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Abstract: In this paper, in order to realize the predefined-time control of n-dimensional chaotic
systems with disturbance and uncertainty, a disturbance observer and sliding mode control method
were presented. A sliding manifold was designed for ensuring that when the error system runs on
it, the tracking error was stable within a predefined time. A sliding mode controller was developed
which enabled the dynamical system to reach the sliding surface within a predefined time. The total
expected convergence time can be acquired through presetting two predefined-time parameters. The
results demonstrated the feasibility of the proposed control method.
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1. Introduction

Chaos refers to the irregular motion that occurs in a deterministic system, which is characterized
by extremely sensitive initial conditions, inherent randomness, complexity and unpredictability. In
chaotic systems (CSs), when the initial states of identical oscillators change slightly, their future states
are usually different [1]. Pecora and Carol achieved outstanding research results in 1990 [2], and
since then chaos synchronization has become a research hotspot, drawing wide heed from scientists,
and being widely used in many fields of secure communication, network synchronization and control
engineering [3–5]. In [6], a sliding mode control (SMC) method was proposed to synchronize unified
CSs. In [7], an improved global nonlinear integral SMC method was developed to synchronize CSs
with external disturbances and internal uncertainties. In [8], an extended state observer was developed
to synchronize CSs based on linear differential equations. It should be emphasized that the above
synchronization error is asymptotically stable, that is, the synchronization time may be relatively long.

Many industrial processes have higher requirements for convergence time, so finite-time stability
has been proposed by many scholars. Different from the asymptotic-time control, finite-time control
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ensures that the synchronization error converges to origin within a finite time, and has the
characteristics of higher convergence accuracy and faster convergence rate, which is an important
breakthrough. In [9], under finite-time control theory, Cai et al. were committed to actualizing
generalized synchronization of fractional order CSs. In [10], an SMC method was proposed to design
a controller to ensure that uncertain complex CSs can synchronize in a finite time under network
transmission. In [11], Ao et al. utilized an impulsive control method to synchronize CSs in a
predefined time. In [12], a synchronization controller was designed to ensure that two CSs with
different dimensions can synchronize in a finite time. However, the finite-time control suffers from
some issues, for instance, the settling time is subject to the initial conditions. The initial value is often
unknown in practice and cannot be set arbitrarily, which greatly increases difficulty of minimizing the
synchronization time. When it is arbitrarily large, the synchronization settling time may be arbitrarily
large. Therefore, this restricts the practical usage of finite-time control, and to a certain extent, makes
finite-time control lack practical significance in industrial production. To address this problem, the
fixed-time control [13] is presented. It is characterized by a constant upper bound for settling time,
which isn’t affected by the initial conditions. For practical systems with convergence time accuracy
requirements, this feature advances the practical usage of fixed-time control. In [14], a terminal SMC
method was applied to actualize the fixed-time synchronization between two identical CSs. In [15], a
control strategy which isn’t the same as the present adaptive design methods was developed for
researching the fixed-time tracking control in nonlinear systems. However, there are also two main
problems with fixed-time control. For one thing, it needs to calculate the boundary of the settling
time. For another thing, it is conservative for estimating the settling time.

To address the above issues, the predefined-time control is proposed, whose main advantage is that
the convergence time is uninflunced by the initial conditions [16, 17]. It not only saves a process,
which is to calculate the boundary of settling time, but also adjusts the predefined-time parameters by
changing the system parameters. In recent years, scholars have also made a lot of efforts on predefined-
time synchronization (PTS) of CSs. In [18], a simplified control inputs method was developed to
achieve PTS of memristor CSs. In [19], under predefined-time stability theory, a control method was
presented to realize the PTS of CSs. In [20], by designing a synchronization controller, PTS of a
chaotic system at different dimensions was successfully achieved. It should be noted that the model of
the aforementioned chaotic system should be known in advance.

