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Abstract: Segmenting plant organs is a crucial step in extracting plant phenotypes. Despite the 
advancements in point-based neural networks, the field of plant point cloud segmentation suffers from 
a lack of adequate datasets. In this study, we addressed this issue by generating Arabidopsis models 
using L-system and proposing the surface-weighted sampling method. This approach enables 
automated point sampling and annotation, resulting in fully annotated point clouds. To create the 
Arabidopsis dataset, we employed Voxel Centroid Sampling and Random Sampling as point cloud 
downsampling methods, effectively reducing the number of points. To enhance the efficiency of 
semantic segmentation in plant point clouds, we introduced the Plant Stratified Transformer. This 
network is an improved version of the Stratified Transformer, incorporating the Fast Downsample 
Layer. Our improved network underwent training and testing on our dataset, and we compared its 
performance with PointNet++, PAConv, and the original Stratified Transformer network. For 
semantic segmentation, our improved network achieved mean Precision, Recall, F1-score and IoU 
of 84.20, 83.03, 83.61 and 73.11%, respectively. It outperformed PointNet++ and PAConv and 
performed similarly to the original network. Regarding efficiency, the training time and inference 
time were 714.3 and 597.9 ms, respectively, which were reduced by 320.9 and 271.8 ms, respectively, 
compared to the original network. The improved network significantly accelerated the speed of feeding 
point clouds into the network while maintaining segmentation performance. We demonstrated the 
potential of virtual plants and deep learning methods in rapidly extracting plant phenotypes, 
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contributing to the advancement of plant phenotype research. 
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1. Introduction 

Plant phenotypes refer to the morphological characteristics controlled by genes in individual or 
populations of plants under specific environments, which is a comprehensive reflection of plant traits [1]. 
The major components of plant phenotype include organs, such as roots, leaves, stems, and fruits, with 
leaves being the most common phenotypic trait. Traditional measurement methods rely on manual 
observation and are subject to subjective errors. This makes it difficult to meet the demand for rapid 
phenotypic analysis of large-scale plants [2]. In the past decade, automated phenotype research using 
computer vision and machine learning techniques has received widespread attention [3]. The core issue 
lies in how to effectively and accurately segment plant organs. 

In recent years, advanced deep learning methods based on 2D images have been widely used 
for plant part segmentation [4], such as the semantic segmentation residual U-Net model for plant 
images [5], and methods for leaf segmentation used in disease identification [6–9]. However, the 
specific structure of plants and the influence of factors like complex environmental conditions during 
plant growth limit the accuracy of obtaining precise plant phenotypic parameters through 2D images. 2D 
images lack depth information, leading to issues such as occlusion, data loss [10], and variability 
caused by lighting conditions [11]. 

3D point cloud models can provide accurate spatial information of objects [12] including their 
position, shape, size and orientation. In contrast, 2D images can only provide the projected information 
of objects on the plane and cannot accurately capture their three-dimensional features. Machine vision-
based depth cameras and binocular vision-based 3D imaging techniques have been used for 3D 
reconstruction of small plants, such as soybeans [13] and corn [14,15]. Compared to machine vision-
based 3D imaging techniques, LiDAR is more accurate and is commonly used for large-scale scenes 
such as forests [16] and farmlands [17,18]. However, LiDAR data processing requires significant 
workload, time, and cost. Compared to the two methods mentioned above for obtaining 3D point cloud 
models of plants, synthetic 3D virtual plant models have the advantage of low cost and simple 
acquisition methods. Synthetic plant models have long been used in plant research to simulate the 
interaction between plants and the environment [19]. Lindenmayer systems (L-systems) [20] is a type 
of string rewriting system that can be used to generate fractals and natural patterns. Platforms for 
constructing plant models are typically developed based on L-systems, such as the L + C modeling 
language combined with C language [21] and the L-Py framework combined with Python [22]. Some 
studies utilize synthetic plants as training data [23]. Reference [24] establishes models capable of 
automatically annotating maize and canola, saving the time required for manual labeling. Similarly, in [25], 
L-Systems are employed to model artichoke seedlings and automate annotation, thereby reducing cost 
and time. The study [26] combines real and synthetic images of Arabidopsis for network training. 
Reference [27] uses 3D plant models generated by Blender and scenes with random plant parameters 
to create a synthetic dataset. Reference [28] shows that using high-quality 3D synthetic plants to 
augment the dataset improves performance in leaf counting tasks. All of the above involve using 
synthetic 3D plant models to generate 2D images rather than directly incorporating synthetic 3D 
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models into training. In contrast, references [29,30] use synthetic roses and Arabidopsis, respectively, 
as substitutes for real plants directly involved in deep learning training. 

Point clouds are composed of a large number of discrete points, exhibiting disorder and 
irregularity, making segmentation with deep learning methods challenging [31]. For handling irregular 
inputs like point clouds, an intuitive approach is to transform the irregularity into regularity. One 
approach is multi-view projection [32], which projects 3D point cloud information onto a 2D plane. 
Shi et al. [33] employed the multi-view projection method for semantic and instance segmentation of 
tomato seedlings. However, in the multi-view projection method [34], the geometric information of 
point clouds is collapsed during the projection stage. Another approach to transforming irregular point 
clouds into regular representations is 3D voxelization [35], followed by using deep learning to process 
plant point clouds [36]. Compared to the two aforementioned indirect methods, directly point-based 
deep learning networks consume less computation and memory. PointNet and PointNet++ [37,38] are 
the earliest point-based 3D deep neural networks. Kang et al. [39] and Masuda [40] applied these two 
networks to plant point cloud segmentation. Subsequently, point-based 3D neural networks specialized 
in plant point cloud segmentation were proposed [41]. Ghahremani et al. [42] proposed a lightweight 
deep network for plant point cloud segmentation, and later introduced Pattern-Net [43], specifically 
for wheat point cloud segmentation, based on the original network. Recently, attention-based 
Transformers have been first applied to point-based deep learning [44–46], significantly improving the 
performance of point cloud segmentation. Subsequently, some point-based deep learning network 
models combined with Transformers have been proposed [47–49], demonstrating excellent segmentation 
performance. Turgut et al. [29] and Li et al. [50] proposed attention-based point cloud segmentation 
networks, RoseSegNet and PSegNet, specifically designed for plant point cloud segmentation. 

In conclusion, using 3D deep learning for plant organ segmentation is a promising method in 
phenotypic research, but there are several challenges. Due to the lack of plant datasets, it is challenging to 
validate the effectiveness of the designed networks on complex plant structures. In most 3D deep learning 
models, methods such as downsampling and grouping points may incur significant time costs [51]. 

To address the aforementioned challenges, we created virtual Arabidopsis models that simulate 
the characteristics of real Arabidopsis complex structures, which can be used to verify the feasibility 
of our network for segmentation on plants with complex structures. We proposed a novel 
downsampling module to improve the Stratified Transformer network [52] for semantic segmentation 
on our created virtual Arabidopsis dataset. Our network consumed less time compared to the original 
network while ensuring segmentation performance. 

