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Abstract: In demanding application scenarios such as clinical psychotherapy and criminal interrogation,
the accurate recognition of micro-expressions is of utmost importance but poses significant challenges.
One of the main difficulties lies in effectively capturing weak and fleeting facial features and improving
recognition performance. To address this fundamental issue, this paper proposed a novel architecture
based on a multi-scale 3D residual convolutional neural network. The algorithm leveraged a deep 3D-
ResNet50 as the skeleton model and utilized the micro-expression optical flow feature map as the input
for the network model. Drawing upon the complex spatial and temporal features inherent in micro-
expressions, the network incorporated multi-scale convolutional modules of varying sizes to integrate
both global and local information. Furthermore, an attention mechanism feature fusion module was
introduced to enhance the model’s contextual awareness. Finally, to optimize the model’s prediction of
the optimal solution, a discriminative network structure with multiple output channels was constructed.
The algorithm’s performance was evaluated using the public datasets SMIC, SAMM, and CASME II.
The experimental results demonstrated that the proposed algorithm achieves recognition accuracies
of 74.6, 84.77 and 91.35% on these datasets, respectively. This substantial improvement in efficiency
compared to existing mainstream methods for extracting micro-expression subtle features effectively
enhanced micro-expression recognition performance and increased the accuracy of high-precision
micro-expression recognition. Consequently, this paper served as an important reference for researchers
working on high-precision micro-expression recognition.
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1. Introduction

Micro-expressions are imperceptible facial expressions that individuals exhibit when intentionally
concealing or suppressing their genuine emotions in response to external stimuli. These expressions are
characterized by their brief duration and subtle changes [1]. Recognizing micro-expressions poses a
significant challenge in affective computing, as it involves identifying minute facial movements that 2
are difficult for humans to perceive within a short time frame (0.25 to 0.5 seconds). It should be noted
that micro-expressions primarily originate from the subconscious mind and cannot be consciously
hidden or suppressed. Consequently, they genuinely reflect an individual’s thoughts and attitudes at
a specific moment. Due to their authenticity, micro-expressions find extensive applications in various
fields, including clinical psychotherapy [2], criminal interrogation [3], and beyond.

Micro-expression recognition systems typically consist of several stages: image preprocessing, micro-
expression localization, feature extraction, and classification. During the preprocessing stage, captured
images undergo meticulous enhancement techniques such as noise attenuation, spatial zooming, face
region identification, geometric correction, motion amplification, and time-series normalization. Among
these stages, feature extraction and classification processes are crucial for improving overall recognition
accuracy. Three main strategies are employed for feature extraction: those based on static face image
analysis, those utilizing optical flow analysis, and those employing deep learning architectures. In
the context of face image-based methods specifically, feature computations often involve extracting
differential patterns derived from local binary patterns or using 3D gradient histogram operators
as fundamental elements for both detection and detailed feature representation. These approaches
effectively capture subtle variations indicative of micro-expressions within facial data.

Local binary pattern (LBP) [4], an operator that characterizes the local texture features of an image,
has been widely used. Zhao et al. [5] introduced the local binary patterns on the three orthogonal
planes (LBP-TOP) model, which extends the LBP model to three dimensions. This model allows for
dynamic encoding of temporal changes by incorporating the time axis and extracting features from local
spatiotemporal neighborhoods on the three planes. Wang et al. [6] proposed the LBP with six intersection
points (LBP-SIP), which integrates the feature dimensions of LBP-TOP into the LBP-SIP model. This
reduces the feature dimension of LBP-TOP to 6 binary bits, minimizing redundant information and
reducing the computational time required for model operations. The optical flow-based approach is
to extract the non-rigid motion changes of subtle expressions such as similar optical flow or light
intensity, or use a facial dynamic map (FDM) to model the motion of facial components, and combine
the micro-expression recognition results from the multi-scale sliding window with the dataset samples
to complete the classification of micro-expressions. Despite the continuous optimization of traditional
recognition algorithms, these algorithms still inherently suffer from a disadvantage in automated feature
recognition, which hinders their effective enhancement of classification performance.

In recent years, with the rapid development of computer science and technology, especially in the
field of computer vision, the study of micro-expression recognition is no longer limited to the scope of
psychology, and more and more researchers have begun to use advanced computer vision technology
to assist in micro-expression recognition. Polikovsky et al. [7] used 3D histograms to extract micro-
expression features and combined machine learning and micro-expression recognition. Zhao Guoying’s
team, on the other hand, established the first spontaneous micro-expression database (SMIC) [8], which
opens up a new path for exploring micro-expression recognition using deep learning methods. Deep
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learning methods are able to achieve end-to-end automatic extraction of deep-level features by virtue
of neural network architectures and effectively classify and recognize data accordingly. Gan et al. [9]
proposed the optical flow features from apex frame network (OFF-ApexNet), which takes optical flow
images between the initial frame and the apex frame as inputs for a convolutional neural network (CNN).
Spatial features are then extracted from this optical flow field for recognition purposes. Aside from this
method of utilizing CNNs solely for spatial feature extraction, there is also joint extraction of temporal
and spatial features. Simultaneous extraction of spatial features over time generally outperforms the
method of extracting spatial features alone in terms of recognition accuracy. This include approaches
based on long short-term memory (LSTM) [10], as well as the 3D-CNN algorithm that extends the
spatial domain convolution of CNNs to the temporal domain. Meanwhile, notable advancements have
been made in the development of micro-expression datasets. A comprehensive survey [11] delves into the
various datasets, features, and algorithms pertinent to micro-expression analysis. The recently introduced
a third generation facial spontaneous micro-expression database (CAS (ME)3) database [12] stands
out as a cutting edge third-generation resource for facial spontaneous micro-expressions, significantly
enhancing the availability of data for recognition tasks. Furthermore, a spontaneous 4D micro-expression
dataset (4DME) dataset [13], representing a spontaneous four-dimensional micro-expression repository
with multimodal information, serves as a valuable asset for deep exploration of the spatio-temporal
characteristics of micro-expressions.

