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Abstract: This study developed a deterministic transmission model for the coronavirus disease
of 2019 (COVID-19), considering various factors such as vaccination, awareness, quarantine, and
treatment resource limitations for infected individuals in quarantine facilities. The proposed model
comprised five compartments: susceptible, vaccinated, quarantined, infected, and recovery. It also
considered awareness and limited resources by using a saturated function. Dynamic analyses, including
equilibrium points, control reproduction numbers, and bifurcation analyses, were conducted in this
research, employing analytics to derive insights. Our results indicated the possibility of an endemic
equilibrium even if the reproduction number for control was less than one. Using incidence data
from West Java, Indonesia, we estimated our model parameter values to calibrate them with the real
situation in the field. Elasticity analysis highlighted the crucial role of contact restrictions in reducing
the spread of COVID-19, especially when combined with community awareness. This emphasized the
analytics-driven nature of our approach. We transformed our model into an optimal control framework
due to budget constraints. Leveraging Pontriagin’s maximum principle, we meticulously formulated
and solved our optimal control problem using the forward-backward sweep method. Our experiments
underscored the pivotal role of vaccination in infection containment. Vaccination effectively reduces
the risk of infection among vaccinated individuals, leading to a lower overall infection rate. However,
combining vaccination and quarantine measures yields even more promising results than vaccination
alone. A second crucial finding emphasized the need for early intervention during outbreaks rather
than delayed responses. Early interventions significantly reduce the number of preventable infections,
underscoring their importance.
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1. Introduction

The coronavirus disease of 2019 (COVID-19) is a disease caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) virus and was declared a pandemic by The World Health Organization (WHO) on
March 11, 2020 [1]. Symptoms of COVID-19 include fever, cough, shortness of breath, fatigue, headache,
nausea, vomiting, sore throat, and diarrhea. These symptoms typically appear about two to 14 days
after the infection [2]. As of July 5, 2023, a total of 6,811,818 people in Indonesia have been reported
infected with this virus, and 161,867 people have died from the infection [3]. Even though Indonesia
has transitioned from the pandemic phase to the endemic phase of COVID-19 [4], it is important to note
that the symptoms of COVID-19 can be exacerbated by the presence of comorbidities or underlying
health conditions [5], and there are still reported cases of mortality due to COVID-19 [6]. Therefore, it
remains crucial to continue practicing preventive measures against COVID-19.

Since the advent of COVID-19, which began affecting various parts of the world in late 2019, numerous
scientific approaches have been implemented to comprehend the spread and control of the virus. These
approaches encompass medical and public health [7,8] and social [9,10], mathematical [11–15], and many
other perspectives. In the field of mathematics, the approaches employed by the authors are quite diverse.
These range from ordinary differential equations (ODEs) [12–16] to fractional differential equations [11,17,18],
partial differential equations [19, 20], stochastic models [21, 22], and the utilization of big data analysis
approaches [23,24].

Mathematical modeling is a crucial tool for examining and understanding the dynamics of COVID-19
transmission, particularly in the context of specific interventions. The most popular intervention in the
early spread of COVID-19 is the implementation of social distancing. Some authors have introduced their
mathematical model to analyze the impact of social distancing on controlling COVID-19. Aldila et al. [25]
developed a model to assess the impact of social distancing policies in the city of Jakarta, Indonesia. They
found that the intervention can reduce the spread of COVID-19, but the outbreak of COVID-19 will arise
soon when social distancing is relaxed. Another model introduced by Gevertz et al. [26] in their paper
considers nonsocially distant individuals. They found that implementing relaxation policies at regular
intervals could effectively reduce the peak infectious load. However, it is crucial to note that this schedule
is highly sensitive to both parameter values and the frequency of the schedule. Recently, Arik et al. [27]
used a fractional-order differential equation to analyze the impact of the environment and social distancing
on the spread of COVID-19.

Another intervention that many authors considered in their model is the vaccination strategy [11,13–15].
Saharan and Tee [28] used a simple susceptible-exposed-infectious-recovered (SEIR) model to analyze
the effectiveness of a vaccine in controlling the spread of COVID-19 in Malaysia and Thailand. They
used the Holt-Winters method to forecast their model dynamics. A fractional-order model was introduced
by the authors in [29] to examine the impact of vaccines on the spread of COVID-19. A diffusion
framework was used in their model to analyze the spatial spread of COVID-19. They found from their
numerical experiments that it is imperative to implement strategic measures to ensure the timely and
efficient distribution of vaccines. A mathematical model was introduced by the author in [30] to analyze
the optimal allocation of COVID-19 vaccines in the Philippines. Using their model and data from the
Philippines, they found that it is crucial to prioritize the primary vaccination series for the pediatric
population (aged 5 to 11) within the first three months. Additionally, it is advisable to administer initial
booster shots to individuals aged 12 and older during this timeframe. Please see [12, 31–33] for more
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examples of the implementation of a mathematical model to assess the impact of vaccines on the spread
of COVID-19.

Other models aim to demonstrate the significance of quarantine in suppressing the spread of COVID-
19 [34–38]. These models emphasize the complementary role of quarantine, alongside vaccination,
in effectively mitigating the transmission of the virus. Authors in [34, 35] have highlighted that while
quarantine alone can reduce the spread of COVID-19 in the long-term, it cannot completely eradicate
the virus. Nevertheless, the quarantine program can be combined with other initiatives, such as
vaccination [36, 37] and interventions to enhance population awareness [38].

Based on this explanation, we can deduce that the long-term elimination of COVID-19 cannot be
accomplished solely through vaccination or quarantine programs when executed in isolation from other
factors. An essential element that can enhance the effectiveness of both vaccination and quarantine
efforts is heightened public awareness. Consequently, certain models attempted to underscore the role
of public awareness in the spread of COVID-19 [38–41]. Collectively, these models highlight that an
increase in public awareness can effectively control the spread of COVID-19.

Hospital care and capacity play a crucial role in controlling COVID-19. Adequate hospital resources,
such as beds, ventilators, medical staff, and equipment, are essential for managing and treating severe
cases of COVID-19. Hospitals provide care for individuals with more severe symptoms, and having
sufficient capacity is crucial to ensuring that everyone who needs medical attention can receive it
promptly. Adequate and timely medical treatment provided in hospitals plays a crucial role in reducing
the impact and transmission of diseases, as evidenced in countries such as the USA, Brazil, India [42]
and Indonesia [43]. The availability and proper utilization of resources, such as masks and ventilators,
also significantly contribute to the recovery of COVID-19 patients [44]. Moreover, several models
highlight that hospitalization, when combined with other interventions like vaccination, can positively
contribute to COVID-19 recovery [12]. Some models also indicate limited resources in treatment
using a saturated function, leading to the conclusion that treatment resources are an important factor in
COVID-19 recovery [45–49].

