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Abstract: The objective of EEG-based emotion recognition is to classify emotions by decoding 
signals, with potential applications in the fields of artificial intelligence and bioinformatics. 
Cross-subject emotion recognition is more difficult than intra-subject emotion recognition. The poor 
adaptability of classification model parameters is a significant factor of low accuracy in cross-subject 
emotion recognition. We propose a model of a dynamically optimized Random Forest based on the 
Sparrow Search Algorithm (SSA-RF). The decision trees number (DTN) and the leave minimum 
number (LMN) of the RF are dynamically optimized by the SSA. 12 features are used to construct 
feature combinations for selecting the optimal feature combination. DEAP and SEED datasets are 
employed for testing the performance of SSA-RF. The experimental results show that the accuracy of 
binary classification is 76.81% on DEAP, and the accuracy of triple classification is 75.96% on SEED 
based on SSA-RF, which are both higher than that of traditional RF. This study provides new insights 
for the development of cross-subject emotion recognition, and has significant theoretical value. 
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1. Introduction 

Research in neuroscience and psychology has shown that EEG signals can intuitively reflect an 
individual’s emotional changes [1]. EEG signals are subject to individual differences and are 
non-stationarity [2], so the construction of a cross-subject emotion recognition model has become an 
important research direction and has great significance. This study focuses on exploring the emotions 
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generated by the same emotion-inducing mode between subjects and cross-subjects, and conducts 
training based on cross-subjects’ emotional characteristics, aiming to improve the emotion 
classification accuracy of the cross-subjects emotion recognition model [3]. 

Machine learning is the method of making computers with human intelligence, which requires 
training models to improve themselves by learning from data, a technique that is well suited to tasks 
such as processing electrical brain signals. Aljuhani et al. [4] used machine learning algorithms to 
identify emotions from speech, extracting various spectral features, such as the Mel-frequency 
cepstrum coefficient (MFCC) and mel spectrum, and obtained 77.14% accuracy by the SVM method. 
Liu and Fu [5] trained a support vector machine in emotion recognition and proposed a multi-channel 
feature fusion method. The recognition accuracy of different subjects ranged from 0.70 to 0.87, and 
the results of PLCC and SROSS measurements reached 0.843 and 0.789. Salido Ortega et al. [6] used 
machine learning technology to establish individual models, general models, and gender models to 
automatically identify subjects’ emotions, which verified that their individual emotions are highly 
correlated with the situation. They used the situation data to realize automatic recognition of emotions 
in real situations. Karbauskaite et al. [7] studied facial emotion recognition, and combining four 
features made the emotion classification accuracy reach 76%. Xie et al. [8] proposed a 
transformer-based cross-mode fusion technology and blackmail network architecture for emotion 
estimation, and this multi-mode network architecture can achieve an accuracy of 65%. Li et al. [9] 
proposed a TANN neural network. Adaptive highlighting of transferable brain region data and samples 
through local and global attention mechanisms was used to learn emotion discrimination information.  

Deep learning is a technique that combines low-level features to form more abstract high-level 
features or categories, so as to learn effective feature representations from a large number of input data 
and apply these features to classification, regression, and information retrieval. It is also applicable to 
the processing of EEG signals. Jiang et al. [10] established a 5-layer CNN model to classify EEG 
signals, and the average accuracy reached 69.84%, 0.79% higher than that of the CVS system. Zhang 
and Li [11] proposed a teaching speech emotion recognition method based on multi-feature fusion deep 
learning, and the recognition accuracy reached 75.36%. Liu and Liu [12] applied BP (back-propagation) 
neural network as Technical Support and Combines EEG Signals to Classify Criminal Psychological 
Emotions. Liu et al. [13] used the MHED dataset to study the multi-modal fusion network of video 
emotion recognition based on hierarchical attention, and the accuracy was 63.08%. Quan et al. [14] 
showed that interpersonal characteristics can help improve the performance of automatic emotion 
recognition tasks, and the highest accuracy at the titer level was 76.68%. Fang et al. [15] proposed a 
Multi-feature Deep Forest (MFDF) model to identify human emotions. 

We employed the random forest (RF) classification model in the field of machine learning. As 
the integration of decision trees, RF is a classifier that uses multiple trees to train and predict samples. 
It has the advantages of being built easily, able to obtain the importance weight of features, and is less 
likely to overfit. Anzai et al. [16] used the machine learning random forest algorithm to build a fragile 
classifier and a descent classifier to identify the frail state and fall risk of the elderly, and the overall 
balance accuracy for the identification of frail subjects was 75% ± 0.04%. The overall balance 
accuracy for classifying subjects with a recent history of falls was 0.57 ± 0.05 (F1 score: 0.62 ± 0.04). 

