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Abstract: Delineation of retinal vessels in fundus images is essential for detecting a range of eye 

disorders. An automated technique for vessel segmentation can assist clinicians and enhance the 

efficiency of the diagnostic process. Traditional methods fail to extract multiscale information, discard 

unnecessary information, and delineate thin vessels. In this paper, a novel residual U-Net architecture 

that incorporates multi-scale feature learning and effective attention is proposed to delineate the retinal 

vessels precisely. Since drop block regularization performs better than drop out in preventing 

overfitting, drop block was used in this study. A multi-scale feature learning module was added instead 

of a skip connection to learn multi-scale features. A novel effective attention block was proposed and 

integrated with the decoder block to obtain precise spatial and channel information. Experimental 

findings indicated that the proposed model exhibited outstanding performance in retinal vessel 

delineation. The sensitivities achieved for DRIVE, STARE, and CHASE_DB datasets were 0.8293, 0.8151 

and 0.8084, respectively. 
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1. Introduction 

Diabetic retinopathy is a complication of diabetes that affects a significant number of people 

worldwide. Diabetic retinopathy adversely impacts the retinal blood vessels, leading to eye 

complications. It may lead to vision problems and may cause blindness if left untreated. This condition 
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affects approximately one-third of people with diabetes, and its prevalence increases with the duration 

of diabetes [1]. According to the American Diabetes Association, around 28% of people with diabetes 

over the age of 40 have diabetic retinopathy [2]. 

Blood vessel segmentation is an important step in analyzing retinal images because it separates 

blood vessels from the surrounding tissue. Manual labeling of blood vessels in medical images is a 

labor-intensive process that involves experts manually delineating vessel structures. Also, it is time-

consuming as well as highly challenging for manual experts to detect small or complex blood vessels. 

There are a lot of challenges faced during blood vessel segmentation namely: (a) Blood vessels 

often have low contrast compared to the background, making it difficult to distinguish them accurately; 

(b) since blood vessels often overlap with each other, it is difficult to separate individual vessels; and 

(c) the presence of vessels with different widths and branching patterns adds complexity to the 

segmentation task. 

Addressing these challenges requires the development of robust segmentation algorithms that can 

handle variations in vessel appearance, structure, and imaging conditions. Thresholding [3,4], edge-

based techniques [5,6], mathematical morphology [7,8], graph-based techniques [9], machine 

learning [10], and deep learning [11] are a few methods used to accurately segment blood vessels. 

Machine learning techniques such as SVM [12], Random Forest [13], and CNN [14] have shown 

promising results in segmentation. However, the U-Net architecture and its variants have recently 

shown better performance in blood vessel segmentation. Hence, effective attention with multi-scale 

learning residual U-Net (EAMR-Net) is proposed to enhance the effectiveness of retinal blood vessel 

segmentation. The major contributions are: 

1). Residual block is employed instead of convolution block to avoid vanishing gradients and 

drop block is added after the convolution block to prevent overfitting. 

2). A novel attention mechanism is introduced in the decoder block to treat all features uniquely. 

An effective spatial and channel attention mechanism is employed to preserve dimensionality and learn 

important features and interactions between channels in a cross-channel manner. Effective attention 

focuses on more information regions and ignores the background information. 

3). A multi-scale feature learning (MSFL) module is proposed instead of the skip connection to 

avoid the semantic gap issue and enhance the model’s ability to capture intricate details. Extracting 

hierarchical information will help to identify both large and finer details. To obtain image-level features, 

we add average pooling and up-sampling blocks. In comparison with the existing methods, the 

performance of our work has shown better accuracy. 

The remaining sections of the paper are organized as follows: In Section 2, various research 

studies on retinal vascular segmentation are discussed. Section 3 provides an in-depth description of 

the research methodology and experimental design, while Section 4 discusses the experimental results 

obtained and ablation studies. Last, Section 5 provides a comprehensive summary and final remarks 

on the study. 

2. Related works 

Based on the availability of label information, vessel segmentation in retinal images can be 

classified into unsupervised (unlabeled) and supervised learning techniques. 
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2.1. Unsupervised learning techniques 

Unsupervised techniques do not use manual annotations for detecting blood vessels. Graph-based 

methods, clustering methods, and deep learning methods such as autoencoders and GAN (Generative 

Adversarial Networks) are a few unsupervised approaches used to segment the retinal vessels.  