From the above explanation, it can be broadly seen that maximizing the intensity of vaccine adminis-
tration, implementing quarantine measures, enforcing social restrictions, and improving the quality of
hospitals will increase the possibility of eliminating COVID-19 from the community. However, this
comes with the consequence of the high cost associated with the required interventions. Therefore, an
optimal intervention is needed to minimize the spread of COVID-19 in the population. One approach
that can be taken is to tailor COVID-19 interventions based on field needs—in this case, depending on
time. One mathematical approach that can be used is to construct the problem as an optimal control
problem. The basic idea of this approach is to treat the intervention u as a time-dependent variable u(t).
The aim of this implementation is to minimize the number of infected individuals at the lowest possible
cost for interventions. Many authors have introduced mathematical models with optimal control for
COVID-19 interventions. The authors in [50] developed an optimal control model to analyze the impact
of virus protection on the dynamics of COVID-19. The optimal control model for how COVID-19
spread, considering lockdown measures and asymptomatic cases, is discussed in [51]. They found that
implementing a lockdown is essential in the early stages of an outbreak. On the other hand, combining
vaccination and treatment is effective in controlling and preventing the spread of COVID-19. A more
complex model, introduced by the authors in [52], accommodates the low-high-risk population and
three types of interventions, namely isolation, detection, and treatment. Their parameter values were
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estimated using infection incidence data from Shanghai (March–April 2022). They found that when
the budget is limited, implementing isolation and detection is more effective. On the other hand, if
the budget is sufficient, implementing treatment alone is more effective compared to other possible
scenarios. For more examples of optimal strategies for COVID-19 control, refer to [53, 54].

From the above explanation, we understand that although many references discuss the implementation
of vaccination and quarantine as strategies to control COVID-19, there is still a lack of papers that
consider the combined impact of population awareness on the effectiveness of these interventions.
Therefore, the objective of this paper is to develop a deterministic model that incorporates vaccination
and quarantine compartments while also considering the effects of saturation functions that represent
awareness and resource limitations. Given that individuals who have contracted COVID-19 develop
immunity to the disease for at least six months [55], this paper considers individuals with prior COVID-19
infections to be immune to the disease. An optimal control approach is also considered in our model to
assess the optimal scenario for suppressing the spread of COVID-19 with a low cost of intervention
through a combination of vaccination and quarantine.

This paper is organized as follows: The first section discusses the state of the art of the research.
In Section 2, we encompass the construction of the model, where we delve into the assumptions
employed, the differential equation system, and the transmission diagram. We engage in a comprehensive
discussion on model analysis, which includes positivity analysis and the parameterization of model
parameters in Section 3. In Section 4, we construct the nondimensionalized version of our model to
examine the COVID-19-free equilibrium points, the endemic equilibrium, local stability analysis, and
bifurcation analysis. Section 5 discusses a series of numerical experiments incorporating elasticity
analysis, sensitivity analysis, and autonomous simulation. We define our optimal control model in
Section 6. Several numerical experiments for various scenarios are conducted in this section. Lastly,
some discussion and conclusions are provided in Section 7.

2. Model construction

Before constructing the model, it is necessary to determine the assumptions or limitations of the
model. In this paper, the following assumptions are made: We assume that the total population remains
constant, there are no deaths caused by COVID-19, there is no waning immunity, and vaccination does
not provide perfect protection against infection for vaccinated individuals. We assume that a vaccinated
individual has better protection against contact with other individuals. Furthermore, we include medical
interventions to accelerate the recovery rate of infected individuals. The human population is divided
into five compartments based on their health status, namely susceptible (S ), vaccinated (V), infected (I),
quarantined (Q), and recovered (R).

The model construction process is based on the transmission diagram shown in Figure 1. The
modeling process is as follows: In our model, we incorporate the intervention of vaccination with a
specific rate denoted as u1. Under this intervention, vaccinated individuals are segregated into a separate
class, denoted as V . It is important to note that, based on many reports [12], COVID-19 vaccines do
not offer complete protection against infection. Therefore, vaccinated individuals can still potentially
contract COVID-19, albeit at a reduced rate, represented by the parameter β2. This rate is smaller than
the infection rate for susceptible individuals in the S class (β1). In several reports [56–58], it has been
found that individuals who have received vaccination tend to exhibit a heightened awareness toward
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the spread of COVID-19. This is attributed to their enhanced knowledge of the dangers of COVID-19,
whether acquired through media, social interactions, or other means. An increase in the number of
COVID-19 infections tends to heighten public awareness of the disease spread. As the number of
infected individuals rises, there is often greater media coverage, discussions, and public discourse
surrounding the disease. This increased attention can contribute to a heightened awareness among the
general population about the importance of preventive measures, the severity of the situation, and the
potential risks associated with the disease [59]. Hence, we consider that the probability of infection
should be a monotonically decreasing function of I. Hence, the infection term within the vaccinated

class is modeled by a saturated function expressed as
β2VI

1 + b1I
.

Figure 1. Transmission diagram of compartments.

Additionally, we assume that individuals who become infected can be detected at a rate denoted as
u2. Once detected, individuals receive medical treatment either in a hospital setting or are monitored
from home, which we categorize as a quarantine intervention. As a result, their recovery rate increases.
Drawing from various reports [60, 61], it has been observed that the escalating number of COVID-19
infection cases during the pandemic may disrupt the quality of hospital services. This phenomenon is
attributed, among other factors, such as hospital staff burnout and the presence of resource constraints,
as well as challenges in adaptation and mitigation. Public health authorities and healthcare providers
frequently collaborate to deploy strategic interventions aimed at effectively managing case surges and
mitigating the adverse effects on the standard of healthcare. Based on these facts, we assumed that the
recovery rate of quarantined individuals could become saturated due to the high number of individuals
in quarantine in the hospital. Therefore, we model the recovery rate of quarantined individuals as a
a saturated function γ0 +

γ1

1 + b2Q
. With this definition of the recovery function, we can see that the

recovery rate of quarantined individuals reaches its maximum when Q is relatively small (Q ≈ 0), i.e.,
γ0 + γ1. On the other hand, when the number of infected individuals is approximately large, the recovery
rate for quarantined individuals reaches its minimum level, i.e., γ0.
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Table 1. Table of Parameter in Model (2.1).