However, compared with macro-expressions, the number of samples in the dataset of
micro-expressions is relatively small, and the current micro-expression recognition methods of various
types fail to provide ideal solutions when facing problems such as changes in local illumination of the
face. At the same time, due to the limited number of samples and the uneven distribution of the samples,
the proposed feature extraction method performs poorly in terms of recognition robustness. Addressing
the issue of datasets lacking apex frame labels, Liu et al. [14] employed a lightweight network known
as SqueezeNet to effectively localize the apex frame for such datasets. Additionally, they utilized 3D
convolutional networks for spatio-temporal feature extraction. To overcome the challenge of focusing
on the detailed local features of micro-expressions, Zhao et al. [15] proposed a deep prototypical
learning framework, namely ME-PLAN. This framework utilizes expression-related knowledge transfer
and scenario training to accurately learn micro-expression features.

In the realm of large-scale micro-expression recognition studies, especially under stringent conditions
requiring high precision recognition, it is critically important to construct computationally efficient
and resilient recognition models leveraging computer technology. Despite the merits that shallow
networks possess in managing costs and achieving swift processing, they inherently struggle with
extracting intricate and ephemeral micro-expression characteristics, thus hindering their capacity to
significantly boost recognition accuracy. Therefore, in the study of high-precision micro-expression
recognition, we focus more on how to improve the recognition accuracy of the model by improving
the algorithm or adopting the depth structure, compared with the recognition speed. Considering
the complex spatial and temporal characteristics of micro-expressions, this study introduces a micro-
expression recognition framework based on a multi-scale 3D residual CNN. The proposed framework
consists of a micro-expression facial motion feature extraction network, a multi-scale spatiotemporal 3D
CNNs (3D-ResNet50) fusion classification network, and a discriminative network. The ResNet50 fusion
classification network and discriminative network contribute to the method’s exceptional performance
in terms of recognition accuracy, as demonstrated through experimental validation. Overall, the
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contributions of this research can be summarized as follows:
1) The backbone network employed in this study is the deep 3D-Resnet50, with micro-expression

optical flow feature maps serving as input to the network model. This choice aims to simplify the
judgment basis for different micro-expressions, thereby reducing complexity.

2) For spatial integration, a multi-scale approach is adopted by incorporating multi-scale convolution
modules of various sizes into the network. This integration enables the fusion of both global and
local information. Regarding temporal integration, the attention feature module is utilized to combine
feature maps obtained from different layers of the model. This integration enhances the model’s
context-awareness.

3) To ensure optimal performance, a discriminative network is designed to select the most suitable
solution among various outputs. The chosen solution is then presented as the final result of this network.

The rest of the paper is organized as follows: Section 2 describes the related work. Section 3
describes the proposed micro-expression recognition algorithm in detail, and Section 4 describes the
experimental results and analysis. Finally, the paper is summarized in Section 5.

2. Related work

In the study of micro-expression recognition, feature extraction is a crucial step to improving recognition
accuracy. Huang et al. [16] proposed the spatio-temporal complete local quantization pattern (STCLQP),
which goes beyond LBP-TOP by enhancing the capture of input information by integrating the pixel
differences in sign, magnitude, and orientation, and constructs a compact spatio-temporal domain codebook
to optimize the recognition results. Huang et al. [17] further integrated face shape attributes into spatio-
temporal texture features and proposed a spatiotemporal local binary pattern (STLBP) to extract recognition
information for facial micro-expression recognition. Li et al. [18] proposed a new method to detect the
apex frame by estimating pixel-level change rates in the frequency domain, which focuses on the emotional
information carried by the peak frames and exploits the pixel-level rate of change in the frequency domain to
locate peak frames, and this method performs better in determining key frames. In addition, they combined
local and global information under peak frames for joint feature learning, which enables the model to focus
on key facial regions rich in emotional information and suppresses the influence of irrelevant regions.

Given that optical flow can infer relative motion information between different frames, some
researchers have started using optical flow-based methods to extract motion-related information from
micro-expression videos or sequences for micro-expression recognition. Liu et al. [19] introduced the
main directional mean optical flow (MDMO) method, which utilizes optical flow to construct a
region-of-interest-based feature vector describing the local motion of a micro-expression on the face.
This feature vector is then inputted into a support vector machine for micro-expression recognition.
Building upon this work, Liong et al. [20] proposed the bi-weighted oriented optical flow (Bi-WOOF)
feature descriptor, which represents a subtle micro-expression sequence using only two frames, namely, the
start and peak frames. The Bi-WOOF method incorporates both the optical flow magnitude and the optical
strain magnitude as weights to generate directional histograms of face region blocks, thereby emphasizing
the importance of each optical flow for micro-expression recognition. Furthermore, Ni et al. [21] introduced
the LGSNet, a novel dual-stream network that combines optical streams and segment-level features from the
video. This fusion of information enhances the recognition capabilities of the local suppression and global
enhancement spotting network (LGSNet) for micro-expression analysis. Li et al. [22] proposed a
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micro-expression recognition method that utilizes deep multitask learning to localize facial landmarks
and segment the facial region into regions of interest (ROIs). Since the movement of facial muscles
generates micro-expressions, a robust optical flow approach is combined with histograms of oriented
optical flow (HOOF) [23] features to assess the direction of movement of facial muscles. SVMs are
then employed as classifiers for micro-expression recognition. The facial action coding system (FACS),
an important tool for recognizing micro-expressions, necessitates motion recordings at various facial
locations, such as eyebrows and corners of the mouth. In this particular method, ROIs and HOOF
features are used in conjunction, ultimately resulting in accurate micro-expression recognition that
corresponds to action units (AUs).