In the field of optimization classification model, related researchers have made great progress. 
Zhang et al. [17] used Bayesian super parameters to optimize the stochastic forest classifier on 
Sentinel-2 satellite image urban land cover classification. As a result, the RF after Bayesian 
optimization was 0.5% higher than RF by using RGB band features, and its accuracy increased 1.8% 
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by using multi-spectral band features. Beni and Wang [18] proposed swarm intelligence in 1989. The 
probabilistic search algorithm built by simulating the swarm behavior of natural organisms was 
intelligent, because it was independent of the optimization problem itself, required fewer parameters, 
had high fault tolerance, and had strong stability. Ye et al. [19] adopted a genetic algorithm to 
optimize the decision tree combination in the parametric optimization random forest, comparing with 
the actual profit, the profit score of RFoGAPS increases by 7.73%. 

In recent years, the swarm intelligence algorithm based on biological characteristics has been 
widely used in electronic information, engineering technology, biomedicine, and other fields. Sparse 
Bayesian Learning for end-to-end spatio-temporal-filtering-based single-trial EEG classification 
(SBLEST) optimized spatio-temporal filters and the classifier simultaneously within a principled 
sparse Bayesian learning framework to maximize prediction accuracy [20,21]. Since feature 
extraction and emotion classification were completed independently at different stages in the EEG 
decoding process, and the research aimed to reduce the cost generated in the classification process, 
we put forward an optimization method that can dynamically optimize the parameters of RF model, 
which can improve the accuracy. At the same time, the intelligent optimization algorithm we sought 
should be as simple in structure as possible, easy to implement, and with few control parameters, so 
we selected the Sparrow Search Algorithm (SSA). We applied the SSA to optimize the key 
parameters of RF and improve the classification accuracy in cross-subject emotion recognition.  

SSA-RF was used on the DEAP and SEED datasets, which verified that it had better adaptability, 
effectiveness, necessity of classification model parameters, and reduced subject dependency. 

2. Methods 

2.1. Preprocessing 

Windowing is employed to avoid overfitting which is caused by small data. For data of T s , the 
time window is m s , and the overlap rate is 50%. The principle of windowing is shown in Figure 1. 

 

Figure 1. The principle of windowing. 
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2.2. Feature extraction 

Feature extraction is one of the crucial processing components of cross-subject emotion 
recognition, which can mine the hidden information of mental activity and cognitive function.  

Different emotional features are reflected in different physical quantities of signals. The 
wavelet transform is effective in finding the optimal trade-off between time and frequency 
resolution. Traditional features are extracted from the time-domain, frequency-domain, and 
time-frequency domains [22]. Soroush et al. [23] obtained good classification accuracy by applying 
the characteristics of mean, skewness, and Shannon entropy. The research motivation comes from the 
combinations of different features [24] or principal component analysis and discrete wavelet 
transform for feature selection [25]. 

In this paper, 9 features of time domain, 2 features of frequency domain, and 1 feature of 
time-frequency domain are extracted for SSA-RF cross-subject emotion recognition. We used all 
channels, which can provide more information. 

2.2.1. Time domain features 

In the time domain, the zero crossing rate (ZCR), standard deviation (SD), mean, root mean 
square (RMS), energy (Eng), skewness, approximate entropy (ApEn), sample entropy (SampEn), and 
Hjorth are extracted as the features of the EEG, which are shown in Table 1. 

2.2.2. Frequency domain features 

We transform the time domain EEG to the frequency domain through the Fast Fourier Transform 
(FFT), and the Power Spectral Density (PSD) and Differential Entropy (DE) are extracted as the 
features, which are shown in Table 2. 

2.2.3. Time frequency domain feature 

Due to the characteristics of both time and frequency domains, the time-frequency domain can 
comprehensively reflect the information of the EEG, which is a more comprehensive display of EEG 
feature information. After transforming the EEG into the time-frequency domain through the wavelet 
transform (WT), the wavelet shannon entropy (SE) is extracted as the feature, which provides 
uncertainty, information content, spectral characteristics, and time-frequency variation characteristics 
of the EEG, and reveals the correlation between the EEG signal and emotion so as to realize emotion 
recognition. The SE of the time-frequency domain can describe the information content and 
complexity of the signal at different times and frequencies, as shown in Eq (1): 

𝐻 𝑋 ∑ 𝑃 𝑥 𝑙𝑜𝑔 𝑃 𝑥                           (1) 

Here, H(X) is the SE, and 𝑃 𝑥  is the probability value of different sample data, in bits. 

