
MBE, 21(3): 4669–4697.

DOI: 10.3934/mbe.2024205

Received: 12 December 2023

Revised: 07 February 2024

Accepted: 08 February 2024

Published: 29 February 2024

http://www.aimspress.com/journal/MBE

Research article

The improved stratified transformer for organ segmentation of Arabidopsis

Yuhui Zheng1, Dongwei Wang1, Ning Jin2, Xueguan Zhao3, Fengmei Li4, Fengbo Sun5, Gang
Dou6 and Haoran Bai1,*

1 College of Mechanical and Electrical Engineering, Qingdao Agricultural University, Qingdao
266109, China

2 Graduate School, Shenyang Jianzhu University, Shenyang 110168, China
3 Beijing PAIDE Science and Technology Development Co., Ltd., Beijing 100097, China
4 College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
5 China Zhongxin Construction Engineering Co., Ltd., Qingdao 266205, China
6 Weichai Lovol Intelligent Agricultural Technology Co., Ltd., Weifang 261000, China

* Correspondence: Email: baihaoran111@126.com; Tel: +8613854285625.

Abstract: Segmenting plant organs is a crucial step in extracting plant phenotypes. Despite the
advancements in point-based neural networks, the field of plant point cloud segmentation suffers from
a lack of adequate datasets. In this study, we addressed this issue by generating Arabidopsis models
using L-system and proposing the surface-weighted sampling method. This approach enables
automated point sampling and annotation, resulting in fully annotated point clouds. To create the
Arabidopsis dataset, we employed Voxel Centroid Sampling and Random Sampling as point cloud
downsampling methods, effectively reducing the number of points. To enhance the efficiency of
semantic segmentation in plant point clouds, we introduced the Plant Stratified Transformer. This
network is an improved version of the Stratified Transformer, incorporating the Fast Downsample
Layer. Our improved network underwent training and testing on our dataset, and we compared its
performance with PointNet++, PAConv, and the original Stratified Transformer network. For
semantic segmentation, our improved network achieved mean Precision, Recall, F1-score and IoU
of 84.20, 83.03, 83.61 and 73.11%, respectively. It outperformed PointNet++ and PAConv and
performed similarly to the original network. Regarding efficiency, the training time and inference
time were 714.3 and 597.9 ms, respectively, which were reduced by 320.9 and 271.8 ms, respectively,
compared to the original network. The improved network significantly accelerated the speed of feeding
point clouds into the network while maintaining segmentation performance. We demonstrated the
potential of virtual plants and deep learning methods in rapidly extracting plant phenotypes,

4670

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4669–4697.

contributing to the advancement of plant phenotype research.

Keywords: virtual plant; plant phenotyping; deep learning; point cloud; plant segmentation

1. Introduction

Plant phenotypes refer to the morphological characteristics controlled by genes in individual or
populations of plants under specific environments, which is a comprehensive reflection of plant traits [1].
The major components of plant phenotype include organs, such as roots, leaves, stems, and fruits, with
leaves being the most common phenotypic trait. Traditional measurement methods rely on manual
observation and are subject to subjective errors. This makes it difficult to meet the demand for rapid
phenotypic analysis of large-scale plants [2]. In the past decade, automated phenotype research using
computer vision and machine learning techniques has received widespread attention [3]. The core issue
lies in how to effectively and accurately segment plant organs.

In recent years, advanced deep learning methods based on 2D images have been widely used
for plant part segmentation [4], such as the semantic segmentation residual U-Net model for plant
images [5], and methods for leaf segmentation used in disease identification [6–9]. However, the
specific structure of plants and the influence of factors like complex environmental conditions during
plant growth limit the accuracy of obtaining precise plant phenotypic parameters through 2D images. 2D
images lack depth information, leading to issues such as occlusion, data loss [10], and variability
caused by lighting conditions [11].

3D point cloud models can provide accurate spatial information of objects [12] including their
position, shape, size and orientation. In contrast, 2D images can only provide the projected information
of objects on the plane and cannot accurately capture their three-dimensional features. Machine vision-
based depth cameras and binocular vision-based 3D imaging techniques have been used for 3D
reconstruction of small plants, such as soybeans [13] and corn [14,15]. Compared to machine vision-
based 3D imaging techniques, LiDAR is more accurate and is commonly used for large-scale scenes
such as forests [16] and farmlands [17,18]. However, LiDAR data processing requires significant
workload, time, and cost. Compared to the two methods mentioned above for obtaining 3D point cloud
models of plants, synthetic 3D virtual plant models have the advantage of low cost and simple
acquisition methods. Synthetic plant models have long been used in plant research to simulate the
interaction between plants and the environment [19]. Lindenmayer systems (L-systems) [20] is a type
of string rewriting system that can be used to generate fractals and natural patterns. Platforms for
constructing plant models are typically developed based on L-systems, such as the L + C modeling
language combined with C language [21] and the L-Py framework combined with Python [22]. Some
studies utilize synthetic plants as training data [23]. Reference [24] establishes models capable of
automatically annotating maize and canola, saving the time required for manual labeling. Similarly, in [25],
L-Systems are employed to model artichoke seedlings and automate annotation, thereby reducing cost
and time. The study [26] combines real and synthetic images of Arabidopsis for network training.
Reference [27] uses 3D plant models generated by Blender and scenes with random plant parameters
to create a synthetic dataset. Reference [28] shows that using high-quality 3D synthetic plants to
augment the dataset improves performance in leaf counting tasks. All of the above involve using
synthetic 3D plant models to generate 2D images rather than directly incorporating synthetic 3D