Par Interpretation Unit Interval Ref. Value Note
N Total of human popula-

tion in West Java
people 4.9 × 107 [62] 4.9 × 106 Assumed

Λh Natural birth rate
people

day
[0, µN] Assumed

4 994 000
71.85 · 365

Assumed

u1 Rate of vaccination in-
tervention

1
day

[0,1] Assumed 0.0344 Estimated

u2 Rate of quarantine inter-
vention

1
day

[0,1] Assumed 0.1540 Estimated

β1 Contact between the
susceptible population
and the infected popula-
tion

1
people · day

[
1 × 10−9,

9.7 × 10−7
] [63, 64] 1.4017 · 10−7 Estimated

µ Natural death rate
1

day

[
1

68.79×365 ,
1

77.18×365

] [65]
1

71.85 · 365
Assumed

β2 Contact between the
vaccinated population
and the infected popula-
tion

1
people · day

[
1 × 10−9,

9.7 × 10−7
] [63, 64] 8.4101 · 10−8 Estimated

γ0 Natural recovery rate
1

day

[
1

14 ,
1
7

]
[64, 66] 0.0751 Estimated

γ1 Maximum additional re-
covery rate due to quar-
antine

1
day

[
1

14 ,
1
7

]
[64, 66] 0.0476 Estimated

b1 Saturation coefficient
due to the number of
infected individuals

1
people

[
10−4, 0.0179

]
[25, 48] 0.0019 Estimated

b2 Saturation coefficient
due to the number of
vaccinated individual

1
people

[
10−4, 0.0376

]
[25, 48] 0.0224 Estimated

Based on the assumptions outlined above, the mathematical model for the spread of COVID-19 is
formulated as follows:

dS
dt
= Λh − u1S − β1S I − µS , (2.1a)

dV
dt
= u1S −

β2

1 + b1I
VI − µV, (2.1b)
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dI
dt
= β1S I +

β2

1 + b1I
VI − u2I − γ0I − µI, (2.1c)

dQ
dt
= u2I −

(
γ0 +

γ1

1 + b2Q

)
Q − µQ, (2.1d)

dR
dt
= γ0I +

(
γ0 +

γ1

1 + b2Q

)
Q − µR, (2.1e)

with the parameter description given in Table 1. Since the total population N is S + V + I + Q + R, then
we have that the dynamic of total population is given by:

dN
dt
= Λh − µ(S + V + I + Q + R) = Λh − µN.

If the total of population is approximately constant, then we can approximate the value of Λh by
assuming dN

dt = 0, which lead us to Λh = µN.

3. Preliminary analysis

3.1. Positive invariant region

In this section, a nonnegativity analysis of the solution obtained from Model (1) will be performed.

Theorem 1. Region Ω which is defined by:

Ω =

{
(S ,V, I,Q,R) ∈ R5

+|0 < S ,V, I,Q,R, S + I + V + Q + R ≤ max
{

N(0),
Λh

µ

}}
,

is positively invariant with respect to Model (2.1).

Proof. Model (2.1) can be written as follows:

dX
dt
= CX + D,

where:

X = [S ,V, I,Q,R]T , D = [Λh, 0, 0, 0, 0]T , and C =


d1 0 0 0 0
u1 d2 0 0 0
β1I d3 d4 0 0
0 0 u2 d5 0
0 0 γ0 d6 −µ


,

while d1 = −u1−µ−β1I, d2 = −
β1

1 + b1I
I−µ, d3 =

β2

1 + b1I
I, d4 = −u2−µ−γ0, d5 = −

(
γ0+

γ1

1 + b2Q
)
−µ,

and d6 = γ0 +
γ1

1 + b2Q
. Due to the nonnegative entries outside the main diagonal, matrix C is classified

as a Metzler matrix. Since D ≥ 0, then Model (2.1) possesses a positive invariant in R5
+ [67]. Hence, all

trajectories of solution of Model (2.1), which originate from an initial state in R5
+, confine forever.
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Summing up all equations in Model (2.1), we have:

dN
dt
= Λh − µN.

Then the solution is N(t) = Λh
µ
+

(
N(0) − Λh

µ

)
eµt. If N(0) = Λh

µ
, then we have N(t) = Λh

µ
for all time t. If

N(0) < Λh
µ
, then N(t) will be monotonically increasing and tends to Λh

µ
for t → ∞. On the other hand,

if N(0) > Λh
µ
, then N(t) will be monotonically decreasing and tends to Λh

µ
for t → ∞. Therefore, all

feasible solutions of the Model (2.1) enter the region Ω, implying that the region is an attracting set.

3.2. Parameter estimation

To estimate the parameters for Model (2.1), a data fitting process was conducted for the number of
COVID-19 infections in West Java, Indonesia, from July 1, 2022, to October 1, 2022. In the context
of our model, this data represents the dynamics of I(t). Our aim is to fit the dynamic output of I(t)
from our model with the available data. Mathematically, this task can be expressed as minimizing
the Euclidean distance between COVID-19 incidence data (denoted by Idata) and the solution of I(t)
from Model (2.1), using the best-fit parameters β1, β2, u1, u2, b1, b2, γ0, γ1, and the best initial conditions
S (0),V(0), I(0),Q(0),R(0). Hence, we define the following objective function:

C =

∫ T

0

(
Idata − I(t)

)2
dt, (3.1)

where T is the maximum number of existing data points. Our aim is to find the optimal parameters:

Ψ∗ =
{
β∗1, β

∗
2, u
∗
1, u
∗
2, b
∗
1, b
∗
2, γ
∗
0, γ
∗
1, S (0)∗,V(0)∗, I(0)∗,Q(0)∗,R(0)∗

}
,

such that:
C(Ψ∗) = min

Θ
C(Ψ), (3.2)

where Θ is the admissible value for the estimated parameters (fourth column of Table 1). The following
constraints need to be mentioned:

• The infection rate of vaccinated individuals (β2) is smaller than that of susceptible individuals (β1).
Hence, we have β2 < β1.
• Vaccination and quarantine is a non-stop intervention by the government. Hence, u1 > 0, u2 > 0.
• For biological interpretation purposes, we have γ0, γ1, b1, b2, and all initial conditions are positive.

We approach our parameter estimation challenge as the task of minimizing a constrained, nonlinear,
multivariable function. Specifically, our objective is to minimize C subject to the constraints imposed
by the ODE model (2.1), while ensuring that the Model parameters and initial conditions adhere to
biologically reasonable values. We use the fmincon toolbox in MATLAB to solve our problem. The
result is shown in Figure 2. The best-fit parameter is provided in Table 1 (sixth column), while the best
fit initial condition is as follows:

S (0) = 3 460 000,V(0) = 1 870 000, I(0) = 465,Q(0) = 40,R(0) = 49.

For more parameter estimation methods, readers may read [68–71] for further references.
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Figure 2. Parameter estimation result using the best-fit parameters. The black dot represents
the incidence data (Idata), the blue dot represents the model results for compartment I, and the
red dot represents the model forecasting result (I(t)) until t = 100.

From the results of parameter estimation in Table 1, we can see that the control reproduction number
is still greater than one, which indicates that the number of infected individuals (I(t)) will continue to
exist as t → ∞ (see Section 4 for further analytical results on the COVID-19 endemic equilibrium point).
We found that u1 = 0.0344 and u2 = 0.1540, which resulted in the findings shown in Figure 2. If the
control interventions were stopped (u1 = u2 = 0), then we would obtain R0 = 9.316. Any relaxation of
the control variables will increase Rc. On the other hand, if we increase the intensity of vaccination and
quarantine, then Rc can be reduced. Figure 3 shows the impact of relaxation/improvement of vaccination
and quarantine interventions on the dynamics of infected individuals I.