It is well known that SMC is an effective nonlinear control method for uncertain systems due to
its anti-interference ability and robustness. There are also some related works [21–27] on PTS of
CSs using SMC. In [21], under the PTS theory, a novel fast terminal SMC scheme was developed to
synchronize two different multi-input and multi-output CSs. An active controller was developed to
ensure that two CSs achieved PTS, where a new sliding surface was designed in [22]. In [23], aming
to achieve fast and accurate synchronization of CSs within a predefined time, an SMC method was
proposed. In [24], Zhang et al. presented an SMC method to achieve PTS of CSs, where a sliding mode
synchronization controller was developed to guarantee that the dynamic system is capable of reaching
the sliding surface within a predefined time; however, its sliding surface is relatively complex, and the
shaking phenomenon is obvious. Therefore, further research is needed on how to design a simple and
practical sliding surface to track and control CSs within a predefined time.

Based on the above discussion, there are three points that need to be further explored regarding the
control of CSs : 1) These references have a hypothesis that the upper bounds of external disturbances
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and internal uncertainties are known, but may be unknown in practice. How to design a predefined-
time control for CSs under these unknown conditions has become a research focus. 2) If the internal
uncertainty and external disturbances of the system are regarded as a mixed disturbance, the design of
disturbance observer becomes necessary. 3) Due to the use of the sliding mode control method, further
research is needed on how to reduce the chattering phenomenon of the sliding mode controller.

Recently, significant research results have been obtained on optimal control of nonlinear
systems [28–31], For example, in [28], an output feedback algebraic Riccati equation was constructed
to design an output feedback optimal control strategy for nonlinear systems. A hybrid hierarchical
classification algorithm was proposed in [30]. Therefore, based on the above work on the design of
observer and adaptive law, the main contributions of this article are as follows: (I) Develop a
disturbance observer that can effectively estimate the mixed disturbance. (II) A new sliding surface is
presented, and it enables the tracking error to reach a small neighborhood of zero at the origin within
a predefined time when the tracking error runs on it. (III) The chattering phenomenon of the
controller is greatly reduced. The remaining of this article is arranged following. Section 2 introduces
preliminaries and problem descriptions. The development of sliding surface and controller are
included in Section 3. Examples in Section 4 are provided to verify the efficiency of the presented
method. Conclusions are provided in Section 5.

2. Preliminaries and system description

Consider the following n-dimensional CSs


ζ̇1 = g1(ζζζ) + ∆g1(ζζζ) + d1 + u1,

ζ̇2 = g2(ζζζ) + ∆g2(ζζζ) + d2 + u2,
...

ζ̇n = gn(ζζζ) + ∆gn(ζζζ) + dn + un,

(2.1)

where ζζζ = [ζ1, ζ2, · · ·, ζn]T ∈ Rn is measurable system state. gi(ζζζ) : Rn → R is the continuous nonlinear
function, ∆gi(ζζζ) : Rn → R is the internal uncertainty and di : R → R is the external disturbance.
u = [u1, u2, · · · , un]T ∈ Rn is the control input vector.

Assumption 1. Assume that the continuous nonlinear function gi(ζζζ), the internal uncertainty ∆gi(ζζζ)
and the external disturbance di are unknown and bounded, i = 1, 2, · · ·, n.

Remark 1. In [22–27], the internal uncertainty ∆gi(ζζζ) satisfies |∆gi(ζζζ)| ≤ φi∥ζζζ∥, and the external
disturbance di satisfies |di| ≤ Ci. The nonlinear continuous function gi(ζζζ) and positive constants φi and
Ci are known. In contrast, this paper only assumes that gi(ζζζ), ∆gi(ζζζ) and di are bounded. Based on this
condition, we will design the disturbance observer d̂i(t, ζζζ) to estimate gi(ζζζ) + ∆gi(ζζζ) + di.

Define xxxd = [xd1 , xd2 , · · ·, xdn]
T as the reference signal and the tracking error is defined as zzz =

[z1, z2, · · ·, zn]T = [ζ1 − x1d, ζ2 − x2d, · · ·, ζn − xnd]T . The system (2.1) and the tracking error system can
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be written as 
ζ̇1 = d̄1(t, ζζζ) + u1,

ζ̇2 = d̄2(t, ζζζ) + u2,
...

ζ̇n = d̄n(t, ζζζ) + un,

(2.2)

and 
ż1 = d̄1(t, ζζζ) − ẋd1 + u1,

ż2 = d̄2(t, ζζζ) − ẋd2 + u2,
...

żn = d̄n(t, ζζζ) − ẋdn + un,

(2.3)

where d̄i(t, ζζζ) = gi(ζζζ) + ∆gi(ζζζ) + di.

