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Abstract: In many studies dealing with mathematical models, the subject is examining the fitting
between actual data and the solution of the mathematical model by applying statistical processing.
However, if there is a solution that fluctuates greatly due to a small perturbation, it is expected that
there will be a large difference between the actual phenomenon and the solution of the mathematical
model, even in a short time span. In this study, we address this concern by considering Ulam stability,
which is a concept that guarantees that a solution to an unperturbed equation exists near the solution to
an equation with bounded perturbations. Although it is known that Ulam stability is guaranteed for the
standard von Bertalanffy growth model, it remains unsolved for a model containing the Allee effect.
This paper investigates the Ulam stability of a von Bertalanffy growth model with the Allee effect. In a
sense, we obtain results that correspond to conditions of the Allee effect being very small or very large.
In particular, a more preferable Ulam constant than the existing result for the standard von Bertalanffy
growth model, is obtained as the Allee effect approaches zero. In other words, this paper even improves
the proof of the result in the absence of the Allee effect. By guaranteeing the Ulam stability of the von
Bertalanffy growth model with Allee effect, the stability of the model itself is guaranteed, and, even if a
small perturbation is added, it becomes clear that even a small perturbation does not have a large effect
on the solutions. Several examples and numerical simulations are presented to illustrate the obtained
results.

Keywords: von Bertalanffy model; growth model; Allee effect; conditional Ulam stability; Ulam
constant

1. Introduction

In this paper, we consider the differential equation

x′ =
(
ax

2
3 − bx

) (
c − dx

1
3
)

(1.1)
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for t ≥ 0, where a, b, c, and d are positive constants. If c = 1 and d = 0, then this model is reduced to
the well-known von Bertalanffy growth model:

x′ = ax
2
3 − bx. (1.2)

This model was proposed by von Bertalanffy [1] as a mathematical model of fish growth. Here, x
denotes body weight and a and b are parameters representing anabolism and catabolism, respectively.
Von Bertalanffy suggested that an exponent of 2

3 is appropriate. Because the first term on the right side
of Eq (1.2) refers to the increase in body weight due to nutrients, it is proportional to the surface area;
the second term refers to weight loss due to respiration and waste products, and it is proportional to
body weight. This model has been generalized in recent years, and research has been conducted in
various fields, including mathematical biology. For example, Calatayud et al. [2] analyzed the random-
ized nonautonomous von Bertalanffy growth model and obtained a stochastic solution; Edwards and
Anderssen [3] derived infinitesimals that allows a certain form of the nonautonomous von Bertalanffy
equation to be transformed into autonomous forms in which some new analytic solutions were found;
Kim et al. [4] proposed a growth model that includes the effect of water temperature on growth in the
von Bertalanffy growth model. Their model was applied to fit growth data for bullhead (Cottus gobio),
brown trout (Salmo trutta L.), juvenile salmon (Salmo salar), and Araucanian herring (Strangomera
bentincki); Román-Román et al. [5] proposed a stochastic model that is related to the generalized von
Bertalanffy growth curve. Their model enables investigation of the time evolution of growth variables
related to both individual behaviors and the mean population behavior. In addition, fitting to real data is
also performed; Wiff et al. [6] investigated three models with different complexities, depending mostly
on what assumptions are made about age structure, and applied them to three fish populations that are
targets of commercial fisheries in the Southeast Pacific. As shown in these examples, there are many
studies that model the standard von Bertalanffy growth model into nonautonomous systems or more
complex nonlinear systems, and then fit the model results to real data. This study treats the model as
a classical von Bertalanffy growth model with an Allee effect. We can cite [7] for the study of models
with an Allee effect.

There are many cases in which Allee effects are considered as a direction for generalizing growth
models. The size of a population varies depending on the population density (the number of individuals
per unit living space), as well as the growth rate, mortality rate, and individual body weight. This is
called the density effect, and the effect of increasing the per-individual reproduction rate when popu-
lation density increases to a certain degree is called the Allee effect. On the right side of Eq (1.2), the
first term is proportional to the surface area and the second term is proportional to body weight, so it
may originally be written as aw2 − bw3. If we add the Allee effect to this, we get

(
aw2 − bw3

)
(c− dw).

Therefore, if we set x = w3, we get Eq (1.1).
An important problem that always arises when dealing with mathematical models is the gap be-

tween the mathematical model and the actual phenomenon. The more we try to create a mathematical
model that represents a solution to a real phenomenon, the more its complexity and parameter quantity
increase. As a result, parameter determination becomes more difficult. On the other hand, oversim-
plification increases the possibility that the solution of the mathematical model will not be consistent
the actual phenomenon. However, when dealing with phenomena, it seems that we often use some-
what simple mathematical models to analyze them. For example, for the cholera outbreak in Yemen,
Nishiura et al. [8] used the Richards model, which is similar to the equation in this study, to analyze
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weekly data on the number of cases and deaths collected by the World Health Organization to predict
the epidemic in real time. In this way, it is often possible to reduce the gap between the mathematical
model and the actual phenomenon by statistically processing the actual data, determining the optimal
parameters, and deriving a solution to the mathematical model that fits the data. By using this, we can
learn about the future circumstances of real phenomena, but the solutions obtained via this statistical
processing method do not necessarily fit the data for the real phenomena over a long time span. There-
fore, we have to believe that the solution fits the real data up to some short period of time, after which
we have to add new data, statistically reprocess it, and modify the parameters. In other words, it is
necessary to repeat statistical processing many times in real time.

On the other hand, this study was designed to answer the following question: “Assuming that the
difference between the real phenomenon and the mathematical model (von Bertalanffy growth model
with Allee effect) is less than a constant ε > 0, is there always a solution of the mathematical model that
is near the solution of the real phenomenon?” The foundation of this problem can be said to be a kind
of perturbation problem, but note that ε > 0 is not subject to a low-value condition. The concept related
to this has been posed by Ulam, and it is now referred to as Ulam stability. We emphasize here that,
if we can estimate ε > 0, which refers to the gap between the real phenomenon and the mathematical
model, then the solution of the mathematical model will definitely be found near the real phenomenon
on interval [0,∞). In other words, it is proven that a certain solution of a mathematical model with
parameters obtained by only performing one round of statistical processing, and thus has no need
for repeated statistical processing, exists close to the actual phenomenon over an infinite time span.
Furthermore, guaranteeing Ulam stability means that the mathematical model is close to the actual
phenomenon, and that the stability of the mathematical model itself is guaranteed. If a mathematical
model that does not guarantee Ulam stability is processed statistically, a large gap may arise between
the actual phenomenon and the solution of the mathematical model in a short time. In other words,
the credibility of the results of analysis obtained by using the standard method of statistical processing
will be compromised. In this way, the reliability of the mathematical model can be guaranteed by
determining the Ulam stability. Thus, we can conclude that Ulam stability in the biological dynamics
is an important problem. Until now, much of the research on Ulam stability has been performed with
a bias toward mathematical interests. However, in this study, we will explain that the mathematical
model (in particular, the von Bertalanffy growth model with Allee effect) is useful from a mathematical
perspective by reliably determining the Ulam stability of the mathematical model and clarifying the
stability of the model itself. We aim to contribute to ensuring that mathematical models can be handled
with confidence. The attempt to consider Ulam stability as the stability of the mathematical model itself
is the novelty of this study from both the biological and mathematical perspectives, and it represents
a new challenge. Furthermore, the stability of the mathematical model itself cannot be determined no
matter how many experiments are conducted. It is an unshakable fact that can only be clarified through
mathematical investigation.

Ulam stability of differential equations was started in the 1990s, and it is still actively researched
(see [9]). Linear differential equations have been the mainstay of research on Ulam stability, but,
recently, the Ulam stability of nonlinear differential equations has also been investigated; see [10–23].
In addition, Ulam stability is known to be closely related to Lipschitz shadowing. For example, see
[24, 25] and the references cited therein.