4. Model analysis

4.1. Nondimensionalization of the model

Let us assume the total population is constant. Hence we have:

x1 =
S
N
, x2 =

V
N
, x3 =

I
N
, x4 =

Q
N
, x5 =

R
N
,

which represents the proportion of each class to the total human population. Assuming τ = tγ0,

m =
µ

γ0
, a1 =

β1N
γ0
, a2 =

β2

γ0
, g1 =

γ1

γ0
, c1 =

b1

N
, c2 =

b2

N
, e1 =

u1

γ0
, e2 =

u2

γ0
, and reducing the susceptible

compartments, a nondimensionalized version of the Model (2.1) is obtained as follows:

dx1

dτ
= m − e1x1 − a1x1x3 − mx1,
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(a) (b)

Figure 3. Forecasting results on the dynamics of infected individuals with vaccination and
quarantine interventions, showing (a) relaxed measures and (b) improved measures.

dx2

dτ
= e1x1 −

a2

1 + c1x3
x2x3 − mx3, (4.1)

dx3

dτ
= a1x1x3 +

a2

1 + c1x3
x2x3 − e2x3 − x3 − mx3,

dx4

dτ
= e2x3 −

(
1 +

g1

1 + c2x4

)
x4 − mx4,

where x5 = 1 − x1 − x2 − x3 − x4.

4.2. COVID-19-free equilibrium and the control reproduction number

In this section, we initiate our analysis by determining the form of the COVID-19-free equilibrium,
followed by the calculation of the control reproduction number, denoted as Rc. Reproduction numbers
have been utilized by various authors in epidemiological models [11, 49] to assess the dynamic behavior
of the proposed model, including the existence and stability of equilibrium points.

Theorem 2. The COVID-19-free equilibrium of system (4.1) is given by:

E0 = (x†1, x
†

2, x
†

3, x
†

4) =
(

m
m + e1

,
e1

m + e1
, 0, 0

)
,

which always exists unconditionally.

Proof. The equilibrium points associated with Model (1) are obtained when the population changes

in each compartment remain constant, namely, when
dx1

dτ
= 0,

dx2

dτ
= 0,

dx3

dτ
= 0, and

dx4

dτ
= 0. As

the COVID-19-free equilibrium point represents a condition without COVID-19 in the population, we

have x†3 = 0. By direct calculation, substituting x†3 = 0 into
dx1

dt
,

dx2

dt
, and

dx4

dt
, we obtain x†1 =

m
m + e1

,

x†2 =
e1

m + e1
, and x†4 = 0. From the expressions of x†1, x

†

2, x
†

3, and x†4, it is clear that they always exist in

R4
≥0 without any existence criteria. Hence, the proof is complete.
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From the direct consequences of the expression of E0, we have the following corollary.

Corollary 1. Without the intervention of vaccination, the COVID-19-free equilibrium of system (4.1) is
given by:

E∗0 = (x†1, x
†

2, x
†

3, x
†

4) = (1, 0, 0, 0).

Theorem 3. The control reproduction number from system (4.1) is Rc =
a1m + a2e1

(e2 + 1 + m) (m + e1)
.

Proof. We use a next-generation matrix approach [72] to determine the control reproduction number of
the system (4.1). At first, we determine the Jacobian matrix of the subsystem of (4.1) that only involves
the infected compartments x3 and x4. The Jacobian matrix evaluated at E0 is given by:

J =

 a1m
m + e1

+
a2e1

(m + e1)
− e2 − 1 − m 0

e2 −1 − g1 − m

 . (4.2)

The matrix J can be written as the sum of the transmission matrix T and the transition matrix Σ, where:

T =

 a1m
m + e1

+
a2e1

(m + e1)
0

0 0

 and Σ =

[
−1 − m − e2 0

e2 −1 − g1 − m

]
.

Since the second row of matrix T consists entirely of zeros, the next-generation matrix can be derived as:

NGM = −E
′

TΣ−1E =
[ a1m + a2e1

(e2 + 1 + m) (m + e1)

]
,

where E =
[

1
0

]
and E′ is the transpose of E. Since the spectral radius of the matrix above is

given by
a1m + a2e1

(e2 + 1 + m) (m + e1)
, we can conclude that Rc =

a1m + a2e1

(e2 + 1 + m) (m + e1)
. Hence, the proof

is complete.

4.3. The existence of COVID-19 endemic equilibrium point

Theorem 4. LetR∗c beRc that satisfies k2
1−4k0k2 = 0 andK = (e2 + 1 + m)2 (m + e1)−a2e1 (e2 + 1 + m)+

a2e1 (mc1 + a2), then, system (4.1) has:
1) One endemic equilibrium if Rc > 1,
2) No endemic equilibrium for Rc < 1 if K ≥ 0,
3) No endemic equilibrium for Rc < R

∗
c < 1 if K < 0,

4) Two endemic equilibrium for R∗c ≤ Rc < 1 if K < 0.

Proof. The endemic equilibrium represents a condition in which the disease persists within the system [73],
specifically at the point (x1, x2, x3, x4) with x3 , 0. As there is no change in the system when the endemic

equilibrium point is reached, we set
dx1

dτ
= 0,

dx2

dτ
= 0,

dx3

dτ
= 0, and

dx4

dτ
= 0 with x3 , 0. By direct

calculation, we can find:

E1 = (x∗1, x
∗
2, x
∗
3, x
∗
4), (4.3)
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where x∗1 =
m

a1x∗3 + m + e1
, x∗2 =

e1m
(
c1x∗3 + 1

)(
a1x∗3 + m + e1

) (
mc1x∗3 + m + a2x∗3

) , x∗4 is the positive root of e2x∗3 −(
1 +

g1

c1x∗4 + 1

)
x∗4 − mx∗4 = 0, and x3* is taken from the positive roots of the following polynomial:

f (x∗3) = k2x∗3
2
+ k1x∗3 + k0 = 0, (4.4)

where:

k2 = −
(e2 + 1 + m) (mc1 + a2) (Rc (e2 + 1 + m) (m + e1) − a2e1)

m
,

k1 = ((e2 + 1 + m)(c1(Rc − 1)m2 − Rc(e2 + 1 + m)2(m + e1) . . .
+ (c1e1 + a2)(Rc − 1)m + Rca2e1) − a2e1(mc1 + a2)),

k0 = m (e2 + 1 + m) (m + e1) (Rc − 1) .

To analyze the existence of the endemic equilibrium, it is necessary to guarantee the existence of a
positive root in the polynomial (4.4). If the roots are positive, then x∗1, x

∗
2, and x∗4 will also be positive.