Definition 1 (Finite time stability [32]). Assume that the sysnchronization error system (2.3) is
asymptotically stable and any solution zzz(t, zzz0) reaches the equilibrium point in a finite time, i.e.,

limt→T (zzz0) ∥zzz∥ = limt→T (zzz0) ∥ζζζ − xxxd∥ = 0, (2.4)

then the error system (2.3) is a finite-time stability. T (zzz0) is the settling time, which depends on the
initial value z0.

Definition 2 (Fixed time stability [33]). Assume that the error system (2.3) is globally finite-time stable.
If the settling time T (zzz0) is bounded, namely, there is a constant Tmax> 0 such that T (zzz0) ≤ Tmax for all
zzz0 ∈ R

n, then the error system (2.3) is a fixed-time stability.

Definition 3 (Predefined-time stability [34]). Assume that the error system (2.3) is globally fixed-time
stable. If the settling time T (zzz0) satisfies T (zzz0) ≤ Tc for all zzz0, where Tc > 0 is a predefined time, then
the error system (2.3) is a predefined-time stability.

Remark 2. In contrast to finite-time stability, predefined-time stability is unaffected by initial
conditions. It is superior than fixed-time stability because it can pre-allocate the boundary of the
settling time, saving time in calculating the boundary of the settling time, making theoretical analysis
simpler and estimating convergence time more accurately.

For the sake of better deterring whether a dynamic system is a predefined-time stability, the
following conclusion needs to be used in this article.

Lemma 1 ( [35]). If the system ς̇ = ϕ(t, ς) is a finite-time stability and a Lyapunov function V(t)
satisfies

V̇ ≤ −
π

2qTc
(V1−q + V1+q), (2.5)

then ς̇ = ϕ(t, ς) is a predefined-time stability, where Tc> 0 is a predefined time and q ∈ (0, 1
2 ).

Proof. The settling time implies that V(t) with an initial value V0 > 0 converges to V f = 0 in the
time T (ς0). From (2.5), one obtains

T (ς0) ≤ −
2qTc

π

∫ V f

V0

dV
V1−q + V1+q
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=
2qTc

π

∫ V0

V f

dV
V1−q + V1+q

=
2Tc

π

∫ V0

V f

dVq

1 + (Vq)2

≤Tc[
2
π

arctan(Vq
0 )]

≤Tc.

Notice that ς̇ = ϕ(t, ς) is finite-time stability and the settling time T (ς0) ≤ Tc. Therefore, ς̇ = ϕ(t, ς)
is a predefined-time stability. This completes the proof. ■

Lemma 2 ( [36]). If a Lyapunov function V(t) satisfies

V̇ ≤ −
π

qTc
(V1− q

2 + V1+ q
2 ) + r, (2.6)

where r > 0, then for a given positive constant υ ≜ qrTc
π

that satisfies V ≤ υ for all t > 2Tc, where Tc> 0
is a predefined time and q ∈ (0, 1).

Lemma 3 ( [36]). If function f (ζζζ) is continuous on a compact Ω, then f (ζζζ) can be expressed as

f (ζζζ) = θ∗Tψ f (ζζζ) + ε(ζζζ), (2.7)

where θ∗ is the ideal parameter vector, ψ f (ζζζ) is the fuzzy basis function vector, ε(ζζζ) is the fuzzy
estimation error such that |ε(ζζζ)| ≤ ε∗f , where ε∗f is an unknown positive constant.

3. Design of predefined-time control scheme

3.1. Design of the disturbance observer

In order to estimate the unknown function d̄i(t, ζζζ), the following observer is designed:
d̂i(t, ζζζ) = −βisi + θ̂

T
fi
ψ fi(ζζζ),

si = wi − ζi,

ẇi = −βisi + θ̂
T
fi
ψ fi(ζζζ) + ui,

(3.1)

where βi is a design positive parameter and θ̂T
fi
ψ fi(ζζζ) is an estimate of θ∗Tfi ψ fi(ζζζ) ( θ∗Tfi ψ fi(ζζζ) = d̄i(t, ζζζ) −

ε fi(ζζζ) by using Lemma 3). Define the estimation error d̃i(t, ζζζ) = d̂i(t, ζζζ) − d̃i(t, ζζζ). One has

d̃i(t, ζζζ) = d̂i(t, ζζζ) − d̃i(t, ζζζ)
= −βisi + θ̂

T
fi
ψ fi(ζζζ) + ui − ζ̇i

= ẇi − żi = ṡi.