In 2018, Popa et al. [26] defined a new concept of Ulam stability, as shown below, in order to carry
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out particularly sharp investigations into nonlinear analysis.
Let S be a subset of R, and let M > 0 or M = ∞. Define the class CS by

CS := {x ∈ C1[0,∞) : x(0) ∈ S ⊆ R}.

The nonlinear differential equation
x′ = F(x) (1.3)

is conditionally Ulam-stable with M and S if there exists K > 0 such that, for every ε ∈ (0,M] and
every approximate solution ξ ∈ CS satisfying

|ξ′ − F(ξ)| ≤ ε for t ∈ [0,∞),

there exists a solution x ∈ CS of Eq (1.3) such that

|ξ(t) − x(t)| ≤ Kε for t ∈ [0,∞).

We call such K an Ulam constant for Eq (1.3).
If M = ∞ and S = R, then Eq (1.3) can be called Ulam-stable. However, this paper does not deal

with mere Ulam stability. Moreover, x is a solution of Eq (1.3) and x ∈ CS means that the solution x
exists on [0,∞) as long as the initial value x(0) is contained in S .

Popa et al. [26] investigated the conditional Ulam stability of a logistic equation in which solutions
that diverge in finite time and solutions that exist globally in time coexist. In fact, they gave the
following result for the equation x′ = x(1 − x).

Theorem 1 ( [26]). The logistic equation x′ = x(1 − x) is conditionally Ulam-stable with M = 1
4 and

S =
[

1
2 ,∞

)
, and with an Ulam constant K1 = 2.

Here, M = 1
4 and 1

2 in S are the threshold values (see [26]). Later, Onitsuka [27] gave a result that
extended this theorem. On the other hand, he also obtained a result on stability analysis of the von
Bertalanffy growth model described by Eq (1.2). The following result is given in [28].

Theorem 2 ( [28]). Let a > 0 and b > 0. Then, Equation (1.2) is conditionally Ulam-stable with

M = a
3

(
2a
3b

)2
and S =

[(
2a
3b

)3
,∞

)
, and with an Ulam constant K2 =

3
b

(
19
12

) 5
2 .

Note that M = a
3

(
2a
3b

)2
and

(
2a
3b

)3
in S are the threshold values (see [28]). This result leads us to

ask the following question: “Is conditional Ulam stability guaranteed when the Allee effect is added
to Eq (1.2)? Furthermore, if conditional Ulam stability holds, how does the Allee effect affect the
above threshold and Ulam constant?” As mentioned earlier, Ulam stability refers to the stability of
the given mathematical model itself. In other words, when a real phenomenon is used as a perturbed
equation for a mathematical model, it is guaranteed that a solution of the mathematical model that is
close to the real phenomenon exists. Theorem 2, which was taken from a previous study, guarantees
the conditional Ulam stability of the standard von Bertalanffy growth model given by Eq (1.2), making
the stability of the model itself clear. If it is found that the equation including the Allee effect is stable,
the stability of the model given by Eq (1.1) itself will be guaranteed, which will be an advantage
when proceeding with other research (for example, research that analyzes phenomena by statistically
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processing mathematical models). Also, if we know the thresholds for the restrictions imposed on the
initial value and ε, it becomes clear what initial value to choose to ensure stability. For this reason,
we began our study with the aim of answering the above questions. In addition to these questions, we
emphasize here that we have derived an Ulam constant that is smaller than that in Theorem 2.

This paper is organized as follows. In the next section, we transform Eq (1.1) into a simpler form of
the equation and investigate the detailed behavior of the solutions of its perturbed equations. We will
also explain that the conditions imposed on the initial value and ε become the threshold. In Section 3,
we give some lemmas that are necessary to prove a theorem given in Section 4. In Section 4, we give
the core result of this paper and prove it. In Section 5, we give two main results for Eq (1.1). In Section
6, we present some examples and numerical simulations.

2. Behavior of the solutions for perturbed equations

Using τ := bct and y :=
(

b
a

)3
x, Equation (1.1) is transformed into the differential equation

dy
dτ
=

(
y

2
3 − y

) (
1 −

ad
bc

y
1
3

)
for τ ≥ 0. Note that we only need to consider the case in which the condition

0 <
ad
bc
≤ 1

is satisfied, because, by using τ := adt and z :=
(

d
c

)3
x, Equation (1.1) is transformed into the differential

equation
dz
dτ
=

(
z

2
3 −

bc
ad

z
) (

1 − z
1
3
)
= z

2
3

(
1 −

bc
ad

z
1
3

) (
1 − z

1
3
)
=

(
z

2
3 − z

) (
1 −

bc
ad

z
1
3

)
for τ ≥ 0. This equation is equivalent to the previous transformed equation with ad

bc replaced by bc
ad . If

ad
bc ≥ 1, then

0 <
bc
ad
≤ 1,

then, it will be the same as the previous situation. In this paper, we are interested in cases in which the
Allee effect d > 0 is very small or very large. From the above discussion, we can see that we only need
to focus on cases in which the Allee effect d > 0 is very small; that is, we assume that

0 <
ad
bc
≪ 1.

Now, we consider the differential equation

x′ =
(
x

2
3 − x

) (
1 − γx

1
3
)
, (2.1)

where
0 < γ < 1.

Consider the perturbed equations

p′ =
(
p

2
3 − p

) (
1 − γp

1
3
)
+ f (t), | f (t)| ≤ ε, (2.2)
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q′ =
(
q

2
3 − q

) (
1 − γq

1
3
)
− ε, (2.3)

and
r′ =

(
r

2
3 − r

) (
1 − γr

1
3
)
+ ε (2.4)

for t ≥ 0, where f is a continuous function. Since the right-hand sides of the differential equations
above are all continuously differentiable in the positive domain, the uniqueness of the solution is guar-
anteed in the positive domain.

Lemma 3. Let 0 < γ < 1, and let

f (x) :=
(
x

2
3 − x

) (
1 − γx

1
3
)

(2.5)

for x ≥ 0; also, let

α1 :=


3(γ + 1) − 3

√
(γ + 1)2 − 32

9 γ

8γ


3

, α2 :=


3(γ + 1) + 3

√
(γ + 1)2 − 32

9 γ

8γ


3

. (2.6)

Then, f (0) = f (1) = f
(
γ−3

)
= 0, and

0 < α1 < 1 < α2 < γ
−3, (2.7)

d f
dx

(α1) =
d f
dx

(α2) = 0 (2.8)

hold. Moreover, d f
dx (x) > 0 if x ∈ (0, α1) ∪ (α2,∞); d f

dx (x) < 0 if x ∈ (α1, α2). Therefore, f (x)
takes the local maximum value at x = α1 and the local minimum value at x = α2; also, f (x) > 0 if
x ∈ (0, 1) ∪

(
γ−3,∞

)
; f (x) < 0 if x ∈

(
1, γ−3

)
.

Proof. Clearly, f (0) = f (1) = f
(
γ−3

)
= 0 holds. We have

d f
dx

(x) =
2
3

x−
1
3 +

4
3
γx

1
3 − γ − 1 = x−

1
3

[
4
3
γx

2
3 − (γ + 1)x

1
3 +

2
3

]
.

Now, we consider the function

f1(z) =
4
3
γz2 − (γ + 1)z +

2
3
, z > 0.

Then, we can solve f1(z) = 0, and we get

z =
3(γ + 1) ± 3

√
(γ + 1)2 − 32

9 γ

8γ
.

