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Abstract: With the consideration of the complexity of the transmission of Cholera, a partially
degenerated reaction-diffusion model with multiple transmission pathways, incorporating the spatial
heterogeneity, general incidence, incomplete immunity, and Holling type II treatment was proposed.
First, the existence, boundedness, uniqueness, and global attractiveness of solutions for this model were
investigated. Second, one obtained the threshold condition R0 and gave its expression, which described
global asymptotic stability of disease-free steady state when R0 < 1, as well as the maximum treatment
rate as zero. Further, we obtained the disease was uniformly persistent when R0 > 1. Moreover, one
used the mortality due to disease as a branching parameter for the steady state, and the results showed
that the model undergoes a forward bifurcation at R0 and completely excludes the presence of endemic
steady state when R0 < 1. Finally, the theoretical results were explained through examples of numerical
simulations.
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1. Introduction

Cholera is an emergency enteric epidemic induced by Vibrio cholerae (V. cholerae), and transmission
of this disease is greatly compounded by interactions among host, pathogen, and environment. More
specially, it can be transmitted by drinking or eating unpasteurized food or water infected with V.
cholerae, by touching people with Cholera, hands and objects contaminated with the carrier’s excreta,
and by eating food contaminated with flies [1, 2]. Symptoms such as vomiting, leg cramps, and diarrhea
can occur within 12 hours to five days after infection. World Health Organization (WHO) assessed that
between 1.3 and 4 million incidences of Cholera occur and between 21,000 and 143,000 die annually,
with children in Africa and Southeast Asia being the most impacted [3]. Cholera can also break out
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commonly in countries with weak infrastructure and health systems, such as, Yemen, where 1,115,378
cases of suspected Cholera as well as 2310 deaths were reported between April 2017 and July 2018 [4].
The treatment methods for controlling Cholera include vaccines, rehydration therapy, and antibiotics.
At present, vaccines are extensively used in certain areas; for example, Haiti successfully controlled the
Cholera outbreak with the vaccine in 2020 [5].

Dynamical models have contributed to an essential role in gaining insight into the transmission
mechanism, development process, and transmission pattern of Cholera, providing a contribution to
the defense and management of strategic diseases. To date, a large number of scholars have devoted
themselves to the study of Cholera (see, e.g., [6–11]), and the majority of models are characterized by
ordinary/partial differential equations. The research contents include the nonnegative and boundedness
of solutions, the persistence and extinction of this disease, bifurcation and chaotic phenomena, etc. In
particular, Teytsa et al. [12] established the influence of phage bacterial invasion and optimal control on
indirect transmission of Cholera disease by demonstrating that the release of lytic phages dramatically
reduced the transmission of disease. Vaccines have always performed an active role in controlling
and eradicating diseases, and this is also true for Cholera. For instance, Lin et al. [13] presented a
Cholera model with high infectivity, low infectivity, and incomplete immunity, characterized the global
dynamics of the equilibria, and simulated the Cholera epidemic in Haiti. In addition, there have also
been numerous proposals for Cholera models with age structure [14], patch model [7], multiple disease
stages [15], and so on. The relevant researches are still continuing.

As we all know, the propagation of Cholera is closely linked to numerous factors, for example,
environmental sanitation, water and food resources, personal habits, and spatial heterogeneity. Lately,
several reaction-diffusion models with environmental heterogeneity were developed to explore effective
control strategies to eliminate this disease [16–18]. Specifically, Wang et al. [19] introduced a model in
a closed environment and conducted a bifurcation analysis of the steady-state solution, which showed
that spatial heterogeneity of model parameters can generate backward bifurcation. Avila-Vales et al. [20]
proposed a S IR model with saturation incidence and Holling type II treatment, and theoretical results
suggest that heterogeneity in transmission rates produces bifurcation, which leads to disease persistence.
In [21–23], authors presented some reaction-diffusion models and attained R0, which examined the
presence as well as global stability of steady states. Wang et al. [24] established a reaction-convection-
diffusion model based on the high infectivity of bacteria, and revealed that ignoring high infectivity
underestimates the risk of illness propagation. Wang et al. [25] also developed a Cholera transmission
model with high bacterial infectivity and different diffusion rates, assuming different transmission rates
for susceptible and infected individuals, which showed that by controlling the mobility of susceptible
individuals, the illness would be eradicated to some extent.

Motivated by the previous works, in this article, a reaction-diffusion model of Cholera transmission
with horizontal/environmental propagation as well as general incidence is proposed, where the incomplete
immunity, Holling II treatment rates, different diffusion rates, and environmental viruses are also
introduced. The remaining sections of this article are structured below: In Sections 2 and 3, the model is
established and the well-posedness of the model is analyzed. The basic reproduction number is presented
and the global stability of disease-free steady state and the persistence of disease is analyzed in Section 4.
The positive steady state of the model is investigated in Section 5 from the branching theory point of view.
Some numerical simulations and a short summary are given in Sections 6 and 7, respectively.
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2. Mathematical model

Following the pattern of Cholera transmission, the population of a given area is divided as:
susceptible, vaccinated, infected, and recovered individuals are represented by S (x, t), V(x, t), I(x, t),
and R(x, t), respectively. Further, the concentration of pathogen particles is represented by W(x, t). The
corresponding flow chart for Cholera propagation is shown in Figure1. Based on the variability of
Cholera spreading routes and the restricted diffusion of V. cholerae in the environment, the partially
degenerate reaction-diffusion model is described by

∂S
∂t
= d1∆S + Λ(x) − (µ(x) + ρ(x))S − F(x, S , I) −G(x, S ,W) + θ(x)V,

∂V
∂t
= d2∆V + ρ(x)S − σF(x,V, I) − σG(x,V,W) − (µ(x) + θ(x))V,

∂I
∂t
= d3∆I + F(x, S , I) +G(x, S ,W) + σ(F(x,V, I) +G(x,V,W))

− (µ(x) + d(x) + r(x))I −
γ(x)I

1 + a(x)I
,

∂W
∂t
= α(x)I − ξ(x)W,

(2.1)

and
∂R
∂t
= d4∆R + r(x)I +

γ(x)I
1 + a(x)I

− µ(x)R,

subject to the boundary conditions

∂S
∂n
=
∂V
∂n
=
∂I
∂n
=
∂W
∂n
=
∂R
∂n
= 0, t > 0, x ∈ ∂D, (2.2)

and initial conditions S (0, x) = S 0(x), V(0, x) = V0(x), I(0, x) = I0(x), V(0, x) = V0(x), R(0, x) = R0(x),
W(0, x) = W0(x), x ∈ D, where D is a connected, bounded subset of Rn with smooth boundary ∂D. The
means of other model parameters are as: d1, d2, d3, d4 > 0 stand for the diffusion rates measuring the
movement for susceptible, vaccinated, infected, and recovered individuals, respectively; Λ(x), µ(x),
d(x), ρ(x), θ(x) stand for the population replenishment rate, the natural mortality rate, the disease-related
mortality rate, the vaccination rate, and the rate of loss of immunization, respectively; r(x) denotes the
natural recovery rate; α(x) represents the bacterial shedding rate of infected individuals and ξ(x) stands
for the decay rate of bacteria; γ(x)/(1 + a(x)) denotes the treatment function, where γ(x) stands for the
maximum treatment rate per individual per unit of time, and a(x) represents the influence of delayed
treatment in infected individuals; σ denotes the reduction of vaccine efficacy; F(x, S , I) and G(x, S ,W)
indicate general incidence functions responding to direct transmission from infected individuals to
susceptible individuals and indirect transmission from environmental viruses to susceptible individuals,
respectively; F(x,V, I) and G(x,V,W) correspond to transmission between vaccinated individuals and
infected individuals and between vaccinated individuals and environmental viruses, respectively.

As model (2.1) does not contain the variable R, one can overlook the R-equation and restrict attention
to the kinetic behavior of model (2.1). In light of the model’s biological context, all parameters are
hypothesized to be positive, continuous, and bounded on D. Moreover, let us hypothesize that the
functions F and G fulfill the under mentioned cases.
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Figure 1. A dynamic Cholera propagation graph of model (2.1).

(H1) For x ∈ D and S , V, I ⩾ 0, F(x, S , 0) = F(x, 0, I) = 0, F(x,V, 0) = F(x, 0, I) = 0 and
∂F(x, S , I)/∂I > 0, ∂F(x,V, I)/∂I > 0, ∂2F(x, S , I)/∂I2 ⩽ 0, ∂2F(x,V, I)/∂I2 ⩽ 0.

(H2) For x ∈ D and S , V, W ⩾ 0, G(x, S , 0) = G(x, 0,W) = 0, G(x,V, 0) = G(x, 0,W) = 0;
∂G(x, S ,W)/∂W > 0, ∂G(x,V,W)/∂W > 0, and ∂2G(x, S ,W)/∂W2 ⩽ 0, ∂2G(x,V,W)/∂W2 ⩽ 0.

(H3) There are Hölder continuous functions βi : D→ R+ that satisfy F(x, y, I) ⩽ β1(x)yI, G(x, y,W) ⩽
β2(x)yW, y ∈ {S ,V}, for x ∈ D, S , I, V, W ⩾ 0.

Remark 2.1. Some frequently used incidences satisfy (H1) and (H2), such as the bilinear incidence
rates F(x, S , I) = β1(x)S I, G(x, S ,W) = β2(x)S W (see [7, 15]); the saturated incidence rates F(x, S , I)
= β1(x)S I/(κ1(x) + I), G(x, S ,W) = β2(x)S P/(κ2(x) + P) (see [26]), where βi(x), κi(x) > 0, i = 1, 2.
The condition (H3) is given to better prove the fitness of solution. At the same time, we also find that the
above common incidence also satisfies the condition (H3).