(3.2)

Theorem 1. For the system (2.2), the observer error d̃i(t, ζζζ) is bounded by using the disturbance
observer d̂i(t, ζζζ) in (3.1) and the adaptive law as

˙̂θ fi = ρi(−siψ fi(ζζζ) − λiθ̂ fi), (3.3)

where ρi, λi are positive constants.
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Proof. Consider Lyapunov function Vsi =
1
2 s2

i +
1
ρi
θ̃T

fi
θ̃ fi , where θ̃ fi = θ

∗
fi
− θ̂ fi . Form (3.1) and (3.3),

one has
V̇si = si(ẇi − żi) − 1

ρi
θ̃T

fi
˙̂θ fi

= −βis2
i + siui + siθ̂

T
fi
ψ fi(ζζζ) − siθ

∗T
fi
ψ fi(ζζζ)

−siε fi(ζζζ) − siui − θ̃
T
fi
(−siψ fi(ζζζ) − λiθ̂ fi)

= −βis2
i − siε fi(ζζζ) + λiθ̃

T
fi
θ̂ fi

≤ −(βi −
1
4 )s2

i + ε
∗
fi
−

λi
2 θ̃

T
fi
θ̃ fi +

λi
2 ∥θ

∗
fi
∥2.

(3.4)

Let ri1 = ε
∗
fi
+ λi

2 ∥θ
∗
fi
∥2. Select βi such as βi >

1
4 and define the following compact sets: Ωsi = {si| |si| ≤√

r1i

βi−
1
4
} and Ωθ̃ fi

= {∥θ̃ fi∥| ∥θ̃ fi∥ ≤

√
2r1i
λi
}. Obviously, if si < Ωsi or θ̃ fi < Ωθ̃ fi

, one has V̇(t) < 0. Thus, si

and θ̃ fi are bounded. When si and θ̃ fi are limited within the small compact setsΩsi andΩθ̃ fi
, respectively,

then ṡi = −βisi − θ̃
T
fi
ψ fi(ζζζ) − ε fi(ζζζ) is also bounded, that is, there exists a positive constant ηi such that

|ṡi| = |d̃(t, ζζζ)| ≤ ηi. This completes the proof. ■

3.2. Design of the sliding surface and controller

The design idea of this article is divided into two steps: The first step is to design a sliding manifold
so that the tracking error can reach the neighborhood of zero on the sliding surface within a predefined
time. The second step is to design a controller so that the error system can reach the sliding surface
within a predefined time.

In this article, the sliding manifold and the corresponding controller are designed as follows:

σi = zi + si +
∫ t

0
( 1

q1

π
Tc1

( 1
2 )1− q1

2 sgn(zi(τ))|zi(τ)|1−q1

+ 1
q1

π
Tc1

(1
2 )1+ q1

2 sgn(zi(τ))|zi(τ)|1+q1 +
zi(τ)

2 )dτ,
(3.5)

and
ui = ẋdi − d̂i(t, ζζζ) − 1

q1

π
Tc1

(1
2 )1− q1

2 sgn(zi)|zi|
1−q1 − 1

q1

π
Tc1

(1
2 )1+ q1

2 sgn(zi)|zi|
1+q1

−
zi(τ)

2 −
1
q2

π
Tc2

(1
2 )2−q2sgn(σi)|σi|

1−2q2

− 1
q2

π
Tc2

(1
2 )2+q2sgn(σi)|σi|

1+2q2 ,

(3.6)

where Tc1 ,Tc2 are predefined times and q1 ∈ (0, 1), q2 ∈ (0, 1
2 ).

The following theorem states the primary result.

Theorem 2. If the controller is chosen as (3.6), then the synchronization system (2.3) will reach the
sliding surface σi = 0 within the predefined time Tc2 .