From Descartes’ rule of signs, it can be concluded that when Rc > 1, the system will have a unique
endemic equilibrium point. Furthermore, for k0 < 0, it is possible for the system to have zero or two
positive roots. Hence, further analysis is needed. Gradient analysis is conducted at Rc = 1, x3 = 0.
Using implicit derivative on polynomial (4.4), we have:

∂ f (x3)
∂Rc

|Rc=1,x3=0 =
m (e2 + 1 + m) (m + e1)

(e2 + 1 + m)2 (m + e1) − (e2 + 1 + m) a2e1 + [a2e1 (mc1 + a2)]
. (4.5)

Table 2. The maximum number of roots for x∗3 can be determined using Descartes’ rule of
signs for the equation in (4.4).

Case k2 k1 k0 Rc Change of Sign Number of Possible Roots
1 - + - Rc < 1 0 0 or 2
2 - + + Rc > 1 1 1
3 - - - Rc < 1 2 0
4 - - + Rc > 1 1 1

Hence, if K = (e2 + 1 + m)2 (m + e1) − (e2 + 1 + m) a2e1 + [a2e1 (mc1 + a2)] < 0, then we will have
a negative gradient of x3 at Rc = 1, x3 = 0. This indicates the existence of positive roots x3 for some
intervals when Rc < 1. Since f (x∗3) is a second-degree polynomial, then f (x∗3) will have a turning point
at Rc = R

∗
c, where R∗c is the value of Rc that satisfies the discriminant of f (x∗3) equal to zero, which is

k2
1 − 4k0k2 = 0. Hence, we have proved case 3 of the theorem. If Rc < R

∗
c, then we will have no positive

root (case 4 of the theorem proved). Lastly, if K ≥ 0, then we will have a positive gradient, which
confirms case 2 in the proven theorem. Furthermore, we use Descartes’ rule of signs to determine the
possible number of positive roots of the polynomial f (x3). The results are shown in Table 2. It can be
observed that f (x3) may have 0, 1, or 2 positive roots. Additionally, it is possible to have an endemic
equilibrium even when R0 < 1.
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4.4. Local stability analysis

In the previous section, we have shown that the COVID-19-free equilibrium always exists, while the
endemic equilibrium exists depending on the conditions of Rc and K . In this section, we show how the
stability of the COVID-19-free equilibrium can only be achieved if Rc < 1.

Theorem 5. For e1 , 0 and e2 , 0, the point E0 in the system (1) is locally asymptotically stable if
Rc < 1 and unstable if Rc > 1.

Proof. To demonstrate the stability of the COVID-19-free equilibrium point, we linearize system (4.1)
around the COVID-19-free equilibrium point [73]. The Jacobian matrix is formulated as follows:

Jac|DFE =



−m − e1 0 −
a1m

m + e1
0

e1 −m −
a2e1

(m + e1)
0

0 0
a1m

m + e1
− 1 +

a2e1

(m + e1)
− e2 − m 0

0 0 e2 (−m − 1) − g1


. (4.6)

The eigenvalues of the matrix above can be obtained as follows:

λ1 = −m,

λ2 = −(m + e1),
λ3 = −(m + 1 + g1),

λ4 = −
m2 − ma1 + me1 + me2 + e1e2 + m + e1 − a2e1

(m + e1)
,

= (Rc − 1) (e2 + 1 + m) .

E0 is locally asymptotically stable if all eigenvalues of matrix (4.6) have negative values. Since λ1 to λ3

are already negative and λ4 < 0 for Rc < 1, E0 is locally asymptotically stable for Rc < 1. Moreover, E0

is unstable if any eigenvalue of matrix (4.6) is positive. Therefore, E0 is unstable for Rc > 1.

4.5. Bifurcation analysis

Here, we analyze the local stability of the COVID-19 endemic equilibrium point near the condition
Rc = 1 using the Castillo-Song bifurcation theorem [74].

Theorem 6. The COVID-19 model in system (4.1) undergoes backward bifurcation at Rc = 1 if K < 0,
and forward bifurcation when K > 0.

Proof. Using the Castillo-Song theorem [74], we examine bifurcation from system (2.1), which has
already been nondimensionalized to become system (4.1). System (4.1) can be represented as follows:

f1 = m − e1x1 − a1x1x3 − mx1,

f2 = e1x1 −
a2

1 + c1x3
x2x3 − mx3,

f3 = a1x1x3 +
a2

1 + c1x3
x2x3 − e2x3 − x3 − mx3,
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f4 = e2x3 −
(
1 +

g1

1 + c2x4

)
x4 − mx4.

For Rc = 1, we take the bifurcation parameter a1 = a∗1 where a1 represents the contact rate β1. We have:

a∗1 =
(e2 + 1 + m) (m + e1) − a2e1

m
.

Furthermore, the linearization matrix around the COVID-19-free equilibrium point for a1 = a∗1 is
obtained as follows:

J =


−m − e1 0

− (e2 + 1 + m) (m + e1) + a2e1

(m + e1)
0

e1 −m −
a2e1

(m + e1)
0

0 0 0 0
0 0 e2 (−m − 1) − g1


.

Subsequently, we computed the right and left eigenvectors of the zero eigenvalues of A, denoted as
w = (w1,w2,w3,w4)T and v = (v1, v2, v3, v4), respectively, yielding the following expression:

w1 = −
((m + 1) + g1) ((e2 + 1 + m) (m + e1) − a2e1)

e2 (m + e1)2 ,

w2 = −
((e2 + 1 + m) (m + e1) + ma2) ((m + 1) + g1) e1

e2 (m + e1)2 m
,

w3 =
m + 1 + g1

e2
, w4 = w4,

v1 = 0, v2 = 0, v3 = v3, v4 = 0.

Using the theorem [74] and computing the nonzero partial derivatives of f (x) at the disease-free
equilibrium, the associated bifurcation coefficients are defined as follows:

A =

4∑
k,i,j=1

vkwiw j
∂2 fk

∂xi∂x j
(0, 0),

= −
2
(
(e2 + 1 + m)2 (m + e1) − a2e1 (e2 + 1 + m) + a2e1 (mc1 + a2)

)
((m + 1) + g1)2

(m + e1) m e2
2

,

= −
2K ((m + 1) + g1)2

(m + e1) m e2
2

, (4.7)

B =

4∑
k,i=1

vkwi
∂2 fk

∂xi∂a1
∗
(0, 0),

=
m (m + 1 + g1)

(m + e1) e2
. (4.8)

Since B > 0, according to [74], backward bifurcation occurs whenA > 0 ⇐⇒ K < 0, and forward
bifurcation occurs whenA < 0 ⇐⇒ K > 0. Hence, the theorem is proved.
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5. Numerical experiments

In this section, we present the results of numerical experiments conducted on model (2.1) regarding
the elasticity analysis, bifurcation diagram, and autonomous simulations. The control reproduction
number of the original Model in (2.1) is given by:

Rc =
Λ (µ β1 + β2u1)

(µ + u1) µ (u2 + γ0 + µ)
.

Hence, without any intervention, the basic reproduction number of the original model in (2.1) is given by:

R0 =
Λβ1

µ(µ + γ0)
.