Padmapriya et al. [15] used basic pre-processing techniques, primary curvatures, ISODATA 

algorithm, and labeling to segment blood vessels with higher accuracy. Muzammil et al. [16] applied 

pre-processing techniques and used top-hat morphological operations to eliminate the noise. Matched 

and Gabor wavelet filters are applied to extract vessels. Then, binarization is applied using the human 

visual system. After applying a few post-processing procedures, the segmented results are produced. 

Qaiser et al. [17] suggested Otsu’s thresholding method to create an automated retinal segmentation 

strategy that made use of pre-processing methods such as G-channel extraction, CLAHE, PCA, 

filtering, and segmentation. Upadhyay et al. [18] implemented two different varied scale transform 

approaches namely local directional wavelet and global curvelet. To recover boundary pixels, 

morphological thickness correction is proposed. 

2.2. Supervised learning techniques 

Initially, the U-Net architecture has shown a better performance. Few researchers have focused 

on building lightweight models and few others focused on performance improvement. 

Ronneberger et al. [19] have developed a U-Net architecture that has shown better performance 

in biomedical segmentation. Laibacher et al. [20] proposed a new architecture that employs M2Unet 

as an encoder and contractive bottlenecks in the decoder part. Their focus is to reduce the parameter 

size used for training. This model is suitable for high-resolution image analysis. Boudegga et al. [21] 

proposed a model with convolution blocks of lightweight to reduce the computational complexity in 

terms of execution time. His model has shown better segmentation performance. Yang et al. [22] 

evaluated the performance of DCU-Net on three publicly available datasets and found that it had a 

lower number of parameters and a faster inference time. 

Recently, an attention-based U-Net was developed to detect blood vessels accurately. Wang et al. [23] 

introduced a new deep learning architecture for retinal vessel segmentation called the Attention 

Inception-based U-Net- Advanced Residual (AIU-AR). The proposed model incorporates the attention 

mechanism and residual connections to enhance the accuracy of vessel segmentation in retinal images. 

The AIU-AR model has exhibited exceptional performance in comparison to several cutting-edge 

segmentation models when assessed using publicly accessible datasets. Through the incorporation of 

attention mechanisms and residual connections, researchers observed significant improvements in accuracy. 

Wang et al. [24] developed a model, namely SAU-Net, that incorporates ResBlock along with 

inception blocks in the encoder part and, ResBlock with squeeze and excitation in the decoder part to 

eliminate the impact of hard exudate in fundus images. Dong et al. [25] proposed a model named 

CRAUnet which is a cascaded structure architecture that uses a residual block and an attention block. 

They also added a drop block to solve overfitting issues. Their contribution is multiscale feature 

extraction. Liu et al. [26] developed a ResDOU-Net that uses residual overparameterized convolution 

block, pooling fusion block, and atrous convolution to extract features in multiple scales, which 

demonstrated robustness to noise. Ren et al. [27] use Bi-FPN in U-Net, which uses depth-wise 

separable convolution for multiscale fusion. Li et al. [28] proposed GDFNet, which uses an 
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enhancement network block to detect thin vessels, a global segmentation network to extract global 

features, and an attention fusion network that combines both. They also addressed information loss issues. 

Liu et al. [29] introduced a WAVE-Net architecture that uses a denoising module to acquire 

microstructures and fuse contexts. The model addressed semantic loss and limited receptive field issues. 

Yi et al. [30] proposed MRANet that uses a feature fusion block to collect useful information, an 

attention block for better feature extraction, and a drop block for overfitting. Researchers provided the 

solution for segmenting capillary vessels and weak anti-noise interference ability. 

Kumar et al. [31] proposed IterMiU-Net, which has iterative modules of Iternet. It is helpful to 

construct a lightweight convolution model with fewer parameters. The proposed IterMiUnet 

architecture is computationally efficient and can be used for real-time segmentation applications. 

Liu et al. [32] introduced DARes2Unet, which uses spatial attention and a dual attention model to 

address multiscale information and avoid unnecessary information. 

Sun et al. [33] proposed SDAU-Net, which uses a series of deformable convolution and dual 

attention modules. It detects small vessels and solves the uneven brightness of the background. Li et al. [34] 

use MAGF-Net, which uses a residual block, an attention-guided fusion block and addresses 

information loss issues. 

