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Abstract: Small-world networks and scale-free networks are well-known theoretical models within
the realm of complex graphs. These models exhibit “low” average shortest-path length; however, key
distinctions are observed in their degree distributions and average clustering coefficients: in small-
world networks, the degree distribution is bell-shaped and the clustering is “high”; in scale-free net-
works, the degree distribution follows a power law and the clustering is “low”. Here, a model for
generating scale-free graphs with “high” clustering is numerically explored, since these features are
concurrently identified in networks representing social interactions. In this model, the values of average
degree and exponent of the power-law degree distribution are both adjustable, and spatial limitations
in the creation of links are taken into account. Several topological metrics are calculated and compared
for computer-generated graphs. Unexpectedly, the numerical experiments show that, by varying the
model parameters, a transition from a power-law to a bell-shaped degree distribution can occur. Also,
in these graphs, the degree distribution is most accurately characterized by a pure power-law for values
of the exponent typically found in real-world networks.

Keywords: complex network; power law; scale free; small world; social interaction

1. Introduction

The study of complex networks experienced significant advances, over two decades ago, due to
the expansion of the Internet [1, 2] and, more recently, due to the outbreak of the COVID-19 pan-
demic [3, 4]. The characterization of the connection patterns among computers and among humans
has been crucial to understand, for instance, the dissemination of factual and false information [5], the
propagation of computer viruses [6], and the spreading of contagious diseases [7].

In addition to the network model based on purely random connections, first theoretically analyzed
by Gilbert [8] and Erdös and Rényi [9, 10], two other network models have garnered widespread at-
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tention and utilization in the academic research. These models are commonly referred to as “small
world” and “scale free”. Such models present crucial differences in their degree distributions P(k)
and average clustering coefficients ⟨c⟩. Recall that, in undirected graphs, the degree k of a node is
the number of links connected to this node, P(k) denotes the percentage of nodes with degree k, the
clustering coefficient c of a node is defined as the ratio of the number of links among its neighbors
to the maximum number of possible links among these neighbors, and the average degree ⟨k⟩ and the
average clustering ⟨c⟩ are the average values of k and c, respectively, by taking into account all N
nodes composing the network [11–14]. Small-world graphs, originally proposed by Watts and Stro-
gatz [15, 16], emerge from a rewiring process applied to a regular lattice with a constant N. In this
transformative process, a portion of the regular links are probabilistically replaced by random links.
Such graphs exhibit “high” average clustering coefficient and bell-shaped degree distribution (here,
“high” ⟨c⟩ means ⟨c⟩ ≫ ⟨c⟩random = ⟨k⟩/N, in which ⟨c⟩random is the average clustering obtained for a
purely random network with the same values of ⟨k⟩ and N). Scale-free networks, employed by Barabási
and colleagues [11, 17] to investigate the topology of various complex systems, are built from a pref-
erential attachment rule (previously introduced by other authors [18–20]), wherein the probability of a
new node forming a connection with a pre-existing node is directly proportional to the degree of this
pre-existing node. Such graphs exhibit “low” ⟨c⟩ and power-law degree distribution. Despite being
widely employed, both these approaches have their shortcomings [21–23]: for instance, the rewiring
process may be perceived as somewhat contrived and the preferential attachment demands that the new
node possesses awareness of the degrees of all nodes composing the growing network.

Social interactions among individuals, groups, and even corporations have been represented by
graphs [24–27]. In real-world scenarios, these interactions are simultaneously characterized by “high”
⟨c⟩ and P(k) ∼ k−γ; that is, a degree distribution following a power law. Therefore, actual social
networks concurrently exhibit topological properties found in small-world and scale-free graphs [11–
14]. For instance, for a network in which the nodes represent actors and actresses and a link between
two nodes implies that they have acted in the same movie together, ⟨c⟩ = 0.79 and γ = 2.3 [11,15,17].
The model investigated in this article embodies these characteristics in a network with fixed number
of nodes. Furthermore, it presents “low” average shortest-path length ⟨ℓ⟩, as observed in real-world
networks and also in purely random, small-world, and scale-free graphs [11–14] (here, “low” ⟨ℓ⟩means
⟨ℓ⟩ ≈ ⟨ℓ⟩random ≃ log N/ log⟨k⟩, in which ⟨ℓ⟩random is the average shortest-path length obtained for a
purely random network with the same values of ⟨k⟩ and N).