Proof. Select a Lyapunov function as Vσi =
1
2σ

2
i , then

V̇σi = σi · σ̇i

= σi
(
d̄i(t, ζζζ) − ẋdi + ui − ṡi +

1
q1

π
Tc1

(1
2 )1− q1

2 sgn(zi)|zi|
1−q1

+ 1
q1

π
Tc1

(1
2 )1+ q1

2 sgn(zi)|zi|
1+q1
)

= σi
(
− d̃i(t, ζζζ) − ṡi −

1
q2

π
Tc2

(1
2 )2−q2sgn(σi)|σi|

1−2q2

− 1
q2

π
Tc2

(1
2 )2+q2sgn(σi)|σi|

1+2q2
)
.

(3.7)
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Notice that ṡi = d̃i(t, ζζζ). One gets

V̇σi = −
π

2q2Tc2
(V1−q2

σi + V1+q2
σi ) < 0. (3.8)

By using Lemma 1, the tracking system (2.3) will reach the sliding surface σi = 0 within the
predefined time Tc2 . This completes the proof. ■

When the tracking error system (2.3) is limited on the sliding surface σi = 0, one has σ̇i = 0, that is

σ̇i = żi + ṡi +
1
q1

π
Tc1

( 1
2 )1− q1

2 sgnzi(τ)|zi(τ)|1−q1

+ 1
q1

π
Tc1

(1
2 )1+ q1

2 sgnzi(τ)|zi(τ)|1+q1 + zi
2 = 0, t ≥ Tc2 .

(3.9)

From (3.9), the sliding surface σi = 0 can guarantee that when the error system (2.3) runs on it, the
tracking error zi is stable within 2Tc1 . The following theorem is given as below.

Theorem 3. If the tracking error system (2.3) runs on the sliding surface σi = 0, then the tracking
error zi will converge to the neighborhood of zero within the predefined time 2Tc1 .

Proof. According to (3.9), if the tracking error system (2.3) moves on the sliding surface σi = 0
after Tc2 , one has σ̇i = 0, so

żi = −
1
q1

π

Tc1

(
1
2

)1− q1
2 sgn(zi)|zi|

1−q1 −
1
q1

π

Tc1

(
1
2

)1+ q1
2 sgn(zi)|zi|

1+q1 −
z2

i

2
− ṡi.

Let Vzi =
1
2z2

i , then one has

V̇zi =zi · żi

= − zi(
1
q1

π

Tc1

(
1
2

)1− q1
2 sgn(zi)|zi|

1−q1 +
1
q1

π

Tc1

(
1
2

)1+ q1
2 sgn(zi)|zi|

1+q1 +
zi

2
+ ṡi)

≤ −
1

Tc1

π

q1
(V1− q1

2
zi + V1+ q1

2
zi ) −

z2
i

2
+

z2
i

2
+
η2

i

2

= −
1

Tc1

π

q1
(V1− q1

2
zi + V1+ q1

2
zi ) +

η2
i

2
.

By using Lemma 2, one has Vzi =
1
2z2

i ≤
q1Tc1η

2
i

2π within 2Tc1 , that is, |zi| ≤

√
q1Tc1η

2
i

π
, t ≥ 2Tc1 + Tc2 .

Thus, the proof of Theorem 3 is complete. ■

Remark 3. According to the results of Theorem 1–3, it can be concluded that the tracking error zi will

approach Ωzi = {zi| |zi| ≤

√
q1Tc1η

2
i

π
} after the predefined time 2Tc1 + Tc2 .

Remark 4. In [24], a sliding surface was designed as si = ei+
∫ t

0
(c1ei+c2sgn(ei)|ei|

1−α+c3sgn(ei)|ei|
1+α+

c4sgn(ei))dτ, in which c1 =
1

Tc1

2
α
, c2 =

1
Tc1

2
α
( 1

2 )1− α2 , c3 =
1

Tc1

2
α
(1

2 )1+ α2 , c4>0, α ∈ (0, 1). Compared with
the sliding manifold designed in [24], the proposed sliding manifold (3.5) consists of an integral term
and auxiliary variables, which can ensure robustness and avoid the drawbacks of the common sliding
mode approach stage by finding an appropriate initial position to make the system only have a sliding
stage.
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4. Numerical simulation

To demonstrate the effectiveness of the proposed method, The Lü system [37] is used as a simulation
example to illustrate. The Lü system is described as

ζ̇1 = 36(ζ2 − ζ1)︸       ︷︷       ︸
g1(ζζζ)