4671

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4669–4697.

models into training. In contrast, references [29,30] use synthetic roses and Arabidopsis, respectively,
as substitutes for real plants directly involved in deep learning training.

Point clouds are composed of a large number of discrete points, exhibiting disorder and
irregularity, making segmentation with deep learning methods challenging [31]. For handling irregular
inputs like point clouds, an intuitive approach is to transform the irregularity into regularity. One
approach is multi-view projection [32], which projects 3D point cloud information onto a 2D plane.
Shi et al. [33] employed the multi-view projection method for semantic and instance segmentation of
tomato seedlings. However, in the multi-view projection method [34], the geometric information of
point clouds is collapsed during the projection stage. Another approach to transforming irregular point
clouds into regular representations is 3D voxelization [35], followed by using deep learning to process
plant point clouds [36]. Compared to the two aforementioned indirect methods, directly point-based
deep learning networks consume less computation and memory. PointNet and PointNet++ [37,38] are
the earliest point-based 3D deep neural networks. Kang et al. [39] and Masuda [40] applied these two
networks to plant point cloud segmentation. Subsequently, point-based 3D neural networks specialized
in plant point cloud segmentation were proposed [41]. Ghahremani et al. [42] proposed a lightweight
deep network for plant point cloud segmentation, and later introduced Pattern-Net [43], specifically
for wheat point cloud segmentation, based on the original network. Recently, attention-based
Transformers have been first applied to point-based deep learning [44–46], significantly improving the
performance of point cloud segmentation. Subsequently, some point-based deep learning network
models combined with Transformers have been proposed [47–49], demonstrating excellent segmentation
performance. Turgut et al. [29] and Li et al. [50] proposed attention-based point cloud segmentation
networks, RoseSegNet and PSegNet, specifically designed for plant point cloud segmentation.

In conclusion, using 3D deep learning for plant organ segmentation is a promising method in
phenotypic research, but there are several challenges. Due to the lack of plant datasets, it is challenging to
validate the effectiveness of the designed networks on complex plant structures. In most 3D deep learning
models, methods such as downsampling and grouping points may incur significant time costs [51].

To address the aforementioned challenges, we created virtual Arabidopsis models that simulate
the characteristics of real Arabidopsis complex structures, which can be used to verify the feasibility
of our network for segmentation on plants with complex structures. We proposed a novel
downsampling module to improve the Stratified Transformer network [52] for semantic segmentation
on our created virtual Arabidopsis dataset. Our network consumed less time compared to the original
network while ensuring segmentation performance.

Our major contributions were as follows:
 To obtain more Arabidopsis data, we used L-Py to generate virtual Arabidopsis models. Then, we

proposed the surface-weighted sampling method and downsampling method to obtain annotated
Arabidopsis point clouds from the virtual models.

 Plant Stratified Transformer was proposed by us. This network utilized the Fast Downsample
Layer, replacing the Stratified Transformer downsampling layer. Testing on the Arabidopsis
dataset demonstrated that the improved network maintained segmentation performance
comparable to the original network while reducing both training and inference times.

 Virtual Arabidopsis was involved in network training to validate the semantic segmentation
performance of different networks, tested against real Arabidopsis. This demonstrated that when there
was only a small amount of real plant data, virtual plants could be used as training data for the network.

4672

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4669–4697.