3. Well-posedness

Let X := C(D,R4) be the Banach space, and define X+ := C(D,R4
+). Set ψ+ := maxx∈D{ψ(x)},

ψ− := minx∈D{ψ(x)}, where ψ represents any of Λ, µ, ρ, θ, r, γ, a, α, ξ.
To do so, denote π1(x) = ρ(x)+µ(x), π2(x) = θ(x)+µ(x), π3(x) = d(x)+ r(x)+µ(x), and π4(x) = ξ(x),

and let Γi(t) : C(D,R)→ C(D,R) (i = 1, 2, 3) be the C0 semigroup related to di∆ − πi(x) satisfying the
Neumann boundary condition. Hence,

(Γi(t)ϕ)(x) =
∫
Ω

Ti(x, t, y)ϕ(y)dy, ∀t > 0, ϕ ∈ C(D,R), i = 1, 2, 3,

where Ti(x, t, y) denotes the Green function related to di∆ − πi(x) satisfying (2.2). Further, let
(Γ4(t)ϕ)(x) = e−π4(x)tϕ(x). Thus, Γ(t) := diag{Γ1(t), Γ2(t), Γ3(t), Γ4(t)} : X→ X, t ⩾ 0, which formulates
a strongly continuous semigroup [27].

For every ϕ = (ϕ1, ϕ2, ϕ3, ϕ4)T ∈ X+, define Z = (Z1,Z2,Z3,Z4)T : X+ → X by

Z1(ϕ)(x) = Λ(x) − F(x, ϕ1, ϕ3) −G(x, ϕ1, ϕ4) + θ(x)ϕ2, Z4(ϕ)(x) = α(x)ϕ3,

Z2(ϕ)(x) = ρ(x)ϕ1 − σF(x, ϕ2, ϕ3) − σG(x, ϕ2, ϕ4),

Z3(ϕ)(x) = F(x, ϕ1, ϕ3) +G(x, ϕ1, ϕ4) + σF(x, ϕ2, ϕ3) + σG(x, ϕ2, ϕ4) −
γ(x)ϕ3

1 + a(x)ϕ3
,

where T denotes the transposition. Hence, model (2.1) can be reformulated as

u(t) = Γ(t)ϕ +
∫ t

0
Γ(t − s)Z(u(s))ds. (3.1)
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In the results below, the local solutions of model (2.1) with (2.2) on X+ are involved.

Lemma 3.1. For ϕ ∈ X+, model (2.1) possesses a unique solution u(·, t, ϕ) := (S (·, t),V(·, t), I(·, t),
W(·, t)) on [0, τmax) with u(·, 0, ϕ) = ϕ, where τmax ⩽ ∞. Moreover, u(·, t, ϕ) ∈ X+, 0 ⩽ t < τmax.

Proof. For h ⩾ 0, one obtains

ϕ + hΓ(ϕ) =


ϕ1 + h

[
Λ(x) − F(x, ϕ1, ϕ3) −G(x, ϕ1, ϕ4) + θ(x)ϕ2

]
ϕ2 + h

[
ρ(x)ϕ1 − σF(x, ϕ2, ϕ3) − σG(x, ϕ2, ϕ4)

]
ϕ3 + h

[
F(x, ϕ1, ϕ3) +G(x, ϕ1, ϕ4) + σF(x, ϕ2, ϕ3) + σG(x, ϕ2, ϕ4) − γ(x)ϕ3

1+a(x)ϕ3

]
ϕ4 + hα(x)ϕ3


⩾


ϕ1 − h

[
F(x, ϕ1, ϕ3) +G(x, ϕ1, ϕ4) − θ(x)ϕ2

]
ϕ2 − h

[
σF(x, ϕ2, ϕ3) + σG(x, ϕ2, ϕ4)

]
ϕ3 − h γ(x)ϕ3

1+a(x)ϕ3

ϕ4

 ,
which means for ϕ ∈ X+, limh→0+ dist(ϕ + hΓ(ϕ),X+) = 0. Based on Ref. [28, Corollary 4], model (2.1)
is a unique mild solution (S (x, t), V(x, t), I(x, t), W(x, t)) on [0, τmax), where τmax ⩽ ∞. □

Consider the model as below

∂ω

∂t
= d∆ω + b(x) − c(x)ω, x ∈ D, t > 0;

∂ω

∂n
= 0, x ∈ ∂D, (3.2)

where d > 0, b(x) > 0, and c(x) > 0 are continuous.

Lemma 3.2 (Lemma 1 in Ref. [29]). Model (3.2) possesses a globally asymptotically stable steady
state ω̂(x) in C(D,R+). Further, if b(x) ≡ b, c(x) ≡ c, ∀x ∈ D, then ω̂(x) = b/c.

Next, one proves that the local solution of model (2.1) can be expanded to the global solution, i.e.,
τmax = ∞.

Lemma 3.3. For every ϕ ∈ X+, model (2.1) has a unique solution u(x, t) with u(x, 0, ϕ) = ϕ for [0,∞).
Moreover, the model generates a semiflow Φ(t) as ultimately bounded.

Proof. In terms of the first two equations of the model (2.1), one can readily derive that

∂S
∂t
⩽ d1∆S + Λ+ − (µ− + ρ−)S + θ+V, x ∈ D, t > 0,

∂V
∂t
⩽ d2∆V + ρ+S − (µ− + θ−)V, x ∈ D, t > 0,

∂S
∂n
=
∂V
∂n
= 0, x ∈ ∂D, t > 0.

Hence,

lim sup
t→∞

S (x, t) ⩽
Λ+(µ− + θ−)

(µ− + ρ−)(µ− + θ−) − θ+ρ+
:= N1,

lim sup
t→∞

V(x, t) ⩽
Λ+ρ+(µ− + θ−)

(µ− + θ−) ((µ− + ρ−)(µ− + θ−) − θ+ρ+)
:= N2, uniformly in x ∈ D,

(3.3)
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which implies ∥S (x, t)∥ ⩽M1, ∥V(x, t)∥ ⩽M2, forM1,M2 > 0 and 0 ⩽ t < ∞. Hence, one gets that
S (x, t) and V(x, t) are ultimately bounded. Adding the three previous equations of (2.1) and integrating
with respect to D gives

∂

∂t

∫
D

(S (x, t) + V(x, t) + I(x, t)) dx ⩽ Λ+|D| − µ−
∫
D

(S (x, t)) + V(x, t) + I(x, t)) dx,

where |D| denotes the measurement of region D. It follows that

lim sup
t→∞

(∥S (x, t)∥1 + ∥V(x, t)∥1 + ∥I(x, t)∥1) ⩽M11,

withM11 = Λ
+|D|/µ−. In a similar way, the W-equation satisfies

∂

∂t

∫
D

W(x, t)dx ⩽ α+M11 − ξ
−

∫
D

W(x, t)dx.

Thus, one gets

lim sup
t→∞

∥W(x, t)∥1 ⩽M12, with M12 =
α+M11

ξ−
.

In short, there exists a numberM3 > 0,

lim sup
t→∞

(∥S (x, t)∥1 + ∥V(x, t)∥1 + ∥I(x, t)∥1 + ∥W(x, t)∥) ⩽M3,

Next, let us verify the solution (I,W) of model (2.1) as ultimately bounded. Motivated by [30, Lemma 2.4],
for T > 0, one needs to justify

lim sup
t→∞

(∥I(x, t)∥2k + ∥W(x, t)∥2k) ⩽M2k , ∀t > T, (3.4)

whereM2k > 0 is a constant.
It immediately follows that for k = 0, (3.4) holds. Assuming that (3.4) is valid for k − 1, i.e.,

lim sup
t→∞

(∥I(x, t)∥2k−1 + ∥W(x, t)∥2k−1) ⩽M2k−1 , forM2k−1 > 0. (3.5)

The I-equation of model (2.1) is multiplied by I2k−1 and integrated over D to derive

1
2k

∂

∂t

∫
D

I2k
dx

⩽d3

∫
D

I2k−1∆Idx +
∫
D

F(x, S , I)I2k−1dx +
∫
D

G(x, S ,W)I2k−1dx −
∫
D

γ(x)I2k

1 + a(x)I
dx

+

∫
D

σF(x,V, I)I2k−1dx +
∫
D

σG(x,V,W)I2k−1dx −
∫
D

(µ(x) + d(x))I2k
dx

⩽d3

∫
D

I2k−1∆Idx +
∫
D

β1(x)S I2k
dx +

∫
D

β2(x)S WI2k−1dx +
∫
D

σβ1(x)VI2k
dx

+

∫
D

σβ2(x)VWI2k−1dx −
∫
D

(µ(x) + d(x) + r(x))I2k
dx. (3.6)
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Recall that

d3

∫
D

I2k−1
∆Idx ⩽ −d3

∫
D

∇I · ∇I2k−1dx = −(2k − 1)d3

∫
D

(∇I · ∇I)I2k−2dx

= −
2k − 1
22k−2 d3

∫
D

∣∣∣∣∇I2k−1
∣∣∣∣2 dx.