Our major contributions were as follows: 
 To obtain more Arabidopsis data, we used L-Py to generate virtual Arabidopsis models. Then, we 

proposed the surface-weighted sampling method and downsampling method to obtain annotated 
Arabidopsis point clouds from the virtual models. 

 Plant Stratified Transformer was proposed by us. This network utilized the Fast Downsample 
Layer, replacing the Stratified Transformer downsampling layer. Testing on the Arabidopsis 
dataset demonstrated that the improved network maintained segmentation performance 
comparable to the original network while reducing both training and inference times. 

 Virtual Arabidopsis was involved in network training to validate the semantic segmentation 
performance of different networks, tested against real Arabidopsis. This demonstrated that when there 
was only a small amount of real plant data, virtual plants could be used as training data for the network. 



4672 

Mathematical Biosciences and Engineering  Volume 21, Issue 3, 4669–4697. 

2. Materials and methods 

2.1. Virtual Arabidopsis model 

Virtual plants are computer-generated synthetic models that simulate the development and growth 
processes of real plants [28]. L-systems is a commonly used formalism that can describe a wide range 
of plant features and types [53]. In the L-system framework, plants are defined by a sequence of 
symbols referred to as an L-string, which represents various organs of the plant. We utilized L-Py, a 
Python-based L-system, as the development platform [22]. On this platform, we employed the 
algorithm proposed by Chaudhury et al. [54] for plant generation to create Arabidopsis models. As shown 
in Figure 1(a), the generation of the Arabidopsis model primarily involves the following L-strings: 
 𝑀𝑒𝑟𝑖𝑠𝑡𝑒𝑚(𝑡) for apical or lateral meristems. 
 𝐿𝑒𝑎𝑓(𝑡, 𝑙𝑎𝑏𝑒𝑙_𝐿) for leaves of different sizes. 
 𝐼𝑛𝑡𝑒𝑟𝑛𝑜𝑑𝑒(𝑡, 𝑙𝑎𝑏𝑒𝑙_𝐼) for stem. 
 𝐹𝑙𝑜𝑤𝑒𝑟(𝑡, 𝑙𝑎𝑏𝑒𝑙_𝐹)  for flowers composed of a pedicel, petals, and carpels, with the carpel 

subsequently developing into a fruit. 
Each symbol was associated with a set of parameters that described the variables attached to the 

respective organ. The definitions of organs in Figure 1(a) essentially represent recursive functions, and 
thus, the generation and evolution of each organ involve iterative recursion with respect to the 
corresponding symbol over time increments of dt (1 hour). During the generation of organs, each class 
of organs X that needs to be identified is assigned a unique ‘label_X’. 

 

Figure 1. The generation process of virtual Arabidopsis. (a) represents the definitions of 
major plant organs, (b) illustrates the process of Meristem developing into different organs, 
and (c) shows the morphologies of different organs during the development process. 

To ensure the reality of virtual plants, just like real plant development, all organs originated from 
the Meristem. The morphologies of organs during growth and development are shown in Figure 1(c). 
Therefore, the generation process of Arabidopsis could be described simply as the development of 
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different organs from Meristem under different growth states, as shown in Figure 1(b). The 
development of plant organs in the figure depends on the value of ‘state’, which is provided by 
𝑎𝑑𝑑𝐿𝑎𝑡𝑃𝑟𝑜𝑑(𝑡). In order to explain the process of organ development in more detail, we presented 
the pseudocode (Algorithm 1) for this process. The pseudocode contains a lot of descriptive language 
for ease of understanding. 

Algorithm 1: The process of Meristem developing into different organs. 

 Input: Growth time t 

Output: 𝐼𝑛𝑡𝑒𝑟𝑛𝑜𝑑𝑒(𝑡) ,leaf , flower and 𝑀𝑒𝑟𝑖𝑠𝑡𝑒𝑚(𝑡) 

1 if 𝑙𝑎𝑡𝑝𝑟𝑜𝑑 ==  False:  

2 //a plastochrone time is not reached so a lateral production(latprod) is not produced 

3 𝑀𝑒𝑟𝑖𝑠𝑡𝑒𝑚(𝑡): continue iteration 

4 else: 

5 //a plastochrone is reached and a lateral production must be added 

6 𝑎𝑑𝑑𝐿𝑎𝑡𝑃𝑟𝑜𝑑(𝑡): 

7 Physiological state [s, d]: 

8 s = 0: Vegetative state 

9 s = 1: Between Vegetative and In flowering state 

10 s = 2: In flowering state 

11 s = 3: Flower state 

12 d = Plastochrones in this state (duration) 

13 if a lateral primordium is produced: 

14 Update of state counters d for the current meristem 

15 //Check physiological age 

16 if duration limit is reached: 

17 move to the next state s 

18 produce:  

19 𝐼𝑛𝑡𝑒𝑟𝑛𝑜𝑑𝑒(𝑡) 

20 A 𝑀𝑒𝑟𝑖𝑠𝑡𝑒𝑚 in state [s, d]: 

21 if d <  d_s (duration threshold in state s): 

22 produce a lateral meristem in state [s + 1, 0] 

23 produce an apical meristem in state [s, d + 1] 

24 if d =  d_s:  

25 produce a lateral meristem in state [s + 2, 0] 

26 produce an apical meristem in state [s + 1, 0] 

27 In addition: produce leaf in state 0 and 1 

28 Finally: the meristem transforms into a flower in state 3 

29 𝑀𝑒𝑟𝑖𝑠𝑡𝑒𝑚(𝑡): keep an apical growth 

Figure 2(d),(e) [55] depict the comparison between the generated Arabidopsis structure and the 
real Arabidopsis. In order to ensure the randomness of plant growth while preserving the structure 
imitating real plants, we employed a significant amount of random computation. Typically, we 
achieved this by assigning two values to a variable, one as the mean and the other as the standard 
deviation, and during the runtime, we randomly generated values by substituting these two values into 
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a Gaussian distribution. For instance, the growth duration (in hours) was determined by providing us 
with the mean days (Mean_day) and standard deviation (StDev_day), and the final duration in days 
was obtained by the Gaussian distribution function, which was then multiplied by 24. The leaf 
morphology was determined by a randomly computed ratio between the leaf blade and the petiole. 
These methods ensure that variables can fluctuate within certain constraints, thus maintaining both 
developmental diversity and the stability of the plant. 

 

Figure 2. Virtual Arabidopsis at different time points. The average growth periods for (a), 
(b), (c) and (d) are 10, 20, 30 and 40 days, respectively. (e) represents real Arabidopsis 
with a growth period of 59 days [55]. 