Let α1 and α2 be given by Eq (2.6). Then, we obtain Eq (2.8). Since the graph of f1(z) is a parabola,
0 < γ < 1, and

lim
z→+0

f1(z) =
2
3
> 0, f1(1) = −

1 − γ
3

< 0, f1

(
γ−1

)
=

1 − γ
3γ

> 0,

hold, we obtain Eq (2.7). These facts imply that d f
dx (x) > 0 if x ∈ (0, α1) ∪ (α2,∞); d f

dx (x) < 0 if
x ∈ (α1, α2). This completes the proof.
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Lemma 3 states that equilibrium points x = 0 and x = γ−3 of Eq (2.1) are unstable, and that the
equilibrium point x = 1 of Eq (2.1) is asymptotically stable. Therefore, we obtain the following lemma.

Lemma 4. Let 0 < γ < 1. Then, the solution x of Eq (2.1) with

x(0) ∈
[
0, γ−3

]
exists on [0,∞). Moreover, x(t) ∈

[
0, γ−3

]
for all t ∈ [0,∞).

In addition, the following lemmas also hold.

Lemma 5. Let 0 < γ < 1. Let f and α1 be given as in Eqs (2.5) and (2.6). If 0 < ε ≤ f (α1), then the
solution q of Eq (2.3) with

q(0) ∈
[
α1, γ

−3
]

exists on [0,∞). Moreover, q(t) ∈
[
α1, γ

−3
]

for all t ∈ [0,∞).

Lemma 6. Let 0 < γ < 1. Let f and α2 be given as in Eqs (2.5) and (2.6). If 0 < ε ≤ | f (α2)|, then the
solution r of Eq (2.4) with

r(0) ∈ [0, α2]

exists on [0,∞). Moreover, r(t) ∈ [0, α2] for all t ∈ [0,∞).

Using Lemmas 4–6, we get the following result.

Proposition 7. Let 0 < γ < 1, and let x, p, q, and r be the solutions of Eqs (2.1)–(2.4) with

x(0) = p(0) = q(0) = r(0) = p0, (2.9)

respectively. Let f , α1, and α2 be given as in Eqs (2.5) and (2.6). If

0 < ε ≤ min{ f (α1), | f (α2)|} and α1 ≤ p0 ≤ α2,

then x, p, q, and r exist on [0,∞), and

α1 ≤ q(t) ≤ p(t) ≤ r(t) ≤ α2 and q(t) < x(t) < r(t)

for t ∈ (0,∞).

Proof. Let 0 < γ < 1. Let f , α1, and α2 be given as in Eqs (2.5) and (2.6). Suppose that

0 < ε ≤ min{ f (α1), | f (α2)|} and α1 ≤ p0 ≤ α2.

Now, we consider the solutions x, p, q, and r of Eqs (2.1)–(2.4) with Eq (2.9), respectively. From
Lemmas 4–6, we see that x, q, and r exist on [0,∞).

First, we prove that q(t) ≤ p(t) for t ≥ 0. Define g(t) := p(t) − q(t) for t ≥ 0. By Eq (2.9), we have
that g(0) = 0. Suppose that there exists τ1 ≥ 0 such that g(τ1) < 0. Because g is a C1-function with
g(0) = 0, we see that there exists 0 ≤ t1 ≤ τ1 such that g(t1) = 0 and

g(t) < 0
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for t1 < t ≤ τ1. Using this, we get

g′ = p′ − q′ =
(
p

2
3 − q

2
3
)
+ γ

(
p

4
3 − q

4
3
)
− (1 + γ)(p − q) + f (t) + ε

=

 p
2
3 − q

2
3

p − q
+ γ

p
4
3 − q

4
3

p − q
− 1 − γ

 (p − q) + f (t) + ε

≥

 p
2
3 − q

2
3

p − q
+ γ

p
4
3 − q

4
3

p − q
− 1 − γ

 g =: ψ(t)g,

thus, (
g(t) exp

(
−

∫ t

t1
ψ(s)ds

))′
≥ 0

for t1 < t ≤ τ1. Therefore,

g(t) ≥ g(t1) exp
(∫ t

t1
ψ(s)ds

)
= 0

for t1 < t ≤ τ1. This contradicts the fact that g(t) is negative for t1 < t ≤ τ1. Hence, we can conclude
that q(t) ≤ p(t) for t ≥ 0. Using the same method, we see that the inequality p(t) ≤ r(t) holds for t ≥ 0.
Thus, we obtain that q(t) ≤ p(t) ≤ r(t) for t ≥ 0. In addition, the solution p of Eq (2.2) exists on [0,∞).

Next, we prove that q(t) < x(t) for t > 0. Let h(t) := x(t) − q(t) for t ≥ 0. By Eq (2.9), we have that
h(0) = 0. Note that Eq (2.1) is a special case of Eq (2.2); that is, when f (t) ≡ 0, p(t) becomes x(t).
Since q(t) ≤ p(t) = x(t) holds for t ≥ 0, we see that h(t) ≥ 0 for t ≥ 0. Applying h(0) = 0, we get that
h′(0) = ε > 0. This shows that there is an interval on the right side of t = 0 where h takes a positive
value.

Now, we suppose that there exists τ2 > 0 such that h(τ2) = 0 and h(t) > 0 for 0 < t < τ2. Then, we
have

h′(t) =
 x

2
3 − q

2
3

x − q
+ γ

x
4
3 − q

4
3

x − q
− 1 − γ

 (x − q) + ε > ψ(t)h.

This implies that (
h(t) exp

(
−

∫ t

0
ψ(s)ds

))′
> 0

for 0 < t < τ2. Integrating this inequality from τ2
2 to τ2, we obtain

h(τ2) > h
(
τ2

2

)
exp

∫ τ2

τ2
2

ψ(s)ds
 > 0.

But, we assumed that h(τ2) = 0. This is a contradiction. Therefore, q(t) < x(t) for t > 0. Using the
same method, we can get that x(t) < r(t) for t > 0. This completes the proof.

Remark 8. Let f , α1, and α2 be given as in Eqs (2.5) and (2.6). Suppose that ε > f (α1). For δ > 0, let
ε = f (α1) + δ. From Eq (2.3) and Lemma 3, we have

q′ = f (q) − ε = f (q) − f (α1) − δ ≤ −δ < 0

for q ∈ (0, α2]. Integrating this inequality from 0 to t ≥ 0, we have

q(t) ≤ q(0) − δt
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for t ≥ 0. This implies that
lim
t→∞

q(t) = −∞.

However, since q(t) is a solution to Eq (2.3), it is not negative. This means that the solution q(t)
vanishes in finite time. Thus, we note that we cannot discuss conditional Ulam stability. For this
reason, ε = f (α1) is the threshold.

Remark 9. Let f , α1, and α2 be given as in Eqs (2.5) and (2.6). Suppose that ε = f (α1) and q(0) < α1.
From Eq (2.3) and Lemma 3, we have

q′ = f (q) − ε = f (q) − f (α1) < 0

for q ∈ (0, α1). Integrating this inequality from 0 to t ≥ 0, and using q(0) < α1, we have

q(t) ≤ q(0) < α1

for t ≥ 0. From Lemma 3, we know that d f
dx (x) > 0 for x ∈ (0, α1). Using the above facts, we obtain

q′(t) = f (q(t)) − ε ≤ f (q(0)) − ε < f (α1) − ε = 0

for t ≥ 0. Integrating this inequality, we get

q(t) ≤ q(0) + ( f (q(0)) − ε)t

for t ≥ 0. Since f (q(0)) − ε is negative, we get

lim
t→∞

q(t) = −∞.

For the same reason as Remark 8, we see that q(0) = α1 is the threshold.

Lemma 10. Let 0 < γ < 1 and L ≥ 1. Let α2 be given as in Eq (2.6). Then, the solution x of Eq (2.1)
with

x(0) ∈ [0,min{L, α2}]

satisfies that x(t) ∈ [0,min{L, α2}] for all t ∈ [0,∞).