All model parameters that have been used in this section are given in Table 1, which shows that
Rc = 1.827 > 1. Without any improvement in the control variables, COVID-19 will continue to exist in
West Java.

5.1. Elasticity analysis

At this stage, an analysis will be carried out to examine the sensitivity of the control reproduction
number (Rc) to various parameters that affect its value, as well as the relationship between these
parameters. By considering different values for these parameters, we can observe how the control
reproduction number of the system (2.1) varies while keeping the values of the other parameters constant.
To evaluate the sensitivity, we employ the forward sensitivity index of Rc, which is denoted by:

EσRc
=
∂Rc

∂σ
×
σ

Rc
, (5.1)

where σ is a parameter in the system (2.1).
We calculate the elasticity indices of Rc with respect to all parameter values to observe the effects

of changes in parameters on Rc. Using the formula and parameter values in Table 1, we obtained the
following results:

E
µ

Rc
=
−2 µ3β1 − ((β1 + 3 β2) u1 + β1 (u2 + γ0)) µ2 − 2 u1β2 (u1 + u2 + γ0) µ − u1

2β2 (u2 + γ0)
(µ β1 + β2u1) (µ + u1) (u2 + γ0 + µ)

= −0.99,

E
β1
Rc
=

µ β1

µ β1 + β2u1
= 0.0018, E

β2
Rc
=

β2u1

µ β1 + β2u1
= 0.998, E

u2
Rc
= −

u2

u2 + γ0 + µ
= −0.673,

E
γ0
Rc
=

γ0

u2 + γ0 + µ
= −0.326, Eγ1

Rc
= 0, Eu1

Rc
= −

u1 (β1 − β2) µ
(µ β1 + β2u1) (µ + u1)

= −0.00073,

E
b1
Rc
= 0, Eb2

Rc
= 0.

To analyze the impact of changes in vaccination intensity and quarantine measures, we recalculate the
elasticity index by adjusting the values of u1 and u2. The parameters used are the same as those shown
in Figure 3. It is evident that reducing the intensity of vaccination and quarantine increases the elasticity
of vaccine intervention while decreasing the elasticity of quarantine. Conversely, when we increase the
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intensity of vaccination and quarantine, the effectiveness of vaccination decreases while the elasticity
of quarantine increases. Additionally, we observe that the quarantine intervention is more elastic in
affecting R0 compared to vaccination. Another noteworthy point from Table 3 is that the infection
rate of vaccinated individuals is much more sensitive compared to that of non-vaccinated individuals.
Hence, it is essential to develop a high-quality vaccine that can provide maximum protection against the
COVID-19 infection.

Table 3. Changes of elasticity index of Rc with respect to u1, u2, γ0, β1, and β2 when u1 and u2

are relaxed (reduced) and when it is improved (increased).

Parameter
u1 and u2 relaxed u1 and u2 improved

25% 50% 75% 85% 50% 100% 150% 200%
u1 -0.0007 -0.0015 -0.003 -0.004 -0.00049 -0.00036 -0.00029 -0.00024
u2 -0.607 -0.507 -0.34 -0.236 -0.755 -0.804 -0.837 -0.861
γ0 -0.392 -0.492 -0.659 -0.763 -0.244 -0.195 -0.162 -0.139
β1 0.0024 0.0036 0.007 0.012 0.001 0.00092 0.00073 0.0006
β2 0.997 0.996 0.992 0.987 0.998 0.999 0.999 0.999

5.2. Bifurcation diagram and autonomous simulation

In this section, we draw the bifurcation diagram using the best-fit parameter values obtained from
the previous section. The result is presented in Figure 4, where the forward bifurcation occurs at
Rc = 1. The blue and red curves represent the equilibrium states of COVID-19-free and endemic
conditions, respectively. The solid and dotted curves represent the stable and unstable equilibrium points.
BP denotes the branching point at Rc = 1. It is clear to see that when Rc < 1, the COVID-19-free
equilibrium is stable, but it becomes unstable when it surpasses the branching point BP. At the same
time, at the branching point BP, the endemic equilibrium starts to emerge as Rc increases.

Figure 4. Forward bifurcation of system (4.1). Pi for i = 1, 2, 3, 4 is the sample point of Rc at
0.5, 3.7, 6 and 8, respectively. BP is the branching point at Rc = 1.
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To illustrate the dynamics of the Model (2.1), we use four sample points in Figure 4, denoted as
P1, P2, P3 and P4. We observe that P1 lies in the region where Rc < 1, and the autonomous simulation
is shown in Figure 5, panel (a), for the original model in the Model (2.1). It is evident that the system
tends toward a stable COVID-19-free equilibrium. On the other hand, for sample points P2, P3 and P4,
when Rc > 1, the system tends toward an endemic equilibrium. The numerical simulation results are
given in panels (b)–(d), respectively.

(a)

(b)

(c)

(d)

Figure 5. The impact of Rc(β1, β2) on the dynamics of each compartment from Model (2.1).
Panels (a)–(d) represent the sample points P1 to P4, as shown in Figure 4. Specific parameter
values used in the simulation are given in Table 4.
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Table 4. Numerical results on the stable equilibrium points of Model (2.1) depend on Rc.

Point β1 β2 Rc S V I Q R
P1 2.79 × 10−8 1.11 × 10−8 0.5 5197 4.98 × 106 0 0 0
P2 1.4 × 10−7 8.4 × 10−8 3.76 5194 3.76 × 106 203 391 1.22 × 106

P3 6.87 × 10−7 2.75 × 10−7 6 5144 1.67 × 106 550 1101 3.3 × 106

P4 9.16 × 10−7 3.66 × 10−7 8 5119 1.32 × 106 610 1223 3.6 × 106

6. Optimal control model

6.1. Optimal control characterization

Model (2.1) considers two control variables: u1, representing vaccination intervention, and u2,
representing quarantine intervention. Trivially, from our sensitivity analysis in the previous section, we
understand that larger values of u1 and u2 will yield better results for eradicating COVID-19. However,
it will come at a high cost. Hence, our main objective is to minimize the number of infected individuals,
I and Q, with the lowest possible cost of u1 and u2. To address this problem, we constructed a cost
function as follows:

J =
∫ T

0

(
ω1I + ω2Q + φ1u2

1 + φ2u2
2

)
dt, (6.1)

which represents the total cost due to the high number of infected individuals and the level of control
intensity. Note that ω1 and ω2 represent the weight parameters for I and Q, respectively. On the other
hand, φ1 and φ2 represent the weight costs for u1 and u2. Next, by applying Pontryagin’s maximum
principle [75], we obtain the Hamiltonian function as follows:

H = ω1I + ω2Q + φ1u2
1 + φ2u2

2 + λ1
dS
dt
+ λ2

dV
dt
+ λ3

dI
dt
+ λ4

dQ
dt
+ λ5

dR
dt
, (6.2)

where λ1 for i = 1, 2, 3, 4, 5 represents the adjoint variables for S ,V, I,Q, and R, respectively. Thus,
taking the partial derivatives of H with respect to each of the state variables yields the adjoint system, as
shown below:

dλ1

dt
= −

∂H
∂S
= −β1I λ3 − (−β1I − µ − u1) λ1 − u1λ2,

= β1I(λ2 − λ3) + u1(λ1 − λ2) + µλ1,

dλ2

dt
= −

∂H
∂V
= −
β2In λ3

I b1 + 1
−

(
−
β2In

I b1 + 1
− µ

)
λ2,

=
β2I

1 + b1I
(λ2 − λ3) + µλ2,

dλ3

dt
= −

∂H
∂I
= −ω1 −

(
β1S −

β2VI b1

(I b1 + 1)2 +
β2V

I b1 + 1
− u2 − γ0 − µ

)
λ3 . . .