The Arabidopsis we generated using the above algorithm is shown in Figure 3(a). The generated 
Arabidopsis consists of a large number of triangles meshes of different sizes, as shown in Figure 3(b). 
The simplest method to convert the mesh model into a point cloud was to directly use the intersection 
points in the mesh as sampling points, but this results in significant shape errors in the point cloud. 
Alternatively, we sampled one point from each triangle repeatedly until the specified number of points 
was obtained. However, because there were more small triangles than large triangles, the point cloud 
had highly uneven point density. Moreover, the method was inefficient since the time complexity of 
randomly selecting triangles each time was 𝑂( ), where 𝑁 was the number of triangles. To address 
these issues, we introduced the surface-weighted sampling method, where triangles were selected 
based on their weight, and points on their surfaces were randomly sampled. 

First, we utilized the 𝐴𝑙𝑖𝑎𝑠 𝑀𝑒𝑡ℎ𝑜𝑑 [56], a non-uniform random sampling algorithm that trades 
space for time. The triangle area as the weight to sample one triangle at a time. The sampling process 
was mainly as follows: For a grid with 𝑁 triangles, 𝐴𝑙𝑖𝑎𝑠 𝑀𝑒𝑡ℎ𝑜𝑑 compressed the entire probability 
distribution into a 1 × 𝑁 rectangle, where each event 𝑖 (corresponding to different-sized triangles) 
was transformed into the area it occupies within the rectangle. The area occupied by each event in the 
rectangle can be expressed as follows: 

𝑆 =
×

∑
.                                  (1) 
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The area occupied by event 𝑖  in the rectangle may have cases where 𝑆 > 1  or 𝑆 < 1 . We 
supplemented the excess area of events with 𝑆 > 1 to the corresponding event with 𝑆 < 1, forming 
small rectangles with 𝑆 = 1. Additionally, we ensured that each small rectangle stores a maximum of 
two events. Lists 𝑃𝑟𝑜𝑏 and 𝐴𝑙𝑖𝑎𝑠 were constructed, where 𝑃𝑟𝑜𝑏[𝑖] represented the area proportion 
of event 𝑖 in the 𝑖-th small rectangle, representing the probability of event 𝑖. 𝐴𝑙𝑖𝑎𝑠[𝑖] indicated the 
index of another event in the same small rectangle. This preprocessing step generated a list with a time 
complexity of 𝑂( )  and a space complexity of 𝑂( ) . When selecting a triangle, we generated a 
random number 𝑖 ∈ [0, 𝑁)  and then generated another random number 𝑟~𝑈𝑛𝑖𝑓(0,1) . If 𝑟 <

𝑃𝑟𝑜𝑏[𝑖], it meant event 𝑖 was accepted; otherwise, event 𝑖 was rejected and 𝐴𝑙𝑖𝑎𝑠[𝑖] was returned. 
The time complexity here was only 𝑂( ). In summary, for a mesh of N triangles, 𝐴𝑙𝑖𝑎𝑠 𝑀𝑒𝑡ℎ𝑜𝑑 could 
pre-generate a list with a time complexity of 𝑂( ) and a space complexity of 𝑂( ), and then randomly 
selected triangles in constant time (𝑂( )). 

 

Figure 3. Virtual Arabidopsis models transforms into point cloud models. (a) is Arabidopsis 
original model, (b) is triangle mesh model, (c) is fully annotated point cloud model. 

Then, we performed point sampling inside the selected triangle. For each selected △ 𝐴𝐵𝐶, we 
generated two random numbers 𝑢 and 𝑣 on (0,1) and obtained the surface sampling point 𝑃( , ) 
using Eq (2). 

𝑥 = 1 − √𝑣 𝑥 + √𝑣(1 − 𝑢)𝑥 + √𝑣𝑢𝑥

𝑦 = 1 − √𝑣 𝑦 + √𝑣(1 − 𝑢)𝑦 + √𝑣𝑢𝑦
  𝑢, v ∈ (0,1).             (2) 

𝑥 , 𝑥 , 𝑥   and 𝑦 , 𝑦 , 𝑦   represent the 𝑥  and 𝑦  coordinates of vertices 𝐴, 𝐵, 𝐶 , respectively. √𝑣 
represents the percentage from vertex A to the opposite edge 𝐵𝐶, while 𝑢 represents the percentage 
along the edge 𝐵𝐶 (see Figure 4). 

In summary, we decomposed the original model’s surface into numerous triangles of varying sizes. 
Next, we employed the surface-weighted sampling method to repeatedly select triangles and sample 
random points within each selected triangle, resulting in the final point cloud. The resulting point cloud 
is depicted in Figure 5(c), where points of different colors correspond to different labels. 
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Figure 4. Sampling a random point in a triangle. 

2.2. Point cloud sampling 

Since neural networks have a small and fixed number of points fed during training, after obtaining 
the virtual Arabidopsis point cloud, downsampling is required to reduce the number of points to a fixed 
value. In point cloud downsampling, it is necessary to rapidly and significantly reduce the number of 
points while preserving the geometric shape and structural information of the plant as much as possible. 
In order to rapidly reduce the large and dense point cloud to a specified size, Voxel Centroid Sampling 
and Random Sampling methods are commonly used. Voxel Centroid Sampling first partitions the point 
cloud into voxels, and each voxel is sampled with only one centroid point [57]. Therefore, it can 
preserve the geometric information of the point cloud and reduce the existence of redundant data, but 
the number of points after sampling is uncertain. Random Sampling randomly samples points with the 
same probability, ensuring a more uniform distribution of points in the point cloud, and the number of 
sampled points can be specified [58]. However, during the sampling process, geometric information 
may be overlooked, which may lead to distortion in the sampling results. 

In order to preserve the geometric information of point clouds while controlling the number of 
points after sampling, we combined these two sampling methods in the downsampling process, as 
shown in Figure 5. We define the point cloud as 𝒫 = {𝑝 |𝑖 = 1, … , 𝑛}, where 𝑝 = (𝑥 , 𝑦 , 𝑧 ). 

For each point, we used K-Dimensional Tree to find its nearest neighbors and calculate the 
Euclidean distance between 𝑝  and its nearest neighbor 𝑝 . Then, we average the distances of all 
points to obtain the average point spacing of the entire point cloud. 

𝑠𝑝𝑎𝑐𝑒 = ∑ (𝑥 − 𝑥 ) + (𝑦 − 𝑦 ) + (𝑧 − 𝑧 ) .               (3) 

Next, we computed the size of the voxels in the point cloud. The 𝑠𝑖𝑧𝑒 =
√

, where 𝑑 is the 

dimension of the point cloud, and 𝑟 is a scaling factor usually ranging from 0.5 to 0.8. The point cloud 
was divided into voxels of the selected size, and the centroid of each voxel was calculated as 

𝑝 ∑ 𝑥 ,   ∑ 𝑦 ,   ∑ 𝑧 . The centroids of all voxels were output as the new point cloud 

in Figure 5(b). Finally, the new point cloud was sampled randomly to output the specified number of 
points in Figure 5(c). To meet the limitations on the input point cloud size for point-based point cloud 
segmentation networks, the number of points in the final downsampled point cloud was set to 8192. 
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Figure 5. The downsampling process. Voxel Centroid Sampling was performed on the 
original point cloud (a) to obtain the voxelized point cloud (b). After sampling a fixed 
number of points through Random Sampling, the sampling point cloud (c) is finally obtained. 