2.3. The principle of SSA-RF 

SSA is used to obtain the optimal NDT and MNL of the RF dynamically, and the SSA is inspired 
by the foraging behavior of sparrows to obtain the optimal parameters. 
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According to the biological rules of the SSA, the discoverer first finds the optimal foraging area. 
Followers search for food in the area around the discoverers or obtain food from them. They may also 
engage in food plundering between individuals and update their foraging area. When the sparrows are 
aware of danger, they also update their foraging area to avoid being attacked by predators. Assuming 
there are n sparrows in d-dimensional space, X represents the position of the sparrow. The main 
responsibility of discoverers is to find food for the population and guide their followers in the foraging 
direction. According to this rule, the location of the discoverer is updated as described in Eq (2): 

𝑋 ,

𝑋 , ∙ 𝑒𝑥𝑝
∙  

       𝑅 𝑆

𝑋 , 𝑄 ∙ 𝐿                  𝑅 𝑆       
                      (2) 

Here, 𝑖   is the maximum number of iterations, t is the current number of iterations, 𝑋  is the 
position information of the sparrow i in the j dimension, 𝑅  and 𝑆  are the warning and safety values 
respectively, Q and 𝛼 𝛼 ∈ 0, 1  are the random numbers, Q follows a normal distribution, and L is 
a matrix with all elements being 1 𝑑. When 𝑅 𝑆 , there are no predators in the foraging 
environment, and the discoverer can conduct a safe and extensive search. When 𝑅 𝑆 , some 
sparrows confirm the presence of predators and issue an alert, and all the sparrows need to move to 
the feeding area in a timely manner. 

The position update of followers is described in Eq (3): 

𝑋 ,

𝑄 ∙ 𝑒𝑥𝑝 ,          𝑖 𝑛 2⁄

𝑋 𝑋 , 𝑋 ∙ 𝐴 ∙ 𝐿  𝑜𝑡ℎ𝑒𝑟
          

                    (3) 

Here, 𝑋  is the optimal position occupied by the current discoverer, and 𝑋  is the current global 
worst position, A is a matrix of 1 𝑑, with elements randomly assigned to 1 or -1, and 𝐴
𝐴 𝐴𝐴 . When 𝑖 𝑛 2⁄ ，The follower i is in a state of hunger, whose fitness is reduced, and in 
order to find food, it needs to change areas for foraging. 

When aware of danger, the sparrow population will engage in anti-predatory behavior, as 
described in Eq (4): 

𝑋 ,

𝑋 𝛽 ∙ 𝑋 , 𝑋   𝑓 𝑓

𝑋 , 𝐾 ∙ ,   𝑓 𝑓
                        (4) 

Here 𝑓  is the fitness value of the current sparrow individual, 𝑓  and 𝑓  are the current global best 
and worst fitness, 𝑋  is the current global optimal position, 𝛽 represents the wavelength control 
parameter, which is a random number subject to a standard normal distribution (mean 0, variance 1), 
𝐾 𝐾 ∈ 1,1  is a random number representing the direction of sparrow movement, and 𝜀 is the 
smallest constant to avoid a denominator of 0. 

When f f , sparrows are in a hazardous area and can be easily spotted or attacked by natural 

predators. 
When f f , sparrows realize that they are currently in a dangerous position, and in order to 

avoid being attacked by predators, they need to move closer to the sparrows in the safe area to reduce 
the likelihood of predation. The implementation of SSA-RF is shown in Table 3. 
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Table 1. The 9 features of the time domain. 

Feature Definition Formula and description The connection to emotions

ZCR  
The number of times the signal 

passes the zero value in unit time. 

𝑍 𝑍 𝑥 , where N is the length of the signal sample. Znum 

is the number of times the signal passes through zero in unit time. 

ZCR is closely related to positive emotions. The 

higher the ZCR value, the more significant the 

positive emotions will be. 

SD 

The degree of dispersion among 

individuals in the sample, the 

amplitude of indirect reaction 

signal change from the mean.  

𝑆
∑ ̅ , where 𝑛 is the number of samples, 𝑥  is the 

value of each data, and 𝑥 is the mean of the sample. 

SD indirectly represents signal changes from the 

mean, so as to judge whether the brain activity pulls 

away from the stationary state. 

Mean 
Indirectly reflects the intensity of 

brain activity.  

𝜇 ∑ 𝜉 𝑡 , where ξ t  is the time domain data, and T is 

the data length. 

Mean represents the intensity of brain activity in a 

certain period of time, the higher the value, the 

greater the intensity of activity.

RMS 

The degree to which the data value 

of each frame of the EEG signal 

deviates from the mean value of the 

overall sample signal. 

𝑟𝑚𝑠
∑

, where 𝑥  is the time domain signal data, and n is 

the sample length. 

RMS represents the degree to which the data value of 

each frame deviates from the mean of the whole 

sample signal, reflecting the degree of deviation from 

the intensity of brain activity.

Eng 

EEG is variable and 

non-stationary, and its total energy 

is infinite.  