With the development of deep learning technology, a series of deep neural network structures have been
applied to the field of micro-expression recognition. Zhou et al. [24] used a dual-stream inception network,
focusing on acquiring salient and discriminative features of a specific expression and better recognizing
micro-expressions by fusing the features of a specific micro-expression. Liong et al. [25] proposed a shallow
three-stream 3D CNN (STSTNet) to embed spatial and temporal information into micro-expression video
clips, which learns from three optical flow features (i.e., optical strain, horizontal and vertical optical flow
fields) computed based on the start and apex frames of each video and extracts discriminative high-level
features and micro-expression details through lightweight computation. Li et al. [26] proposed a dual-
stream convolutional network that utilizes a multi-scale three-dimensional (M3D) convolutional layer to
build temporal streams in a 2D CNN to efficiently extract spatio-temporal features required for video
character re-identification. This M3D convolution is designed to be compact and easy to optimize, and it
enhances the ability to learn multi-scale temporal features while maintaining a low number of parameters
compared to traditional 3D convolutional networks. Li et al. [27] proposed a deep local holistic network
to extract locally enriched spatio-temporal and global features for micro-expression recognition through
subnetwork fusion. The attention mechanism can effectively improve the network model by assigning
higher weights to important features in the image and introducing the attention mechanism in the channel and
spatial dimensions of the data to suppress the background interference, thus enhancing the network’s ability to
perceive key features. Quang et al. [28] proposed a CapsuleNet-based micro-expression recognition method
that innovatively utilizes the “capsule network” structure to effectively overcome the problem of information
loss (e.g., relative positional information) caused by the maxpooling operation in traditional image processing
when dealing with micro-expression sequences of apex frames. (e.g., relative position information). By
precisely maintaining the spatial relationship between features, recognition accuracy and robustness are
significantly improved. Xia et al. [29] introduced the concept of spatio-temporal transformations for
the first time and constructed the spatiotemporal recurrent convolutional networks (STRCN) model,
which skillfully integrates spatial features and dynamic changes through the dual processing of the time
dimension and strongly enhances the ability to parse the subtle and fast facial muscle movements.

Zhang et al. [30] proposed a spatio-temporal transform network based on the long- and short-term
dependence of facial expression sequences and time-dependent spatio-temporal transformer architecture,
which includes several key modules such as a spatial encoder, a temporal aggregator, and a classifier.
This work is unique in micro-expression recognition research because it completely abandons CNNs
and pioneers the application of transformers to the micro-expression recognition task. This novel
architectural design allows the model to efficiently capture and analyze long-distance dependencies,
solving the challenge of micro-expression recognition due to the transient and imperceptible nature
of the expression, but its limitations include the ability to generalize to large and diverse datasets,
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computational efficiency, and under-utilization of prior knowledge, as well as the model’s interpretive
nature and stability under low-quality inputs. Su et al. [31] used a component-aware attention module
to highlight relevant regions of micro-expressions to efficiently capture motivational information
and non-rigid deformations. Gajjala et al. [32] proposed a 3D residual attention network model
based on facial micro-expression recognition using 3D residual attention network (MERANet) to
learn deeper, finer-grained subtle features to classify emotions by taking advantage of the joint
strengths of spatial-temporal attention and channel attention. Although MERANet performs well on
a limited number of datasets, the problem of insufficient sample size prevalent in micro-expression
datasets still constrains the model’s generalization ability. Zhang et al. [33] proposed a deformation
repair network (DINet) to implement a visual dubbing technique for face-to-face in high resolution
that performs spatial deformation on the feature map of the reference face image and uses the spatially
deformed features to repair the mouth region, but the model may have difficulty accurately capturing and
representing the corresponding details of the mouth movement when dealing with complex, variable,
or low-quality audio signals. Zhou et al. [34] proposed the micro-expression recognition dual branch
attention network (Dual-ATME) to solve the problem of ineffective single-scale features representing
ME, but, limited by the reliance on a priori knowledge, the ability to dynamically adjust and adaptively
learn in rapidly changing and complexly represented micro-expression scenarios is still a challenge.

Current mainstream micro-expression recognition algorithms have made great progress in micro-
expression micro-feature detection through various optimization methods. However, in the design of
micro-expression recognition algorithms, in addition to the pursuit of powerful feature extraction, how
to deeply understand and effectively utilize these features, especially the robustness and generalization
ability in different contexts, is also the key to determining the efficacy of the algorithms. Meanwhile,
in the face of challenges such as insufficient samples and rapid changes unique to micro-expression
recognition, future research needs to further explore more efficient feature expression and model
optimization schemes.

3. Proposed method

3.1. Microexpression recognition framework

The algorithm proposed in this paper comprises three main components: the micro-expression
facial motion feature extraction network, the multi-scale 3D-ResNet50 fusion classification network,
and the discriminative network. These components collaborate within the framework, as depicted
in Figure 1. Initially, the micro-expression facial motion feature extraction network is employed to
preprocess the data, minimizing the influence of both extrinsic and intrinsic factors. Subsequently,
the micro-expression motion feature maps, obtained from the preprocessing step, are inputted into
the multi-scale 3D-ResNet50 fusion classification network. This network generates numerous results.
Finally, the discriminative network evaluates the multiple outcomes from the classification network to
determine the optimal solution and produce the final results.
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Figure 1. Micro-expression recognition framework based on multi-scale 3D residual CNN.