2.3. Network architecture 

We improved the state-of-the-art method Stratified Transformer in the field of point cloud 
semantic segmentation and proposed the Plant Stratified Transformer for semantic segmentation of 
plant point clouds. We designed the Fast Downsample Layer, utilizing point sampling from PSNet [59] 
and feature normalization from Pre-LN [60] to accelerate the downsampling process. 

2.3.1. Stratified transformer 

Stratified Transformer [52] is a novel point-based 3D point cloud segmentation network that 
effectively captures long-range contextual information and exhibits strong generalization capability 
and high performance. To accelerate convergence speed and enhance performance, Stratified 
Transformer utilizes First-layer Point Embedding to aggregate local information. The greatest 
advantage of this network lies in its novel key sampling strategy, the Stratified Key-sampling Strategy. 
For each query point, it densely samples nearby points and sparsely samples distant points in a 
stratified manner as its keys, enabling the model to expand the effective receptive field and acquire 
long-range context at a lower computational cost. 

The Stratified Transformer mainly consists of the First-layer Point Embedding, Transformer 
Block, Downsample Layers, and Upsample Layers. The Downsample Layer first performs FPS 
(Farthest Point Sampling) to obtain the sampled points and then uses kNN (k-Nearest Neighbors) to 
query the original points for grouping indices. However, the computational cost of FPS significantly 
increases with the number of points [61]. The sampling results of FPS are influenced by the initial 
point selection during the sampling process and the order of points in the point cloud. In addition, FPS 
only considers the Euclidean distance between points and does not take into account the local features 
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or global structure of the point cloud. kNN requires computing the Euclidean distance between each 
sampled point and all other points, but it has a high time and space complexity [62]. 

2.3.2. Fast downsample layer 

We proposed the Fast Downsample Layer as a replacement for the original Downsample Layer. 
PSNet replaced FPS and kNN in Downsample Layer to perform sampling and grouping tasks, reducing 
computation and improving speed. Additionally, Pre-LN normalized features, and Max Pooling 
aggregated the projected features through grouped indexing. The entire structure of the downsampling 
layer is illustrated in Figure 6, where the input consists of points and features, and the output consists 
of sampled points and features. 

 

Figure 6. The structure of the downsampling layer. (a) represents the processing flow of 
points and point features in the downsampling. 𝑛 , 𝑛  indicate the number of points, 
𝑑 , 𝑑 , 𝑘 denote the dimensions. (b) is a schematic diagram of the points data structure in 
each step of PSNet. In the (b) rightmost image, the gray areas in each column represent 
points outside the grouping, the light-yellow areas represent points within the same group, 
and the top dark yellow area indicates the sampled points. 

PSNet performs simultaneous sampling and grouping, illustrated in Figure 6(a). In Figure 6(b), 
𝒫  is the input point cloud with 𝑛  points, represented as 𝒫 = {𝑝 , 𝑝 , … , 𝑝 } . Each point 𝑝   has 
spatial coordinates 𝑐 = (𝑥 , 𝑦 , 𝑧 , 𝜃 , 𝜑 ) , where 𝑐 ∈ ℝ  . 𝜃   and 𝜑   are the polar and azimuthal 
angles, respectively, of each point in spherical coordinates. Their values can be calculated using the 
following formulas: 

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛

𝜑 = 𝑎𝑟𝑐𝑡𝑎𝑛           
.                             (4) 
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The point cloud 𝒫  is divided into multiple sub-point clouds, which can be represented as 𝒜 =

{𝑎 , 𝑎 , … , 𝑎 }, 𝑚 is the number of local regions, and it is also the number of sampled points. 
First, the point cloud 𝒫  is processed using the Multilayer Perceptron (MLP) network with 

multiple layers of 1 × 1 convolutions to achieve the Spatial Features Transform Function (SFTF). For 
the spatial feature 𝑐  of point 𝑝 , the SFTF function can be expressed as: 𝑣 = 𝑡𝑟𝑎𝑛𝑓𝑜𝑟𝑚(𝑐 ), where 
the function 𝑡𝑟𝑎𝑛𝑓𝑜𝑟𝑚(𝑥)  transforms the 𝑑  dimensional feature of each point into a higher-
dimensional 𝑚 feature, i.e., ℝ → ℝ . The output 𝑣 ∈ ℝ  of the transform function is a vector 
representing the correlation between point 𝑝  and each of the 𝑚 local regions. Extending the SFTF 
to the entire point cloud P, with the input as the features of n points 𝒞 = {𝑐 , 𝑐 , … , 𝑐 } , the 
corresponding 𝒱 is obtained: 

𝒱 =  𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝒞),                              (5) 

where the input 𝒞 ∈ ℝ ×  and the output 𝒱 ∈ ℝ ×  (the two-dimensional matrix with 𝑛 rows). 
Next, we use the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function 𝑞 = 𝜎(𝑣 ) to obtain the probability vector 𝑞  based on 

the correlation vector 𝑣 . The probability vector 𝑞  represents the probability that point 𝑝  belongs 
to one of the 𝑚 local regions 𝑎 (𝑗 = 1,2, … , 𝑚), where 𝑞 ∈ (0,1). When extended to the entire 
point cloud, the sigmoid function can be expressed as: 

𝒬 = σ(𝒱),                                   (6) 

where 𝒬 ∈ ℝ ×  is the probability matrix that represents the membership probabilities between each 
point in the point cloud 𝒫 and each local region in the set of local regions 𝒜. The columns of 𝒬 
represent the probabilities of each point belonging to the corresponding local region, which can be 
denoted as 𝑒 ∈ ℝ . Each value in 𝑒  represents the probability of point 𝑝  belonging to the local 
region 𝑎 . 

The column 𝑒  in 𝒬 is sorted in descending order, and the indices of the top s probability values 
are selected. Here, the top s elements refer to the first s elements after sorting in descending order. The 
size of the point cloud for local region 𝑎  is denoted as 𝑠. This process can be expressed as: 

𝑖𝑛𝑑𝑖𝑐𝑒𝑠 = 𝑎𝑟𝑔𝑡𝑜𝑝 𝑑𝑒𝑠𝑐 𝑒 .                       (7) 

Here, 𝑑𝑒𝑠𝑐(𝑥) is a function that sorts the elements of 𝑒  in descending order, and 𝑎𝑟𝑔𝑡𝑜𝑝  is a 
function that returns the indices of the top 𝑠 elements after sorting. 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 ∈ ℝ . 