𝐸 |𝑥 𝑡 | 𝑑𝑡, where 𝑥 𝑡  represents the signal data value 

at a certain time, and the total energy is the integral of the square 

of the signal data.

Eng can capture the emotional change and evolution 

trend, the higher the Eng value, the stronger the 

positive emotion will be. 

Skewness 

The distribution symmetry of the 

values of a particular population is 

described. 

𝑏
∑

∑
⁄ , where x is the mean, s is the 

standard deviation, and 𝑚  is the third-order central matrix. 

Skewness represents the degree of deviation between 

each frame and the normal distribution. The larger the 

value, the larger the skewness of its distribution form. 

ApEn 

A nonlinear parameter used to 

quantify the regularity and 

unpredictability of time series 

fluctuation 

(1) 𝑋 𝑥 𝑖 , 𝑥 𝑖 1 , . . . , 𝑥 𝑖 𝑥 1  
(2) 𝑑 𝑋 , 𝑋 𝑚𝑎𝑥|𝑥 𝑖 𝑘 𝑥 𝑗 𝑘 |, 𝑘 ∈ 0, 𝑚 1  

(3) 𝐵 𝑟  

(4) 𝐵 𝑟 ∑ ln 𝐵 𝑟  

ApEn represents the complexity of EEG and reflects 

the possibility of new information. The more complex 

time series, the greater the value will be. 

Continued on next page 
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Feature Definition Formula and description The connection to emotions

ApEn 

A nonlinear parameter used to 

quantify the regularity and 

unpredictability of time series 

fluctuation 

(5) 𝐴𝑝𝐸𝑛 𝑚, 𝑟, 𝑁 𝐵 𝑟 𝐵 𝑟  

(6) Arrange the elements of the time series X in order as vectors 

with m dimension 
(7) Define 𝑑 𝑋 ,  𝑋  as the distance between vector 𝑋  and 

vector 𝑋  

(8) Write 𝐵  as the number of 𝑑 𝑋 , 𝑋 𝑟 (r is the similarity 

tolerance), and calculate the ratio of 𝐵  to the total number of 

vectors (N-m+1)  

(9) Take the logarithmic operation on 𝐵 𝑟 , and then find its 

average of all i, and write it as 𝐵 𝑟  

(10) Make 𝑚 𝑚 1 and repeat (1)–(4) to obtain 𝐵 𝑟 . 

(11) Final representation approximate entropy 

ApEn represents the complexity of EEG and reflects 

the possibility of new information. The more complex 

time series, the greater the value will be. 

SampEn 

The probability of generating new 

patterns in the sequence when 

measuring the complexity and 

dimensional changes of EEG. 

(1) 𝐵 𝑟 𝑛𝑢𝑚 𝑑 𝑋 , 𝑋 𝑟  

(2) 𝐵 𝑟 ∑ 𝐵 𝑟  

(3) It is the same as the approximate entropy in the first two steps. 

Starting from the third step, the specific steps are as follows: 
(4) Given threshold r r 0 , count the number of 𝑑 𝑋 , 𝑋

𝑟 and its ratio to the total number of vectors 𝑁 𝑚  

(5) Average the results of the previous step 

(6) Add dimension 𝑚 to 1 and repeat the above four steps 

(7) The actual number of samples is limited, and the final sample 

entropy is obtained

SampEn measures the probability of generating new 

patterns in sequence when the EEG complexity and 

dimension change. The higher the probability, the 

greater the complexity. 

Hjorth 

Describe the three time-domain 

feature sets of EEG single channel, 

including activity, mobility, and 

complexity.  

𝐻𝐴 𝜎 ; 𝐻𝑀 ; 𝐻𝐶

where 𝜎 is the standard deviation of the signal, and 𝜎  and 𝜎 are 

the standard deviations of the first and second derivatives of the 

signal.

Hjorth represents the EEG changes at different time 

and spatial locations, thereby revealing the rules and 

characteristics of brain electrical activity.  
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Table 2. The 2 features of frequency domain. 

Feature Definition Formula and description The connection to emotions 

PSD 

Represents the 

conversion of signal 

strength to unit 

bandwidth frequency, 

i.e. the distribution of 

signal strength within 

the frequency range.   

(1) EEG signals 𝑠 0 , 𝑠 1 , ⋯ ⋯ , 𝑠 𝑁 1  are divided into k segments, calculate the windowed 
discrete Fourier transform 𝑆 , which is shown as follows: 𝑆 ∑ 𝑆 𝑚 𝑤 𝑚 𝑒𝑥𝑝 𝑗2𝜋𝑣𝑚  

where, 𝑚 is between 𝑘 1 𝐿 and 𝑀 𝑘 1 𝐿 1, 𝑤 𝑚  is the window function, M is the 

segment size, and L is the number of information points between segments, 𝑣 𝑖/M, where 

1 𝑖 . 