+△g1(ζζζ) + d1 + u1,

ζ̇2 = 20ζ2 − ζ1ζ3(1 − 2 sin 2ζ3)︸                          ︷︷                          ︸
g2(ζζζ)

+△g2(ζζζ) + d2 + u2,

ζ̇3 = −3ζ3 + ζ1ζ2︸        ︷︷        ︸
g3(ζζζ)

+△g3(ζζζ) + d3 + u3,

(4.1)

where the initial values of the system (4.1) are [ζ1(0), ζ2(0), ζ3(0)]T = [3, 3, 4]T . When △gi(ζζζ) = 0, di =

0 and ui = 0, the phase diagrams of the Lü system are illustrated in Figure 1. The internal uncertainties
are △g1(ζζζ) = 2ζ1 cos t, △g2(ζζζ) = 3.5ζ2 cos t, and △g3(ζζζ) = 4ζ3 cos t. d1, d2, d3 are uniformly randomly
distributed noise with amplitudes of 3.5.

Figure 1. Dynamics of Lü chaotic system.

In this section, we compare our proposed method with the method in [27]. The reference signal is
xd = [cos(t), 4 cos(t), 3 cos(t)]T .

It should be emphasized that the method in [27] assumes that gi(ζζζ) is known and that ∆gi(ζζζ) and di

satisfy the following inequalities: |∆gi(ζζζ)| ≤ φi∥ζζζ∥ and |di| ≤ Ci, where φi and Ci are known positive
constants, i = 1, 2, 3.

Method 1: The predefined-time SMC method in [27] employs (4.2) as the sliding manifold and (4.3)
as the controller.

σi = zi +

∫ t

0
(b1sgn(zi(τ)) |zi(τ)|1−λ + b2sgn(zi(τ)) |zi(τ)|1+λ + b5zi(τ))dτ, (4.2)

ui =ẋdi − gi(ζζζ) − b1sgn(ei) |zi|
1−λ
− b2sgn(zi) |ei|

1+λ
− b5ei − b3sgn(σi) |σi|

1−λ

−b4sgn(σi) |σi|
1+λ
− b6σi − (ϕi|ζi| +Ci)sgn(σi).

(4.3)
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All parameters in Method 1 are selected as λ = 0.5, Tc1 = Tc2 = 0.1, q1 = 0.5, q2 = 0.25, b1 =
1
q1

π
Tc1

( 1
2 )1− q1

2 , b3 =
1
q2

π
Tc2

( 1
2 )2−q2 , b2 =

1
q1

π
Tc1

( 1
2 )1+q1 , b4 =

1
q2

π
Tc2

(1
2 )2+q2 , ϕ1 = 2, ϕ2 = 3.5, ϕ3 = 4,

C1 = C2 = C3 = 3.5, b5 = b6 = 5. Simulation results of Method 1 are depicted in Figure 2.
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Figure 2. (a) z1, z2 and z3; (b) σ1, σ2 and σ3; (c) u1, u2 and u3 by using Method 1 in [27].

Obviously, Figure 2 shows that Method 1 in [27] can achieve that tracking errors z1, z2 and z3

approach the origin within the predefined 0.2 seconds. However, there are two points that need
improvement: 1) The nonlinear function gi(ζζζ) and two upper bounds ϕi and Ci may be unknown rather
than known. If gi(ζζζ), ∆gi(ζζζ) and di are regarded as the mixed disturbance d̄i(t, ζζζ), a disturbance
observer needs to be designed to estimate d̄i(t, ζζζ) effectively; 2) the chattering phenomenon of the
controllers u1, u2 and u3 needs to alleviate. To improve the above two issues, the proposed control
method in this article is as follows:
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Figure 3. (a) z1, z2 and z3; (b) σ1, σ2 and σ3; (c) u1, u2 and u3; (d) d̂1(t, ζζζ), d̂2(t, ζζζ) and d̂3(t, ζζζ)
by using Method 2 in this paper.