Proof. Lemma 3 implies that equilibrium points x = 0 and x = γ−3 of Eq (2.1) are unstable, and that
the equilibrium point x = 1 of Eq (2.1) is asymptotically stable. In addition, the solution x(t) of Eq
(2.1) is a strictly monotonic function, except when x = 0, 1, γ−3. Thus, x(0) ∈ [0,min{L, α2}] implies
that x(t) ∈ [0,min{L, α2}] for all t ∈ [0,∞).

Lemma 11. Let 0 < γ < 1, and let f , α1, and α2 be given as in Eqs (2.5) and (2.6). Then, the following
relationships hold:

lim
γ→0

α1 =

(
2
3

)3

=
8

27
, lim

γ→0
f (α1) =

1
3

(
2
3

)2

=
4

27
, lim

γ→0
α2 = ∞, lim

γ→0
f (α2) = −∞.

In addition, if 0 < γ ≪ 1, then f (α1) = min{ f (α1), | f (α2)|} holds and there exists 1 < r∗ < 2 such that
f (r∗) + f (α1) = 0.
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Proof. By Eq (2.6) and l’Hopital’s rule, we have

lim
γ→0

α
1
3
1 = lim

γ→0

3 − 3 · 1
2

[
(γ + 1)2 − 32

9 γ
]− 1

2
[
2(γ + 1) − 32

9

]
8

=
3 − 3

2

(
2 − 32

9

)
8

=
2
3
,

thus,

lim
γ→0

α1 =

(
2
3

)3

, lim
γ→0

f (α1) =
(
2
3

)2

−

(
2
3

)3

=
1
3

(
2
3

)2

.

By Eq (2.6), we have that limγ→0 α2 = ∞. Since

f (α2) =


3(γ + 1) + 3

√
(γ + 1)2 − 32

9 γ

8γ


2 1 −

3(γ + 1) + 3
√

(γ + 1)2 − 32
9 γ

8γ


×

1 −
3(γ + 1) + 3

√
(γ + 1)2 − 32

9 γ

8


and

lim
γ→0

3(γ + 1) + 3
√

(γ + 1)2 − 32
9 γ

8
=

3
4

hold, we obtain that limγ→0 f (α2) = −∞. Because limγ→0 f (α1) < ∞ and limγ→0 | f (α2)| = ∞ are
satisfied, if 0 < γ ≪ 1, then f (α1) = min{ f (α1), | f (α2)|}. Suppose that 0 < γ ≪ 1. Let

g(x) = f (x) + f (α1) =
(
x

2
3 − x

) (
1 − γx

1
3
)
+

(
α

2
3
1 − α1

) (
1 − γα

1
3
1

)
.

Then,

lim
γ→0

g(1) = lim
γ→0

f (α1) =
1
3

(
2
3

)2

> 0,

and

lim
γ→0

g(2) = 2
2
3 − 2 +

(
2
3

)2

−

(
2
3

)3

= 2
2
3 − 2 +

1
3

(
2
3

)2

≈ −0.26445 < 0.

This means that, if 0 < γ ≪ 1, then there exists 1 < r∗ < 2 such that g(r∗) = 0.

Lemma 12. Let 0 < γ ≪ 1, and let f , α1, and α2 be given as in Eqs (2.5) and (2.6). Let 1 < r∗ < 2
satisfy that f (r∗) + f (α1) = 0, and let L ≥ r∗. Suppose that 0 < ε ≤ f (α1). Then, the solution r of Eq
(2.4) with

r(0) ∈ [α1,min{L, α2}]

satisfies that r(t) ∈ [α1,min{L, α2}] for all t ∈ [0,∞).

Proof. Let 0 < γ ≪ 1. From Lemma 11, we see that f (α1) = min{ f (α1), | f (α2)|}, and that there exists
1 < r∗ < 2 such that f (r∗) + f (α1) = 0. Let L ≥ r∗ and 1 < rε < α2 satisfy that f (rε) + ε = 0. Then, by
Lemma 3, r = rε is a equilibrium point of Eq (2.4) and is asymptotically stable; also, rε ≤ r∗ holds. In
addition, the solution r(t) of Eq (2.4) is a strictly monotonic function on [α1,min{L, α2}], except when
r = rε. Thus, r(0) ∈ [α1,min{L, α2}] implies that r(t) ∈ [α1,min{L, α2}] for all t ∈ [0,∞).
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3. Lemmas

Before discussing conditional Ulam stability, we give some lemmas.

Lemma 13. The inequality
1 − y2

1 − y3 ≤

4
3

1 + y

holds for y > 0 and y , 1.

Proof. For 0 < y < 1, we have

0 ≤
1
3

(1 − y)3 =
4
3

(
1 − y3

)
− (1 + y)

(
1 − y2

)
.

This implies that the desired inequality is satisfied. For y > 1, we have

0 ≥
1
3

(1 − y)3 =
4
3

(
1 − y3

)
− (1 + y)

(
1 − y2

)
.

Since 1 − y3 is negative, we get

(1 + y)
1 − y2

1 − y3 ≤
4
3
,

thus, we obtain the desired inequality. This completes the proof.

Lemma 14. Let 0 < γ < 1, and let α1 be given as in Eq (2.6). Define

X(t,w) :=
1 − γw − (1 − w)e−

1
3 (1−γ)t

1 − γw − γ(1 − w)e−
1
3 (1−γ)t

(3.1)

for (t,w) ∈ [0,∞) × [0,∞). Then, the solution to Eq (2.1) with x(0) = x0 ≥ 0 is given by

x(t) = X3
(
t, x

1
3
0

)
for t ∈ [0,∞). If x0 ≥ α1, then

x(t) = X3
(
t, x

1
3
0

)
≥ X3

(
t, α

1
3
1

)
> α1

for all t ∈ (0,∞).

Proof. Clearly, x(t) ≡ 1, γ−3 constitutes trivial solutions. Assume that x(t) , 1, γ−3 for all t ≥ 0. Let
y := x

1
3 . Then,

y′ =
1
3

x−
2
3 x′ =

1
3

x−
2
3
(
x

2
3 − x

) (
1 − γx

1
3
)
=

1
3

(1 − y)(1 − γy),

thus,
1

1 − γ

(
−γ

1 − γy
−
−1

1 − y

)
=

y′

(1 − y)(1 − γy)
=

1
3
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4709

for all t ≥ 0. Integrating this inequality, we get

1 − y(t)
1 − γy(t)

=
1 − y(0)

1 − γy(0)
e−

1
3 (1−γ)t

Thus,

y(t) =
1 − γy(0) − (1 − y(0))e−

1
3 (1−γ)t

1 − γy(0) − γ(1 − y(0))e−
1
3 (1−γ)t

= X(t, y(0)) = X
(
t, x

1
3
0

)
.

This equality gives the solution to Eq (2.1) with x(0) = x0 ≥ 0.
Since

X(t,w) =
1 − γw − (1 − w)e−

1
3 (1−γ)t

1 − γw − γ(1 − w)e−
1
3 (1−γ)t

=
1 − e−

1
3 (1−γ)t +

(
e−

1
3 (1−γ)t − γ

)
w

1 − γe−
1
3 (1−γ)t +

(
γe−

1
3 (1−γ)t − γ

)
w

holds, we have
∂

∂w
X(t,w) =

(1 − γ)2e−
1
3 (1−γ)t[

1 − γe−
1
3 (1−γ)t +

(
γe−

1
3 (1−γ)t − γ

)
w
]2 > 0

and (
X

(
t, α

1
3
1

))′
=

1
3 (1 − γ)2

(
1 − α

1
3
1

) (
1 − γα

1
3
1

)
e−

1
3 (1−γ)t[

1 − γα
1
3
1 − γ

(
1 − α

1
3
1

)
e−

1
3 (1−γ)t

]2 > 0

Using these facts, we get

y(t) = X
(
t, x

1
3
0

)
≥ X

(
t, α

1
3
1

)
> X

(
0, α

1
3
1

)
= α

1
3
1

for all t > 0. This completes the proof.