Hence, inequality (3.6) becomes

1
2k

∂

∂t

∫
D

I2k
dx ⩽ − Lk

∫
D

|∆I2k−1
|2dx +

∫
D

(β1(x)S I2k
+ β2(x)S WI2k−1)dx +

∫
D

σβ1(x)VI2k
dx

+

∫
D

σβ2(x)VWI2k−1dx −
∫
D

(r(x) + µ(x) + d(x))I2k
dx, (3.7)

where Lk = (2k − 1)/(22k−2). Due to lim supt→∞ ∥S (x, t)∥ ⩽ M1, lim supt→∞ ∥V(x, t)∥ ⩽ M2, there is
t0 > 0 satisfying when t ⩾ t0, and one has∫

D

β1S I2k
dx ⩽ β+1 (M1 + 1)

∫
D

I2k
dx,

∫
D

β2S WI2k−1dx ⩽ β+2 (M1 + 1)
∫
D

WI2k−1dx,∫
D

σβ1VI2k
dx ⩽ σβ+1 (M2 + 1)

∫
D

I2k
dx,

∫
D

σβ2VWI2k−1dx ⩽ σβ+2 (M2 + 1)
∫
D

WI2k−1dx.
(3.8)

By means of Young’s inequality: ab ⩽ εap + ε−
q
p bq, where a, b, ε > 0, 1/p + 1/q = 1. By setting

ε1 = ξ
−/(4β+2 (M0 + 1)),M0 = max{M1,M2}, p = 2k, and q = 2k/(2k − 1), we have∫

D

WI2k−1dx ⩽
ξ−

4β+2 (M1 + 1)

∫
D

W2k
dx +Cε1

∫
D

I2k
dx, for t ⩾ t0, and Cε1 = ε

− 1
2k−1

1 . (3.9)

Thus, (3.7) is reorganized as:

1
2k

∂

∂t

∫
D

I2k
dx ⩽ − Lk

∫
D

|∇I2k−1
|2dx + β+1 (M1 + 1)

∫
D

I2k
dx +

ξ−

2

∫
D

W2k
dx

+ β+2 (M1 + 1)Cε1

∫
D

I2k
dx + σβ+1 (M2 + 1)

∫
D

I2k
dx

+ σβ+2 (M2 + 1)
∫
D

I2k
dx + σβ+2 (M2 + 1)Cε1

∫
D

I2k
dx

⩽ − Lk

∫
D

|∇I2k−1
|2dx +Ck

∫
D

I2k
dx +

ξ−

2

∫
D

W2k
dx,

(3.10)

where Ck = σβ
+
1 (M2 + 1) + σβ+2 (M2 + 1) + σβ+2 (M2 + 1)Cε1 + β

+
1 (M1 + 1) + β+2 (M2 + 1)Cε1 .

Similarly, multiplying the W-equation with W2k−1, one yields

1
2k

∂

∂t

∫
D

W2k
dx ⩽ α+

∫
D

IW2k−1dx − ξ−
∫
D

W2k
dx. (3.11)

By choosing p = 2k/(2k − 1) and q = 2k, we have∫
D

IW2k−1dx ⩽
ξ−

4α+

∫
D

W2k
dx +Cε2

∫
D

I2k
dx. (3.12)
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where ε2 = ξ
−/4α+, Cε2 = ε

1−2k

2 . Hence, (3.11) becomes

1
2k

∂

∂t

∫
D

W2k
dx ⩽ −

3
4
ξ−

∫
D

W2k
dx + α+Cε2

∫
D

I2k
dx. (3.13)

Adding (3.10) and (3.13), one has

1
2k

∂

∂t

∫
D

(
I2k
+W2k)

dx ⩽ −Lk

∫
D

|∇I2k−1
|2dx + Qk

∫
D

I2k
dx −

ξ−

4

∫
D

W2k
dx, (3.14)

where Qk = α
+Cε2 +Ck. Applying the interpolation inequality,

∥ξ∥22 ⩽ ∥∇ξ∥
2
2 +Cε∥ξ∥1, where ξ ∈ W1,2(D). (3.15)

Let ε3 = Lk/(2Qk), ζ = I2k−1
, then

−Lk

∫
D

∣∣∣∣∇I2k−1
∣∣∣∣2 dx ⩽ −2Qk

∫
D

I2k
dx + 2QkCε3

(∫
D

I2k−1
dx

)2

, (3.16)

Therefore, inequality (3.14) becomes

1
2k

∂

∂t

∫
D

(
I2k
+W2k)

dx ⩽ −ς∗

(∫
D

I2k
dx +

∫
D

W2k
dx

)
+ 2QkCε3

(∫
D

I2k−1
dx

)2

, (3.17)

where ς∗ = min{Qk, ξ
−/4}. It follows from (3.5) that lim supt→∞

∫
D

I2k−1
dx ⩽M2k−1

2k−1 , which means

lim sup
t→∞

(∥I(x, t)∥2k + ∥W(x, t)∥2k) ⩽M2k , with M2k =
2k

√
2QkCε3

ς∗
M2k .

Therefore, by the continuous embedding Lq(D) ↪→ Lp(D), one has

lim sup
t→∞

(∥I(x, t)∥Lp + ∥W(x, t)∥Lp) ⩽Mp, for q > p > 1,

whereMp > 0 is a constant. The fractional power space is represented by Ya (0 ⩽ a ⩽ 1). By Ref.[30,
Lemma 2.4], one gets that Ya ⊂ C(D) by choosing p > n/2 and a ⩾ n/2p. Thus, we can get

lim sup
t→∞

∥I(x, t)∥ ⩽M∞, lim sup
t→∞

∥W(x, t)∥ ⩽
α+

ξ−
M∞, where M∞ > 0,

which demonstrates that Lemma 3.3 is valid. □

Let

D =
{

(S ,V, I,W) ∈ X+ : S (x, t) ⩽ N1, V(x, t) ⩽ N2, I(x, t) ⩽M∞, W(x, t) ⩽
α+

ξ−
M∞

}
,

then Φ(t)ϕ ∈ D, t ⩾ t1, for some t1 ⩾ 0. In addition, in analogy to the approach in Ref. [31, Theorem 2.1],
we learn for setV ⊂ X+, Φ(t)ϕ ∈ D, t ⩾ t2, for t2 ⩾ 0.

Mathematical Biosciences and Engineering Volume 21, Issue 4, 4927–4955.



4935

As the last equation of model (2.1) has no diffusion, the weak compactness of solution semiflow
Φ(t) is hard to obtain, and we substitute the weak compactness with the asymptotic smoothness of the
solution semiflow. At first, one defines the Kuratowski measure of noncompactness, τ(·),

τ(V) := inf{r : V has a finite cover of diameter < r},

for setV ⊂ X+. It’s convenient to deduce thatV is precompact if and only if κ(V) = 0.
Denote x := (S ,V, I), y := (W), and g(x, t, x, y) = −α(x)I − ξ(x)W. Taking the partial derivative of

g(x, t, x, y) relative to y yields

∂g(x, t, x, y)
∂y

= −ξ(x) ⩽ −ξ−.

Lemma 3.4. In case there exists q > 0 satisfying

τT ∂g(x, t, x, y)
∂y

τ ⩽ −qτTτ, ∀τ ∈ R, x ∈ D, W ∈ D,

then Φ(t) is κ-contracting, i.e., limt→∞ κ(Φ(t)V) = 0 for setV ⊂ X+.

Proof. In a similar way to [32, Lemma 4.1], we can demonstrate thatΦ(t) is asymptotically compact onV,
i.e., for tn →∞ and any sequence ϕn ∈ V, a subsequence tnk →∞ and ϕnk satisfying Φ(tnk)ϕnk converges
to k→∞ inX. Further, we defineω(V) = {ϕ ∈ X+ : limk→∞Φ(tnk)ϕnk = ϕ for some sequences ϕnk ∈ V}

to be the omega limit set ofV. Based on [33, Lemma 23.1(2)], one learns that ω(V) is an invariant set,
compact, nonempty in X+, and ω(V) attractsV. Based on [34, Lemma 2.1(b)], one has

κ(Φ(t)V) ⩽ κ(ω(V)) + dist(Φ(t)V, ω(V))→ 0, as t → ∞,

where dist(Φ(t)V, ω(V)) represents the distance from Φ(t)V to ω(V). Therefore, Φ(t) is κ-contracting.
It finishes the proof. □

Combining [35, Theorem 1.1.3(b)], Lemmas 3.3 and 3.4, the below result can be derived.

Theorem 3.1. The solution semiflow Φ(t) : X+ → X+ of model (2.1) has a global attractor.

4. Threshold dynamics

4.1. Basic reproduction number

It is now clear that model (2.1) has a disease-free steady state E0 = (S 0(x),V0(x), 0, 0) satisfies
− d1∆S 0(x) = Λ(x) − (µ(x) + ρ(x))S 0(x) + θ(x)V0(x), x ∈ D,

− d2∆V0(x) = ρ(x)S 0(x) − (µ(x) + θ(x))V0(x), x ∈ D,

∂S 0(x)
∂n

=
∂V0(x)
∂n

= 0, x ∈ ∂D.
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The linearized subsystem of (2.1) at E0 is

∂I
∂t
= d3∆I +

[
∂F
∂I

(x, S 0(x), 0) + σ
∂F
∂I

(x,V0(x), 0) − (µ(x) + d(x) + r(x) + γ(x))
]

I

+

[
∂G
∂W

(x, S 0(x), 0) + σ
∂G
∂W

(x,V0(x), 0)
]

W, x ∈ D, t > 0,

∂W
∂t
= α(x)I − ξ(x)W, x ∈ D, t > 0,

∂I
∂n
= 0, x ∈ ∂D, t > 0.