Method 2: The predefined-time control method in this paper uses (3.1) as the disturbance observer,
(3.5) as the sliding surface, and (3.6) as the controller. For ζ1, ζ2 and ζ3, five fuzzy sets are defined
over [−5,5] with partitioning points as −5; −2.5; 0; 2.5; 5. Define the vectors as ζζζ = [ζ1, ζ2, ζ3]T and
ζζζ0

k = [−7.5 + k,−7.5 + k,−7.5 + k]T , k = 1, 2, 3, 4, 5. The fuzzy membership functions are given as

ϱ1
A(ζζζ) = exp(−∥ζ

ζζ−ζζζ0
1∥

2

2 ), ϱ2
A(ζζζ) = exp(−∥ζ

ζζ−ζζζ0
2∥

2

2 ), · · ·, ϱ5
A(ζζζ) = exp(

−∥ζζζ−ζζζ0
5∥

2

2 ). We can express ψ f1(ζζζ), ψ f2(ζζζ)

and ψ f3(ζζζ) as ψ f1(ζζζ) = ψ f2(ζζζ) = ψ f3(ζζζ) = [ψ1(ζζζ), · · ·, ψ5(ζζζ)]T , where ψk(ζζζ) = ϱk
A(ζζζ)

5∑
k=1

ϱk
A(ζζζ)

. The parameters

Tc1 ,Tc2 , q1 = 0.5, q2 = 0.25, b1, b2, b3 and b4 remain the same as those in Method 1. In addition, other
parameters are selected as β1 = β2 = β3 = 50, ρ1 = ρ2 = ρ3 = 2, λ1 = λ2 = λ3 = 0.5. Initial values
are selected as s1(0) = s2(0) = s3(0) = 0, θ̂ f1(0) = θ̂ f2(0) = θ̂ f3(0) = 0. Simulation results of Method
2 are depicted in Figure 3. As shown in Figure 3, the proposed Method 2 can overcome the influence
of unknown mixed disturbances d̄1(t, ζζζ), d̄2(t, ζζζ) and d̄3(t, ζζζ) and ensure that tracking errors z1, z2 and
z3 approach the neighborhood near the origin within 0.3 seconds, and the chattering phenomenon of
controllers u1, u2 and u3 is greatly reduced. Meanwhile, the designed disturbance observers d̂1(t, ζζζ),
d̂2(t, ζζζ) and d̂3(t, ζζζ) can effectively estimate the corresponding mixed disturbances d̄1(t, ζζζ), d̄2(t, ζζζ) and
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d̄3(t, ζζζ). Therefore, one can conclude that the presented method has better performance.

4.1. Robustness test

This part verifies the anti-interference ability and robustness of the presented approach, and analyzes
it in the absence or presence of random disturbance noise and uncertainty. When the system (2.1) is
not affected by the random noise disturbance and internal system uncertainty, and nonlinear functions
g1(ζζζ), g2(ζζζ) and g3(ζζζ) are known, the sliding mode manifold and controller design of Method 2 in this
paper are as follows:

σi = zi +
∫ t

0
( 1

q1

π
Tc1

(1
2 )1− q1

2 sgn(zi(τ))|zi(τ)|1−q1

+ 1
q1

π
Tc1

( 1
2 )1+ q1

2 sgn(zi(τ))|zi(τ)|1+q1)dτ,
(4.4)

and
ui = ẋdi −

1
q1

π
Tc1

( 1
2 )1− q1

2 sgn(zi)|zi|
1−q1 − 1

q1

π
Tc1

(1
2 )1+ q1

2 sgn(zi)|zi|
1+q1

−gi(ζζζ) − 1
q2

π
Tc2

(1
2 )2−q2sgn(σi)|σi|

1−2q2

− 1
q2

π
Tc2

( 1
2 )2+q2sgn(σi)|σi|

1+2q2 ,

(4.5)

Select the initial value and control parameters as the same as the previous ones. The simulation result
is shown in Figure 4.
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Figure 4. Robustness test of the proposed method.

Figure 4 shows that the proposed method has good anti-interference and robustness in the presence
of noise and internal system uncertainty.

5. Conclusions

This article presents a predefined-time SMC strategy for tracking n-dimensional CSs under
uncertainties and disturbances. First, a disturbance observer and a novel sliding manifold are derived.
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Second, a sliding mode controller is developed for CSs. The predefined time is not affected by the
initial conditions and can be set arbitrarily according to actual needs. The main difference from
fixed-time control is that it can pre-allocate convergence time, so that the proposed method can meet
the practical requirements of predefined convergence time even in the presence of internal
uncertainties and random noise disturbances. The simulation results confirm the effectiveness and
robustness of the method proposed in this paper.
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