Proposition 15. Let 0 < γ ≪ 1, and let f , α1, and α2 be given as in Eqs (2.5) and (2.6). Let 1 < r∗ < 2
satisfy that f (r∗)+ f (α1) = 0, and let L ≥ r∗. Suppose that ε ∈ (0, f (α1)] and p0 ∈ [α1,min{L, α2}]. Let
x, p, q, and r be the solutions of Eqs (2.1)–(2.4) with Eq (2.9), respectively. Then,

x
2
3 (t) − q

2
3 (t)

x(t) − q(t)
− 1 + γ

 x
4
3 (t) − q

4
3 (t)

x(t) − q(t)
− 1

 < 4(
1 + α

1
3
1

) (
1 + γα

1
3
1

) g′(t)
g(t)
− 1 + γ

(
4
3

L
1
3 − 1

)

and

r
2
3 (t) − x

2
3 (t)

r(t) − x(t)
− 1 + γ

r
4
3 (t) − x

4
3 (t)

r(t) − x(t)
− 1

 < 4(
1 + α

1
3
1

) (
1 + γα

1
3
1

) g′(t)
g(t)
− 1 + γ

(
4
3

L
1
3 − 1

)

hold for t ∈ (0,∞), where

g(t) :=

(
1 + α

1
3
1

) (
1 − γα

1
3
1

)
γ
(
1 − α

1
3
1

) e
1
3

(
1+γα

1
3
1

)
t
−

1
γ

(
1 + γα

1
3
1

)
e

1
3γ

(
1+α

1
3
1

)
t
> 0. (3.2)
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Proof. Let 0 < γ ≪ 1, and let f , α1, and α2 be given as in Eqs (2.5) and (2.6). By Lemma 11, we
see that f (α1) = min{ f (α1), | f (α2)|}, and that there exists 1 < r∗ < 2 such that f (r∗) + f (α1) = 0. Let
L ≥ r∗. Assume that ε ∈ (0, f (α1)] and p0 ∈ [α1,min{L, α2}]. From Proposition 7, we see that

α1 ≤ q(t) < x(t) < r(t) ≤ α2

for t > 0. Let X be given by Eq (3.1).
We will prove the first inequality. Since 0 < q(t)

x(t) < 1 is satisfied, using Lemma 13, we have

x
2
3 (t) − q

2
3 (t)

x(t) − q(t)
− 1 + γ

 x
4
3 (t) − q

4
3 (t)

x(t) − q(t)
− 1


=

x
2
3 (t)

x(t)

1 −
(

q(t)
x(t)

) 2
3

1 −
(

q(t)
x(t)

) 3
3

− 1 + γ

 x
4
3 (t)

x(t)

1 −
(

q(t)
x(t)

) 4
3

1 −
(

q(t)
x(t)

) 3
3

− 1


≤

x
2
3 (t)

x(t)

4
3

1 +
(

q(t)
x(t)

) 1
3

− 1 + γ


x

4
3 (t)

x(t)

4
3

[
1 +

(
q(t)
x(t)

) 2
3
]

1 +
(

q(t)
x(t)

) 1
3

− 1


=

4
3

x
1
3 (t) + q

1
3 (t)
− 1 + γ

x
1
3 (t)

4
3

[
1 +

(
q(t)
x(t)

) 2
3
]

1 +
(

q(t)
x(t)

) 1
3

− 1


<

4
3

x
1
3 (t) + q

1
3 (t)
− 1 + γ

(
4
3

x
1
3 (t) − 1

)
for t > 0. Moreover, by Lemmas 10 and 14, we obtain

x
2
3 (t) − q

2
3 (t)

x(t) − q(t)
− 1 + γ

 x
4
3 (t) − q

4
3 (t)

x(t) − q(t)
− 1


<

4
3

X
(
t, α

1
3
1

)
+ α

1
3
1

− 1 + γ
(
4
3

L
1
3 − 1

)

for t > 0. Notice that

4
3

X
(
t, α

1
3
1

)
+ α

1
3
1

=
4
3

1 − γα
1
3
1 − γ

(
1 − α

1
3
1

)
e−

1
3 (1−γ)t(

1 + α
1
3
1

) (
1 − γα

1
3
1

)
−

(
1 + γα

1
3
1

) (
1 − α

1
3
1

)
e−

1
3 (1−γ)t

=
4
3

1−γα
1
3
1

γ

(
1−α

1
3
1

) − e−
1
3 (1−γ)t

(
1+α

1
3
1

)(
1−γα

1
3
1

)
γ

(
1−α

1
3
1

) − 1
γ

(
1 + γα

1
3
1

)
e−

1
3 (1−γ)t

×
e

1
3

(
1+γα

1
3
1

)
t

e
1
3

(
1+γα

1
3
1

)
t
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=
4(

1 + α
1
3
1

) (
1 + γα

1
3
1

) g′(t)
g(t)

.

Hence, we get the first inequality. The second inequality can also be shown in the same way, but we
need to pay attention to the calculation of the following inequalities. Since 0 < x(t)

r(t) < 1 holds, we have

r
4
3 (t) − x

4
3 (t)

r(t) − x(t)
≤

r
4
3 (t)

r(t)

1 −
(

x(t)
r(t)

) 4
3

1 −
(

x(t)
r(t)

) 3
3

≤
r

4
3 (t)

r(t)

4
3

[
1 +

(
x(t)
r(t)

) 2
3
]

1 +
(

x(t)
r(t)

) 1
3

<
4
3

r
1
3 (t).

Moreover, by Lemma 12, we obtain

r
4
3 (t) − x

4
3 (t)

r(t) − x(t)
<

4
3

L
1
3

for t > 0. This completes the proof of this proposition.

Lemma 16. Let g be given by Eq (3.2). Then,

g(t)
g(s)

<

(
1 + α

1
3
1

) (
1 − γα

1
3
1

)
e

1
3

(
1+γα

1
3
1

)
(t−s)

2(1 − γ)α
1
3
1

for all t, s ∈ (0,∞).

Proof. Since g can be rewritten as

g(t) =


(
1 + α

1
3
1

) (
1 − γα

1
3
1

)
γ
(
1 − α

1
3
1

) −
1
γ

(
1 + γα

1
3
1

)
e−

1
3 (1−γ)t

 e
1
3

(
1+γα

1
3
1

)
t
,

we obtain the inequalities

g(t) <

(
1 + α

1
3
1

) (
1 − γα

1
3
1

)
γ
(
1 − α

1
3
1

) e
1
3

(
1+γα

1
3
1

)
t
,

and

g(t) >


(
1 + α

1
3
1

) (
1 − γα

1
3
1

)
γ
(
1 − α

1
3
1

) −
1
γ

(
1 + γα

1
3
1

) e
1
3

(
1+γα

1
3
1

)
t

for all t > 0. Thus, we have

g(t)
g(s)

<

(
1+α

1
3
1

)(
1−γα

1
3
1

)
γ

(
1−α

1
3
1

) e
1
3

(
1+γα

1
3
1

)
(t−s)

(
1+α

1
3
1

)(
1−γα

1
3
1

)
γ

(
1−α

1
3
1

) − 1
γ

(
1 + γα

1
3
1

) =
(
1 + α

1
3
1

) (
1 − γα

1
3
1

)
e

1
3

(
1+γα

1
3
1

)
(t−s)

2(1 − γ)α
1
3
1

for t, s > 0.
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4. Conditional Ulam stability

In this section, we prove the following theorem, which plays an important role in proving the main
theorems.