(2) Calculate the modified periodic chart value using the formula: 𝑃 𝑣 1/𝑤𝑎𝑏𝑠 𝑆 𝑣  

where, 𝑤 ∑ 𝑤 𝑚 . 

(3) Estimate the power spectral density by using the average of the periodic plot values calculated 

using the equation: 𝐿 𝑣 1/𝐾 ∑ 𝑃 𝑣  

where, the number of points shared by two adjacent signal segments is equal to (M-L), which means 

that the two adjacent segments will be overlapped by (M-L) points.

PSD represents the energy 

distribution of EEG signals in 

different frequency bands, and 

identifies emotional states 

through the difference of 

energy distribution.  

DE 

It is a generalization of 

Shannon’s information 

entropy 
∑ 𝑝 𝑥 𝑙𝑜𝑔 𝑝 𝑥 on 

continuous variables. 

𝐷𝐸 𝑝 𝑥 𝑙𝑜𝑔 𝑝 𝑥 𝑑𝑥
1

2𝜋𝜎
𝑒 𝑙𝑜𝑔

⎝

⎛ 1

2𝜋𝜎
𝑒

⎠

⎞

 

𝑑𝑥 

1
2

𝑙𝑜𝑔 2𝜋𝑒𝜎  

Here 𝑝 𝑥  represents the probability density function of continuous information, and [a, b] 

represents the interval of information values, which is equal to the logarithm of its energy spectrum 

in a specific frequency band. 

DE represents the complexity 

and irregularity of EEG signals 

in the frequency domain and 

captures the dynamic changes.  
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Table 3. The implementation of SSA-RF. 

Algorithm: SSA-RF 

Input:  D: EEG Data 

       G: Number of iterations 

       P: Number of population 

       F0: Global optimal fitness value 

       F: Current fitness value 

Output: Optimal DTN and LMN of RF 

1:  Initialize the RF model and substitute D into it 

2:  Determine the initial location of sparrow population 

3:   while i < G do 

4:      for m = 1 to P do 

5:       Use the fitness function to determine the global fitness value 

6:       Update population position based on fitness ranking order 

7:        if F < F0 then 

8:         Update the global optimal position 

9:        end if 

10:     end for 

11:  Select the global optimal position 

12:   end while 

13:  Extract the two dimensional data of the global optimal position (DTN and LMN) and 
substitute it into the RF model to output the results 

In SSA-RF, the fitness function is used to search for the optimal number of DTN and LMN. The 
classification error of the training and testing sets is used as the fitness. After the model training is 
completed, the optimal position of the sparrow population is output, corresponding to the optimal 
number of DTN and LMN in the RF, Finally, the optimization results were incorporated into the RF for 
experimentation, which summarized the complete process of SSA-RF optimization parameters. The 
flowchart of SSA-RF algorithm is shown in Figure 2. 
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Figure 2. Overview of the SSA-RF flow. 

3. Experimental results and analysis 

3.1. Datasets and parameters 

3.1.1. Datasets 

Table 4. Data formats of DEAP and SEED datasets. 

Dataset Data format Caption 

DEAP 40 × 32 × 7680 
40: video 
32: channel 
7680: data

SEED 15 × 3 × 62 × M 

15: video 
3: number of experiments 
62: channel 
M: data

The DEAP dataset was established by Koelstra et al. [26] from Queen Mary’s College London, 
which included multi-channel physiological signals, facial expression videos, and emotional 
self-evaluation labels established using the SAM (Self Assessment Manikins) table. It collected EEG 
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data from 32 healthy subjects (16 males and 16 females), with the first 32 channels of EEG. 
The SEED dataset was established by the BCMI laboratory, which recorded the EEG of 15 

subjects (including 7 males and 8 females), with an average age of 23.37 years old. Each group had 15 
experiments, each consisting of 5 seconds of suggestion before the start, 4 minutes of movie clips, 45 s of 
self-evaluation, and 15 s of rest. The emotion-inducing materials consist of 15 segments from six movies. 
After watching the videos, participants recorded their emotional reactions by filling out questionnaires, 
which were divided into three types: positive emotions, neutral emotions, and negative emotions. 

The data formats of the two datasets were shown in Table 4. 

3.1.2. Parameters of SSA-RF 

The parameters of SSA-RF were population number, maximum number of iterations, dimension, 
upper boundary, and lower boundary. These parameter values are shown in Table 5. 

Table 5. Parameters of SSA-RF. 

Parameter Value 

Population number 8 

Maximum number of iterations 20 

Dimension 2 

lower boundary 1 

Upper boundary 50 

3.2. Preprocessing 

For the DEAP dataset, it was composed of participants collecting EEG signals while being 
emotionally induced, then the participants labeled the label size by watching video through their 
personal subjective emotions.  