3.2. Video image preprocessing

(1) Face spotting and cropping
To eliminate irrelevant distractions such as background details, the dlib 68-point face spotting

algorithm [35] is utilized for face cropping. This algorithm employs histogram-oriented gradient (HOG)
features to initially identify the facial contour, mouth, nose, eyes, and eyebrows using 68 reference
points. Subsequently, the OpenCV tool is employed to precisely crop the designated area.

(2) Data enhancement
The original dataset underwent a process of database expansion, wherein the resulting face frame

was shifted by 15 pixels in the left, right, upward, and downward directions. Additionally, a vertical flip
was applied to further augment the dataset, resulting in a size that is four times larger than its original.

(3) Keyframe extraction
The video sequences of micro-expressions in the datasets have different frame lengths, and some

datasets are too long and contain a lot of useless information, which makes the task of micro-expression
recognition very difficult. In this paper, we use a key frame extraction technique based on spatio-
temporal slices. Based on the feature analysis of the spatio-temporal slice texture, the motion state
of the image acquisition device is reflected as the tilt change of the spatio-temporal slice texture, and
then the key frames that can accurately describe the motion state of the image acquisition device are
determined by measuring the pixel proximity of the adjacent spatio-temporal slices and by using the
nearest pixel matching method.

For an image dataset containing frames, the horizontal spatial-temporal slice is a combination of one
row of pixels continuously extracted at a fixed coordinate, where the horizontal slice extracted from the
ith frame can be expressed as:

hi = (Pi(1, yk), · · · Pi(x, yk), · · · Pi(m, yk)) (0 ⩽ i ⩽ N, 0 ⩽ k ⩽ n), (3.1)

where (x, y) denotes the image dimension, the size of each frame is m× n, and Pi(x, yk) denotes the pixel
value at (x, yk) in the ith frame. The spatio-temporal slices extracted from the same place in each frame
are merged together in frame order to obtain a spatio-temporal slice image.

(4) Local image enhancement
Euler’s algorithm amplifies brightness variations instead of magnifying motion. This complex

algorithm consists of four steps: spatial filtering, temporal filtering, amplification, and reconstruction.
Spatial filtering involves creating a Laplacian or Gaussian pyramid for each frame in the input video.
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Each level of the pyramid has different spatial frequencies and signal-to-noise ratios, with higher
frequencies and ratios decreasing as you go down the pyramid. Spatial decomposition is important
because, beyond a certain threshold of high spatial frequency, substituting motion with brightness
changes becomes inaccurate. Therefore, the amplification coefficient for the high spatial frequency
level is relatively small. Temporal filtering applies a Fourier transform to the frequency domain of a
specific fixed pixel, highlighting brightness fluctuations over time and generating the input signal. Only
the frequency band that requires amplification is retained in the frequency domain, while other bands
are reduced to zero through band-pass filtering. Amplification is then performed at each level of the
pyramid, with the amplification coefficient varying depending on the spatial frequency. The amplified
portion is superimposed onto the section before the time-domain filtering. Finally, the pyramid is
reconstructed, resulting in the final amplified video.

The mathematical principle of Euler’s video magnification algorithm is as follows: Let I(x, t) denote
the brightness of the pixel at the position at x and time at t and δ(t) denotes the displacement of the
object and the magnification factor. The following equation can be obtained.{

I(x, 0) = f (x),
I(x, t) = f (x + δ(t)).

(3.2)

The following amplification function can be obtained by bringing the amplification factor α into the
above Eq (3.3).

Î(x, t) = f (x + (1 + α)δ(t)). (3.3)

Expanding I(x, t) with the first-order Taylor’s formula gives.

I(x, t) ≈ f (x) + δ(t)
∂ f (x)
∂x
. (3.4)

The Taylor series expansion is not applicable for high spatial frequencies, which is obtained after
time domain filtering.

B(x, t) = δ(t)
∂ f (x)
∂x
. (3.5)

It is obtained after zooming and superimposition:

Ĩ(x, t) = f (x) + (1 + α)δ(t)
∂ f (x)
∂x
. (3.6)

It is also obtained from the first order Taylor series expansion:

Ĩ(x, t) = f (x + (1 + α)δ(t)) = Î(x, t). (3.7)

Represented as a simple one-dimensional function as shown in Figure 2, the luminance varies in a
cosine fashion over the null domain. The meaning represented by each different colored line is given in
the figure.
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Figure 2. One-dimensional functional representation of the Euler amplification function.

The bottom side of the right triangle in the figure represents the motion δ(t), the vertical side
represents B(x, t), and the hypotenuse represents the gradient ∂ f (x)/∂x. The intended amplification
motion is δ(t), but what we are actually amplifying is B(x, t) because there is such a relationship between
the two, as B(x, t) ≈ δ(t)∂ f (x)/∂x allows this approximate amplification to hold.

(5) Optical flow feature extraction
The optical flow method, specifically the total variation (TVL1) optical flow method, is utilized

for micro-expression motion feature extraction due to the inherent complexity of micro-expressions.
This method helps to improve the signal-to-noise ratio of the original dataset after performing feature
extraction.