The network model numerically investigated here was originally proposed by us [28] for analyz-
ing the impact of socioeconomic stratification on word-of-mouth dissemination of information about
COVID-19. In that study [28], however, the influence of the model parameters on the network struc-
ture was not explored. This model is based on the assumption that each individual typically interacts
with a local community, in close physical proximity, composed of nearby family members, friends,
neighbors, coworkers. In the model, the individuals can establish a maximum number of links within
a limited area representing the geographic region where they live. Thus, the individuals are primarily
locally connected, leading to “high” clustering. The number of links per individual is randomly taken
from a power-law distribution. Therefore, the network topology becomes scale free, since P(k) obeys a
power law. Simpler versions of this model were already employed in studies on neurophysiology [29],
game theory [30], and epidemiology [31–33].

There have been proposed computational methods for growing scale-free networks with tunable
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clustering coefficient and/or degree distribution [34–39]. Also, there have been proposed computational
methods for creating networks that take into account the distances between nodes [29,30,40–42]. The
algorithm numerically explored here enables adjusting the power-law exponent γ of P(k) ∼ k−γ and
the average degree ⟨k⟩ in a fixed-size network with geographic constraints. Realistic values of γ and
⟨k⟩ have been determined for several social groups [11, 12, 28] and they can be used in this algorithm.

In short, this article is about a network model with ⟨ℓ⟩ ≈ ⟨ℓ⟩random, ⟨c⟩ ≫ ⟨c⟩random and P(k) ∼ k−γ,
with tunable values of ⟨k⟩ and γ, in which geographic constraints are considered in the probabilistic
creation of links. A network model with all these features was not found in the literature. The re-
mainder of this article is organized as follows. In Section 2, the developed algorithm is explained. In
Section 3, network metrics usually employed to characterize the topological structure of graphs are
listed. In Section 4, the results obtained from numerical simulations are presented. In Section 5, these
results are discussed and the possible relevance of the network model is stressed.

2. An algorithm for generating complex social networks

Consider a square grid composed of η × η cells, in which each cell represents an individual. There-
fore, there are N = η2 individuals in this social group. To mitigate edge effects, the left and right edges
are connected, and similarly, the top and bottom edges are also connected. Thus, all individuals resid-
ing in this grid are geographically equivalent. In this network model, social contacts among individuals
can occur within a neighborhood of radius r. These social contacts are represented by undirected links
between individuals. These links are established through a random wiring process, in which an indi-
vidual is connected to k others positioned within the square matrix of size (2r + 1) × (2r + 1) centered
around such an individual (self-connections and multiple links are not allowed) [28–30]. In cellular
automata literature, r is called Moore’s radius [43]. Figure 1 illustrates an individual (black cell) with
k = 5 neighbors (dark gray cells) in a Moore neighborhood with r = 2 (light gray cells).

Figure 1. A block 7 × 7 of a grid showing the (dark gray) neighbors of the (black) central
cell. In this example, r = 2; hence, the neighbors of the central cell live in a (light gray)
neighborhood 5 × 5. The layer i = 1 is composed of 8 cells and the layer i = 2 of 16 cells.
Notice that the central cell has 3 neighbors in the layer i = 1 and 2 neighbors in the layer
i = 2; therefore, for this cell, k = 5. In the model, the probability of two cells being connected
(being neighbors) is given by Eq (2.1). The (white) cells in the layer i = 3 are beyond the
neighborhood radius; hence, such cells cannot be connected to the central cell.
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In the model, the probability qi of connecting an individual to another individual belonging to the
neighborhood layer i (i = 1, 2, ..., r) is calculated from [28–30]:

qi =
2(r + 1 − i)

r(r + 1)
(2.1)

Notice that
∑r

i=1 qi = 1 and qi decreases with i. Therefore, the greater the distance between two
individuals is, the smaller the probability of them being connected. For instance, for r = 2, then q1 =

2/3 and q2 = 1/3. Since the links are primarily local, this model can be suitable for representing face-
to-face encounters in a social group. Such encounters can impact, for instance, information diffusion,
infection spreading, and goods exchange.