Finally, the grouping and sampling of the point cloud 𝒫 are completed as shown in the far right 
of Figure 6(b). The 𝑖𝑛𝑑𝑖𝑐𝑒𝑠  are used to obtain the grouping indices for each sampled point, forming 
a grouping index matrix of size (𝑛 , 𝑘) . Moreover, for each local region, the point 𝑝   with the 
highest probability is selected as the downsampled point. This point is the one in the local region 𝑎  

that best matches the features of both the point and the local region. Here, 𝑙 = 𝑎𝑟𝑔𝑡𝑜𝑝 𝑑𝑒𝑠𝑐 𝑒  

represents the index of the top-ranked point. Therefore, the set of downsampled points can be 
expressed as: 

𝑑𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑝 ∣
∣ 𝑙 = 𝑎𝑟𝑔𝑡𝑜𝑝 𝑑𝑒𝑠𝑐 𝑒  𝑤ℎ𝑒𝑟𝑒 𝑗 = 1,2, … , 𝑚.         (8) 

The final output is the set of sampled points 𝒫 (𝑛 , 𝑑 ), 𝒫 ⊂ 𝒫 . 
Pre-LN consists of Layer Normalization [63] and a Linear layer, which helps reduce internal 



4680 

Mathematical Biosciences and Engineering  Volume 21, Issue 3, 4669–4697. 

covariate shift and improve the stability of the model during training. As shown in the upper part of 
Figure 6(a), we input the features ℱ (𝑛 , 𝑑 ) into Layer Normalization to normalize and stabilize the 
distribution of data features for each sample point. Layer Normalization calculates the mean 𝜇 and 
standard deviation 𝜎 for all feature dimensions at each sample point. 

𝜇 = ∑ 𝑓 ; 𝜎 = ∑ 𝑓 − 𝜇 .                      (9) 

Here, 𝑓  represents the feature of each point, and 𝑓 ∈ ℱ . Then, through the Linear layer, the 
output dimensions remain unchanged at (𝑛 , 𝑑 ). To aggregate the projected features from the Pre-LN 
output while preserving feature invariance, we use the Max Pooling layer with grouping indices 
(𝑛 , 𝑘) generated by the grouping operation of PSNet. This aggregates the projected features and 
generates the output features ℱ (𝑛 , 𝑑 ), where ℱ ⊂ ℱ . 

2.3.3. The modified network 

The network architecture utilizes the Stratified Transformer as the backbone and incorporates the 
Fast Downsample Layer to create the Plant Stratified Transformer for semantic segmentation of small-
scale complex plant structures in point clouds. The overall network architecture is illustrated in Figure 7. 

 

Figure 7. The overall structure of the Plant Stratified Transformer. 

The network architecture resembles U-Net [64] and is divided into symmetric contracting and 
expanding paths. The left side of Figure 7 represents the contracting path, which is used to capture 
contextual information and perform hierarchical feature extraction, but it may lose some spatial 
information. At the beginning of the contracting path, the first-layer point embedding module 
aggregates the features of local neighbors for each point. Each subsequent module consists of a 
downsampling layer and several Transformer modules that capture local and long-range dependencies 
in the point cloud. The right side of Figure 7 represents the expanding path, which is used to upsample 
the features extracted from the contracting path and achieve precise localization of the segmented parts 
in the point cloud. The expanding path comprises multiple Upsample Layers, which densify features 
layer by layer. However, upsampling alone cannot recover spatial information. Hence, skip 
connections are employed to output shallow features from each stage of the contracting path to the 
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corresponding upsampling layer in the expanding path. The network preserves more high-resolution 
details from shallow feature maps by fusing shallow and deep features in the Upsample Layers, thereby 
enhancing the accuracy of semantic segmentation. 

The first-layer point embedding module in the network aggregates local features from adjacent 
points in the point cloud to enhance the model's generalization and expressive capabilities. The 
Transformer blocks employ Stratified Self-attention and Stratified Key-sampling Strategy [52] to 
increase the effective receptive field and enable the effective aggregation of long-range contextual 
information by query features. 

2.4. Evaluation metrics 

In order to verify the semantic segmentation performance of the Plant Stratified Transformer(our) 
on plant point clouds, we used four metrics: Precision (Prec), Recall (Rec), F1, and Intersection over 
Union (IoU) to compare the success rate of organ segmentation in plants. For all four semantic metrics 
(expressed as percentages), a higher value indicates better performance. Specifically, Prec represents 
the ratio of correctly classified points in a semantic class to all points predicted by the network. Rec 
reflects the ratio of correctly classified points in this semantic class to the total number of points in this 
class according to the true labels. F1 is a comprehensive metric calculated as the harmonic mean of 
Prec and Rec. For each semantic class, IoU reflects the degree of overlap between the predicted region 
of each semantic class and the corresponding true region. The four metrics are defined as follows: 

𝑃𝑟𝑒𝑐 = ,                               (10) 

𝑅𝑒𝑐 = ,                                (11) 

𝐹1 = 2 ⋅
×

,                             (12) 

𝐼𝑜𝑈 = ,                             (13) 

where 𝑇𝑃  represents the true positive point count of the current semantic class, 𝐹𝑃  represents the 
false positive point count of the current class, and 𝐹𝑁  represents the false negative point count. 𝑐 
is the semantic label, 𝑐 ∈ {𝑙𝑒𝑎𝑓, 𝑠𝑡𝑒𝑚, 𝑓𝑙𝑜𝑤𝑒𝑟}. 

3. Results 

3.1. Data preparation and training environment 

In this study, we used a generated virtual Arabidopsis dataset and a real Arabidopsis dataset with 
semantic labels. The latter was a dataset we created from 10 real 3D Arabidopsis plants selected from 
Ziamtsov et al. [65] dataset. 

Virtual Arabidopsis dataset: We simulated Arabidopsis models with a developmental period of 
approximately 6 weeks using the L-Py framework. The generated models were converted into fully 
annotated point clouds using the surface-weighted sampling method. To simplify the labeling 
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categories of the models, we unified the siliques and flowers of Arabidopsis as ‘flower’. The final 
generated Arabidopsis models had semantic labels for ‘leaf’, ‘stem’, and ‘flower’. The downsampling 
method described earlier was applied to reduce the number of points in the generated point cloud 
models. Through these steps, a total of 930 Arabidopsis point cloud models with diverse morphologies 
were generated. Figure 8(b) displays different morphological Arabidopsis point cloud models, each 
containing 8192 points. The information of an individual point included coordinates and semantic 
labels. The semantic labels ‘leaf’, ‘stem’, and ‘flower’ were represented by red, green, and blue points 
in the point cloud, respectively, and were denoted as ‘0’, ‘1’ and ‘2’ in the point information, as shown 
in Figure 8(a). Since we could directly generate point cloud models with significantly different 
morphological structures, it reduced the possibility of overfitting and eliminates the need for traditional 
data augmentation operations. We divided the dataset into a training set and a validation set in a ratio 
of 4:1. 