2.3. Motivation 

U-Net model and its variations have shown better performance when compared with 

convolutional neural networks. However, most of the architectures fail to address the sensitivity rate 

problem, extracting multiscale feature extraction, information loss issues and segmenting thin vessels. 

Moreover, the computational complexity for most of the models is high. 

Due to the above reasons, we are motivated to use drop block regularization in the residual block 

to prevent overfitting and added a multi-scale feature learning module that can extract features in 

multiple scales which is expected to capture intricate details. Also, adding effective attention in the 

decoder block can help to focus on more information regions and ignore the background information. 

This approach is expected to give a more powerful and context-aware learning model. 

3. Research methodology 

Accurate segmentation of blood vessels is a highly challenging endeavor. The proposed 

architecture uses Residual U-Net as its baseline since it has demonstrated notable performance in 

various image segmentation processes [19]. The skip connection in U-Net reduces the information loss 

issue but introduces a semantic gap issue when the low-level features are combined with the high-level 

features. Therefore, an atrous spatial pyramid pooling block is proposed instead of the skip connection. 

3.1. Architecture 

Each encoder block includes two residual blocks and max pooling operations. In the encoder 

phase, the extraction of features is carried out iteratively using pairs of consecutive residual blocks. 

Each pooling layer diminishes the spatial dimension. To expand the receptive field and capture broader 

contextual information, down sampling becomes essential. This downscaling operation is achieved by 

employing a pooling operation and a stride of 2 is used. During each down sampling process, the size 
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of the feature maps is reduced by half, while the number of channels is doubled. Starting from initial 

feature maps of size 48 × 48, after two down sampling stages, they become 12 × 12 in dimensions. 

Further down sampling could lead to the loss of critical spatial information. Consequently, the network 

is designed with only two down sampling stages, featuring channel counts of 32, 64 and 128 in each stage. 

The decoder block includes an up-sampling layer followed by a dual attention block and two 

residual blocks. For each up-sampling layer, bilinear interpolation is used to maintain the size of the 

feature map. The convolutional layers are configured with channel numbers 32, 64, and 128. The 

architecture of EAMR-Net is depicted in Figure 1. 

 

Figure 1. EAMR-Net architecture. 

3.1.1. Residual block 

The residual block [35] has shortcut connections that may skip a few layers and will perform 

identity mapping without increasing computational complexity. It facilitates faster convergence, 

reduces the impact of vanishing gradients, and reduces the risk of losing important information by 

encouraging feature reuse. A residual block consists of multiple layers that are arranged sequentially, 

allowing them to pass their output to a subsequent layer positioned deeper within the block. Residual 
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blocks address the issue of gradient vanishing by introducing skip-connections. The residual block 

contains two sequences of convolution, drop block, batch normalization (BN), and ReLU. The 

convolution operation is carried out on a skip connection. Finally, the residual block is added with a 

skip connection, which does identity mapping as shown in Figure 2. Drop block is a technique 

reminiscent of dropout, differing in that it excludes entire contiguous regions from a layer’s feature 

map, as opposed to independently removing random individual units. Drop block retains the spatial 

information and helps to alleviate issues like overfitting and vanishing gradients. In the residual 

module, it is proven that placing the drop block [36] after the convolution block improves accuracy. 

Let xr represent the input of the residual block, S(xr) represent the skip connection path output 

and R(xr) represent the residual path output, Then the output of residual block yr is obtained as 

 𝑦𝑟 = 𝑅(𝑅(𝑥𝑟)) ⨁ 𝑆(𝑥𝑟). (1) 

The residual path output R (xr) is represented as 

 𝑅(𝑥𝑟) = 𝑐𝑜𝑛𝑣(𝐷𝑟𝑜𝑝𝑏𝑙𝑜𝑐𝑘 (𝐵𝑁(𝑅𝑒𝐿𝑈(𝑥𝑟)))). (2) 

The skip connection path output S(xr) is represented as 

 𝑆(𝑥𝑟) = 𝑐𝑜𝑛𝑣(𝑥𝑟). (3) 

 

Figure 2. Residual block. 

3.1.2. MSFL module 

The MSFL module [37,38] employs multiple atrous convolutions to find deep features parallelly. 