Theorem 17. Let 0 < γ ≪ 1, and let f , α1, and α2 be given as in Eqs (2.5) and (2.6). Let 1 < r∗ < 2
satisfy that f (r∗)+ f (α1) = 0, and let L ≥ r∗. Suppose that ε ∈ (0, f (α1)] and p0 ∈ [α1,min{L, α2}]. Let
x and p be the solutions of Eqs (2.1) and (2.2) with Eq (2.9), respectively. Then,

|p(t) − x(t)| < K̃ε

for t ∈ [0,∞), where

K̃ :=


(
1 + α

1
3
1

) (
1 − γα

1
3
1

)
2(1 − γ)α

1
3
1


41+α 1

3
1


1+γα 1

3
1


 3α

1
3
1 − 1

3
(
1 + α

1
3
1

) − γ (
4
3

L
1
3 − 1

)
−1

. (4.1)

Proof. Let 0 < γ ≪ 1, and let f , α1, and α2 be given as in Eqs (2.5) and (2.6). By Lemma 11, we
see that f (α1) = min{ f (α1), | f (α2)|}, and that there exists 1 < r∗ < 2 such that f (r∗) + f (α1) = 0. Let
L ≥ r∗. Consider the solutions x, p, q, and r of Eqs (2.1)–(2.4) with Eq (2.9), respectively. Assume
that

0 < ε ≤ f (α1) and α1 ≤ p0 ≤ min{L, α2}.

Then, by Proposition 7, we obtain

α1 ≤ q(t) ≤ p(t) ≤ r(t) ≤ α2 and q(t) < x(t) < r(t)

for t > 0; thus,
−(x(t) − q(t)) = q(t) − x(t) ≤ p(t) − x(t) ≤ r(t) − x(t)

for t > 0. This implies that

|p(t) − x(t)| ≤ max{r(t) − x(t), x(t) − q(t)} (4.2)

for t > 0. Let w(t) := r(t) − x(t) and z(t) := x(t) − q(t) for t ≥ 0. Then, we obtain

w′ =
r

2
3 − x

2
3

r − x
+ γ

r
4
3 − x

4
3

r − x
− 1 − γ

 w + ε

and

z′ =
 x

2
3 − q

2
3

x − q
+ γ

x
4
3 − q

4
3

x − q
− 1 − γ

 z + ε

for t > 0. Note here that w(t) and z(t) are positive functions for t > 0. Define

ψ(t) :=
4(

1 + α
1
3
1

) (
1 + γα

1
3
1

) g′(t)
g(t)
− 1 + γ

(
4
3

L
1
3 − 1

)
,
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where g is given by Eq (3.2). Using Proposition 15, we get the inequality

h′ < ψ(t)h + ε

for t > 0, where h is either w or z. From this, we have(
h(t)e−

∫ t
0 ψ(s)ds

)′
< εe−

∫ t
0 ψ(s)ds.

This, together with h(0) = 0, yields that

h(t) < h(0) + ε
∫ t

0
e
∫ t

s ψ(τ)dτds = ε
∫ t

0
e
∫ t

s ψ(τ)dτds (4.3)

for t > 0. Using the fact that

∫ t

s
ψ(τ)dτ = log

(
g(t)
g(s)

) 41+α 1
3
1


1+γα 1

3
1


+

[
−1 + γ

(
4
3

L
1
3 − 1

)]
(t − s)

for t ≥ s, and Lemma 16, we obtain

∫ t

0
e
∫ t

s ψ(τ)dτds =
∫ t

0

(
g(t)
g(s)

) 41+α 1
3
1


1+γα 1

3
1

 e
[
−1+γ

(
4
3 L

1
3 −1

)]
(t−s)ds

<

∫ t

0


(
1 + α

1
3
1

) (
1 − γα

1
3
1

)
e

1
3

(
1+γα

1
3
1

)
(t−s)

2(1 − γ)α
1
3
1


41+α 1

3
1


1+γα 1

3
1


e
[
−1+γ

(
4
3 L

1
3 −1

)]
(t−s)ds

=


(
1 + α

1
3
1

) (
1 − γα

1
3
1

)
2(1 − γ)α

1
3
1


41+α 1

3
1


1+γα 1

3
1

 ∫ t

0
e


1−3α

1
3
1

3

1+α 1
3
1


+γ

(
4
3 L

1
3 −1

)(t−s)

ds

for t > 0. Note that, by Lemma 11, we have

lim
γ→0

α
1
3
1 =

2
3
.

This says that, for 0 < γ ≪ 1,
3α

1
3
1 − 1

3
(
1 + α

1
3
1

) − γ (
4
3

L
1
3 − 1

)
> 0.

Hence, we obtain

∫ t

0
e
∫ t

s ψ(τ)dτds <


(
1 + α

1
3
1

) (
1 − γα

1
3
1

)
2(1 − γ)α

1
3
1


41+α 1

3
1


1+γα 1

3
1


 3α

1
3
1 − 1

3
(
1 + α

1
3
1

) − γ (
4
3

L
1
3 − 1

)
−1

= K̃
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for t > 0. From Eq (4.2), we see that

|p(t) − x(t)| ≤ max{w(t), z(t)} < K̃ε

for t ∈ (0,∞). When t = 0, this inequality is true. This ends the proof.

Using Theorem 17, we obtain the following result immediately.

Theorem 18. Let 0 < γ ≪ 1, and let f , α1, and α2 be given as in Eqs (2.5) and (2.6). Let 1 < r∗ < 2
satisfy that f (r∗) + f (α1) = 0, and let L ≥ r∗. Then, Equation (2.1) is conditionally Ulam-stable with
M = f (α1) and S = [α1,min{L, α2}], and with an Ulam constant K̃, where K̃ is given in Theorem 17.

5. Main results

The first main theorem of this paper is given below.

Theorem 19. Let 0 < ad
bc ≪ 1, and let f , α1, and α2 be given as in Eqs (2.5) and (2.6). Let 1 <

r∗ < 2 satisfy that f (r∗) + f (α1) = 0, and let L ≥ r∗. Suppose that ε ∈
(
0, bc

(
a
b

)3
f (α1)

]
and ξ0 ∈[(

a
b

)3
α1,

(
a
b

)3
min{L, α2}

]
. Let x and ξ be the solutions of Eq (1.1) and

ξ′ =
(
aξ

2
3 − bξ

) (
c − dξ

1
3
)
+ f (t), | f (t)| ≤ ε (5.1)

with x(0) = ξ(0) = ξ0, respectively. Then,

|ξ(t) − x(t)| <
K̃
bc
ε

for t ∈ [0,∞), where K̃ is given by Eq (4.1).

Proof. Assume that 0 < ad
bc ≪ 1. Let f , α1, and α2 be given as in Eqs (2.5) and (2.6), let 1 < r∗ < 2

satisfy that f (r∗) + f (α1) = 0, and let L ≥ r∗. Suppose that

0 < ε ≤ bc
(a
b

)3
f (α1) and

(a
b

)3
α1 ≤ ξ0 ≤

(a
b

)3
min{L, α2}. (5.2)

Now, we consider the solution ξ(t) to Eq (5.1) with ξ(0) = ξ0. Let s := bct and z(s) :=
(

b
a

)3
ξ(t). Then,

ε ≥
∣∣∣∣ξ′(t) − (

aξ
2
3 (t) − bξ(t)

) (
c − dξ

1
3 (t)

)∣∣∣∣
= bc

(a
b

)3
∣∣∣∣∣∣dz
ds

(s) −
(
z

2
3 (s) − z(s)

) (
1 −

ad
bc

z
1
3 (s)

)∣∣∣∣∣∣ .
That is, we have ∣∣∣∣∣∣dz

ds
(s) −

(
z

2
3 (s) − z(s)

) (
1 −

ad
bc

z
1
3 (s)

)∣∣∣∣∣∣ ≤ 1
bc

(
b
a

)3

ε =: ε̃

for s ≥ 0. Moreover, from Eq (5.2), we see that

0 < ε̃ ≤ f (α1) and α1 ≤ z(0) ≤ min{L, α2}.
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Now, we consider the solution y(s) to the equation

dy
ds
=

(
y

2
3 − y

) (
1 −

ad
bc

y
1
3

)
with y(0) = z(0). Then, using Theorem 17, we can conclude that

|z(s) − y(s)| ≤ K̃ε̃

for s ≥ 0, where K̃ is given by Eq (4.1).
Let t := s

bc and x(t) :=
(

a
b

)3
y(s). Then,

x′(t) =
dx
dt

(t) =
(a
b

)3 ds
dt

dy
ds

(s) = bc
(a
b

)3 (
y

2
3 (s) − y(s)

) (
1 −

ad
bc

y
1
3 (s)

)
=

(
ax

2
3 (t) − bx(t)

) (
c − dx

1
3 (t)

)
for t ≥ 0. This means that x(t) is a solution to Eq (1.1) with

x(0) =
(a
b

)3
y(0) =

(a
b

)3
z(0) = ξ(0) = ξ0.