 

Figure 8. Fully annotated Arabidopsis point cloud model. (a) represents the information 
representation of points in the point cloud. (b) shows Arabidopsis point clouds with 
different structures. 

Real Arabidopsis dataset: The dataset from Ziamtsov et al. [65] comprises high-resolution 
measurement data of plant structures generated using 3D scanning techniques. We selected 47 
Arabidopsis 3D scanning models from this dataset with distinct structural features, as shown in Figure 9(a). 
Compared to our generated virtual Arabidopsis, these real Arabidopsis models exhibited more complex 
morphological structures. The proportion of siliques and flowers was lower, while the rosette part had 
a higher proportion.  

We used CloudCompare to convert these models into point clouds and performed semantic 
annotation on leaves, stems, and flowers. For data augmentation, random rotations, cropping, and stitching 
operations were applied to point clouds to enhance the diversity among the data. Subsequently, we 
downsampled the point cloud to 8192 points using the method in Section 2.2, as shown in Figure 9(b). To 
ensure the separation of training and test dataset, 27 point clouds were randomly selected from the 47 



4683 

Mathematical Biosciences and Engineering  Volume 21, Issue 3, 4669–4697. 

real point clouds and augmented five times, resulting in 135 point clouds for the training set. The 
remaining 20 real point clouds were used as the test set. 

 

Figure 9. 3D scanning models and point clouds of real Arabidopsis. 

Due to the scarcity of real Arabidopsis, overfitting was likely to occur during network training, 
leading to an inability to achieve the expected performance. We merged the training sets of virtual and 
real Arabidopsis to create a mixed training set, comprising 744 virtual point clouds and 135 real point 
clouds. The validation set consists of the validation set of virtual Arabidopsis, comprising 186 virtual 
point clouds. The test set consists of the test set of real Arabidopsis, comprising 20 real point clouds. 

Properly setting the learning rate is crucial during the network training phase. A high learning rate 
could lead to gradient explosions, causing significant oscillation in the loss and hindering model 
convergence. Conversely, A low learning rate slows down the model’s learning speed and increases 
training time. For improved network convergence, we applied a learning rate decay with a fixed step 
size of 0.5 every 20 epochs, starting from an initial learning rate of 0.001. We trained the network with 
a batch size of 8 for a total of 250 epochs in the training environment specified in Table 1. For testing, 
we conducted training and evaluation on the Arabidopsis dataset using PointNet++ [38], PAConv [66] 
and the Stratified Transformer with identical parameters and environment, and then compared their 
performance with our improved network. 

Table 1. Training environment. 

Name Parameter 
CPU Intel(R) Core(TM) i7-7700 CPU 
GPU GeForce GTX 1070 
Memory 16 GB 
Operating system Ubuntu 20.04 
Deep learning framework Pytorch 1.8.0 
Programming language Python 3.9 

3.2. Validation on virtual data 

In this section, we individually trained four different networks on the mixed training set and 
validated them using the virtual Arabidopsis validation set. We compared the segmentation 
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performance of our network with the other three networks. Table 2 presents the segmentation results 
of the improved network, Plant Stratified Transformer (ours), and three other segmentation methods 
for comparison. The table displayed the values of various metrics for the epoch with the highest IoU 
after network convergence. The values related to ‘stem’ are significantly lower compared to ‘leaf’ and 
‘flower’ in the table. This is due to the stem category having fewer points in each Arabidopsis point 
cloud compared to the other two categories, leading to potential confusion during network training. 
Furthermore, our network achieve performance similar to the original network in mean precision, mean 
recall, mean F1-score, and mean IoU, with values of 88.12, 91.44, 89.64 and 85.56%. The differences 
between the two networks in these metrics are only 0.28, 0.22, 0.08 and 0.09%, indicating that the 
inclusion of the Fast Downsample Layer do not affect the performance of the network in semantic 
segmentation. Both networks outperform PointNet++ and PAConv, as the Transformer module 
effectively capture long-range contextual information, resulting in a larger receptive field and 
improved generalization ability for the model. In contrast, PointNet++ and PAConv rely on local 
feature aggregation and do not directly establish long-range dependencies, making it difficult to 
capture long-range contextual information. Consequently, due to the lower number of points in the 
stem category, PointNet++ and PAConv exhibit poorer performance in the metrics related to the stem 
category compared to the other two networks, whereas their performance differences in the other 
categories are less significant. PAConv, which is an improvement over the original backbone network 
PointNet, performs slightly better than PointNet++ but do not fully utilize global information. From the 
table, it could be seen that PointNet++ performs the worst, especially in the stem category, indicating 
that this network is not suitable for handling sparse plant point clouds with complex structures. 

Table 2. The comparison of semantic segmentation across the four networks on the 
validation set. The best results are in boldface. 

  PointNet++ PAConv Stratified 

Transformer 

Plant Stratified 

Transformer (ours) 

Prec (%) Leaf 95.78 95.39 98.57 98.49 

Stem 69.48 73.18 77.59 78.18 

Flower 91.26 94.23 96.32 96.79 

Mean 85.51 87.60 90.83 91.15 

Rec (%) Leaf 94.67 95.48 97.83 97.93 

Stem 72.35 75.83 80.41 80.37 

Flower 92.94 95.21 98.15 98.61 

Mean 86.65 88.84 92.13 92.30 

F1 (%) Leaf 95.22 95.43 98.20 98.21 

Stem 70.89 74.48 78.97 79.26 

Flower 92.09 94.72 97.23 97.69 

Mean 83.05 84.96 88.59 91.72 

IoU (%) Leaf 90.88 91.27 96.46 96.48 

Stem 54.90 59.34 65.25 65.65 

Flower 85.34 89.97 94.60 95.49 

Mean 77.04 80.19 85.44 85.87 
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Figure 10. The qualitative segmentation comparison of the four networks on the validation set. 

The visualization results of semantic segmentation for the four networks are shown in Figure 10. 
The leftmost images represent the ground truth, and the images on the right display the test results of 
different networks. We select four Arabidopsis point clouds with significant morphological differences 
to demonstrate the visualization results of semantic segmentation. From Figure 10, it is visually evident 
that the number of points belonging to the stem is significantly fewer than those belonging to the leaf 
and flower. The segmentation performance is clearly the worst at the boundaries between different 
organ structures, leading to confusion, especially at the boundaries between the stem and the other two 
structures. The figure also shows that the segmentation of the leaf was superior to that of the stem and 
flower. This is because the leaf had fewer intersections with the stem and flower, it has a clear structure, 
and there are also more points. 