To extract multiscale features [39] and large receptive fields [40], these convolution layers have 

different sampling (dilation) rates. This is a better approach for controlling the field of view without 

increasing parameters and computational time. 

The input feature map is passed to the 1 × 1 convolution layer, followed by three atrous 3 × 3 

convolution layers with different dilation rates (6, 12 and 18). In addition, we add average pooling and 

upsampling blocks to obtain image-level features. Finally, the output of these parallel branches is 
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combined using the concatenation operator. Then, 1x1 convolution is applied to the final feature map 

by fusing the feature maps of MSFL as depicted in Figure 3. The major shortcoming of MSFL is that 

it will treat all feature scales equally [41]. To tackle this issue, an attention block is introduced after 

the MSFL blocks. 

 

Figure 3. Multi-scale feature llearning (MSFL). 

3.1.3. Effective attention bblock 

The effective attention block (Figure 4) incorporates both spatial and effective channel attention. 

The spatial attention block assigns higher weights to important features and diminishes the weights of 

redundant features, thereby enabling effective learning [42]. To the input feature map (F), both max 

pooling and average pooling operations are performed, followed by a 7 × 7 convolution and a sigmoid 

operation. This attention map obtained gives more precise spatial information. 

 𝐴𝑠𝑝𝑎𝑡𝑖𝑎𝑙(F) = 𝜎(𝑐𝑜𝑛𝑣7𝑥7(𝑚𝑎𝑥𝑝𝑜𝑜𝑙(𝐹);  𝑎𝑣𝑔𝑝𝑜𝑜𝑙(𝐹)), (4) 

where σ represents a sigmoid activation function. 

The spatial attention map is multiplied by the input feature to produce the output feature. 

 𝐹𝑠𝑝𝑎𝑡𝑖𝑎𝑙 = 𝐴𝑠𝑝𝑎𝑡𝑖𝑎𝑙 (𝐹) ⨂ 𝐹, (5) 

where ⨂ represents element-wise multiplication. 
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Figure 4. Effective attention module. 

Effective channel attention involves dynamically adjusting the characteristics of individual 

channels in a feature representation to adaptively recalibrate their relevance. Squeeze and excitation 

(SE) [43] block use a dimensionality reduction mechanism to obtain channel-wise descriptors that 

diminish the complexity of the model but break the direct relationship between a channel and its 

corresponding weight. To mitigate this issue, ECANet [44] is employed for channel attention, which 

preserves the dimensionality to learn important features and does interactions between channels in a 

cross-channel manner. 

Therefore, we apply Global Average Pooling (GAP) to capture global information by taking 

average values across spatial dimensions. To obtain the channel descriptor space, forward convolution 

is applied with ReLU activation. Then, channel attention is done by fully sigmoid activation, which 

produces a channel attention weight that describes the significance of each channel relative to the other. 

Finally, recalibration is done to rescale each channel’s activation adaptively. 

 𝐴𝑐ℎ𝑎𝑛𝑛𝑒𝑙(𝐹) = 𝜎(𝑐𝑜𝑛𝑣𝑘𝑋𝑘(𝐺𝐴𝑃(𝐹))), (6) 

where k represents the size of the kernel of 1D convolution which is determined adaptively and is 

proportional to the dimension of the channel. 

The new channel feature maps are procured by reassigning weights: 

 𝐹𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝐴𝑐ℎ𝑎𝑛𝑛𝑒𝑙(𝐹)⨂𝐹, (7) 

where ⨂ represents channel-wise multiplication. 

The final output feature of effective attention is obtained by multiplying the channel feature 

with the spatial feature. 

 𝐹𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐹𝑠𝑝𝑎𝑡𝑖𝑎𝑙 ⨂ 𝐹𝑐ℎ𝑎𝑛𝑛𝑒𝑙. (8) 

The EAMR-Net architecture summary is tabulated in Table 1. The table displays the name of the layer 

and image size of each block used in the architecture. 
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Table 1. Summary of EAMR-Net architecture. 