The degree k of each individual is obtained as follows. First, a number x is randomly picked
from the standard uniform distribution U(0, 1). Then, the value of k is determined from P(k) = x; thus,
k = P−1(x) (as in an inverse transform sampling) with P(k) = Ak−γ [28], in which A is the normalization
constant and γ is a positive exponent. As the degree distribution P(k) follows a power law, the resulting
graph will exhibit scale-free characteristics [11–14, 17]. The normalization condition

∑kmax
k=kmin

P(k) = 1
imposes that the constant A must be equal to:

A =
1∑kmax

k=kmin
k−γ

(2.2)

By definition [11–14], P(k) = nk/N, in which nk is the number of individuals with degree k; hence,∑kmax
k=kmin

nk = N. As a consequence:

nk =
Nk−γ∑kmax

k=kmin
k−γ

(2.3)

The average degree ⟨k⟩ is a relevant metric of realistic networks. In order to adjust the value of ⟨k⟩
of the resulting graph to the target value ktar found in a real-world society, the minimum degree kmin

and the maximum degree kmax of P(k) must be conveniently chosen. Recall that ⟨k⟩ can be computed
from [11–14]:

⟨k⟩ =
kmax∑

k=kmin

kP(k) (2.4)

By taking into consideration Eqs (2.2) and (2.3), then:

⟨k⟩ =

∑kmax
k=kmin

k−γ+1∑kmax
k=kmin

k−γ
(2.5)

Notice that the condition nkmax ≥ 1 (that is, there is at least one individual with k = kmax) implies:

kmax ≤

 N∑kmax
k=kmin

k−γ

1/γ (2.6)

Equations (2.5) and (2.6) can be used to computationally construct a graph with ⟨k⟩ = ktar. Notice
that (2r + 1)2 − 1 ≥ kmax; that is, the maximum number of potential neighbors must be greater than
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or equal to kmax (for instance, if r = 1, it is impossible to build a graph with kmax = 9, because each
individual will have at most 8 neighbors).

To better explain how the values of kmin and kmax are chosen, Figure 2 shows ⟨k⟩ (the blue line)
and kmax (the green line) as functions of kmin for N = 4900, γ = 2.5 and ⟨k⟩tar = 10 (the red line).
The vertical axis is logarithmically scaled. The plot of ⟨k⟩ was obtained from Eq (2.5) and the plot of
kmax from Eq (2.6) (by considering the equals sign). Notice that for kmin = 3, then ⟨k⟩ ≃ ⟨k⟩tar and,
consequently, kmax = 113. Therefore, for γ = 2.5 and ⟨k⟩tar = 10, the algorithm takes kmin = 3 and
kmax = 113.

1 2 3 4 5 6
10

0

10
1

10
2

Figure 2. The plots of ⟨k⟩ (the blue line) and kmax (the green line) as functions of kmin for
N = 4900, γ = 2.5 and ⟨k⟩tar = 10 (the red line, which was included just for reference).

A pseudocode of the algorithm is given below. The input parameter values are: η (which determines
the total number of individuals N), r (the neighborhood radius), γ (the exponent of the power law), and
ktar (the average degree of the actual social group). The aim is to build a primarily locally connected
graph with ⟨k⟩ = ktar and P(k) obeying a power law. In the algorithm, nk is taken as the integer part
of the real number calculated from Eq (2.3); hence, ⟨k⟩ in the graph is usually smaller than ktar in
the early stages of a simulation. If ⟨k⟩ > ktar after building an initial graph (which is very rare), the
algorithm stops because a graph with the specified values of ktar and γ cannot be built with the proposed
computational method.

Algorithm 1: Pseudocode of the algorithm developed for implementing the network model.
1. set the input parameter values: η, r, γ, ktar

2. compute kmin and kmax satisfying Eqs (2.5) and (2.6), by assuming that ⟨k⟩ = ktar

3. determine the values of nk for kmin ≤ k ≤ kmax from Eq (2.3)
4. assign a degree k to each individual from an inverse transform sampling, by considering the
values of nk calculated in step 3

5. create random links between the individuals by taking into account Eq (2.1)
6. when all individuals have achieved their specified degrees, the wiring process is interrupted
7. if there are isolated subgraphs, they are randomly connected to the largest subgraph
8. compute ⟨k⟩ from Eq (2.4)
9. stop if ⟨k⟩ ≥ ktar

10. if ⟨k⟩ < ktar, then delete all links and return to step 5
11. if ⟨k⟩ < ktar after 10 trials, then add 1 to kmin and return to step 3
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The developed algorithm sequentially creates M ≃ Nktar/2 links in order to obtain ⟨k⟩ = ⟨k⟩tar and
P(k) = Ak−γ (recall that ⟨k⟩ = 2M/N [11–14], in which M is the number of links). Some observations
regarding the pseudocode are as follows:

