0.0013 24.532 0.804 1568.026
NWATV-box 0.158 0.317 0.0010 25.388 0.798 50.191

employed, which exposes the patient under high risk of radiation.
Another possible model-based approach is the sinogram inpainting method [35]. However, it will

cause other artifacts. Hence, proper regularization in the image reconstruction process is a mild way to
produce high performance CT images for diagnoses and to gather the training data for AI methodology.
[36, 37] provide other ways of combining the model-based and data-driven methods for CT image
reconstructions.

5.1. Parameter selection rules

In regularization-based reconstructions, the choice of the regularization parameter is generally very
difficult and criticized. However, from the point view of dimensional reduction, we can produce a high
performance CT image with a much higher dimension given a small amount of parameters. On the one

Table 5. Comparisons of the performances of two box-constrained methods using the human
lung image.

sampling
model RE R̃E MSE PSNR SSIM

CPU
size time (s)

181 × 60
L1/L2-box 0.087 0.177 1.1176 × 10−6 35.447 0.999 4727.193
NWATV-box 0.048 0.107 3.4485 × 10−7 40.635 0.9995 182.108

181 × 30
L1/L2-box 0.120 0.219 2.1427 × 10−6 32.589 0.997 2592.474
NWATV-box 0.097 0.195 1.4111 × 10−6 34.419 0.998 146.728
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Figure 9. Reconstruction results of the human lung image. The first row depicts the
reconstructed images using the box-constrained L1/L2 (left) and box-constrained NWATV
(right) methods, respectively for the sampling size of 181 × 60. The second row illustrates
the similar results for sampling size of 181 × 30.

hand, for the choices of the parameters, mathematically there are the discrepancy principle methods
and the statistical methods [38] to deal with proper choices of the parameters. On the other hand, there
are some rules for the parameters, which are listed as follows.

• As in [24], the performance of the reconstruction (i.e., the relative error depends only the λ
ρ

rather
than the values of λ and ρ).
• The values of ρ and α should be determined by order of AT A and the number of pixels in such a

way that AT A + ρDTD + αI should not change its order.
• The optimal λ

ρ
value ranges from 10−5 to 10−4, since we can minimize the relative error by using

such a value.
• The optimal range of λ is approximately 10−3 to 10−2.

In Figure 11, we depict the evolution of RE with λ
ρ

and α for different ρ. From the figures, we can see
that for each ρ, RE is invariant with the changes of α when λ

ρ
is fixed.

5.2. Comparisons on the computation cost with L1/L2 method

In this section, we explain the computation load of the proposed box-constrained NWATV method
and compare with that in box-constrained L1/L2 method [23]. To guarantee the convergence of the box-
constrained L1/L2 method, both inner and outer loops have to be used, while in the proposed NWATV
method, a single loop could produce a good performance of the convergence. Note that in each loop,
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Figure 10. The profiles of the reconstructed walnut and human lung images along the dash
lines on left figures. In the right figures, the red line illustrate the values of u0 along the dash
line, the blue line show the values of reconstructions using box-constrained L1/L2 methods
while the green line depict the reconstructions using box-constrained NWATV methods along
the dash lines. The sampling size of the human lung imaging is set to be 181 × 30.

the most expensive computation is the calculation in (3.6). Similar to [23], in this paper, the maximum
number of inner loops is set to be 5, which means that for the same outer loops, the computational load
is at least 5 times bigger than that in the proposed method.

6. Conclusions and future works

In this paper, we proposed a box-constrained nonlinear weighted anisotropic TV regularization
method and used it in sparse-view CT. Using the Shepp-Logan phantom and the actual walnut models,
we validated that the proposed regularization could reconstruct a more accurate CT image than the
most recently developed L1/L2 regularization method. To be precise, the reconstruction time was
reduced more than 8 times while maintaining similar relative errors and a structural similarity index.
The proposed method showed advantages, especially when the sampling angles were less than 60 and
the noise level was more than 1%. Additionally, numerical simulations displayed a good convergence
performance of the proposed iterative scheme. Moreover, since the pixel values of digital images were
mostly limited to a certain range, it was reasonable to add box constraints in image processing [1, 23].
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Figure 11. Asymptotic behavior of RE with λ
ρ

and α. The range of λ is
{0.002, 0.004, 0.006, 0.008, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1}.

Note that errors/noises in the iteration based numerical scheme may accumulate with the iterations,
and the box constraint plays the role in suppressing the accumulation in some extent. Hence, the box
constraint could enforce the iteration converges to the critical point of the functional L, as shown in
Figure 4. We note that in the box-constrained L1/L2 method, the authors also note the similar role of
the box constraint [23].

Future works should definitely include the mathematical theory of the convergence of the proposed
iterative scheme. Moreover, in this paper, we list some rules for the selection of parameters λ, ρ, and
α through manual tuning. In the future, we could develop an automatic way to select the optimal
parameters by minimizing the discrepancy function in an admissible set using the combinatorial
optimization method. If the noise level δ is known, the discrepancy function could be defined as
F(λ, ρ, α) = |∥Auλ,ρ,α − y∥ − τδ| for a given τ > 1 to avoid underregularization. On the other hand, if
the noise level is not known, the Hanke Raus function F(λ, ρ, α) = ∥Auλ,ρ,α − y∥/λ could be used [39].
To minimize the above functions, we first need to select a good initial guess λ0, ρ0, α0, and the optimal
parameters could be obtained by minimizing the discrepancy functional using an alternate direction
iteration scheme. Furthermore, the proposed method can be further used in the area of metal artifact
reduction (MAR) in CT reconstruction [40], beam-hardening artifact reduction [41], limited angle
artifact reduction [1], and so on.
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