S.No. Block name Layer Name Image size 

1  Input 48 × 48 × 3 48 × 48 × 3 

2 Residual block 1 Conv, DB, BN, ReLU ⨁ conv 48 × 48 × 32 

3 Residual block 2 Conv, DB, BN, ReLU ⨁ conv 48 × 48 × 32 

4 MaxPooling 1  24 × 24 × 32 

5 Residual block 3 Conv, DB, BN, ReLU ⨁ conv 24 × 24 × 64 

6 Residual block 4 Conv, DB, BN, ReLU ⨁ conv 24 × 24 × 64 

7 MaxPooling 2  12 × 12 × 64 

8 Residual block 5 Conv, DB, BN, ReLU ⨁conv 12 × 12 × 128 

9 Residual block 6 Conv, DB, BN, ReLU ⨁ conv 12 × 12 × 128 

10 Residual block 7  12 × 12 × 128 

11 Residual block 8  12 × 12 × 128 

12 UpSampling 1  24 × 24 × 128 

13 ASPP 1  24 × 24 × 64 

14 Concatenate (ASPP1 + Up1)  24 × 24 × 192 

15 Effective Attention  24 × 24 × 192 

16 Residual block 9 Conv, DB,BN,ReLU ⨁ conv 24 × 24 × 64 

17 Residual block 10 Conv, DB,BN,ReLU ⨁ conv 24 × 24 × 64 

18 UpSampling 2  48 × 48 × 64 

19 ASPP 2  48 × 48 × 32 

20 Concatenate (ASPP2 + Up2)  48 × 48 × 96 

21 Effective Attention  48 × 48 × 96 

22 Residual block 11 Conv, DB, BN, ReLU ⨁ conv 48 × 48 × 32 

23 Residual block 12 Conv, DB, BN, ReLU ⨁ conv 48 × 48 × 32 

24 Conv 2D  48 × 48 × 1 

3.2. Experimental setup 

3.2.1. Datasets used 

1). DRIVE: The DRIVE (https://drive.grand-challenge.org/) dataset consists of 40 images 

collected from 400 patients with a manual annotation equally split for training and testing. Out of the 

total dataset, consisting of 40 images, 33 are categorized as normal cases, while the remaining 7 exhibit 

indications of diabetic retinopathy. Each image is of 565 × 584 resolution. The images are captured 

with a 3CCD camera with a 45° field of view (FOV). The images are in TIFF format and the manual 

annotations are stored as GIF files. 

2). CHASE_DB1: CHASE_DB1 (https://blogs.kingston.ac.uk/retinal/chasedb1/) has 28 images 

captured from 14 children with 999 × 960 resolution. The images are captured with a Nidek NM-200-

D fundus camera, 30-degree FOV. Since images need to be categorized as train and test, the initial set 

of 20 images will be utilized for training, while the remaining images will be reserved for testing. Two 

manual annotations are given. We have considered the first manual labelling as ground truth. The 

images are in JPEG format and manually labelled images are in PNG format. 

3). STARE: The STARE (https://cecas.clemson.edu/~ahoover/stare/) dataset contains 20 color 
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fundus images and a manually labeled segmentation mask. Out of a total of 20 images, 10 exhibit 

retinal abnormalities associated with diabetic retinopathy, while the remaining 10 images show no 

indications of this condition. Each image has a resolution of 700 × 605. The images are captured with 

Top con TRV-50 fundus camera 35-degree FOV. Both the image and labelled image are in JPEG format. 

In the training phase, the initial set of 15 images is utilized, while during the testing phase, the 

remaining set of 5 images is employed for evaluation. 

3.2.2. Preprocessing 

Preprocessing is a fundamental aspect of image processing that significantly improves image 

quality, reduces noise, enhances contrast, standardizes image properties, and extracts pertinent features. 

These preprocessing steps are critical for ensuring precise and dependable analysis, interpretation, and 

decision-making across diverse fields like computer vision, medical imaging, remote sensing, and 

other relevant domains. During the preprocessing phase, techniques such as normalization, contrast 

adjustment (CLAHE), and gamma transformation are carried out. Figure 5 depicts the result of a 

sample fundus image after each preprocessing stage. 

To alleviate the problem of overfitting due to the limited dataset, the images are divided into 48 × 48 

patches using a random cropping technique. Image resolution and size of the input patch influence the 

level of detail the model can capture. Smaller patch sizes can capture fine details. Moreover, the 

computational resources and memory constraints have a greater influence in determining the image 

size. Then, we applied data augmentation techniques such as horizontal flipping, vertical flipping, 

elastic transform, grid distortion, rotation at an angle of 30°, 60°, random brightness, and random contrast. 