In additon,

|ξ(t) − x(t)| =
(a
b

)3
|z(s) − y(s)| ≤

(a
b

)3
K̃ε̃ =

(a
b

)3
K̃

1
bc

(
b
a

)3

ε =
K̃
bc
ε

for t ≥ 0. This ends the proof.

Using Theorem 19, we obtain the following result immediately.

Theorem 20. Let 0 < ad
bc ≪ 1, and let f , α1, and α2 be given as in Eqs (2.5) and (2.6). Let 1 < r∗ < 2

satisfy that f (r∗) + f (α1) = 0, and let L ≥ r∗. Then, Equation (1.1) is conditionally Ulam-stable with

M = bc
(

a
b

)3
f (α1) and S =

[(
a
b

)3
α1,

(
a
b

)3
min{L, α2}

]
, and with an Ulam constant K̃

bc , where K̃ is given
in Theorem 17.

Remark 21. When c = 1 and d → +0, we see that

M = bc
(a
b

)3
f (α1)→ b

(a
b

)3 1
3

(
2
3

)2

=
a
3

(
2a
3b

)2

and
(a
b

)3
α1 →

(
2a
3b

)3

hold by Lemma 11. Here, when comparing the above results with Theorem 2, we find that the values
of M are the same and the values on the left side of the set S are also the same. In addition, c = 1 and
d → +0 imply that L = min{L,∞}; thus, we can choose L ≥ r∗ to be arbitrary. Moreover, by Lemma
11, we obtain

K̃
bc
→

1
b

1 + 2
3

22
3

 4
1+ 2

3

 3 2
3 − 1

3
(
1 + 2

3

)
−1

=
5
b

1 + 2
3

22
3

 4
1+ 2

3
=

5
b

(
5
4

) 12
5

=: K0.
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Comparing this Ulam constant with the Ulam constant K2 presented in Theorem 2, we see that

K2 =
3
b

(
19
12

) 5
2

≈
9.46351

b
>

8.54189
b

≈
5
b

(
5
4

) 12
5

= K0.

This indicates that our main result yields a smaller and more precise Ulam constant than in the previous
study.

The second main theorem of this paper is given below.

Theorem 22. Let 0 < bc
ad ≪ 1, and let f , α1, and α2 be given as in Eqs (2.5) and (2.6). Let 1 <

r∗ < 2 satisfy that f (r∗) + f (α1) = 0, and let L ≥ r∗. Suppose that ε ∈
(
0, ad

(
c
d

)3
f (α1)

]
and ξ0 ∈[(

c
d

)3
α1,

(
c
d

)3
min{L, α2}

]
. Let x and ξ be the solutions of Eqs (1.1) and (5.1) with x(0) = ξ(0) = ξ0,

respectively. Then,

|ξ(t) − x(t)| <
K̃
ad
ε

for t ∈ [0,∞), where K̃ is given by Eq (4.1).

Proof. Assume that 0 < bc
ad ≪ 1. Let f , α1, and α2 be given as in Eqs (2.5) and (2.6), let 1 < r∗ < 2

satisfy that f (r∗) + f (α1) = 0, and let L ≥ r∗. Suppose that

0 < ε ≤ ad
( c
d

)3
f (α1) and

( c
d

)3
α1 ≤ ξ0 ≤

( c
d

)3
min{L, α2}. (5.3)

Now, we consider the solution ξ(t) to Eq (5.1) with ξ(0) = ξ0. Let s := adt and z(s) :=
(

d
c

)3
ξ(t). Then,

ε ≥
∣∣∣∣ξ′(t) − (

aξ
2
3 (t) − bξ(t)

) (
c − dξ

1
3 (t)

)∣∣∣∣
= ad

( c
d

)3
∣∣∣∣∣∣dz
ds

(s) −
(
1 −

bc
ad

z
1
3 (s)

) (
z

2
3 (s) − z(s)

)∣∣∣∣∣∣ .
That is, we have ∣∣∣∣∣∣dz

ds
(s) −

(
1 −

bc
ad

z
1
3 (s)

) (
z

2
3 (s) − z(s)

)∣∣∣∣∣∣ ≤ 1
ad

(
d
c

)3

ε =: ε̃

for s ≥ 0. Moreover, from Eq (5.3), we see that

0 < ε̃ ≤ f (α1) and α1 ≤ z(0) ≤ min{L, α2}.

Now, we consider the solution y(s) to the equation

dy
ds
=

(
y

2
3 − y

) (
1 −

bc
ad

y
1
3

)
with y(0) = z(0). Then, using Theorem 17, we can conclude that

|z(s) − y(s)| ≤ K̃ε̃

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4698–4723.



4717

for s ≥ 0, where K̃ is given by Eq (4.1).
Let t := s

ad and x(t) :=
(

c
d

)3
y(s). Then,

x′(t) =
dx
dt

(t) =
( c
d

)3 ds
dt

dy
ds

(s) = ad
( c
d

)3 (
y

2
3 (s) − y(s)

) (
1 −

bc
ad

y
1
3 (s)

)
=

(
c − dx

1
3 (t)

) (
ax

2
3 (t) − bx(t)

)
for t ≥ 0. This means that x(t) is a solution to Eq (1.1) with

x(0) =
( c
d

)3
y(0) =

( c
d

)3
z(0) = ξ(0) = ξ0.

In addition,

|ξ(t) − x(t)| =
( c
d

)3
|z(s) − y(s)| ≤

( c
d

)3
K̃ε̃ =

( c
d

)3
K̃

1
ad

(
d
c

)3

ε =
K̃
ad
ε

for t ≥ 0. This ends the proof.

Using Theorem 22, we obtain the following result immediately.

Theorem 23. Let 0 < bc
ad ≪ 1, and let f , α1, and α2 be given as in Eqs (2.5) and (2.6). Let 1 < r∗ < 2

satisfy that f (r∗) + f (α1) = 0, and let L ≥ r∗. Then, Equation (1.1) is conditionally Ulam-stable with

M = ad
(

c
d

)3
f (α1) and S =

[(
c
d

)3
α1,

(
c
d

)3
min{L, α2}

]
, and with an Ulam constant K̃

ad , where K̃ is given
in Theorem 17.

6. Examples

In this section, we present some examples. We consider the perturbed von Bertalanffy growth model
with Allee effect of the form

ξ′ =
(
aξ

2
3 − bξ

) (
c − dξ

1
3
)
+ f (t) (6.1)

for t ≥ 0, where a, b, c, and d are positive constants and f (t) is a continuous function. Note that the
parameters used in all examples presented in this section are not determined based on data that describe
real phenomena, and that the parameters are given by the authors for an example calculation.