(4.1)

Under assumption (H1) and (H2), the linear system (4.1) is cooperative. Denote T (t) to be the
solution semiflow of (4.1) on C(D,R2), where operators are

A =

(
d3∆ − (µ(x) + d(x) + r(x) + γ(x)) 0

α(x) −ξ(x)

)
+

(
∂F
∂I (x, S 0(x), 0) + σ∂F

∂I (x,V0(x), 0) ∂G
∂W (x, S 0(x), 0) + σ ∂G

∂W (x,V0(x), 0)
0 0

)
:=B + F .

Allow us to denote T̃ as the positive semigroup generated by B. According to [37, Theorem 3.12], one
gives the next generator operator

L(ϕ)(x) =
∫ ∞

0
F (x)T̃ (t)ϕ(x)dt = F (x)

∫ ∞

0
T̃ (t)ϕ(x)dt ϕ ∈ C(D,R2), x ∈ D.

Define the spectral radius of L as the basic reproduction number R0, i.e.,

R0 := r(L) = sup{|λ|, λ ∈ σ(L)}.

Similar to Refs. [36, Lemma 2.2] and [37], the below consequence is valid.

Lemma 4.1. R0 − 1 has the identical sign to s(A), where s(A) = sup{|λ|, λ ∈ σ(L)}} is the spectral
bound ofA.

Lemma 4.2. Let λ̃0 satisfy

d3∆ϕ − (µ(x) + d(x) + r(x) + γ(x))ϕ + λ̃
(
∂F
∂I

(x, S 0(x), 0) (4.2)

+ σ
∂F
∂I

(x,V0(x), 0) +
α(x)( ∂G

∂W (x, S 0(x), 0) + σ ∂G
∂W (x,V0(x), 0))

ξ(x)

)
= 0, x ∈ D

with ∂ϕ/∂n = 0, x ∈ ∂D, then R0 = 1/λ̃0.

Proof. FB−1 is calculated to give
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− FB−1ψ

= −

(
∂F
∂I (x, S 0(x), 0) + σ∂F

∂I (x,V0(x), 0) ∂G
∂W (x, S 0(x), 0) + σ ∂G

∂W (x,V0(x), 0)
0 0

)
×

(
(d3∆ − (µ(x) + d(x) + r(x) + γ(x)))−1 0

α(x)(d3∆ − (µ(x) + d(x) + r(x) + γ(x)))−1(ξ(x))−1 −(ξ(x))−1

)
ψ

=

(
−H(x, S 0(x),V0(x))(d3∆ − (µ(x) + d(x) + r(x) + γ(x)))−1 J(x, S 0(x),V0(x))

0 0

)
ψ,

where

H(x, S 0(x),V0(x))

=

[
∂F
∂I

(
x, S 0(x), 0

)
+ σ

∂F
∂I

(
x,V0(x), 0

)
+
α(x)
ξ(x)

(
∂G
∂W

(
x, S 0(x), 0

)
+ σ

∂G
∂W

(
x,V0(x), 0

))]
,

J(x, S 0(x),V0(x)) = (ξ(x))−1
[
∂G
∂W

(
x, S 0(x), 0

)
+ σ

∂G
∂W

(
x,V0(x), 0

)]
.

Due to

R0 = r(L) =r
(
−

[∂F
∂I

(
x, S 0(x), 0

)
+ σ

∂F
∂I

(
x,V0(x), 0

)
+
α(x)
ξ(x)

( ∂G
∂W

(
x, S 0(x), 0

)
+ σ

∂G
∂W

(
x,V0(x), 0

) )]
(d3∆ − (r(x) + µ(x) + γ(x) + d(x))−1

)
,

therefore, R0 is the principle eigenvalue of

−

[
∂F
∂I

(
x, S 0(x), 0

)
+ σ

∂F
∂I

(
x,V0(x), 0

)
+ α(x)

(
∂G
∂W

(
x, S 0(x), 0

)
+ σ

∂G
∂W

(
x,V0(x), 0

))]
× (d3∆ − (r(x) + µ(x) + γ(x) + d(x)))−1 (ξ(x))−1ϕ = R0ϕ, ϕ ∈ C2(D).

In other words,

(d3∆ϕ − (r(x) + µ(x) + γ(x) + d(x)))ϕ +
[∂F
∂I

(
x, S 0(x), 0

)
+ σ

∂F
∂I

(
x,V0(x), 0

)
+ α(x)

(
∂G
∂W

(
x, S 0(x), 0

)
+ σ

∂G
∂W

(
x,V0(x), 0

)) ]
(ξ(x))−1 1

R0
ϕ = 0, ϕ ∈ C2(D).

It finishes the proof. □

Remark 4.1. Following Lemma 4.2, R0 can be shown by the variational approach of the form

R0 =
1
λ̃0
= sup

ϕ∈H1(D), ϕ,0


∫
D
H(x, S 0(x),V0(x))ϕ2dx∫

D
d3|∇ϕ|2 + (r(x) + γ(x) + d(x) + µ(x))ϕ2dx

 . (4.3)
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Remark 4.2. Assuming that all parameters of (2.1) are independent of x yields

S 0(x) =
Λ(µ + θ)

µ(µ + θ + ρ)
, V0(x) =

Λρ

µ(µ + θ + ρ)
,

In particular, if

F(x, S , I) = β1S I
1+qI , G(x, S ,W) = β2S W

1+pW , F(x,V, I) = β1VI
1+qI , G(x,V,W) = β2VW

1+pW , p, q ∈ [0, 1],

then

R̄0 =
Λ(ξβ1 + αβ2)(µ + θ + σρ)
ξµ(µ + θ + ρ)(µ + d + r + γ)

, (4.4)

which will be used in our numerical simulation.

Lemma 4.3. If R0 ⩾ 1 (s(A) ⩾ 0), s(A) is the principal eigenvalue of problem

λϕ3 = d3∆ϕ3 +

[
−(µ(x) + d(x) + γ(x)) + σ

∂F
∂I

(x,V0(x), 0) +
∂F
∂I

(x, S 0(x), 0)
]
ϕ3

+

[
σ
∂G
∂W

(x,V0(x), 0) +
∂G
∂W

(x, S 0(x), 0)
]
ϕ4, x ∈ D,

λϕ4 = −ξ(x)ϕ4 + α(x)ϕ3, x ∈ D,
∂ϕ3

∂n
= 0, x ∈ ∂D,

(4.5)

associated with a strongly positive eigenfunction.

Proof. According to (4.1), it can be derived that
I(x, t, ϕ) = Γ3(t)ϕ3(t) +

∫ t

0
Γ3(t − s)P(I(x, s, ϕ),W(x, s, ϕ))ds,

W(x, t, ϕ) = Γ4(t)ϕ4(t) +
∫ t

0
Γ4(t − s)(α(x)I(x, s, ϕ))ds,

(4.6)

where P(x, I,W) = F(x, ϕ1, ϕ3) +G(x, ϕ1, ϕ4) + σF(x, ϕ2, ϕ3) + σG(x, ϕ2, ϕ4) − γ(x)ϕ3/(1 + a(x)ϕ3).
We rewrite T̃ (t) as T̃ (t) = T̃3(t) + T̃4(t), where ϕ = (ϕ3, ϕ4) ∈ C(D,R2),

T̄3(t)ϕ = (0,Γ4(t)ϕ4), T̄4(t)ϕ =
(
I(x, t; ϕ),

∫ t

0
Γ4(t − s)(α(x)I(x, s; ϕ))ds

)
. (4.7)

Similar to Ref. [30, Lemma 2.5], T̄4(t) is tight. Therefore, it yields from (4.7) that

sup
ϕ∈C(D,R2),∥ϕ∥,0

∥T3(t)ϕ∥
∥ϕ∥

⩽ sup
ϕ∈C(D,R2),∥ϕ∥,0

∥e−π4(x)tϕ4∥

∥ϕ∥
⩽ e−ξ

−t.

As a consequence, for every setA in C(D,R2), one has

τ(T̃ (t)ϕ) ⩽ τ(T̃3(t)A) + τ(T̃4(t)A) ⩽ ∥T̃3(t)A∥ ⩽ e−ξ
−tτ(A), t > 0.
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From the above inequality, T is a τ-contraction on C(D,R2) with contraction function e−ξ
−t, i.e., the

essential spectra radius, ωess(T (t)) ⩽ −ξ−. Because ωess(T (t)) is defined as
ωess(T (t)) := limt→∞ ϑ(T (t))/t, ϑ is the measure of non-compactness.

As is well known (see Ref. [38]) ω = max{s(A), ωess(T (t))}, where ω := limt→∞ ln ∥T (t)∥/t is the
exponential growth bound of T (t) such that ∥T (t)∥ ⩽Meωt, forM > 0. In addition, the spectral radius
r(T (t)) of T (t) fulfills

r(T (t)) = es(A)t ⩾ 1, when s(A) ⩾ 0, t > 0,

which means that ω(T (t)) < r(T (t)), t > 0. Thanks to the generalized Krein-Rutman Theorem (see,
Ref. [39, Lemma 2.2]), this concludes the proof. □

4.2. Stability of steady states

Throughout this subsection, one concentrates on obtaining threshold results for model (2.1) in terms
of R0. To begin with, one gives the stability E0 for R0 < 1.

Theorem 4.1. If R0 < 1 (or s(A) < 0), the E0 is locally asymptotically stable. Further, if γ(x) = 0, then
E0 is globally asymptotically stable for R0 < 1.