• About step 4, the algorithm takes into account the integer part of nk determined from Eq (2.3) (for
instance, if n5 = 67.12, then the algorithm will create a graph with 67 nodes with k = 5).
• About step 5, if there is already a link with the randomly selected node, a new random selection

must be made (recall that self-connections and multiple links are prohibited).
• About step 7, in dozens of simulations for networks with 1000 ≤ N ≤ 10000, isolated subgraphs

were never found. The idea of step 7 is to connect a randomly chosen node from an isolated
subgraph to another randomly chosen node from the largest subgraph.
• Algorithm convergence problems can occur only for γ ≤ 1, which is a value of γ not found in

realistic social networks.

The topological structure of graphs is usually characterized by computing the metrics presented in
the next section.

3. Network metrics

The connection pattern of graphs can be quantified by calculating P(k), ⟨k⟩, ⟨l⟩, ⟨c⟩, ⟨Cc⟩, and ⟨Cb⟩.
These statistical measures are defined below.

As mentioned in the previous section, P(k) = nk/N and ⟨k⟩ =
∑kmax

k=kmin
kP(k), in which nk is the

number of nodes with degree k.
For undirected graphs, the average shortest-path length ⟨ℓ⟩ is obtained from [12, 13, 28]:

⟨ℓ⟩ =
2
∑N−1

i=1
∑N

j=i+1 ℓi j

N(N − 1)
(3.1)

in which ℓi j is the shortest distance (the minimum number of links) between the nodes i and j. This
metric influences the velocity that information can travel in the network. The smaller ⟨ℓ⟩, the quicker
the communication among the nodes.

For the node i, the clustering coefficient ci is defined as [12, 13, 28]:

ci =
2bi

ki(ki − 1)
(3.2)

in which bi is the number of connections among its ki neighbors. Since this metric reflects the local
connectivity, it is commonly used to identify communities.

Centrality measures are calculated to evaluate the relevance of the nodes composing the network.
The closeness centrality Cc(i) of the node i is defined as [13, 28, 44]:

Cc(i) =
N − 1∑N

j=1 li j
(3.3)

This metric reveals how quickly the node i can communicate with others in the network.
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The betweenness centrality Cb(i) of the node i is defined as [13, 28, 44]:

Cb(i) =
2

(N − 1)(N − 2)

N−1∑
j=1

N∑
s= j+1

g js(i)
g js

(3.4)

in which g js is the number of the shortest paths between the nodes j and s, and g js(i) is the number
of the shortest paths between the nodes j and s passing through the node i. This metric quantifies the
extent to which the node i facilitates communication among other nodes.

For the whole network, average values of the metrics defined by Eqs (3.2)–(3.4) are computed from
⟨c⟩ =

∑N
i=1 ci/N, ⟨Cc⟩ =

∑N
i=1 Cc(i)/N, and ⟨Cb⟩ =

∑N
i=1 Cb(i)/N.

In the next section, the numerical results obtained in simulations are presented. Dozens of graphs
were computationally created and analyzed. Then, nine graphs were selected, because they serve as
representative examples.

4. Results of computer experiments

Numerical simulations were performed to investigate the influence of r, γ, and ktar on the metrics
described in the previous section. In these simulations, η = 70 (thus, the graphs are composed of
N = 4900 nodes). Three sets of simulations were run with the following parameter values:

• set 1: r = 10, γ = 3, and ktar ∈ {20, 45, 100};
• set 2: ktar = 20, γ = 3, and r ∈ {5, 20, 60};
• set 3: r = 10, ktar = 15, and γ ∈ {0.3, 2.5, 8}.

Figure 3 shows how P(k) varies with k for these three sets of parameter values. Set 1 corresponds
to the first column of Figure 3, set 2 to the second column, and set 3 to the third column. Tables 1, 2,
and 3 present the metrics computed for sets 1, 2, and 3, respectively. The averages and the standard
deviations of these metrics were obtained in 5 simulations with the same parameter values. Notice that
the standard deviations are less than 0.1%.