Example 24. Consider Eq (6.1) with

a = 6, b = 2, c = 1, d =
1
9
, f (t) = 6.265 sin 2t. (6.2)

In this case, we have that r∗ ≈ 1.49485 satisfies the equation f (r∗) + f (α1) = 0, where f and α1 are
given as in Eqs (2.5) and (2.6). Let L = 3

2 = 1.5 (> r∗). Then, we see that

ad
bc
=

1
3
, M = bc

(a
b

)3
f (α1) = −

81
2
+ 27

√
3 ≈ 6.26537,

and (a
b

)3
α1 =

81
4

(
9 − 5

√
3
)
≈ 6.87986,

(a
b

)3
min{L, α2} =

81
2
,
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where these values appear in Theorems 19 and 20, and α2 is given as in Eq (2.6). Then,

K̃
bc
≈ 136.877,

where K̃ is given by Eq (4.1).
Let x and ξ be the solutions of Eqs (1.1) and (6.1) with Eq (6.2) and x(0) = ξ(0) = ξ0, respectively.

Assume that

ξ0 ∈

[
81
4

(
9 − 5

√
3
)
,

81
2

]
.

Let ε = 6.265 (< M). Then, by Theorem 19, we can conclude that

|ξ(t) − x(t)| <
K̃
bc
ε ≈ 136.877 × 6.265 = 857.534

for t ∈ [0,∞).

In this case, the amplitude of f (t) is large, and this has a strong effect on the error between the
approximate solution ξ(t) and the true solution x(t). However, if f (t) is changed to a function with a
small amplitude, the error can be suppressed to a small value.

Example 25. Consider Eq (6.1) with

a = 3, b = 2, c =
3
2
, d =

1
100

, f (t) = 0.3 sin 2t. (6.3)

In this case, we have that r∗ ≈ 1.40072 satisfies the equation f (r∗) + f (α1) = 0, where f and α1 are
given as in Eqs (2.5) and (2.6). Let L = 10 (> r∗). Then, we see that

ad
bc
=

1
100

, M = bc
(a
b

)3
f (α1) ≈ 1.49001,

(a
b

)3
α1 ≈ 0.996644,

and (a
b

)3
min{L, α2} ≈ 33.75,

where these values appear in Theorems 19 and 20, and α2 is given as in Eq (2.6). Then,

K̃
bc
≈ 3.16765,

where K̃ is given by Eq (4.1).
Let x and ξ be the solutions of Eqs (1.1) and (6.1) with Eq (6.3) and x(0) = ξ(0) = ξ0, respectively.

Assume that
ξ0 ∈ [0.996644, 33.75].

Let ε = 0.3 (< M). Then, by Theorem 19, we can conclude that

|ξ(t) − x(t)| <
K̃
bc
ε ≈ 3.16765 × 0.3 = 0.950295

for t ∈ [0,∞).
The blue and red curves represent the solution curves for Eqs (1.1) and (6.1) with Eq (6.3) and

x(0) = ξ(0) = 1, respectively. See Figure 1. The dashed lines represent the K̃
bcε neighborhood of the

solution curve for Eq (6.1) with Eq (6.3).
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10 20
t

1

3

5

Figure 1. Solution curves for Eqs (1.1) and (6.1) with Eq (6.3) and x(0) = ξ(0) = 1;
conditionally Ulam-stable.

Example 26. Consider Eq (6.1) with

a = 3, b = 2, c =
3
2
, d =

1
100

, f (t) = −1.5. (6.4)

Let L = 10. Note that the values r∗, ad
bc , M,

(
a
b

)3
α1,

(
a
b

)3
min{L, α2}, and K̃

bc appearing in Theorem 19
are the same as in the previous example. However, we must note that the perturbation term f (t) in our
equation is −1.5. Then, we have

M = bc
(a
b

)3
f (α1) ≈ 1.49001 < 1.5 = ε.

Therefore, our Theorem 19 cannot be applied.
Actually, if the initial value is selected as x(0) = ξ(0) = 1 and a numerical simulation is performed

in this case, the result will be as shown in Figure 2. The blue and red curves represent the solution
curves for Eqs (1.1) and (6.1) with Eq (6.4) and x(0) = ξ(0) = 1, respectively. Figure 2 shows that the
solution curve for Eq (6.1) with Eq (6.4) hits the t axis at a finite time and then disappears.

10 20 30
t

1

3

5

Figure 2. Solution curves for Eqs (1.1) and (6.1) with Eq (6.4) and x(0) = ξ(0) = 1; the case
of a vanishing solution.

7. Conclusions

In many studies dealing with mathematical models, the challenge is to examine the fit between
actual data and the solution of the mathematical model by performing statistical processing. However,
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many previous reports do not mention the possibility that the solution of the mathematical model may
not be consistent with the actual phenomenon due to small perturbations. For example, depending
on the balance between the initial value and the amplitude of the perturbation, that is, ε > 0, the
behavior of the solutions of the unperturbed and perturbed equations can be very different, even if the
initial values are the same, as shown in Figure 2. Therefore, we need a concept that guarantees that
the behavior of the solutions of the unperturbed and perturbed equations is similar. In this study, we
adopted Ulam stability, a concept that guarantees that the solution of an unperturbed equation exists
close to the solution of an equation with a bounded perturbation. Furthermore, we aimed to identify
appropriate initial values and perturbation amplitudes that would guarantee the concept.

Especially, we considered the conditional Ulam stability of a von Bertalanffy growth model with
Allee effect. This study proceeded as follows. First, we transformed the original equation into a simple
equation:

x′ =
(
x

2
3 − x

) (
1 − γx

1
3
)
.

Next, the behavior of solutions to the perturbed equations has been investigated. This yields thresholds
related to ε and the initial value, which are important for conditional Ulam stability. After presenting
some sharp inequalities, the core theorem (Theorem 17) was proven. We then established the main
theorems (Theorems 19, 20, 22, and 23) for the original equation. In a sense, it can be said that the
results obtained correspond to the case in which the Allee effect is either very small or very large. In
addition, we must emphasize that we succeeded in deriving an Ulam constant that is better than the
previous result for the standard von Bertalanffy growth model when the Allee effect approaches 0. It
becomes clear that the Ulam constant K0 actually obtained in this study satisfies the inequality

K2 =
3
b

(
19
12

) 5
2

≈
9.46351

b
>

8.54189
b

≈
5
b

(
5
4

) 12
5

= K0,

and is smaller than the previous result K2 (see Remark 21). In other words, we can conclude that this
paper improves on the proof of Theorem 2, which is given in [28] in the absence of the Allee effect.
Finally, some examples and numerical simulations have been attached to illustrate the obtained results.

The above results show that Ulam stability can be guaranteed in the von Bertalanffy growth model
with Allee effect by selecting an appropriate initial value and perturbation amplitude. In other words,
the solutions of the perturbed equation and the unperturbed equation remain close to each other in the
infinite interval [0,∞); thus, the stability of the equation itself is guaranteed. This study showed that
slight variations have no effect on solutions with initial values within the appropriate range.

As mentioned at the beginning of Section 2, Equation (1.1) is transformed into the equation

dy
dτ
=

(
y

2
3 − y

) (
1 −

ad
bc

y
1
3

)
for τ ≥ 0 by applying τ := bct and y :=

(
b
a

)3
x. From Lemma 14, we can see that the solution y(τ) of

this equation with the initial condition y(0) = y0 ≥ 0 is given as y(τ) = X3
(
τ, y

1
3
0

)
, where X is given by

Eq (3.1). Hence, we were able to obtain the solution of Eq (1.1) with x(0) = x0 ≥ 0 by using

x(t) =
(a
b

)3
y(bct) =

(
a
b

X
(
bct,

b
a

x
1
3
0

))3

,

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4698–4723.



4721

that is, we can obtain an explicit solution of Eq (1.1). If actual data of some phenomenon are given, we

may be able to determine parameters a, b, c, and d by fitting the solution curve x(t) =
(

a
b X

(
bct, b

a x
1
3
0

))3
.

However, we note that the problem of how to determine f (t) in Eq (6.1) still remains. In mathematical
models, f (t) often means inflow or outflow, so if we can identify its amplitude, that is, ε > 0, we may
be able to apply our results to actual phenomena.
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