The baseline signal mean was removed during baseline processing [27]. The pre-processed data 
were augmented by windowing. There were 40 sets of data from 40 emotion-inducing videos of each 
subject, each of which lasted 60 s. These data were processed with a windowing of 10 s and a 50% 
overlap rate, each video was reconstructed into 440 video data of 10 s. Each video sample had a 
duration of 10 s, a data sampling rate of 128 Hz, and 32 unaltered channels. Therefore, the amount of 
data per sample for a single channel was 1280. The original data was reconstructed from 40 × 32 × 
7680 to 40 × 32 × 14,080. 

For the SEED dataset, it was based on the premise of determining the label to which the 
emotion-evoking material belongs. In the stage of preprocessing, all data of each subject was 
integrated and reconstructed, and the original data format of 15 × 3 × 62 × M was reconstructed into a 
format of 225 × 186 × M. The dataset had a total of 15 subjects, and each subject had 15 segments of 
emotional stimulation materials. All emotional stimulation material data was unified into 15 × 15, so 
the first dimension was 225, Each subject was separated for a period of time to perform the same 
experiment 3 times, each experiment collected 62 channels of EEG signals, and the second 
dimension was 3 × 62, which was 186, M was the amount of data in a single channel of each trial, 
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because each test was not the same time duration, so M was in the range of 37,001–53,001. The 
original data was reconstructed from 15 × 3 × 62 × M to 225 × 186 × M. 

3.3. Cross-subject emotion recognition on the DEAP dataset 

We conducted 15 randomized grouping experiments. The 25 subjects were randomly selected as 
the training set, and the other 7 people were selected as the test set for 30 experiments, and 20 iterations 
were carried out in each experiment.  

A total of 20 features were extracted: ZCR, SD, Mean, RMS, Eng, Skew, ApEn, SampEn, Hjorh, 
PSD, and DE of five frequency bands (δ, θ, α, β, and γ), and SE in the time-frequency domain. We 
performed many experiments of different feature combinations, and selected the top 8 combinations 
with high accuracy. There are shown as follows: 

Combination 1: All features of the composite domain (20 features); 
Combination 2: ZCR, SD, Mean, RMS, Eng, Skewness, ApEn, SampEn, PSD, DE, SE; 
Combination 3: SD, RMS, Eng, PSD-δ, DE-δ, DE-β, DE-γ; 
Combination 4: F-all, SE, and Hjorth; 
Combination 5: Mean, SampEn, DE-β, DE-γ, PSD-β, PSD-γ, SE; 
Combination 6: SD, Mean, RMS, Eng, Skewness, Apen, SampEn, DE-α, DE-β, DE-γ, PSD-α, 

PSD-β, and PSD-γ; 
Combination 7: ZCR, SD, Mean, RMS, Eng, Skewness, ApEn, SampEn, DE-α, DE-β, DE-γ, 

PSD-α, PSD-β and PSD-γ; 
Combination 8: SD, Mean, RMS, Eng, and F-α, β, γ; 

The value of parameters of RF were generally based on empirical data, and the empirical values of 
DTN and MLN were 30 and 1, respectively, but they were not suitable for each type of data. We 
applied SSA algorithm to automatically search for optimal parameters (DTN and MLN) of RF for the 8 
combinations, and the optimal values of DTN and MLN are shown in Table 6. 

Table 6. Optimal parameter values of different feature combinations based on SSA-RF. 

Feature combination 
Parameter 

1 2 3 4 5 6 7 8 

DTN 34 50 49 37 29 24 24 27
MLN  1 1 1 2 2 1 3 1

It can be seen from Table 6 that the optimal parameter values of different feature combinations 
were different, and they were different from the empirical values, DTN especially showed 
significant differences. To test which feature combination can achieve the highest accuracy, we 
experimental with 100 epochs for each feature combination based on the DEAP dataset. 

Figure 3 shows the violin plots of the accuracy for different combinations. The median accuracy 
of combination 3 was higher than the others, and the median accuracy of combination 8 was the lowest. 
On the whole, the accuracy of each combination was in the range of 72–81%. 
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Figure 3. Results of different feature combinations of the DEAP dataset. 

The experimental results of SSA-RF on the DEAP dataset showed the accuracy of the test set 
was improved compared with RF. The classification results and improvement amount are shown in 
Figure 4 and Table 7. 

 

Figure 4. Accuracy of test set based on SSA-RF and RF. 

Table 7. The test set recognition accuracy comparison of SSA-RF and RF. 