3.3. Segmentation of real data 

We tested the networks trained on the mixed dataset on the real Arabidopsis testing set, and the 
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segmentation results are shown in Table 3, compared with the other three networks. Clearly, the 
segmentation performance of all networks significantly decreases. PointNet++, PAConv and Stratified 
Transformer had mean IoU of 57.93, 61.02 and 69.86%, respectively, which were decreased by 19.11, 19.17 
and 15.58% compared to the segmentation results on virtual Arabidopsis. The segmentation 
performance of PointNet++ and PAConv was notably poor, failing to meet the requirements for 
semantic segmentation, possibly due to limitations in their generalization abilities. The improved 
network achieved mean Prec, Rec, F1-score and IoU of 80.42, 82.18, 81.29 and 70.04%, respectively, 
which decreased by 10.73, 10.12, 10.43 and 15.83% compared to the segmentation results on virtual 
Arabidopsis. Both the Stratified Transformer and our network’s mean IoU could maintain around 70%, 
meeting the requirements for semantic segmentation and showcasing good generalization capability. 
Furthermore, Table 3 shows that the primary reason for the decrease in Mean IoU is a significant drop 
in the metrics related to the ‘Flower’ category. This is due to the scarcity of the ‘flower’ label in the 
tested real Arabidopsis compared to the virtual Arabidopsis. 

Table 3. The comparison of semantic segmentation across the four networks on the test 
set. The best results are in boldface. 

  PointNet++ PAConv Stratified 

Transformer 

Plant Stratified 

Transformer (ours) 

Prec (%) Leaf 92.54 94.42 97.51 97.93 

Stem 72.58 75.34 80.21 79.85 

Flower 65.35 69.10 75.12 74.81 

Mean 76.82 79.62 84.28 84.20 

Rec (%) Leaf 89.25 93.25 95.82 96.14 

Stem 66.89 66.48 80.22 79.68 

Flower 60.57 67.31 72.93 73.28 

Mean 72.24 75.68 82.99 83.03 

F1 (%) Leaf 90.87 93.83 96.66 97.03 

Stem 69.62 70.63 80.21 79.76 

Flower 62.87 68.19 74.01 74.04 

Mean 74.45 77.55 83.63 83.61 

IoU (%) Leaf 83.26 88.38 93.53 94.23 

Stem 53.40 54.60 66.97 66.34 

Flower 45.85 51.74 58.74 58.78 

Mean 60.83 64.91 73.08 73.11 

Figure 11 presents a qualitative comparison of the performance of four networks on the real 
Arabidopsis testing set. It can be visually observed that the segmentation is poorest at boundaries 
between different organs. Compared to virtual Arabidopsis, the testing performance on real 
Arabidopsis is relatively poor due to morphological differences between the real and virtual 
Arabidopsis used in the experiments. This difference primarily lies in the virtual Arabidopsis having 
far more flowers and siliques than the real Arabidopsis, with significantly fewer points on the rosette’s 
leaf compared to the real Arabidopsis. Similarly, there are more points on the rosette’s leaf of the real 
Arabidopsis. This results in a smaller proportion of non-rosette points in the real Arabidopsis under the 
condition of the same point cloud size. Consequently, fewer non-rosette point features are captured by 
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the network compared to virtual Arabidopsis, leading to a further decline in segmentation performance. 

 

Figure 11. The qualitative comparison of segmentation on the test set by the four networks. 

3.4. Time-consuming analysis 

To assess the efficiency of our improved network on our dataset, we recorded the Training time 
and Inference time for each network during the experiments. Training time referred to the time taken 
during the training phase, from extracting a batch of data from the training set to feeding it into the 
neural network and obtaining the output results of the model during each iteration. Inference time was 
the time taken for forward propagation, which was the duration it takes for the model to process new 
input data and produce output predictions during the testing phase. From Table 4, it can be observed 
that, using the FPS and kNN sampling and grouping method, both the Training time and Inference 
time for Stratified Transformer are longer compared to PointNet++ and PAConv. This was because the 
Transformer block required processing a large number of point-wise self-attention weights. 
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Table 4. The mean training time (ms) and inference time (ms) for each method. The best 
results are in boldface. 

Methods Training time Inference time 
PointNet++ 792.7 761.5 
PAConv 678.8 652.3 
Stratified Tranformer 1035.2 869.7 
Plant Stratified Tranformer(our) 714.3 597.9 

The training time and inference time of our improved network were 714 and 597.9 ms, respectively, 
which were reduced by 320.9 and 271.8 ms compared to the original network. PAConv had the shortest 
training time, 678.8 ms, which was 35.5 ms less than our network. However, our network’s inference 
time was 54.4 ms less than PAConv, and our inference time was the optimal among the compared 
networks. All of these demonstrated that, compared to the original network, the Fast Downsample 
Layer replacing the original downsampling layer had shortened the time required for point cloud 
sampling and grouping. 

4. Discussion 

4.1. Ablation study 

In this section, we designed several independent ablation experiments to verify the effectiveness of 
the Fast Downsample Layer proposed in the Plant Stratified Transformer. This includes assessing the 
effectiveness of sampling and grouping in PSNet, as well as the functionality of the Pre-LN module. For 
the sake of comparison and demonstration, we used traditional sampling and grouping methods, FPS and 
KNN, as benchmarks, and named the sampling and grouping parts of PSNet as S1 and G1, FPS as S2, 
and kNN as G2. Since G1 needs to work in conjunction with S1, it cannot exist independently of S1. 
Ablation experiments for semantic segmentation are presented in Table 5, and ablation experiments for 
mean training and inference time in semantic segmentation are shown in Table 6. 

In Tables 5 and 6, the “Ver” column provides the names of the ablated network versions. We 
compared eight version networks named “V1” to “V5” with the complete network (“V0”). Each 
version was created by removing or replacing existing modules from the original Plant Stratified 
Transformer. In the comparison of different sampling and grouping methods, we found that sampling 
and grouping methods can slightly improve the effectiveness of the network model. Removing or 
adding the Pre-LN module also had an impact on the network’s performance, possibly because 
normalized features are more conducive to the stability of the model during training, to some extent 
improving the model’s effectiveness. This may be because the Fast Downsample Layer can provide 
more suitable local grouping compared to the original model. 

In Table 6, we compared the impact of different modules on the training and inference time. Pre-
LN somewhat accelerated the network’s speed because normalization can expedite network 
convergence. Most importantly, our sampling and grouping methods are significantly faster than the 
combination of FPS and kNN. This is because the time complexity of FPS + kNN is much greater than 
that of PSNet. The time complexity of FPS is O(n2) [61]. The time complexity of kNN includes O(nm) 
for distance calculation and O(nlog2n) for heap sorting. Therefore, the time complexity of FPS+kNN 
is O(n2 + nm + nlog2n). In contrast, the time complexity of PSNet is O(nm + nlog2n), which includes 
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SFTF and heap sorting. (n represents the number of sampled points, and m represents the number 
of groups). 

Table 5. The ablation analysis of our network on the validation set. The best results are in boldface. 