3.3. Multi-scale 3D-ResNet50 fusion classification network

3.3.1. Overall network framework

The main purpose of the multi-scale 3D-ResNet50 fusion classification network is to perform further
feature extraction on the optical flow feature maps. The recognition process of micro-expressions has
the correlation continuity of different feature maps in addition to analyzing the spatial features of a
single feature map. In this paper, the 3D-ResNet50 network, used as the recognition backbone, has
an extra-temporal dimension compared to the general ResNet50 network. The input of the network is
134 × 134 × 16, 134 × 134 is the feature map’s spatial dimension, and 16 is the temporal feature of
the feature map. The network is divided into 5 blocks; the 1st block is a 3 × 7 × 7 convolutional layer,
and the number of convolutional layers in the 2nd to 5th blocks is 6, 8, 12, and 6, respectively, where
every 2 convolutional layers form a residual structure. The residual structure can effectively prevent the
deep network model from gradient vanishing and gradient explosion phenomenon, which improves the
performance of the network to some extent. In this paper, the temporal and spatial attention mechanism
is added after the 1st block of this network to improve the network’s attention to the temporal dimension
and spatial dimension of micro-expression movement; filters of different sizes (RC1, RC2, RC3) are
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added after the 2nd, 3rd, and 4th blocks of the network to extract spatial multi-scale features, which
constitutes a multi-scale feature extraction network; and, finally, in order to prevent temporal dispersion,
the results obtained from Block2, Block3, Block4, and Block5 are fused with the results of the upper
layer after back-convolution to form a multi-scale constitutive time fusion network. The results of each
layer are outputted separately and the discriminative network is used to decide the best output. The
network structure is shown in Figure 3.

Figure 3. Multi-scale 3D-ResNet50 fusion classification network.

3.3.2. Multi-scale extraction module

In this study, additional multi-scale extraction modules are integrated into the 2nd, 3rd, and 4th
blocks of the 3D-ResNet50 model. These modules consist of convolutional kernels of varying sizes,
as shown in Figures 4, 5, and 6. Three unique multi-scale filters, denoted as RC1, RC2, and RC3,
are designed in this paper. It is worth noting that as the depth increases, the complexity of the filter’s
structure also increases to effectively capture smaller features.

As shown in Figure 4, RC1 has 4 branches. The first branch consists of a 1 × 1 × 1 convolutional
layer for extracting smaller-sized features. The second branch includes a 1 × 1 × 1 convolutional layer
and a 3× 3× 3 convolutional layer. The 1× 1× 1 convolutional layer downscales the feature maps, while
the 3 × 3 × 3 convolutional layer extracts larger-sized features. The third branch is similar to the first
branch but with a double-layer substitution. Instead of using a single 5 × 5 × 5 convolutional layer, two
stacked 3 × 3 × 3 convolutional layers are used. This not only reduces computation but also increases
the depth of convolution. The fourth branch integrates global spatial information using a global average
pooling layer.

Mathematical Biosciences and Engineering Volume 21, Issue 4, 5007–5031.
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Figure 4. Multi-scale RC1 module.

Finally, the multi-scale features are obtained by adaptive weighted feature fusion of the feature maps
from the four branches, as defined by Eq (3.8).

K = α • X1 + β • X2 + γ • X3 + δ • X4, (3.8)

where K denotes the fusion feature map, α, β, γ, δ denote the feature weights of the four branches, and
the weights are updated by network adaptive learning. X1, X2, X3, and X4 denote the output features of
the four branches.

As shown in Figure 5, RC2 has 4 branches. Two branches use larger convolution kernels, while
the other two keep the 1 × 1 × 1 convolution kernel and global average pooling layer unchanged to
extract smaller features and integrate global spatial information. The third branch selects a 7 × 7 × 7
convolution kernel with a larger size. To reduce the amount of computation, we use the strategy of
depth-separable convolution by replacing the original 7 × 7 × 7 convolution with 1 × 1 × 7, 1 × 7 × 1,
and 7 × 1 × 1 convolution, through which the amount of computation can reduce the computation to
1/3 of the original without affecting the accuracy. RC2 uses a larger convolution kernel at a deeper
level, which pays more attention to the overall feature layout, and the multi-scale idea of the model is
also more prominent. The last branch takes the idea of using double layer replacement by replacing
the 9 × 9 × 9 convolutional kernel with two 1 × 1 × 7, 1 × 7 × 1, and 7 × 1 × 1 convolutional stacks to
capture larger size features.
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Figure 5. Multi-scale RC2 module.

Finally, the final multi-scale feature map is obtained by adaptively weighted feature fusion of the
feature maps of the four branches, according to Eq (3.8) above.

As shown in Figure 6, RC3 also has 4 branches, but it is more complicated; the first branch is a
large-size, different-direction multi-scale convolutional branch. It undergoes a 1 × 1 × 1 convolutional
kernel for dimensionality reduction and then passes through depth-separable convolutional layers of
1 × 1 × 3, 1 × 3 × 1, and 3 × 1 × 1. The result obtained from this branch is then subjected to transverse
convolution (1 × 1 × 3), longitudinal convolution (1 × 3 × 1), and radial convolution (3 × 1 × 1) for
feature subdivision. The obtained feature maps in different directions are outputted by feature fusion. The
second branch is a smaller-size, different-direction multi-scale convolutional branch. It is first downscaled
by a 1 × 1 × 1 convolution kernel and then directly downscaled by horizontal convolution (1 × 1 × 3),
vertical convolution (1 × 3 × 1), and radial convolution (3 × 1 × 1) for feature subdivision. The obtained
feature maps in different directions are subjected to feature fusion for output. The 3rd and 4th branches
are the same as RC1 and RC2, consisting of a 1 × 1 × 1 point-by-point convolution layer and a global
average pooling layer.
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Figure 6. Multi-scale RC3 module.

Finally, the feature maps of 8 out of the 4 branches are adaptively weighted according to Eq (3.9) for
feature fusion to obtain multi-scale features. The feature maps in branch 1 and branch 2 are realized by
the padding operation to achieve equal size with the output feature maps of other branches.

K = α • X1 + β • X2 + γ • X3 + δ • X4 + ε • X5 + φ • X6 + ϕ • X7 + ∂ • X8, (3.9)

where K denotes the fusion feature map, α, β, γ, δ, ε, φ, ϕ, ∂ denotes the feature weights of the 8 outputs
in the 4 branches, and the weights are updated by adaptive learning of the network. X1, X2, X3, X4, X5,
X6, X7, and X8 denote the 8 output feature maps in the 4 branches.