Feature 
combination
 

Method (%) 

1 2 3 4 5 6 7 8 

SSA-RF 76.70 77.27 77.57 76.80 77.40 76.52 76.40 75.83 

RF 73.05 76.88 74.55 75.03 76.59 76.19 73.86 75.39 

Difference 3.65↑ 0.39↑ 3.02↑ 1.77↑ 0.81↑ 0.33↑ 2.54↑ 0.44↑ 

Average 1.62↑ 

From Table 7 and Figure 4, it could be seen that the accuracy of SSA-RF was higher than RF on 
each feature combination, with an average improvement of 1.62%. Among them, combination 1 had 
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the highest improvement, which was 3.65%, while combination 3 had the highest accuracy with a 
growth of 3.02%. Combination 3 was selected as the optimal feature combination. 

Then, we analyzed the misjudged subjects based on combination 3. Subject 15 was used for 
analysis that misjudged negative emotions as positive emotions. We compared the features of 
combination 3 (SD, RMS, Eng, PSD-δ, DE-δ, DE-β, DE-γ) with the mean of the same features in the 
training set, as shown in Figure 5. 

 

Figure 5. DEAP dataset misjudgment analysis comparison table. 

From Figure 5, it could be seen that the SD and RMS of subject 15 showed significant 
differences from the mean of the same features of the training set. When SDmean = 11.75 and SD15 
= 87.27, ΔSD ≈ 75.52. When RMSmean = 16.13 and RMS15 = 79.8, ΔRMS ≈ 63.69. Other feature 
values of subject 15 were also higher than the mean of the same features of training set. This indicated 
that subject 15 exhibited significant individual differences in the dataset, and was the reason why it 
was misjudged. The subject of individual differences should be included in the training set for training 
SSA-RF to obtain the better generalization ability. 

3.4. Cross-subject emotion recognition on SEED dataset 

We conducted 15 randomized grouping experiments, 12 subjects were randomly selected as the 
training set, the other 3 people were selected as the test set for 30 experiments, and 20 iterations were 
carried out in each experiment.  

A total of 18 features were extracted: ZCR, SD, Mean, RMS, Eng, Skewness, Hjorth, PSD and 
DE of five frequency bands (δ, θ, α, β, and γ), and SE in the time-frequency domain. We performed 
many experiments of different feature combinations, and selected the top 8 combinations with high 
accuracy. These are shown as follows: 

Combination 1: All time domain features; 
Combination 2: All; 
Combination 3: RMS, Eng, PSD-δ, DE-δ, DE-β, DE-γ; 
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Combination 4: DE-β, DE-α, PSD-β, PSD-α; 
Combination 5: Eng, Skewness, Hjorth, PSD; 
Combination 6: T-all and F-all; 
Combination 7: DE-θ, DE-δ, PSD-θ, PSD-δ; 
Combination 8: T-all and PSD; 
The parameters value of RF were generally based on empirical evidence, and the empirical values 

of DTN and MLN were 30 and 1, respectively, but they were not suitable for each type of data. We 
applied SSA to automatically search for optimal parameters (DTN and MLN) of RF of the 8 
combinations, and the optimal values of DTN and MLN were shown in Table 8. 

Table 8. Optimization results of SSA-RF model parameters. 

Feature combination
Parameter 

1 2 3 4 5 6 7 8 

DTN 33 35 32 50 34 28 34 43 

MLN  10 9 4 4 1 4 16 13 

Since multiple experiments were performed for each feature combination of the SEED dataset, 
the results of each experiment were recorded and statistically analyzed to draw a violin plot as shown 
in Figure 6. 

 

Figure 6. Results of different feature combinations of the SEED dataset. 

It can be seen from the violin plot the accuracy corresponding to the feature combinations of the 
SEED dataset. The accuracy of the combination 1 was significantly higher than that of the other 7 
combinations, and the accuracy of each combination was in the range of 65–93%, whose numerical 
span was larger than the DEAP dataset. 

The experimental results of SSA-RF in the SEED dataset indicated that the accuracy of training 
set was close to 100%. The accuracy and improvement of the three classifications in the test set are 
shown in Figure 7 and Table 9. 
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Figure 7. SSA-RF model test set classification results. 

From Figure 7 and Table 9, it can be concluded that SSA-RF had a better optimization effect on 
the SEED dataset than the DEAP dataset. It can be seen that the accuracy of SSA-RF was higher than 
RF on each feature combination, with an average improvement of 9.85%. Among them, the accuracy 
of all time-domain feature combinations was 82.58%, with an improvement of 9.25%.  

Table 9. The test set recognition accuracy comparison of SSA-RF and RF. 

Feature 
combination 
 

Method (%) 

1 2 3 4 5 6 7 8 

SSA-RF 82.58 72.89 79.73 75.38 75.20 73.11 74.84 73.96 

RF 73.33 62.22 66.67 64.44 68.89 68.89 64.44 60.00 

Difference 9.25↑ 10.67↑ 13.06↑ 10.94↑ 6.31↑ 4.22↑ 10.40↑ 13.96↑ 

Average 9.85↑ 

For the misjudgment analysis of the discrimination results of combination 1 (All time domain 
features) in the SEED dataset, we extracted the feature data of combination 1 for subject 1 when 
misjudging (misjudging positive emotions as negative emotions), and compared it with the mean of 
those in the training set, as shown in Figure 8. 