Proof. By analogy with Ref. [36, Theorem 3.1], it is clear that E0 is locally asymptotically stable forR0 < 1,
so we just need to prove the global attraction of E0 with γ(x) = 0 in this case. Fix ϵ0 > 0. From (3.3), there
exists t1 > 0 fulfilling that as t ⩾ t1, 0 ⩽ S (x, t) ⩽ S 0(x) + ϵ0, 0 ⩽ V(x, t) ⩽ V0(x) + ϵ0. With the help of the
comparison principal yields (I(x, t),W(x, t)) ⩽ (Î(x, t), Ŵ(x, t)) on D × [t1,∞), where (Î(x, t), Ŵ(x, t)) meets

∂Î
∂t
= d3∆Î +

(
∂F
∂I

(x, S 0(x) + ϵ0, 0) + σ
∂F
∂I

(x,V0(x) + ϵ0, 0) − (µ(x) + d(x))
)

Î

+

(
∂G
∂W

(x, S 0(x) + ϵ0, 0) + σ
∂G
∂W

(x,V0(x) + ϵ0, 0)
)

Ŵ, x ∈ D, t > t1,

∂Ŵ
∂t
= α(x)Î − ξ(x)Ŵ, x ∈ D, t > t1,

∂Î
∂n
=
∂Ŵ
∂n
= 0, x ∈ ∂D, t > t1,

(4.8)

with Î(x, t1) = I(x, t1), Ŵ(x, t1) = W(x, t1), x ∈ D. For adequately small ϵ0 > 0, s(Aϵ0) < 0 as
s(A) < 0, as well as a corresponding eigenvector (ψϵ0

3 , ψ
ϵ0
4 ) > (0, 0). Assume that for ϕ ∈ X+, one

obtains (I(x, t1, ϕ),W(x, t1, ϕ)) ⩽ ι(ψϵ0
3 (x), ψϵ0

4 (x)) for x ∈ D, ι > 0. Further, we can arrive at

(I(x, t1, ϕ),W(x, t1, ϕ)) ⩽ ιes(Aϵ0 (t−t1))(ψϵ0
3 , ψ

ϵ0
4 ), t ⩾ t1.

Thus, limt→∞ I(x, t) = 0, limt→∞W(x, t) = 0 uniformly for x ∈ D. Furthermore, one can derive
limt→∞ S (x, t) = S 0(x), limt→∞ V(x, t) = V0(x) uniformly for x ∈ D. It finishes the proof. □

Theorem 4.2. Suppose that R0 > 1 (or s(A) > 0). There exists ε > 0 satisfying u0 = (S 0(x),V0(x),
I0(x),W0(x)) ∈ X+ with I0(x) . 0 or W0(x) . 0, then u(x, t, u0) = (S (x, t),V(x, t), I(x, t),W(x, t))
satisfies lim inft→∞ u(x, t; u0) ⩾ (ε, ε, ε, ε), uniformly for x ∈ D. Moreover, at least one endemic steady
E∗ is included in the model (2.1).
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Proof. Let X0 := {ϕ ∈ X+ : ϕ3(x) . 0 and ϕ4(x) . 0}, ∂X0 := X+\X0 = {ϕ ∈ X
+ : ϕ3(x) ≡ 0 or ϕ4(x) ≡ 0},

M∂ := {ϕ ∈ ∂X0 : Φ(t)ϕ ∈ ∂X0, t ⩾ 0}, where Φ(t) : X+ → X+ is the semiflow generated by model (2.1).
Clearly, X+ = X ∪ ∂X0, where X0 is relatively open in X+. Next, we will finish the proof with three claims.

• Claim 1. For t ⩾ 0, Φ(t)X0 ⊆ X0.

Due to u0 = (S 0(x),V0(x), I0(x),W0(x)) ∈ X0, then I0(x) . 0 and W0(x) . 0. Let Ǐ fulfill the
following equation

∂Ǐ
∂t
= d3∆Ǐ −

γ(x)Ǐ
1 + a(x)Ǐ

− (r(x) + d(x) + µ(x))Ǐ, x ∈ D;
∂Ǐ
∂n
= 0, x ∈ ∂D, (4.9)

with Ǐ(x, 0) = I(x, 0) = I0(x), x ∈ D. From the maximum principal and I0(x) . 0, one has Ǐ(x, t) > 0, for
x ∈ D, t > 0. Further, it yields from ∂I/∂t ⩾ d3∆I − (µ(x)+ d(x))I − γ(x)I/(1+ a(x)I) and the comparison
principal that I(x, t) ⩾ Ǐ(x, t) > 0 x ∈ D, t > 0. Further, by the W-equation of (2.1), one derives

W(x, t) = e−ξ(x)tW0(x) +
∫ t

0
e−ξ(x)(t−s)α(x)I(x, s)ds. (4.10)

This means that for x ∈ D, t > 0, W(x, t) > 0. Thus, Φ(t)u0 ∈ X0, that is, the conclusion in Claim 1 is valid.

• Claim 2. For all ϕ ∈ M∂, ω(u0) = {(S 0(x),V0(x), 0, 0)}, where ω(u0) denotes the omega limit set
of the orbit γ+(u0) := {Φ(t)u0 : t ⩾ 0}.

If ϕ ∈ M∂, we have Φ(t)ϕ ∈ ∂X0, i.e., I(x, t) ≡ 0 or W(x, t) ≡ 0. For the former case, based on the W-
equation in model (2.1), we still have limt→∞W(x, t) = 0 uniformly for x ∈ D. Consequently, from the
previous two equations of model (2.1), one derives that limt→∞ S (x, t) = S 0(x), limt→∞ V(x, t) = V0(x)
uniformly for x ∈ D. For the latter case, I(x, t∗) . 0 and W(x, t∗) ≡ 0 for some t∗ > 0, utilizing
the parabolic maximum principal in the I-equation of model (2.1), then I(x, t) > 0 for x ∈ D and
t > t∗. However, it is possible to derive I(x, t) ≡ 0 from the W-equation of the model (2.1), where
x ∈ D and t > t∗; this is a contradiction. Therefore, we can also conclude that limt→∞ S (x, t) = S 0(x),
limt→∞ V(x, t) = V0(x) uniformly for x ∈ D. Thus, ∂M0 is positively invariant relative to Φ(x).

• Claim 3. ∀ϕ ∈ X0, lim supt→∞ ∥Φ(t)ϕ − E0∥ ⩾ δ0.

Thanks to the continuity of the principal eigenvalues λ, there is a small enough number ε0 > 0
meeting λ(ε0) + ε0 < 0, where λ(ε0) satisfies

λψ =
[

γ(x)
1 + a(x)ε0

−
∂F
∂I

(
x, S 0(x) − ε0, ε0

)
− σ

∂F
∂I

(
x,V0(x) − ε0, ε0

)
+ µ(x) + d(x) + r(x)

−
α(x)
ξ(x)

(
∂G
∂W

(
x, S 0(x) − ε0, ε0

)
+
∂G
∂W

(
x,V0(x) − ε0, ε0

)) ]
ψ − d3∆ψ, x ∈ D,

∂ψ

∂n
=0, x ∈ ∂D,

(4.11)

and ψε0 is the positive eigenvector corresponding to λ(ε0). Assume that Claim 3 is not valid, then for
any 0 < ε1 < ε0, lim supt→∞ ∥Φ(t)ϕ − E0∥ < ε1. So, for x ∈ D and t > t1 > 0,

S 0(x) − ε0 < S (x, t) < S 0(x) + ε0, 0 < W(x, t) < ε0,

V0(x) − ε0 < V(x, t) < V0(x) + ε0, 0 < I(x, t) < ε0.
(4.12)
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Assumptions (H1) and (H2) yield

F(x, S , I)
I

⩾
∂F
∂I

(
x, S 0(x) − ε0, ε0

)
,

F(x,V, I)
I

⩾
∂F
∂I

(
x,V0(x) − ε0, ε0

)
,

G(x, S ,W)
W

⩾
∂G
∂W

(
x, S 0(x) − ε0, ε0

)
,

G(x,V,W)
W

⩾
∂G
∂W

(
x,V0(x) − ε0, ε0

)
,

for all x ∈ D. Therefore, for (S 0(x),V0(x), I0(x),W0(x)) ∈ X0, there is η > 0 satisfying I0(x) ⩾ ηψε0(x).
Combining (4.12) and the arbitrariness of ε0, we derive that I(x, t) is the upper solution of the below problem



∂ω

∂t
=d3∆ω +

[
∂F
∂I

(
x, S 0(x) − ε0, ε0

)
+ σ

∂F
∂I

(
x,V0(x) − ε0, ε0

)
+
α(x)
ξ(x)

(
∂G
∂W

(
x, S 0(x) − ε0, ε0

)
+ σ

∂G
∂W

(
x,V0(x) − ε0, ε0

) )
−

(
γ(x)

1 + a(x)ε0
+ r(x) + d(x) + µ(x)

) ]
ω, x ∈ D, t > t1,

∂ψ

∂n
=0, x ∈ ∂D, t > t1; ω(x, t1) = ηψε0 , x ∈ D.

(4.13)

Evidently, ηe−λ(ε0)ψε0(x) is the only solution to system (4.13). Therefore,

I(x, t) ⩽ ηe−λ(ε0)ψε0(x)→ ∞ uniformly for x ∈ D, as t → ∞.

This contradicts Lemma 3.3, which proves the claim.

Comparable to the approach in Ref. [27], define p(x) : X+ → [0,∞) for the semiflow Φ(t) as

p(ϕ)(x) := min{min
x∈D

ϕ3(x),min
x∈D

ϕ4(x)}, ∀ϕ ∈ X+.