−u2λ4 − λ5γ0 + β1Sλ1 −

(
β2VI b1

(I b1 + 1)2 −
β2V

I b1 + 1

)
λ2, (6.3)

= −ω1 + β1S (λ1 − λ3) +
β2V

1 + b1I

(
1 −

b1I
1 + b1I

)
(λ2 − λ3) + . . .
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+u2(λ3 − λ4) + γ0(λ3 − λ5) + µλ3,

dλ4

dt
= −

∂H
∂Q
= −ω2 −

(
γ1b2Q

(b2Q + 1)2 − γ0 −
γ1

b2Q + 1
− µ

)
λ4 −

(
−
γ1b2Q

(b2Q + 1)2 + γ0 +
γ1

b2Q + 1

)
λ5,

= −ω2 +
γ1

1 + b2Q

(
b2Q

1 + b2Q
− 1

)
(λ5 − λ4) + γ0(λ4 − λ5) + µλ4,

dλ5

dt
= −

∂H
∂R
= µλ5,

completed with the transversality condition λi(t = T ) = 0 for i = 1, 2, 3, 4, 5. Furthermore, the optimal
controls (u∗1, u

∗
2) are given by:

u∗1 = min
{
max

{
umin

1 ,
S (λ1 − λ2)

2φ1

}
, umax

1

}
,

u∗2 = min
{
max

{
umin

2 ,
I (λ3 − λ4)

2φ2

}
, umax

2

}
, (6.4)

where umin
i and umax

i , for i = 1, 2, represent the lower and upper bounds of u1 and u2, respectively.

6.2. Optimal control simulations

The solution of our optimal control problem in Eq (6.4) through analytical methods is unattainable
due to the high dimensionality and nonlinearity of the ordinary differential equations system for the
state variables in Model (2.1) and the adjoint variable in (6.3). Consequently, we employ a forward-
backward sweep method to solve our problem numerically [73]. Additional examples demonstrating
the implementation of this method can be found in [76–79]. The initial step involves providing an
initial guess for the control variables u1 and u2 for all t ∈ [0,T ]. By combining this guess with an initial
condition for the state variables, we solve Model (2.1) in the time interval t ∈ [0,T ] forward in time.
Subsequently, utilizing the obtained results, we solve the adjoint system in (6.3) backward in time,
subject to the transversality condition λi(T ) = 0. With the solutions for the state and adjoint variables in
hand, we update the control variables using the formula in (6.4). This iterative process is repeated until
the convergence criteria is met, with convergence defined as |Jiteration-k+1 − Jiteration-k| ≤ 10−5.

We have divided the numerical experiments in this section into three different categories for three
different purposes. The first simulation is conducted to determine the most cost-effective scenario based
on the combination of controls. The second simulation aims to assess the impact of the initial population
condition on the dynamics of control. The last simulation is conducted to evaluate the influence of the
initial basic reproduction number on the effectiveness of the COVID-19 control strategy.

6.2.1. Simulation for different strategies

In this section, we conducted a numerical experiment to address our optimal control problem,
exploring various combinations of control interventions. The first scenario involves the simultaneous
implementation of vaccination and quarantine measures to contain the spread of COVID-19. The
outcomes are presented in Figure 6. It is evident that when both of these interventions are employed
concurrently, there is a notable reduction in the number of infected individuals. The dynamics of
vaccination control necessitate an initial high rate of application during the early stages of the simulation,
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followed by a gradual decrease over time. Conversely, the quarantine intervention exhibits a decreasing
trend in response to a heightened number of infected individuals being placed under quarantine. The
total cost of intervention for this scenario is 3.51 × 106.
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Figure 6. Optimal control results when vaccination and quarantine are implemented together.
Panels (a)–(f) represent the dynamics of S , V , I, Q, I + Q and control variables, respectively.
The total infected averted with this scenario is 4.014 × 107, with a total cost for intervention
of 3.47 × 106.

The subsequent simulation aims to elucidate the population’s response when vaccination is implemented
as the sole intervention. The results are presented in Figure 7. It is evident that without quarantine measures,
vaccination intervention necessitates a more intensive application, as indicated in panel (f). Consequently,
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the vaccinated population approaches nearly the entire total population, while the number of infected
individuals, although exhibiting an increase, remains significantly lower in comparison to scenarios
without any control measures. The overall cost of intervention in this scenario is only marginally higher
than that of the first scenario, where vaccination and quarantine are implemented concurrently.

(a) (b)

(c) (d)

(e) (f)

Figure 7. Optimal control results when vaccination and quarantine are implemented together.
Panels (a)–(f) represent the dynamics of S , V , I, Q, I + Q and control variables, respectively.
The total infected averted with this scenario is 4.02 × 107, with a total cost for intervention of
3.51 × 106.

The final simulation was conducted to assess the impact of quarantine intervention when employed
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as the sole measure to mitigate COVID-19. The results are depicted in Figure 8. It is evident that
without vaccination intervention, quarantine measures do not have a significant effect on curtailing the
number of infected individuals, unlike the two preceding scenarios. To counterbalance the high number
of infections, intensive vaccination interventions must be administered in the initial stages (refer to panel
(f)). However, since our model assumes that the recovery of quarantined individuals follows a saturation
function, it becomes increasingly challenging to increase the recovery rate as more individuals are
placed under quarantine. This is because there are a high number of individuals who require treatment.
Therefore, this intervention must be scaled back over time to minimize intervention costs. Consequently,
quarantine interventions do not yield significant results in reducing infection numbers, as observed in
the two previous scenarios.

6.2.2. Simulation for different initial conditions

In contrast to the simulations in the previous subsection, which focused on intervention combinations,
this subsection focuses on scenarios driven by distinct initial conditions. These simulations are conducted
under the assumption of very low initial infection counts, and this scenario can be termed an endemic
prevention scenario, where intervention is implemented before rapid COVID-19 transmission occurs.
The initial condition is given by:

S (0) = 5 330 000, V(0) = 0, I(0) = 100, Q(0) = 0, R(0) = 0.