 

(a) Original image.     (b) Normalization.      (c) CLAHE.        (d) Gamma correction. 

Figure 5. Preprocessing stages of a fundus image. 

3.2.3. Evaluation metrics 

For quantitative analysis of segmentation results, several metrics used are Accuracy (ACC), 

Specificity (SPEC), Sensitivity (SEN), F1 score (F1), and Area under Receiver Operating 

Characteristic (AUC) curve. 

ACC: It tells us how exactly the vessels and non-vessels are predicted. 

 ACC =
TP+TN

TP+TN+FP+FN
. (9) 
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SEN: It specifies the proportion of correctly predicted blood vessels to actual blood vessels. 

 SEN =
TP

TP+FN
. (10) 

SPEC: It represents the ratio between the accurately detected non-blood vessels and the total 

number of non-blood vessels. 

 SPEC =
TN

TN+FP
. (11) 

F1 score (F1): It considers both the ability to correctly identify blood vessels (precision) and its 

ability to capture all actual blood vessels (recall). 

 F1 =
2×TP

2×TP+FP+FN
. (12) 

AUC: It tells how well the blood vessels and non-blood vessel segmentation is done. 

TN, TP, FN, and FP represent true negative, true positive, false negative, and false positive, respectively. 

3.3. Implementation details 

The algorithm utilizes the Keras library from the TensorFlow backend and is executed on an 

NVIDIA RTX3060, equipped with 12 GB of memory. Pre-trained model is not used in our 

experimentation. The initialization of the algorithm is performed using Glorot uniform weights.   

The algorithm employs the Adam optimizer with an initial learning rate of 0.001. It utilizes a 

binary cross-entropy loss function for training. The number of epochs used during the training process 

is 100. Due to limited memory, a batch size of 8 is used. 

3.3.1. Loss function 

The binary cross-entropy loss function quantifies how well a model’s predicted probabilities align 

with the actual binary labels (0 or 1) for each example, particularly focusing on cases where the true 

label is 1. 

Mathematically, the binary cross-entropy loss function is defined as: 

 𝐿𝑜𝑠𝑠𝐵𝐶𝐸 = −1

𝑁
 [∑ 𝑔𝑡𝑖 ∗ 𝑙𝑜𝑔𝑝𝑖 + (1 − 𝑔𝑡𝑖) ∗ log (1 − 𝑝𝑖)

𝑁
𝑖=1 ], (13) 

where, Loss BCE is the loss function, N is the total number of pixels, gti is the true binary label (ground 

truth), and pi is the predicted probability that the example belongs to class 1. 

3.3.2. Network hyperparameter analysis 

The hyperparameters such as architecture depth, loss function, learning rate, and optimizer play 

a crucial role in improving the accuracy of segmentation. In the research studies, Adam optimizer and 

BCE loss function are employed. If the model is down-sampled further from 12 × 12, there is a loss of 

more spatial information. So, the layer depth is been fixed to three. 
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The segmentation outcomes are significantly influenced by the choice of learning rate. Adjusting 

the learning rate has a pronounced impact on the final segmentation results. Table 2 lists the evaluation 

models with different learning rate on the dataset DRIVE. 

Table 2. Comparison results of EAMR-Net with different learning rate on DRIVE dataset. 

Learning rate ACC SPEC SEN 

0.00001 0.9671 0.9878 0.7912 

0.0001 0.9675 0.9877 0.799 

0.001 0.9685 0.9872 0.8219 

0.003 0.9534 0.9783 0.7729 

When the learning rate is 0.001, our proposed model obtained higher accuracy and sensitivity. 

With a learning rate set at 0.003, the model exhibits poor performance. At learning rates of both 0.0001 

and 0.00001, the model has demonstrated relatively modest performance. 

As shown in Figure 6, during the training stage, there is a gradual improvement in training and 

validation accuracy as the epoch increases. 

 

Figure 6. Training and validation accuracy curve for the DRIVE dataset. 

4. Experimental results 

4.1. Ablation studies 

To track the model’s effects, various ablation studies are conducted on three datasets by adding 

new blocks to an existing architecture. We used Residual U-Net as the baseline and compared the 

segmentation results with EA+ResU-Net and EAMR-Net. The proposed model has shown better 

performance when compared with the other models in ablation studies, as shown in Figure 7. 
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Figure 7. Segmentation results on different datasets. 