Similar to Refs. [27, Theorem 3] and [41, Theorem 3.4], there exists a constant δ1 > 0 that meets
minψ∈ω(ϕ) p(ψ) > δ1, for all ϕ ∈ X0, which means that lim inft→∞ I(x, t) ⩾ δ1, lim inft→∞W(x, t) ⩾ δ1, for
ϕ ∈ X0. Hence, there exists δ2 > 0 satisfying lim inft→∞ S (x, t) ⩾ δ2, lim inft→∞ V(x, t) ⩾ δ2 for all x ∈ D.
Let δ = min{δ1, δ2}, then the model is uniformly persistent. By Ref. [34, Remark 3.10 and Theorem 3.7],
Φ(t) : X0 → X0 has a global attract E0. According to Ref. [34, Theorem 4.7], model (2.1) has one steady
state at least E∗ = (S ∗(x),V∗(x), I∗(x),W∗(x)). It finishes the proof. □

5. Bifurcation analysis

Next, using the divergence theory, we will derive a few qualities of positive steady state of
model (2.1) by taking the death rate due to disease d(x) = d as a bifurcation parameter. Assuming that
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(S (x),V(x), I(x),W(x)) is the steady state of model (2.1), then

0 = d1∆S + Λ(x) − (µ(x) + ρ(x))S − F(x, S , I) −G
(
x, S ,

α(x)
ξ(x)

I
)
+ θ(x)V, x ∈ D,

0 = d2∆V + ρ(x)S − σF(x,V, I) − σG
(
x,V,

α(x)
ξ(x)

I
)
− (µ(x) + θ(x))V, x ∈ D,

0 = d3∆I + F(x, S , I) +G
(
x, S ,

α(x)
ξ(x)

I
)
+ σF(x,V, I) + σG

(
x,V,

α(x)
ξ(x)

I
)

− (µ(x) + d + r(x))I −
γ(x)I

1 + a(x)I
, x ∈ D,

0 =
∂S
∂n
=
∂V
∂n
=
∂I
∂n
, x ∈ ∂D,

(5.1)

and W(x) = α(x)I/ξ(x). Obviously, (S 0(x),V0(x), 0) fulfills the Eq (5.1). Denote d∗ to be the principal
eigenvalue of the below equation

dψ = d3∆ψ +
[∂F
∂I

(x, S 0(x), 0) +
α(x)
ξ(x)

∂G
∂I

(x, S 0(x), 0) + σ
∂F
∂I

(x,V0(x), 0)

+ σ
α(x)
ξ(x)

∂G
∂I

(x,V0(x), 0) − (µ(x) + r(x) + γ(x))
]
ψ, x ∈ D,

0 =
∂ψ

∂n
, x ∈ ∂D,

(5.2)

and the corresponding positive eigenfunction ψ0(x) meeting maxx∈D ψ0(x) = 1. Moreover, it also realizes
that d = d∗ is equivalent to R0 = 1 or λ̃ = 1. Let

L(x) =
∂F
∂I

(x, S 0(x), 0) +
α(x)
ξ(x)

∂G
∂I

(x, S 0(x), 0) + σ
∂F
∂I

(x,V0(x), 0)

+ σ
α(x)
ξ(x)

∂G
∂I

(x,V0(x), 0) − (µ(x) + r(x) + γ(x)).
(5.3)

If L(x) ≡ L is a constant, then b∗ = L. In the following, we investigate the scenario where L(x) . is a
constant and it may vary in sign in D. Analyze the below problem

∆φ̃(x) + ΛL(x)φ̃(x) = 0, x ∈ D,
∂φ̃

∂n
= 0, x ∈ ∂D.

(5.4)

By Ref. [42, Theorem 4.2], (5.4) admits a nonzero principal eigenvalue Λ0 = Λ(L) if and only if L can
change the sign and

∫
D
L(x)dx , 0.

Regarding the sign problem of the principal eigenvalue d∗, our results are as follows.

Lemma 5.1. The principal eigenvalue d∗ of (5.4) satisfies the following characteristics

(i) if
∫
D
L(x)dx ⩾ 0, then d∗ > 0 for all d3 > 0;

(ii) if
∫
D
L(x)dx < 0, then d∗ > 0 for d3 < 1/Λ(L); d∗ < 0 for d3 > 1/Λ(L).
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Now, we process considering d as the bifurcation parameter and studying the local branch of the
positive solution of (5.1), which branches from the branch of {(S 0(x),V0(x), 0, d) : d ⩾ 0}. At first,
from the transformation u = S , ω = V , ν = I, Eq (5.1) can rewritten as



0 = d1∆u + Λ(x) − (µ(x) + ρ(x))u − F(x, u, ν) −G(x, u,
α(x)
ξ(x)

ν) + θ(x)ω, x ∈ D,

0 = d2∆ω + ρ(x)u − σF(x, ω, ν) − σG
(
x, ω,

α(x)
ξ(x)

ν

)
− (µ(x) + θ(x))ω, x ∈ D,

0 = d3∆ν + F(x, u, ν) +G
(
x, u,

α(x)
ξ(x)

ν

)
+ σF(x, ω, ν) + σG

(
x, ω,

α(x)
ξ(x)

ν

)
− (µ(x) + d + r(x))ν −

γ(x)ν
1 + a(x)ν

, x ∈ D,

0 =
∂u
∂n
=
∂ω

∂n
=
∂ν

∂n
, x ∈ ∂D.

(5.5)

For p > n, let X = {u, ω ∈ W2,p(D) : ∂u(x)/∂n = ∂ω(x)/∂n = 0} and Y = Lp(D). Define

B = {(u, ω, ν, d) ∈ X × X × X × R+ : (u, ω, d) is a positive solution of (5.1)}.

Theorem 5.1. Let d∗ be the principal eigenvalue of problem (5.1).

(i) There is a connected component B1 of B including (u, ω, 0, d∗), and the projection pro jdB1 of B1

into the d-axis meets (0, d∗] ⊂ pro jdB1 ⊂ (0,C] for

C =max
x∈D

{
∂F
∂I

(x, S 0(x), 0) +
α(x)
ξ(x)

∂G
∂I

(x, S 0(x), 0)

+ σ
∂F
∂I

(x,V0(x), 0) + σ
α(x)
ξ(x)

∂G
∂I

(x,V0(x), 0)
}
. (5.6)

Specifically, for 0 < d < d∗, Eq (5.1) has a positive steady state solution at least.
(ii) Near d = d∗, B1 is a smooth curve E1 = {(u(s), ω(s), ν(s), d(s)) : s ∈ (0, ε)}, where u(s) =

u∗1 + sϕ0(s) + o(s), ω(s) = ω∗1 + sχ0(s) + o(s), and ν(s) = sψ0(s) + o(s). Here, ψ0(x) > 0 is the
principal eigenvalue and satisfies (5.2), and (ϕ0(x), χ0(x)) < (0, 0) fulfills

0 =d1∆ϕ0(x) − (µ(x) + ρ(x))ϕ0(x) + θ(x)χ0(x)

−

[
∂F
∂I

(
x, S 0(x), 0

)
+
α(x)
ξ(x)

∂G
∂I

(
x, S 0(x), 0

)]
ψ0(x), x ∈ D,

0 =d2∆χ0(x) − (µ(x) + θ(x))χ0(x) + ρ(x)ϕ0(x)

− σ

[
∂F
∂I

(
x,V0(x), 0

)
+
α(x)
ξ(x)

∂G
∂I

(
x,V0(x), 0

)]
ψ0(x), x ∈ D,

0 =
∂ϕ0(x)
∂n

=
∂χ0(x)
∂n

, x ∈ ∂D.

(5.7)
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Further, d′(0) = N/(
∫
D
ψ2

0(x)dx), where ′ stands for derivative and

N =

∂2F
∂ν2 (x, S 0, 0) +

(
α(x)
ξ(x)

)2
∂2G
∂ν2 (x, S 0, 0)

ψ3
0 + 2

[
∂2F
∂u∂ν

(x, S 0, 0)

+
α(x)
ξ(x)

∂2G
∂u∂ν

(x, S 0, 0)
]
ϕ0ψ

2
0 + σ

∂2F
∂ν2 (x,V0, 0) +

(
α(x)
ξ(x)

)2
∂2G
∂ν2 (x,V0, 0)

ψ3
0

+ 2σ
[
∂2F
∂u∂ν

(x,V0, 0) + 2
α(x)
ξ(x)

∂2G
∂u∂ν

(x,V0, 0)
]
ϕ0ψ

2
0.