The standard for recognizing micro-expressions involves not only detecting changes in individual
facial features such as the mouth, eyes, and nose, but also considering the overall change in the person’s
expression. This combination of local and overall features is crucial. The use of different sizes of
convolution kernels, such as 1× 1× 1 and 5× 5× 5 compared to the standard 3× 3× 3 kernel, allows for
a more comprehensive extraction of features, resulting in a richer feature map. Meanwhile, at the layer
of RC2, as the network deepens, the size of the feature map decreases, and a 9× 9× 9 kernel is sufficient
to capture most facial features. This layer also incorporates feature extraction by linking the mouth and
nose or the nose and eyes, along with global average pooling for integrated analysis. Multiple layers are
used in the final output because some layers can already make reasonable predictions for classification.
The final layer, RC3, uses a 5 × 5 × 5 convolution kernel to extract features in all directions, combined
with global features, enabling accurate micro-expression classification.
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3.3.3. Multi-scale temporal feature fusion network

In this paper, a multi-scale temporal feature fusion network is devised using the outputs of various
blocks of the 3D-ResNet50. These features are combined across different scenes. The outputs of
the 2nd, 3rd, 4th, and 5th blocks are denoted as X2, X3, X4, and X5. Among these, X5 is chosen as
the first preselected output, and its size is adjusted to match that of X4 through inverse convolution.
This adjusted X5 is then used as the second preselected output through attentional feature fusion.
Similarly, X4 is fused with X3 through attentional feature fusion after inverse convolution, resulting
in the third preselected output. The fourth preselected output is obtained by fusing X3 after inverse
convolution with X2 through attentional fusion. These four preselected outputs form the multi-scale
temporal feature fusion network. Finally, these outputs are fed into the final discriminative network
to identify the optimal solution. The fusion method employed here is the attention feature fusion
mechanism (AFFA), which will be elaborated upon in the subsequent sections.

The attention feature fusion module incorporates the channel attention mechanism (CAM) by utilizing
two branches with varying scales to extract channel attention weights. One of the branches employs
global average pooling to extract the attention of the global average feature, as computed in Eq (3.10).

L(X) = B( f 1×1×1(δ(B( f 1×1×1(AvgPool(X)))))), (3.10)

where f 1×1×1 point-by-point convolution reduces the number of channels of the input feature X to the
original 1/r, B denotes the BachNorm layer, δ denotes the Relu activation function; the number of
channels is restored to the original value by point-by-point convolution in the second layer, and r denotes
the channel scaling ratio.

Another branch uses global max pooling to extract the attention of the global maximal features, also
through 2-layer point-wise conv for channel attention scaling. Finally, the two are added together to
calculate the weights through the Sigmoid function and multiplied with the original X to get the final X′,
which constitutes the final attention feature network that is structured as shown in Figure 7 below.

Figure 7. Attention feature network.

In this paper, two attentional feature networks are used to combine into an attentional feature fusion
mechanism AFFA. One AFFA corresponds to 2 fusion operations, and the fusion operation is computed
as shown in Eq (3.11).

Z = CAM(X + Y) × X + (1 −CAM(X + Y)) × Y, (3.11)
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where X and Y denote the feature maps in different scenarios, corresponding to the outputs of different
block blocks in the multi-scale 3DResNet50 network, respectively. The final result of Z is the output after
two fusion operations. The structure of the attention feature fusion mechanism is shown in Figure 8.

Figure 8. Mechanisms for fusion of attentional features.

By employing a multi-scale temporal feature fusion network, the model integrates the outputs of
the 5th block with the outputs of the 4th block. Similarly, it fuses the outputs of the 4th block with the
outputs of the 3rd block, and the outputs of the 3rd block with the outputs of the 2nd block. This fusion
process results in three temporal fusion outputs. Additionally, the outputs of the 5th block, obtained
through the modeling routine, contribute to a total of four outputs, which are subsequently fed into the
final discriminative network.

3.4. Discriminant networks

The primary objective of the discriminative output network is to determine the most optimal solution
among the four obtained results. The multi-scale time fusion network generates four 5-dimensional
tensors, each dimension representing batch size, channel, depth, height, and width. These tensors cannot
be directly compared to identify the optimal solution. Therefore, it is necessary to pass the four tensors
through two fully connected layers to obtain probability distribution vectors. The SoftMax function is
then applied to map these vectors to the range [0 − 1]. Finally, the cross-entropy loss function is utilized
to calculate the loss value for each of the four results.

Figure 9. Discriminant network.
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4. Experiments

4.1. Dataset

In this study, we utilize the SMIC dataset, SAMM dataset, and the CASME II dataset for conducting
our experiments. The SMIC dataset is constructed using a high frame rate camera and includes a subset of
hyperspectral (HS) data. It consists of a total of 164 micro-expression video segments, which are further
divided into three categories: negative, surprise, and positive. The negative category comprises 70 video
segments, while the surprise category contains 43 segments. The positive category, on the other hand,
encompasses 51 video segments. The SAMM dataset consists of 159 micro-expression videos with 32
participants and is categorized into 8 classes: happiness contains 26 videos, fear contains 8 videos, surprise
contains 15 videos, anger contains 57 videos, disgust contains 9 videos, sadness contains 6 videos, contempt
contains 12 videos, and other contains 26 videos. The happiness category is categorized as positive in this
paper’s experiment. The angry, fear, disgust, sadness and contempt categories are uniformly classified as
negative categories. The surprise category is categorized as surprise. The other category is categorized
as the other category. In contrast, the CASME II dataset consists of 246 micro-expression video
segments, which are categorized into five distinct categories: happiness, surprise, disgust, repression,
and others. The happiness category includes 32 video segments, whereas the surprise and disgust
categories comprise 25 and 63 segments, respectively. The repression category consists of 27 segments,
and the other category contains 99 video segments. Notably, in our experiment, the happiness category
is classified as positive, the disgust category as negative, and the surprise category is labeled as surprise.
Furthermore, the repression and other categories are categorized as other.