These tables also present ∆k = kcut − kmin, in which kcut is the degree above which the data deviate
more significantly from the straight lines shown in Figure 3. These lines were obtained from the least
squares fitting method [45] with the value of γ given in each plot. In fact, various real-world degree
distributions are usually better described by [11, 12, 23, 28, 46]:

P(k) = Ak−γ10−k/kcut (4.1)

that is, by a power law with exponential cutoff. Equation (4.1) implies:

log P(k) = log A − γ log k − k/kcut (4.2)

Therefore, the linear regression yields a satisfactory fit in the log-log plot for k ≪ kcut.
For r = 10 and ktar = 15 (as adopted in set 3), Figure 4 exhibits how ∆k depends on the exponent γ

for 0.3 ≤ γ ≤ 10.
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Figure 3. Log-log plots (log base 10) of the degree distribution P(k) of the computer-
generated graphs with N = 4900 nodes. In the first column, r = 10, γ = 3, and
ktar ∈ {20, 45, 100}. In the second column, ktar = 20, γ = 3, and r ∈ {5, 20, 60}. In the
third column, r = 10, ktar = 15, and γ ∈ {0.3, 2.5, 8}. The red lines correspond to linear
regressions for k ≪ kcut, with the value of γ shown in each plot.

Table 1. Values of 100 × ⟨Cc⟩, 100 × ⟨Cb⟩, ⟨ℓ⟩, 100 × ⟨c⟩, ⟨k⟩, and ∆k for set 1.
ktar 100 × ⟨Cc⟩ 100 × ⟨Cb⟩ ⟨ℓ⟩ 100 × ⟨c⟩ ⟨k⟩ ∆k
20 23.90 ± 0.03 0.06511 ± 0.00003 4.189 ± 0.008 6.513 ± 0.003 20.1 ± 0.3 29.20 ± 0.03
45 28.59 ± 0.02 0.05103 ± 0.00002 3.499 ± 0.005 11.687 ± 0.004 45.2 ± 0.2 56.4 ± 0.1

100 31.72 ± 0.03 0.04397 ± 0.00002 3.153 ± 0.006 22.352 ± 0.008 100.3 ± 0.1 83.80 ± 0.05

Table 2. Values of 100 × ⟨Cc⟩, 100 × ⟨Cb⟩, ⟨ℓ⟩, 100 × ⟨c⟩, ⟨k⟩, and ∆k for set 2.
r 100 × ⟨Cc⟩ 100 × ⟨Cb⟩ ⟨ℓ⟩ 100 × ⟨c⟩ ⟨k⟩ ∆k
5 16.50 ± 0.02 0.10339 ± 0.00004 6.064 ± 0.004 16.937 ± 0.004 20.0 ± 0.1 28.20 ± 0.03

20 29.24 ± 0.03 0.04956 ± 0.00001 3.427 ± 0.003 2.826 ± 0.002 20.2 ± 0.2 34.10 ± 0.06
60 31.74 ± 0.02 0.04406 ± 0.00002 3.158 ± 0.004 1.278 ± 0.001 20.0 ± 0.1 89.40 ± 0.08

Table 3. Values of 100 × ⟨Cc⟩, 100 × ⟨Cb⟩, ⟨ℓ⟩, 100 × ⟨c⟩, ⟨k⟩, and ∆k for set 3.
γ 100 × ⟨Cc⟩ 100 × ⟨Cb⟩ ⟨ℓ⟩ 100 × ⟨c⟩ ⟨k⟩ ∆k

0.3 24.63 ± 0.02 0.06286 ± 0.00003 4.079 ± 0.006 7.084 ± 0.003 21.5 ± 0.8 14.20 ± 0.05
2.5 22.51 ± 0.02 0.07046 ± 0.00004 4.451 ± 0.008 5.911 ± 0.002 15.8 ± 0.1 28.40 ± 0.01
8.0 21.48 ± 0.03 0.07469 ± 0.00004 4.658 ± 0.009 4.413 ± 0.003 15.3 ± 0.2 5.080 ± 0.003
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Figure 4. The interval ∆k as a function of the exponent γ for r = 10 and ktar = 15.