(5.8)

Proof. Similar to the approach in Ref. [43], denote G : X × X × X × R→ Y ×Y ×Y by

G(u, ω, ν) =


d1∆u + Λ(x) − (µ(x) + ρ(x))u − F(x, u, ν) −G(x, u, α(x)

ξ(x) ν) + θ(x)ω
d2∆ν + ρ(x)u − σF(x, u, ν) − σG

(
x, ω, α(x)

ξ(x) ν
)
− (µ(x) + θ(x))ω

d3∆ + F(x, u, ν) +G
(
x, u, α(x)

ξ(x) ν
)
+ σF(x, ω, ν)

+σG
(
x, ω, α(x)

ξ(x) ν
)
− (µ(x) + d)ν − γ(x)ν

1+a(x)ν

 .
Taking partial derivative with respect to (u, ω, ν), we can get

G(u,ω,ν)(S 0,V0, 0, γ∗)[ϕ, χ, ψ]

=


d1∆ϕ − (µ(x) + ρ(x))ϕ −

(
∂F
∂ν

(x, S 0, 0) + α(x)
ξ(x)

∂G
∂ν

(x, S 0, 0)
)
ψ + θ(x)χ

d2∆χ + ρ(x)ϕ − σ
(
∂F
∂ν

(x,V0, 0) + α(x)
ξ(x)

∂G
∂ν

(x,V0, 0)
)
ψ − (µ(x) + θ(x))χ

d3∆ψ +L(x)ψ − b∗ψ

 . (5.9)

Moreover, calculating the second-order partial derivatives for G about (u, ω, ν) leads to

G(u,ω,ν),(u,ω,ν)(S 0,V0, 0, d∗)[ϕ, χ, ψ]2

=


−

[
∂2F
∂ν2 (x, S 0, 0) +

(
α(x)
ξ(x)

)2 ∂2G
∂ν2 (x, S 0, 0)

]
ψ2 − 2

[
∂2F
∂u∂ν (x, S 0, 0) + α(x)

ξ(x)
∂2G
∂u∂ν (x, S 0, 0)

]
ϕψ

−σ
[
∂2F
∂ν2 (x,V0, 0) +

(
α(x)
ξ(x)

)2 ∂2G
∂ν2 (x,V0, 0)

]
ψ2 − 2σ

[
∂2F
∂u∂ν (x,V0, 0) + 2α(x)

ξ(x)
∂2G
∂u∂ν (x,V0, 0)

]
ϕψ[

∂2F
∂ν2 (x, S 0, 0) +

(
α(x)
ξ(x)

)2 ∂2G
∂ν2 (x, S 0, 0) − γ(x)a(x)

]
ψ2 + 2

[
∂2F
∂u∂ν (x, S 0, 0) + α(x)

ξ(x)
∂2G
∂u∂ν (x, S 0, 0)

]
ϕψ

+σ
[
∂2F
∂ν2 (x,V0, 0) +

(
α(x)
ξ(x)

)2 ∂2G
∂ν2 (x,V0, 0)

]
ψ2 + 2σ

[
∂2F
∂u∂ν (x,V0, 0) + 2α(x)

ξ(x)
∂2G
∂u∂ν (x,V0, 0)

]
ϕψ


.

Therefore, it’s convenient to check that the core G(u, ω, ν)(S 0,V0, 0, b∗) = span{ψ0, χ0, ϕ0}, with ϕ0

as the positive eigenfunction of (5.2), (ϕ0, χ0) fulfills (5.7). Based on the Lemma 3.2, (S 0(x),V0(x))
is globally asymptotically stable in C(D,R). This indicates that inverse [d2∆ − (µ(x) + θ(x))]−1 and
[d1∆ − (µ(x) + ρ(x))]−1 exist and are positive operators. Hence, ϕ0(x) < 0 and χ0(x) < 0 for x ∈ D.

We next consider the range

rangeG(u,ω,ν)(S 0,V0, 0, b∗) =
{

(z1, z2, z3 ∈ Y
3) :

∫
D

z3(x)ψ0(x)dx = 0
}
. (5.10)

It is convenient to observe that (z1, z2, z3) ∈ rangeG(u,ω,ν)(S 0,V0, 0, b∗) if and only if there has (ϕ, χ, ψ) ∈
X × X × X satisfying
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z1 = d1∆ϕ − (µ(x) + ρ(x))ϕ −
(
∂F
∂ν

(x, S 0, 0) +
α(x)
ξ(x)

∂G
∂ν

(x, S 0, 0)
)
ψ + θ(x)χ,

z2 = d2∆χ + ρ(x)ϕ − σ
(
∂F
∂ν

(x,V0, 0) +
α(x)
ξ(x)

∂G
∂ν

(x,V0, 0)
)
ψ − (µ(x) + θ(x))χ,

z3 = d3∆ψ +L(x)ψ − b∗ψ.

Hence, ∫
D

z3(x)ψ0(x)dx = d3

∫
D

∆ψ(x)ψ0(x)dx +
∫
D

(L(x)ψ − b∗ψ)ψ(x)dx. (5.11)

Combining the integration by parts and the boundary conditions, we can derive
∫
D
∆ψ(x)ψ0(x)dx =∫

D
∆ψ0(x)ψ(x)dx. Further, from (5.2) and (5.11), we can obtain

∫
D

z3(x)ψ0(x)dx = 0, which in contrast
implicates that (5.10) is valid. Since

G(u,ω,ν),b(S 0,V0, 0, b∗)[ϕ0, χ0, ψ0] = (0, 0,−ψ0),

and
∫
D

[−ψ0(x)]ψ0(x)dx < 0, then G(u,ω,ν),b(S 0,V0, 0, b∗)[ϕ0, χ0, ψ0] < rangeG(u,ω,ν)(S 0,V0, 0, b∗). Using
the bifurcation theorem for simple eigenvalues from Ref. [44], it is derived that the positive solution
set of (5.7) in (S 0,V0, 0, b∗) is a curve of E1, where (u′(0), ω′(0), ν′(0)) = (ϕ0, χ0, ψ0). According to
Ref. [45], we launch b′(0) in the following form

b′(0) = −
⟨l,G(u,ω,ν),(u,ω,ν)(S 0,V0, 0, b∗)[ϕ0, χ0, ψ0]2⟩

2⟨l,G(u,ω,ν),b(S 0,V0, 0, b∗)[ϕ0, χ0, ψ0]⟩
,

where l is defined as ⟨l, [z1, z2, z3]⟩ =
∫
D

z3ψ0(x)dx. By direct computing, one can conclude that the
second component of G(u,ω,ν),(u,ω,ν)(S 0,V0, 0, d∗)[ϕ0, χ0, ψ0]2 takes the from

G(x) =
∂2F
∂ν2 (x, S 0, 0) +

(
α(x)
ξ(x)

)2
∂2G
∂ν2 (x, S 0, 0) − γ(x)a(x)

ψ2
0 + 2

[
∂2F
∂u∂ν

(x, S 0, 0)

+
α(x)
ξ(x)

∂2G
∂u∂ν

(x, S 0, 0)
]
ϕ0ψ0 + σ

∂2F
∂ν2 (x,V0, 0) +

(
α(x)
ξ(x)

)2
∂2G
∂ν2 (x,V0, 0)

ψ2
0

+ 2σ
[
∂2F
∂u∂ν

(x,V0, 0) + 2
α(x)
ξ(x)

∂2G
∂u∂ν

(x,V0, 0)
]
ϕ0ψ0.

Hence,

b′(0) =

∫
D
G0(x)ψ0(x)dx

2
∫
D
ψ2

0(x)dx
=

N∫
D
ψ2

0(x)dx
,

whereN is defined as in (5.8). Similar to the methods in Ref.[19, Theorem 3.1] and [18, Theorem 5.3], it’s
verified that all conditions of Ref.[43, Theorem 4.4] are fulfilled. Therefore, the branching is generated
around (S 0,V0, 0) as R0 = 1. □
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6. Numerical simulations

Throughout this subsection, one conducts fits to account for the impacts of spatially heterogeneous
parameters and individuals diffusion on disease propagation. In the interest of simplicity, we take
the domain to be D = [0, 20], and set d1 = 0.02, d2 = 0.05, and d3 = 0.005 to reflect that the
individual’s mobility is impacted as a result of the disease. Specifically, we consider the general incidence
functions F(x, S , I) = β1(x)S I/(1 + qI), G(x, S ,W) = β2(x)S W/(1 + pW), F(x,V, I) = β1(x)VI/(1 + qI),
G(x,V,W) = β2(x)V/(1 + pW), where βi(x) ∈ C2(D). According to [26, 48], let’s select the parameters
µ(x) = 4.7 × 10−5 + 2.35 × 10−5 sin 2x, d(x) = 3 × 10−4 + 3 × 10−5 sin 2x, α(x) = 50 + 50 sin 2x,
ξ(x) = 0.02 + 0.02 sin 2x, r(x) = 0.25 + 0.2 sin 2x. The other parameters will be selected depending on
the model.

To begin, we select σ = 0.01, q = 2 × 10−6, p = 1 × 10−6, Λ(x) = 15 + 7.5 sin 2x, ρ(x) =
4 × 10−3 + 2 × 10−3 sin 2x, θ(x) = 1.4 × 10−4 + 7 × 10−5 sin 2x, a(x) = 1.75 × 10−3 + 8.75 × 10−4 sin 2x,
β1(x) = 1.5 × 10−9 + 7.5 × 10−10 sin 2x, β2(x) = 1.88 × 10−9 + 9.4 × 10−10 sin 2x, γ(x) = 0. Other
parameters are shown above, and we select

U(x) =


86460 − 400 cos 2x

230000 − 800 cos 2x
5 − 0.5 cos 2x

200 − 20 cos 2x

 , ∀x ∈ [0, 20], U = (S 0,V0, I0, B0)T .

We apply the numerical method mentioned in Ref.[36] to calculate R0 ≈ 0.9901 < 1, which means the
disease will ultimately become extinct. As a matter of fact, one can verify in Figure 2(a) and (b) that as
time t evolves, I(x, t) and W(x, t) tends to zero, which is compatible with the result that Theorem 4.1.

(a) (b)

Figure 2. The spatio-temporal distribution of I(x, t) and W(x, t) with R0 ≈ 0.9901: (a) I(x, t);
(b) W(x, t).

If we alter the parameters r(x) = 0.012 + 0.0096 sin 2x, γ(x) = 0.03 + 0.0015 sin 2x, and ξ(x) = 0.02 +
0.01 sin 2x, the rest of the values are the same as in Figure 2. In this scenario, we derive R0 ≈ 2.4875 > 1.
It follows that Theorem 4.2 shows the illness is persistently present. This is shown in Figure 3(a) and (b),
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where I(x, t), W(x, t) are periodic oscillations in the whole region. From Figure 3(c) and (d), it can also be
found that because of the spatial heterogeneity, I(x, t) and W(x, t) vary geographically across time.