The simulation outcomes are illustrated in Figure 9. It is evident that when the number of infected
individuals at the initial time is extremely low, the intervention administered is also relatively modest
(refer to panel (f) in the blue curve). Vaccination intervention begins to escalate as the number of
infected individuals increases (see panels (c)–(e) highlighted in red). On the other hand, the intensity
of quarantine intervention diminishes over time, reflecting the reduced effectiveness of treatment
intervention for individuals who are quarantined. This is due to the increasing number of individuals
who are subject to quarantine. The total cost incurred for this scenario is 5.33 × 106, which is greater
than when the initial condition involved a higher number of infected individuals. However, the number
of new infections successfully averted is substantially larger, amounting to 6.51 × 107.

6.2.3. Simulation for different initial basic reproduction numbers

The final simulation in this chapter was conducted to assess the influence of the endemic level, as
indicated by the magnitude of Rc in the population, on the intensity of control measures required to
manage COVID-19. To achieve this, the parameters used were consistent with those in Table 1, except
for β1 and β2, which were reduced by 50%. As a result, we obtained Rc = 4.658, which is 50% smaller
than the estimate from the previous chapter. The results are displayed in Figure 10. Due to the lower
value of Rc, the intensity of vaccination control shown in Figure 10 (panel (f)) does not need to be as
high as indicated in Figure 6 (panel (f)). Nonetheless, interventions of this nature have proven effective
in significantly reducing the number of infected individuals (see panel (e)). The total cost incurred in
this scenario is 9.43 × 106, which is substantially smaller than the scenario in Figure 6. The number of
infections successfully averted amounts to 3.4 × 106.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Optimal control results when vaccination and quarantine are implemented together.
Panels (a)–(f) represent the dynamics of S , V , I, Q, I + Q and control variables, respectively.
The total infected averted with this scenario is 3.12 × 105, with a total cost for intervention of
3.51 × 106.
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(a) (b)

(c) (d)

(e) (f)

Figure 9. Optimal control results when vaccination and quarantine are implemented together
but when COVID-19 has just started to spread (indicated by the small number of infected
individuals at t = 0). Panels (a)–(f) represent the dynamics of S , V , I, Q, I + Q and control
variables, respectively. The total infected averted with this scenario is 6.51 × 107, with a total
cost for intervention of 5.33 × 106.
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(a) (b)

(c) (d)

(e) (f)

Figure 10. Optimal control results when the initial basic reproduction number is smaller,
i.e., Rc = 4.658, which is 50% smaller than in scenario one in Section 6.2.1. Panels (a)–(f)
represent the dynamics of S , V , I, Q, I + Q and control variables, respectively. The total
infected averted with this scenario is 9.43 × 106, with a total cost for intervention of 3.4 × 106.
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7. Discussion and conclusions

In this paper, we delved into an analysis of the dynamic characteristics of the COVID-19 transmission
model, specifically the susceptible-vaccinated-infected-quarantine-recovered (S VIQR) model. Our
investigation considers critical factors such as human awareness and resource constraints for treating
quarantined individuals. To estimate model parameters, we utilized incidence data sourced from West
Java, Indonesia. Our exploration encompassed mathematical analyses of equilibrium points, their local
stability, and the control reproduction number (Rc), all of which are presented analytically.

Our findings revealed a significant insight: The model may display forward or backward bifurcations
at Rc = 1. This suggests that achieving a reproductive number below one alone is not always sufficient
to ensure the complete eradication of COVID-19 from a population. This result is consistent with
another COVID-19 model introduced in [33, 76]. In practice, backward bifurcation commonly occurs
due to several possible factors, such as reinfection [80], relapse, imperfect vaccination [81, 82], or
limited treatment capacity [83]. In the context of our study on COVID-19, the existence of the backward
bifurcation suggests the potential for decision-making challenges, as the expectation that COVID-19 will
always disappear when Rc < 1 is not consistently observed in real-world scenarios. The implications of
this backward bifurcation highlight the possibility of a significant shift from a stable COVID-19-free
state to a large endemic state, emphasizing the complex dynamics of disease control in public health.
Another important result of our research is the sensitivity analysis. Sensitivity analysis underscores the
potential effectiveness of minimizing contact between infected individuals who are not in quarantine
and vaccinated individuals as a means of controlling the disease’s spread.

To address budget limitations, we reconstructed our model as an optimal control model, introducing
vaccination and quarantine interventions as time-dependent parameters. By employing Pontriagin’s
maximum principle, we rigorously formulated our optimal control problem and utilized the forward-
backward sweep method for numerical solutions. Our simulations, conducted across various scenarios
that may manifest in real-world situations, yielded noteworthy insights.

To begin, our numerical experiments underscore the paramount importance of vaccination as the
primary intervention in curtailing infections. Vaccination has been proven effective in reducing the
likelihood of vaccinated individuals contracting the virus, thereby minimizing the number of infected
individuals. However, combining vaccination with quarantine measures still yields more promising
results than relying solely on vaccination. A second critical finding emphasizes the necessity of
implementing interventions at the onset of an outbreak rather than waiting for it to escalate. This early
intervention strategy leads to a significantly higher number of preventable infections. The results of our
optimal control simulation study underscore the importance of considering vaccination and quarantine
strategies in controlling the spread of COVID-19. Both interventions play distinct roles: Vaccination is
highly effective in preventing the initial spread of COVID-19 during the early stages of the pandemic,
while quarantine measures are best focused as the pandemic begins to escalate. The combination of
both strategies is essential for effectively mitigating the outbreak of COVID-19. Implementing these
strategies based on needs will yield optimal results, resulting in a reduced budget for intervention and
preventing a larger number of COVID-19 infections.

While our study sheds considerable light on the significance of the COVID-19 vaccination, there
are several possible future directions in COVID-19 research from this article and other references from
other disciplines. In many instances, there exists a gap between genetics, environmental science, and
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epidemiology in the context of COVID-19. Potential novel insights lie in understanding the determinants
of COVID-19 susceptibility and informing targeted interventions and public health strategies to mitigate
the impact of the pandemic. Readers can explore a mathematical approach for this scenario in [84].
Another promising avenue in COVID-19 modeling involves bridging rumor spreading models with
COVID-19 dynamics, leveraging insights from the Maki-Thompson model [85]. Readers can adapt
the Maki-Thompson model to incorporate elements relevant to COVID-19 transmission dynamics,
such as contact rates, transmission probabilities, and population demographics. Furthermore, readers
can delve into research directions by exploring the concept of strategic decision-making and resource
allocation in the context of pandemic response, utilizing a stochastic control approach [86]. Through
this approach, we can gain a better understanding of the effectiveness of strategies for managing public
health crises and ultimately contribute to improved preparedness and resilience in the face of future
pandemics. In conclusion, by embracing interdisciplinary approaches and leveraging mathematical
modeling techniques, we can pave the way for innovative solutions to combat COVID-19 and enhance
our preparedness for future pandemics.
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