5. Discussion and conclusion

Here, the algorithm developed to represent face-to-face social interactions through graphs was nu-
merically explored, by investigating the impact of r, γ, and ⟨k⟩tar on the graph structure. As shown in
Figure 3, the algorithm can generate graphs with P(k) ∼ k−γ, despite the exponential cutoff. Tables 1–3
indicate that ⟨k⟩ ≃ ktar for most graphs. An evident exception is the plot with r = 10, γ = 0.3, and
ktar = 15. In this case, P(k) exhibits a bell-shaped curve, which is typical of purely random and small-
world networks [11]. This result was unexpected, but it is a consequence of taking γ < 1 (which is
not found in actual networks [11, 12, 23, 46]). For γ → 0, then P(k) → A, kmax → ∞ and ∆k → 0. In
this limit case, due to the geographical restrictions imposed by Eq (2.1), P(k) becomes a Poisson-like
distribution in the log-log plot. The simulations also show that, as γ increases, the bell-shaped curve
in P(k) is stretched along the k-axis and its maximum shifts to the right. Thus, the typical tail usually
found in P(k) for scale-free networks [11,17] appears here as a vestige of the stretched Poisson-like
distribution.

For purely random networks, ⟨ℓ⟩random ≃ log N/ log⟨k⟩ [11], which is a convenient formula to es-
timate ⟨ℓ⟩ for the graphs analyzed here. For instance, for r = 60, γ = 3, and ktar = 20 (see Ta-
ble 2), then ⟨ℓ⟩ = 3.16 ≈ ⟨ℓ⟩random ≃ log 4899/ log 20.04 = 2.83. Also, for purely random networks,
⟨c⟩random = ⟨k⟩/N [11]. For the graphs analyzed here, ⟨c⟩ ≫ ⟨c⟩random. For instance, for r = 10, γ = 2.5,
and ktar = 15 (see Table 3), then ⟨c⟩ = 5.9% ≫ ⟨c⟩random = 15.776/4899 = 0.3%. Therefore, for
the graphs exhibited in Figure 2, ⟨ℓ⟩ ≈ ⟨ℓ⟩random and ⟨c⟩ ≫ ⟨c⟩random, which are typical topological
properties of small-world networks [15].

Table 1 shows that, by increasing ktar, ⟨ℓ⟩ decreases and ⟨c⟩ increases. Thus, by raising the average
number of links per individual, the distances become shorter and the neighbors become more con-
nected, as expected. Also, ⟨Cc⟩ increases and ⟨Cb⟩ decreases, because the addition of links improves
communication and reduces the relative importance of single nodes. The interval ∆k also increases
with ktar. Hence, the higher ktar is, the larger the interval within a pure power law remains accurate to
describe P(k).

Table 2 shows that, by increasing r, ⟨ℓ⟩ and ⟨c⟩ decrease. Therefore, by enlarging the area where the
connections are made, the neighbors can become geographically further apart, which can reduce the
path (the minimum number of links) between individuals. However, the neighborhood connectivity is
also reduced. Consistently, ⟨Cc⟩ increases and ⟨Cb⟩ decreases. In addition, ∆k increases with r.

Table 3 shows that ⟨ℓ⟩ and ⟨Cb⟩ increase with γ and ⟨c⟩ and ⟨Cc⟩ decrease with γ. Also, Figure 4
reveals that ∆k presents a maximum for 2 <∼ γ <∼ 3, which contains the values of γ usually identified in
real-world networks [11–14]. This is a striking result, since the graphs analyzed here were not created

Mathematical Biosciences and Engineering Volume 21, Issue 4, 4801–4813.



4810

from a preferential attachment rule, which naturally leads to a power law with γ ≈ 3 [11, 12, 17–20].
In fact, it is surprising to find out that, in the primarily locally connected graphs created from Eqs (2.1)
and (2.3), the interval ∆k in which P(k) is a pure power law is greater for 2 <∼ γ <∼ 3. In Figure 4, r = 10
and ktar = 15; however, the simulations show that this result holds for other values of r and ktar.

In short, the developed algorithm can generate graphs with scale-free and small-world features with
the desired values of γ and ⟨k⟩. Such graphs can be used to represent the social contacts in real-world
societies. The relation between ∆k and γ was an unexpected outcome. This relation suggests the
following conjecture: social networks present 2 <∼ γ <∼ 3 because the connectivity in these networks
is influenced by the spatial location of their nodes. Usually, the spatial coordinates of the nodes are
neglected in network models. For instance, consider the network of actors and actresses mentioned in
Section 1. In general, most of the artists involved in a movie are from the same country, but this fact is
ignored in the process of graph construction. Evidently, this geographical issue can affect the formation
of links, as shown in this study. Another well-known example in which location clearly matters is the
network of human sexual contacts [47]. Therefore, the study presented here suggests that the spatial
location of the constituent nodes should really be taken into account in social network models based
on face-to-face encounters.
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