(a) (b)
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Figure 3. The effect on disease propagation in the case where R0 ≈ 2.4875 > 1: (a)–(b):
spatio-temporal evolution of I(x, t) and W(x, t); (c)–(d): regional differences in the distribution
of I(x, t) and W(x, t) under different times.

Next, we turn to the influence of spatially heterogeneous parameters on disease propagation. In
Figure 4(a)–(c), one illustrates how the vaccination rate ρ(x) affects the quantity of S (x, t), V(x, t),
and I(x, t) as time t = 1500. In this case, let’s choose ρ(x) = 4 × 10−3 + 4 × 10−3ρ1 sin 2x, with ρ1

gradually increasing from 0, 0.2, 0.3, to 0.5. With a growing heterogeneity in vaccination rates, S (x, t)
and V(x, t) show large regional diversity. The number of infections in areas with high vaccination
rates is known to be relatively low due to the high number of vaccinations. Nevertheless, Figure 4(c)
also shows in the same region, e.g., x ∈ [12, 14], the amount of infected individuals doesn’t oscillate
significantly as ρ1 increases, possibly due to the fact that vaccinated individuals remain at high risk
of infection. Consequently, along with large-scale immunization, we should also concentrate on the
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effectiveness of the vaccine. From Figure 4(d)–(f), it is not uncommon to notice that similar results can
be obtained when the model parameters θ(x) spatial heterogeneity are enhanced. Additionally, from
Figure 4(g)–(i), one can observe that when the spatial heterogeneity of the maximum treatment rate
γ(x) = 0.03 + 0.03γ1 sin 2x changes, i.e., γ1 increases from 0, 0.25, 0.5, to 0.75, the regional variability
of the regional variability of S (x, 1500), I(x, 1500), and W(x, 1500) will be smaller. In Figure 4(h), one
could notice that at the identical location, e.g., x ∈ [6, 8], the peak of infected individuals decreases as γ1

increases, which means that by changing the heterogeneous intensity of the maximum treatment rate, the
peak of the disease outbreak can be reduced to some extent. Simultaneously, in Figure 4(j)–(i), it can be
noticed that when the spatial heterogeneity intensity ξ1 of ξ(x) = 0.02 + 0.02ξ1 sin 2x gradually increases
from 0, 0.2, 0.4, to 0.6, we can also derive similar results as in Figure 4(g)–(i). This also reinforces the
fact that improving local water sanitation and personal hygiene practices are also vitally important for
disease control.

Further, let’s clarify the way in which the diffusion coefficient influences the propagation of the illness.
In Figure 5(a) and (b), variation of distribution of S (x, 1500) for diffusion rates of d1 = 0.2 and 0.002 is
shown. This means that as d1 increases, the S (x, t) gets more uniform throughout the region. Figure 5(c)
and (d) also display the two scenarios for S (x, t) at t = 1500 with diffusion rates d3 = 0.5 and d3 = 0.005.
By comparing Figure 5(c) and (d), it is apparent that as the diffusion coefficient d3 increases, the infected
individuals present a homogeneous distribution throughout the field. Mathematical simulation outcomes
indicate that the propagation of individuals can alter the local spatial distribution of the illness to some
extent, and limiting the cross-regional movement of infected individuals during an epidemic is among
the least powerful methods of controlling the illness.

In addition, we pay attention to how spatial heterogeneity contributes to the basic reproduction
number R0. Here, let’s choose the parameters ξ(x) = 0.048 + 0.048c sin kx, β1(x) = 1.5 × 10−9 + 1.5 ×
10−9c sin kx, β2(x) = 1.88× 10−9 + 1.88× 10−9 sin kx, where 0 ⩽ c ⩽ 1 and k = 2, 4, 6. Other parameters
are the same as in the Figure 3. As illustrated by the graphs in Figure 6(a)–(c), variations in the spatial
heterogeneity parameters β1(x) and β2(x) increase or decrease the risk of illness propagation, and by
comparing Figure 6(b) and (c), it can be observed that R0 has different monotonicity for c as k takes
different values. The above simulation results also indicated that overlooking spatial heterogeneity may
result in misclassification of illness propagation.

Lastly, let’s look at the link between R0 and the main parameters in the model. Here, we pick
the parameters Λ(x) = Λ + 1.5 sin 2x, ρ(x) = ρ + 2 × 10−3 sin 2x, θ(x) = θ + 7 × 10−5 sin 2x, µ(x) =
µ+2.25×10−5 sin 2x, β1(x) = β1+1.5×10−6 sin 2x, d(x) = d+0.08 sin 2x, β2(x) = β2+3.135×10−6 sin 2x,
r(x) = r + 0.0096 sin 2x, ξ(x) = ξ + 0.01 sin 2x, γ(x) = γ + 0.0015 sin 2x, α(x) = α + 50 sin 2x. Based
on the methods in [49], we choose Λ = 15, ρ = 4 × 10−3, θ = 1.4 × 10−4, µ = 4.5 × 10−5, d = 0.1,
β1 = 3 × 10−6, β2 = 6.27 × 10−6, r = 0.012, γ = 0.03, ξ = 0.02, α = 50, and the sensitivity indices for
each parameter can be calculated separately for R0. As shown in Figure 7, R0 has the largest sensitivity
index in relation to ξ(x) and Λ(x), followed by β2(x), α(x), ρ(x), µ(x), d(x), θ(x), γ(x), r(x), β1(x).
We also observe that R0 is positively associated with the variables θ(x), β1(x), β2(x), α(x), Λ(x), and
those with r(x), d(x), γ(x), ρ(x), ξ(x), µ(x) are negatively correlated. The above results reveal that it
is necessary to disinfect contaminated environments in outbreak areas in a timely manner, and to seal
off and control areas with frequent outbreaks to reduce the movement of people. At the same time, we
should raise the awareness of the local people on self-prevention, such as drinking healthy and hygienic
drinking water and maintaining good hygienic habits.
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Figure 4. Influence of spatially heterogeneous parameters on the disease distribution of
model (2.1), (a)-(c) ρ(x) on S (x, 1500), V(x, 1500), I(x, 1500); (d)-(f) θ(x) on S (x, 1500),
V(x, 1500), I(x, 1500); (g)-(i) γ(x) on S (x, 1500), I(x, 1500), W(x, 1500); (j)-(l) ξ(x) on
S (x, 1500), I(x, 1500), W(x, 1500).
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Figure 5. The impact of diffusion coefficients on model (2.1) illness propagation, (a) and (b):
d1 on S (x, 1500), I(x, 1500); (c) and (d): d3 on S (x, 1500), I(x, 1500).
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Figure 6. R0 in connection with the spatial heterogeneity parameters, β1 = 1.5 × 10−9 + 1.5 ×
10−9c sin kx and β2 = 1.88 × 10−9 + 1.88 × 10−9c sin kx, (a) k = 2; (b) k = 4; (c) k = 6.
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Figure 7. Sensitivity of R0 to major parameters.

7. Conclusions

Within this paper, we presented and discussed a SVIR-W spatially heterogeneous model of Cholera
that combines multiple transmission pathways, incomplete immunity, general incidence, and Holling
II treatment. It turns out the basic reproduction number R0, which is a criterion condition, decided the
persistence or extinction of epidemics. In other words, the disease-free steady state E0 is globally
asymptotically stable with zero maximum treatment rate in case R0 < 1 (see Theorem 4.2); the illness
will be persistent in case R0 > 1 (see Theorem 4.2). Furthermore, we performed a branching analysis
with constant mortality due to disease as a branching parameter (see Theorem 5.1). It can be inferred
that the forward branching is always undergone at R0 = 1, and the presence of positive steady state is
entirely excluded as R0 is smaller than 1. This means that R0 completely determines the persistence
and extinction of diseases, which also implies that we can eliminate the disease by controlling
parameters such as recruitment rate, bacterial shedding rate, and the spread of environmental viruses
to susceptible individuals.

Numerically, we simulated the influence of some crucial parameters on the spatio-temporal distribution
of the disease, which is helpful to prevent and manage the disease. Specifically, spatially heterogeneous
parameters can cause the disease distribution to show geographical variability (see Figure 4(a)–(l)). The
evolution of the dispersal coefficients will affect the spatial distribution of the illness, e.g., as the diffusion
coefficient d3 increases, an infected individual’s distribution will quickly become homogeneous (see
Figure 5(c) and (d)). We also explored the relationship between the propagation rates β1(x), β2(x), and
R0. We note that the monotonicity of the basic reproduction numbers R0 and c changes for different
values of k (see Figure 6(b) and (c)), which also suggests that spatial heterogeneity dilutes or amplifies
the spread of the illness.

It’s unfortunate that we only proved the global asymptotic stability of disease-free steady state E0 at a
maximum treatment rate of γ(x) = 0. While we have not derived the kinetic behavior of the disease at a
maximum treatment rate of γ(x) , 0, we will study this issue in-depth in the future. As is well known, many
environmentally spread diseases have incubation periods during which the host can move randomly [46, 47].
That implies that the effect of infection not only relies on the correlation of the present time and location,
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but also on the correlation of the previous position, which can generally be characterized by a nonlocal
morbidity with a core function. Therefore, it appears relevant and essential to introduce nonlocal effects
into models with environmental propagation. This is the focus of our future research.
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