From Figure 8, it can be seen that the ZCR and SD of subject 1 shows significant differences 
compared with the mean of those in the training set.  

When ZCRmean = 6930.1, ZCR1 = 218,213.6, which was almost a thirty-fold difference. 
Meanwhile, when SDmean = 2880.4, SD1 = 206,475.2, and the other feature values of subject 1 were 
also higher than the mean of those in the training set. Therefore it could be seen that subject1 exhibited 
significant individual differences in this dataset. For this reason, its accuracy was lower. Subsequent 
work needs to include subject 1 in the training set to train SSA-RF to obtain better generalization ability. 
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Figure 8. SEED dataset misjudgment analysis comparison table. 

3.5. Comparison of similar methods 

In the course of our research, we compared with particle swarm optimization algorithm (PSO), 
whale algorithm (WOA), and genetic algorithm (GA) with SSA algorithm, applied to the DEAP 
dataset. The experimental results are shown in Table 10. 

Table 10. Comparison results of similar algorithms. 

Feature  
Combination 
 

Method (%) 

1 2 3 4 5 6 7 8 

PSO-RF 75.23 77.50 77.50 73.18 59.55 70.23 63.41 64.32 

WOA-RF 71.36 54.09 73.18 69.77 65.68 59.55 69.55 61.36 

GA-RF 62.73 72.50 74.55 74.09 63.41 74.55 62.05 68.40 

SSA-RF 76.70 77.27 77.57 76.80 77.40 76.52 76.40 75.83 

RF 73.05 76.88 74.55 75.03 76.59 76.19 73.86 75.39 

To sum up, SSA has the best effect compared to similar algorithms. 

4. Discussion 

We compared the findings of this paper with previous research, the average accuracy was based 
on 100 epochs, and the results of the comparison are shown in Table 11. 

We compared SSA-RF and the relevant references from the past 7 years in Table 11. The average 
accuracy of our method was 76.81%, which was higher than the others the on the DEAP dataset, The 
average accuracy of our method was 75.96%, which was higher than the others on the SEED dataset. 
SSA-RF improved the accuracy of cross-subject emotion recognition. 
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Table 11. Comparison with previous methods. 

Dataset References (Year) Model Average Acc (%) 

DEAP 

Arnau-Gonzalez et al. [28] (2017) SVM 73.41 

Li et al. [29] (2018) SVM 59.06 

Pandey et al. [30] (2019) Deep Neural Network 62.50 

Cimtay et al. [31] (2020) CNN 72.81 

Mert Ahmet et al. [32] (2021) ANN 70.02 

Xu et al. [33] (2022) GRU-Conv 70.07 

She et al. [34] (2023) DDSA-mRMR-SRM 64.40 

Ours SSA-RF 76.81 

SEED 

Lan et al. [35] (2018) MIDA 72.47 

Gupta et al. [36] (2019) 
Random forest classification 
model

72.07 

Luo et al. [37] (2020) sWGAN + SVM 67.7 

Topic et al. [38] (2021) TOPO-FM and HOLO-FM 73.11 

Emsawas et al. [39] (2022) MultiT-S ConvNet 54.60 

Zhang et al. [40] (2023) 
Semi-supervised emotion 
recognition model

73.26 

Ours SSA-RF 75.96 

5. Conclusions 

At present, there has been no research on SSA optimizing RFs in the field of emotion 
recognition based on EEG. This research demonstrated that SSA-RF can obtain better accuracy in 
cross-subject emotion recognition. After extracting the composite domain features of EEG signals, 
we conducted a variety of feature combination experiments. Through this method, we found the 
optimal parameters of RF, and the accuracy was significantly improved. For the DEAP dataset, the 
average accuracy was 76.81%, with a maximum accuracy of 77.57%, which was 1.61% higher than 
RF. For the SEED dataset, the average accuracy was 75.96%, with a maximum accuracy of 82.58%, 
which was 9.85% higher than RF. 

The SSA-RF algorithm proposed in our research is applicable to the classification training of 
personal emotion models, solving the inefficiency problems of high time cost and low adaptability of 
setting model parameters manually. SSA-RF can be applied in practice, and it has certain theoretical 
and practical significance for the development of emotion recognition. 

Factors affecting the accuracy or efficiency of cross-subject emotion recognition also include baseline 
processing methods and automatic optimization of feature combinations. Therefore, multi-baseline 
processing and automatic optimization of feature selection have important research significance. 
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