We set the drop rate value as 0.1 and the block size as 7. When residual U-Net with a drop block 

is employed, we observed some discontinuous segmentation in overlapping areas of vessels. Then, an 

efficient dual attention block is added to the residual U-Net which shows improvement in the detection 

of vessels in overlapping areas. However, due to the low contrast in the background, it was unable to 

distinguish a few blood vessels. So, instead of using a skip connection, an MSFL block is added, and 

we found that the performance is superior to other models in detecting vessels in low contrast as well 

as overlapping areas. 

The ablation study results for different datasets are tabulated in Table 3. In the DRIVE dataset, 

our model has shown a 1.98% increase in sensitivity, which reports that there is an improvement in 

blood vessel detection. Specificity, accuracy, and the F1 score have also shown improvement. However, 

in DRIVE and CHASE_DB1, there is a slight decrease in specificity when an effective attention block 

is added. This behavior is due to poor contrast in a few images in the dataset. In the STARE dataset, 

sensitivity has improved by 1.45%. Also, there is an improvement in results in ACC, SPEC, and AUC 

curves. The CHASE_DB1 dataset has also shown progress in detecting blood vessels. There is a 1.26% 

increase in sensitivity for the proposed model. 
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Table 3. Ablation study results on different datasets. 

Dataset Method ACC SPEC SEN AUC F1 

DRIVE ResU-Net 0.9501 0.9847 0.8010 0.9780 0.8269 

EA+ResU-Net 0.9523 0.9840 0.8095 0.9821 0.8286 

EAMR-Net 0.9621 0.9853 0.8293 0.9859 0.8382 

STARE ResU-Net 0.9520 0.9864 0.7982 0.98 0.8251 

EA+ResU-Net 0.9665 0.9866 0.8006 0.9802 0.8394 

EAMR-Net 0.9713 0.9932 0.8151 0.9881 0.8254 

CHASE_DB1 ResU-Net 0.9504 0.9720 0.7413 0.9721 0.8358 

EA+ResU-Net 0.9662 0.9659 0.7958 0.9873 0.8340 

EAMR-Net 0.9665 0.9848 0.8084 0.9875 0.8423 

4.2. Comparative analysis with other models 

We compared our model with some recent models like R2U-Net [45] , DCU-Net [22], CRAU-

Net [25], ResDOU-Net [26], GDF-Net [28], Wave-Net [29], MAGF-Net [34], IterMiU-Net [31] and 

SDAU-Net [33]. The EAMR-Net model has shown better performance in specificity, sensitivity, and 

the AUC compared with state-of-the-art models. 

The findings of the experiment on DRIVE, STARE, and CHASE_DB1 are tabulated in Table 4. 

Our model has shown better performance on SPEC and AUC. Its sensitivity is the same as the SDAU-

Net model. Our model reaches nearly 0.9853 on SPEC and 0.9861 on AUC. The SPEC is 0.0050 higher 

than R2U-Net and AUC is 0.0002 higher than ResDOU-Net.  

On the STARE dataset, the proposed model has achieved 0.9713 ACC, 0.9932 SPEC, 0.8151 

SEN, 0.9881 AUC, and 0.8254 F1 scores. It has achieved a 0.0004 increase in specificity when 

compared to RV-Net. 

In CHASE_DB1, experimental results show that the ACC, SPEC, SEN, AUC, and F1 score 

are 0.9665, 0.9848, 0.8084, 0.9875 and 0.8423 respectively. In comparison with other methods, it has 

achieved a specificity of 0.0007 higher than DCU-Net. 

The qualitative analysis is done on the three benchmark datasets. Figure 8 presents a visual 

comparison of our model, EAMR-Net with other state-of-art models. We have chosen ResU-Net, 

AttResU-Net, and RCARU-Net for qualitative analysis. Upon examining the detailed regions, it 

becomes evident that ResU-Net, AttResU-Net, and RCARU-Net [46] possess the capability to extract 

the retinal vessels from the original image. However, a closer inspection of the ground truth images 

reveals noticeable disconnections and mis-segmentations in the capillary region. In this comparison, 

EAMR-Net stands out for its proficiency in detecting capillary vessels, and the demonstration of 

excellent connectivity between vessels. It is observed that the area shown in the red rectangular box 

shows the segmentation of thin vessels. Compared to other techniques, the EAMR-Net method has 

performed better. 
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Table 4. Comparison of the DRIVE, STARE, and CHASE_DB1 datasets. 