4.2. Experimental setup

The testing environment for this experiment is Windows 11 (a 64-bit operating system), AMD Ryzen
7-5800H 3060 @ 1.90 GHz, and 16 GB of memory. Pytorch was utilized to construct the model in this
study, with the programming language being Python 3.6. The initial learning rate was set to 0.00001,
the training epoch was set to 100, and the optimizer employed was Adam. The loss function used
was cross-entropy loss. The evaluation of the experimental results was performed with accuracy. Let
N represent the total number of samples. Accuracy is determined by two values: true positives (TP),
which represents the number of dataset labels that are true and the model’s recognition results that are
also true, and true negatives (TN), which represents the number of dataset labels that are false and the
model’s recognition results that are also false. By obtaining these four values, the accuracy rate of the
experimental model can be calculated using Eq (4.1).

Accuracy =
T P + T N

N
, (4.1)

The initial precision and recall are calculated based on TP, false negatives (FN), and false positives (FP)
as shown in Eqs (4.2) and (4.3), respectively:

Pr ecision =
T P

T P + FP
, (4.2)

Recall =
T P

T P + FN
. (4.3)
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The value of F1 is calculated based on precision and recall as shown in Eq (4.4):

F1 =
2 × Pr ecision × Recall

Pr ecision + Recall
. (4.4)

Finally, the final results need to be validated. This paper adopts the leave-one-out cross validation
method to prevent bias, using only one as the test set each time and all the rest as the training set. The
formula is shown in Eq (4.5), discussing the impact of each improvement point on the experiments
in this paper, respectively, and repeating to complete all the training. After that, the average of the
experimental accuracy is calculated and, finally, we compare the method of this paper with the existing
mainstream methods, including traditional methods and deep learning methods.

1
N

N∑
n=1

en =
1
N

N∑
n=1

err
(
g−n (xn), yn

)
, (4.5)

where N represents the total number of samples. n = 1 denotes the sum of all samples from the 1st
sample to the nth sample. en denotes the error term for the nth sample. g−n (xn) denotes the model
prediction for the nth sample.

4.3. Experimental evaluation

4.3.1. Results of the experiment

Table 1 shows the results obtained from the experiments of the proposed method in this paper with
various methods on the publicly available datasets SMIC, SAMM, and CASME II. These include
LBP-based methods, optical flow-based methods, and deep learning-based methods. All the compared
methods run the relevant experiments in the same environment.

Table 1. Comparison results of SMIC, SAMM, and CASME II datasets.

Method
SMIC SAMM CASME II

Accuracy% F1 Accuracy% F1 Accuracy% F1

LBP-TOP 54.44 0.567 46.22 0.488 65.09 0.674
STCLQP 57.90 0.591 54.65 0.515 72.63 0.708
DisLBP-STIP 59.94 0.611 60.2 0.619 78.81 0.714
LGCcon 61.16 0.60 62.77 0.608 77.4 0.737
Bi-WOOF 62.56 0.564 61.88 0.583 78.46 0.709
C3D 61.28 0.610 73.71 0.692 69.71 0.711
OFF-ApexNet 71.79 0.712 59.66 0.566 87.69 0.822
DINet 68.66 0.644 75.29 0.739 78.43 0.763
CapsuleNet 65.06 0.643 68.3 0.644 70.18 0.706
RCN 70.65 0.711 70.2 0.691 80.39 0.826
SLSTT 72.40 0.707 76.5 0.683 90.12 0.885
Our 74.6 0.751 84.77 0.793 91.35 0.889
Note:Bold font is the best value for each column.
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As can be seen from Table 1, the micro-expression recognition method based on the multi-scale 3D
residual network architecture proposed in this paper shows significant competitive advantages on
different benchmark datasets. Specifically, on the SMIC dataset, the proposed method improves the
recognition accuracy by about 2.81% compared to the state of the art OFF-ApexNet model and also
improves the accuracy by 5.94% compared to the DINet model. This strongly verifies the critical
role of the spatial and temporal multi-scale fusion strategy that we adopt and the design of the 3D-
ResNet backbone network in improving the micro-expression recognition performance. Comparing with
traditional methods such as LBP-TOP and LBP-SIP, the limitations of their simple structure and under-
utilization of spatio-temporal information lead to a bottleneck in improving recognition accuracy. In
contrast, in the SMIC dataset, the method in this paper has a significant performance leap over LBP-TOP,
with an accuracy improvement of about 18.16%. On the more complex and demanding SAMM dataset,
the method in this paper shows excellent generalization ability and adaptability, with a recognition
accuracy as high as 84.77%, which is significantly better than that of deep learning competitors such as
Bi-WOOF, CapsuleNet, etc., and further highlights the advantages of the method in dealing with difficult
micro-expression recognition scenarios. When applied to the better-quality CASME II dataset, the
micro-expression recognition method proposed in this paper not only maintains its leading position, but
also achieves an accuracy improvement of about 21.64% in comparison with deep learning benchmark
algorithms such as convolutional 3D(C3D). This empirical result strongly proves that the method in
this study has excellent accuracy and robustness in processing high-quality micro-expression data,
thus providing a more scientific and effective solution to achieve the high-precision micro-expression
recognition task.