 Ver Sampling Grouping Pre-LN Leaf Stem Flower Mean 
Prec 
(%) 
 

V0 S1 G1 √ 98.49 78.18 96.79 91.15 
V1 S1 G1  98.03 77.80 96.23 90.69 
V2 S1 G2 √ 98.35 77.93 96.64 90.97 
V3 S1 G2  98.12 77.67 96.19 90.66 
V4 S2 G2 √ 98.57 77.59 96.32 90.83 
V5 S2 G2  97.93 77.14 96.12 90.40 

Rec 
(%) 
 

V0 S1 G1 √ 97.93 80.37 98.61 92.30 
V1 S1 G1  97.34 79.87 98.13 91.78 
V2 S1 G2 √ 97.91 80.29 98.28 92.16 
V3 S1 G2  97.30 80.03 98.06 91.80 
V4 S2 G2 √ 97.83 80.41 98.15 92.13 
V5 S2 G2  97.42 79.81 98.01 91.75 

F1 (%) 
 

V0 S1 G1 √ 98.21 79.26 97.69 91.72 
V1 S1 G1  97.68 78.82 97.17 91.23 
V2 S1 G2 √ 98.13 79.09 97.45 91.56 
V3 S1 G2  97.71 78.83 97.12 91.22 
V4 S2 G2 √ 98.20 78.97 97.23 91.47 
V5 S2 G2  97.67 78.45 97.06 91.06 

IoU 
(%) 

V0 S1 G1 √ 96.48 65.65 95.49 85.87 
V1 S1 G1  95.47 65.05 94.50 85.01 
V2 S1 G2 √ 96.33 65.42 95.03 85.59 
V3 S1 G2  95.52 65.06 94.39 84.99 
V4 S2 G2 √ 96.46 65.25 94.60 85.44 
V5 S2 G2  95.45 64.54 94.28 84.76 

Table 6. The ablation analysis of our network on the training time (ms) and inference 
time (ms). The best results are in boldface. 

Ver Sampling Grouping Pre-LN Training time Inference time 
V0 S1 G1 √ 721.4 613.9 
V1 S1 G1 

 
735.9 624.5 

V2 S1 G2 √ 754.8 643.5 
V3 S1 G2 

 
773.5 659.4 

V4 S2 G2 √ 1041.5 873.2 
V5 S2 G2 

 
1059.8 894.3 

4.2. The effect of virtual data on network training 

To study the impact of the ratio of virtual to real data on network training and validate whether 
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the inclusion of virtual plants in the mixed dataset enhances accuracy, we divided the training set into 
V, R1, R2 and R3, as shown in Table 7. R1, R2 and R3 were obtained by augmenting data from 9, 18 
and 27 real plants, respectively, five times. These four parts were combined to form 7 training sets, 
each trained separately. The seven sets of data included virtual data (V), real data (R1, R2, R3), and 
mixed data (V + R1, V + R2, V + R3). The test set remained as 20 real point clouds. The four networks 
were trained separately seven times, and the variations in testing results were compared when using 
different combinations of training sets. 

Table 7. Partitioning of training data. 
 

V R1 R2 R3 
Data Virtual Real Real Real 
Training 744 9:45 18:90 27:135 

 

Figure 12. The variation in test results of the four networks on different combinations of 
training sets. 

Figure 12 presents the test results of models trained by various networks on different 
combinations of training sets. PointNet++ shows the smallest increase in various metrics as the 
combinations change. In contrast, Stratified Transformer and our model exhibit the largest increases. 
This indicates that the latter two can learn more features similar to both virtual and real data. Training 
exclusively with virtual data (V) yields unsatisfactory results, especially as PointNet++ fails to achieve 
even a 45% mIoU. Training exclusively with different quantities of real data (R1, R2 and R3) shows 
improved performance with an increase in the amount of real data. The metrics between R1 and R2 
clearly show a higher improvement compared to that between R2 and R3. This suggests that the 
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improvement in network training effectiveness diminishes with the increase in real data. In the case of 
the combination of R1, R2, R3 and V, the training performance is evidently better than training with 
real data alone. This indicates that in this study, virtual plant data can indeed enhance the overall 
training effectiveness when combined with a certain amount of real data. The combination of a large 
amount of virtual data with a small amount of real data achieves acceptable training results. 

4.3. Limitations 

Our virtual plants have certain shortcomings when compared to other virtual plants. For instance, 
Morel et al. [67] used a TLS simulator to generate point clouds from virtual tree mesh models. This 
method simulates LiDAR scanning of trees at certain heights and distances. The references [68,69] 
considered the impact of simulating the distance between real scanning devices and plant objects on 
point cloud density. However, our method does not simulate the position of scanning devices on point 
clouds. In future work, we can introduce variable point density and artificial noise into point clouds 
by simulating acquisition systems such as ToF cameras and LiDAR in a virtual environment. 

Point clouds obtained from scanning real plants are typically very large, whereas the maximum point 
cloud size our network takes as input is 8912. For plants with dense foliage or larger leaves, this can result 
in very sparse leaf point clouds, thus affecting the final segmentation results. The structure of real 
Arabidopsis is more complex. In real environments, it is challenging to fully capture the stems, leading to 
significant differences in the proportions of flowers and stems in various Arabidopsis. Typically, 
Arabidopsis rosette leaves are abundant, causing the proportion of non-rosette features to be too low in a 
fixed-size point cloud. This results in the loss of more phenotypic features. In future work, Arabidopsis, 
such as rosette plants, we can separate the rosette and non-rosette parts before segmenting individually. 

5. Conclusions 

In this study, virtual Arabidopsis models generated by L-system were used as experimental data. 
This allowed for the involvement of virtual plants in network training alongside real plants, addressing 
the scarcity of Arabidopsis point cloud data. Since the generated virtual plants came with semantic 
labels, this eliminated the need for manual annotation. We proposed the Plant Stratified Transformer 
for semantic segmentation tasks on plants. Our network was based on the Stratified Transformer 
backbone, incorporating the Fast Downsample Layer to accelerate network speed. In our dataset, the 
training set was a mixture of virtual and real Arabidopsis point clouds, while the test set consisted of 
real data. The improved network, alongside PointNet++, PAConv and the original Stratified 
Transformer, was trained and tested on this dataset. In terms of segmentation performance, the 
improved network was comparable to the original network but significantly outperforms the other two. 
Regarding time consumption, the improved network had much shorter training and inference times 
compared to the original network. This indicated that the improved network enhanced training and 
inference efficiency while maintaining the segmentation performance of the original network. The 
research results thoroughly demonstrated the significant potential of virtual plants and deep learning 
methods in rapidly extracting plant phenotypes. Synthetic virtual data could effectively facilitate the 
training of deep learning models, thereby reducing costs and time. This not only has a positive impact 
on plant phenotype research but also injects new vitality into the field’s development. 

In future work, we plan to acquire 3D point cloud models by scanning Arabidopsis to obtain additional 
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real data for network training. We will improve or design new deep learning architectures to handle plant 
point cloud models more efficiently, meeting the real-time requirements of practical applications. 
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