Dataset Author Year Method ACC SPEC SEN AUC F1 

DRIVE Alom et al. [45] 2018 R2U-Net 0.9556  0.9813 0.7792  0.9784  0.8171  

Yang et al. [22] 2022 DCU-Net 0.9568 0.9780 0.8115 0.9810 0.8272 

Dong et al. [25] 2022 CRAU-Net 0.9586 - 0.7954 0.9830 0.8302 

Liu et al.[26] 2022 ResDOU-Net 0.9561 0.9791 0.7985 - 0.8229 

Li et al. [28] 2022 GDF-Net 0.9622 0.9852 0.8291 0.9859 0.8302 

Liu et al. [29] 2023 Wave-Net 0.9561 0.9764 0.8164 - 0.8254 

Li et al.[34] 2022 MAGF-Net 0.9578 0.9783 0.8262 0.9819 0.8307 

Kumar et al.[31]  2023 IterMiU-Net 0.9568 0.9789 0.8053 0.9810 0.8262 

Sun et al.[33]  2023 SDAU-Net 0.9675 0.9807 0.8293 0.9832 - 

Proposed method 2023 EAMR-Net 0.9621 0.9853 0.8293 0.9861 0.8382 

STARE Alom et al. [45] 2018 R2Unet 0.9712 0.9862 0.8298 0.9914 0.8475 

Boudegga et al.[21] 2021 RVNet,LCM 0.9796 0.9928 0.806 - - 

Wang et al.[23]  2021 Sa Unet 0.9611 0.9866 0.8006 0.9902 0.8394 

Liu et al. [26] 2022 ResDO Unet 0.9567 0.9792 0.7963 - 0.8172 

Liu et al.[29] 2023 Wavenet 0.9641 0.9836 0.7902 - 0.8140 

Kumar et al.[31] 2023 IterMiUnet 0.9649 0.9831 0.8069 0.9852 0.8231 

Proposed method 2023 EAMR-Net 0.9713 0.9932 0.8151 0.9881 0.8254 

CHASE 

DB1 

Alom et al. [45] 2018 R2U-Net 0.9634 0.9820 0.7756 0.9815 0.7928 

Wang et al.[23] 2021 SAU-Net 0.9662 0.9659 0.7958 0.9873 0.8340 

Yang et al. [22] 2022 DCU-Net 0.9664 0.9841 0.8075 0.9872 0.8278 

Dong et al. [25] 2022 CRAU-Net 0.9659 - 0.8259 0.9864 0.8156 

Liu et al. [26] 2022 ResDOU-Net 0.9672 0.9794 0.8020 - 0.8236 

Liu et al. [29] 2023 Wave-Net 0.9664 0.9821 0.7284 - 0.8349 

Kumar et al. [31] 2023 IterMiU-Net 0.9591 0.9704 0.8443 0.9812 0.7875 

Sun et al. [33] 2023 SDAU-Net 0.9732 0.9825 0.8321 0.9858 - 

Proposed method 2023 EAMR-Net 0.9665 0.9848 0.8084 0.9875 0.8423 
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Figure 8. Segmentation results of three datasets using various approaches. 
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5. Conclusions 

A novel architecture with effective attention and multiscale learning is proposed to detect blood 

vessels precisely. To prevent overfitting, a drop block is appended after every convolution block, and 

residual U-net is used to prevent vanishing gradients. To preserve the dimensionality of spatial and 

channel features, a dual attention block is used. To avoid the semantic gap issue, an MSFL block 

is added. The effectiveness of the suggested approach is compared with the existing method in 

three datasets namely, DRIVE, STARE and CHASE_DB1, and has achieved better results. The 

sensitivity of 0.8293, 0.8151, and 0.8084 is attained on the DRIVE, STARE and CHASE_DB1 datasets 

respectively. In future research and development, one exciting avenue to explore is the integration of 

vision transformers (ViTs) into model design. Also, Generative Adversarial Networks (GANs) can be 

employed for enhancing image augmentation techniques. 
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