4.3.2. Analysis of the confusion matrix

The classification performance of the micro-expression recognition method proposed in this paper
on three datasets, SMIC, SAMM, and CASME II, is visually demonstrated by the confusion matrix, as
shown in Figure 10. From the confusion matrix of the SMIC dataset in Figure 10(a), it is observed that
the algorithm has the highest recognition accuracy for the negative category, while the positive category
has a relatively low recognition accuracy. This phenomenon can be attributed to the uneven distribution
of the number of samples for each category in the dataset. In the SMIC dataset, the proportion of
samples in the negative category reaches 42.7%, which is close to half of the total, so the recognition
performance under this category is relatively good. Figure 10(b) demonstrates the performance of the
algorithm on the SAMM dataset, which also presents the highest recognition accuracy for the negative
category, which is closely related to the phenomenon that the sample size of the negative category
occupies a high proportion in this dataset. In the SAMM dataset, the sample share of the negative
category is further elevated, leading to a more unbalanced recognition result. Figure 10(c) exhibits the
performance of the algorithm on the CASME II dataset, and we can see that the prediction accuracy
of the OTHER category reaches 96%, which is the highest among all categories. This remarkable
recognition effect also stems from the unbalanced nature of category distribution within the dataset. In
the CASME II dataset, the number of samples in the OTHER category occupies 51.2% of the dataset.
The model’s ability to learn and recognize this category is optimized to the greatest extent possible
during the training and testing process, thus achieving high prediction accuracy. The differences in
classification performance exhibited by this paper’s method on different datasets have a direct correlation
with the distribution of the number of samples in each category within the dataset, especially in the
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category with a larger proportion of samples. The micro-expression recognition method proposed in
this study demonstrates better recognition efficacy.

(a) Confusion matrix on the SMIC dataset

(b) Confusion matrix on the SAMM dataset (continued)

Continued on next page
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(c) Confusion matrix on the CASME II dataset

Figure 10. Confusion matrix results on different datasets.

4.3.3. Analysis of ablation experiments

To demonstrate the effectiveness of the network model proposed in this paper in enhancing micro-
expression classification, a series of ablation experiments were conducted. These experiments involved
incorporating various enhancements into the basic 3D-ResNet network, including the optical flow
method, attention mechanism, spatial multi-scale, and temporal multi-scale discriminative networks.
The experiments were then performed on the SMIC, SAMM, and CASME II datasets.

By analyzing the experimental results in Figure 11, we can clearly see that the optical flow method and
the temporal multi-scale module play a decisive role in improving the performance of micro-expression
recognition. The optical flow method, as a key technology for dynamic visual information processing,
has demonstrated excellent ability to capture extremely subtle facial motion changes. Whether on the
SMIC, CASME II, or SAMM datasets, the motion features extracted using the optical flow method
brought about a 4% or so accuracy improvement, and this remarkable effect fully verifies the advantages
of the optical flow method in capturing and analyzing dynamic features, which is crucial for achieving
high-precision micro-expression recognition. On the other hand, the introduced temporal multi-scale
module also plays a key role in optimizing the model’s performance. This module not only strengthens
the model’s ability to integrate contextual information from different time scales, but also takes full
advantage of the deep neural network structure. Experimental results on three benchmark datasets show
that the recognition accuracy is improved by 3.08% (SMIC), 3.7% (CASME II), and 1.86% (SAMM)
with the addition of the temporal multi-scale module, which is strong evidence that the temporal
multi-scale information greatly liberates the model’s performance in providing multiple possible outputs
and selecting the optimal solution. In addition, the attentional mechanism and the spatial multi-scale
module likewise played an active role in this study. The attention mechanism enables the model to
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focus more on the specific time nodes at which micro-expressions occur and their associated key facial
regions (e.g., mouth, eyes, nose, etc.), thus improving the model’s accuracy in the recognition task.
The spatial multi-scale module, on the other hand, effectively strengthens the connection between local
features and the overall scene by giving the model multiple sizes of receptive fields, further optimizing
micro-expression recognition. Taken together, these modules collectively drive the performance of this
paper’s method in the micro-expression recognition task.

Figure 11. Experimental results of ablation experiment.

5. Conclusions

In this study, we propose a micro-expression recognition algorithm based on a multi-scale 3D residual
CNN. Current mainstream micro-expression recognition algorithms such as MERANet, Transformers,
and Dual-ATME have made substantial progress in micro-expression micro-feature detection through
various optimization methods. Although the core improvement strategies of these algorithms generally
tend to be how to more fully mine and extract features with significant distinguishing ability and have
already improved the recognition rate to a certain extent, it is worth noting that an efficient recognition
algorithm should not only be reflected in the powerful feature extraction function but also that the
in-depth understanding and effective utilization of the acquired features are also crucial.

The algorithm presented herein builds upon existing research and adopts the deep 3D-ResNet50 as
the foundational network model, with preprocessed micro-expression optical flow feature maps serving
as input data. To bolster the model’s capacity for expressive feature representation, we integrate a spatial
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multi-scale convolution module along with an attention-driven feature module. This integration enables
the system to glean valuable information from various hierarchical levels and dimensions. Furthermore,
this research introduces an innovative multi-scale temporal feature fusion mechanism that seamlessly
concatenates global contextual information with local fine-grained details, thereby enhancing the model’s
contextual awareness of micro-expressions. Ultimately, the algorithm employs a hierarchical output
mechanism complemented by a discriminative network to pinpoint the most discriminant recognition
results. Experimental evaluations show that our algorithm achieves remarkable recognition accuracies
of 74.6, 84.77, and 91.35% on the SMIC, SAMM, and CASME II datasets, respectively, outperforming
other mainstream approaches significantly. These outcomes validate the effectiveness of the proposed
method in extracting subtle micro-expression features and improving recognition performance, thereby
providing a rigorous academic reference for high-precision micro-expression recognition studies.
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