2. Materials and methods

2.1. Virtual Arabidopsis model

Virtual plants are computer-generated synthetic models that simulate the development and growth
processes of real plants [28]. L-systems is a commonly used formalism that can describe a wide range
of plant features and types [53]. In the L-system framework, plants are defined by a sequence of
symbols referred to as an L-string, which represents various organs of the plant. We utilized L-Py, a
Python-based L-system, as the development platform [22]. On this platform, we employed the
algorithm proposed by Chaudhury et al. [54] for plant generation to create Arabidopsis models. As shown
in Figure 1(a), the generation of the Arabidopsis model primarily involves the following L-strings:
 𝑀𝑒𝑟𝑖𝑠𝑡𝑒𝑚(𝑡) for apical or lateral meristems.
 𝐿𝑒𝑎𝑓(𝑡, 𝑙𝑎𝑏𝑒𝑙_𝐿) for leaves of different sizes.
 𝐼𝑛𝑡𝑒𝑟𝑛𝑜𝑑𝑒(𝑡, 𝑙𝑎𝑏𝑒𝑙_𝐼) for stem.
 𝐹𝑙𝑜𝑤𝑒𝑟(𝑡, 𝑙𝑎𝑏𝑒𝑙_𝐹) for flowers composed of a pedicel, petals, and carpels, with the carpel

subsequently developing into a fruit.
Each symbol was associated with a set of parameters that described the variables attached to the

respective organ. The definitions of organs in Figure 1(a) essentially represent recursive functions, and
thus, the generation and evolution of each organ involve iterative recursion with respect to the
corresponding symbol over time increments of dt (1 hour). During the generation of organs, each class
of organs X that needs to be identified is assigned a unique ‘label_X’.

Figure 1. The generation process of virtual Arabidopsis. (a) represents the definitions of
major plant organs, (b) illustrates the process of Meristem developing into different organs,
and (c) shows the morphologies of different organs during the development process.

To ensure the reality of virtual plants, just like real plant development, all organs originated from
the Meristem. The morphologies of organs during growth and development are shown in Figure 1(c).
Therefore, the generation process of Arabidopsis could be described simply as the development of

4673

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4669–4697.

different organs from Meristem under different growth states, as shown in Figure 1(b). The
development of plant organs in the figure depends on the value of ‘state’, which is provided by
𝑎𝑑𝑑𝐿𝑎𝑡𝑃𝑟𝑜𝑑(𝑡). In order to explain the process of organ development in more detail, we presented
the pseudocode (Algorithm 1) for this process. The pseudocode contains a lot of descriptive language
for ease of understanding.

Algorithm 1: The process of Meristem developing into different organs.

 Input: Growth time t

Output: 𝐼𝑛𝑡𝑒𝑟𝑛𝑜𝑑𝑒(𝑡) ,leaf , flower and 𝑀𝑒𝑟𝑖𝑠𝑡𝑒𝑚(𝑡)

1 if 𝑙𝑎𝑡𝑝𝑟𝑜𝑑 == False:

2 //a plastochrone time is not reached so a lateral production(latprod) is not produced

3 𝑀𝑒𝑟𝑖𝑠𝑡𝑒𝑚(𝑡): continue iteration

4 else:

5 //a plastochrone is reached and a lateral production must be added

6 𝑎𝑑𝑑𝐿𝑎𝑡𝑃𝑟𝑜𝑑(𝑡):

7 Physiological state [s, d]:

8 s = 0: Vegetative state

9 s = 1: Between Vegetative and In flowering state

10 s = 2: In flowering state

11 s = 3: Flower state

12 d = Plastochrones in this state (duration)

13 if a lateral primordium is produced:

14 Update of state counters d for the current meristem

15 //Check physiological age

16 if duration limit is reached:

17 move to the next state s

18 produce:

19 𝐼𝑛𝑡𝑒𝑟𝑛𝑜𝑑𝑒(𝑡)

20 A 𝑀𝑒𝑟𝑖𝑠𝑡𝑒𝑚 in state [s, d]:

21 if d < d_s (duration threshold in state s):

22 produce a lateral meristem in state [s + 1, 0]

23 produce an apical meristem in state [s, d + 1]

24 if d = d_s:

25 produce a lateral meristem in state [s + 2, 0]

26 produce an apical meristem in state [s + 1, 0]

27 In addition: produce leaf in state 0 and 1

28 Finally: the meristem transforms into a flower in state 3

29 𝑀𝑒𝑟𝑖𝑠𝑡𝑒𝑚(𝑡): keep an apical growth

Figure 2(d),(e) [55] depict the comparison between the generated Arabidopsis structure and the
real Arabidopsis. In order to ensure the randomness of plant growth while preserving the structure
imitating real plants, we employed a significant amount of random computation. Typically, we
achieved this by assigning two values to a variable, one as the mean and the other as the standard
deviation, and during the runtime, we randomly generated values by substituting these two values into

4674

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4669–4697.

a Gaussian distribution. For instance, the growth duration (in hours) was determined by providing us
with the mean days (Mean_day) and standard deviation (StDev_day), and the final duration in days
was obtained by the Gaussian distribution function, which was then multiplied by 24. The leaf
morphology was determined by a randomly computed ratio between the leaf blade and the petiole.
These methods ensure that variables can fluctuate within certain constraints, thus maintaining both
developmental diversity and the stability of the plant.

Figure 2. Virtual Arabidopsis at different time points. The average growth periods for (a),
(b), (c) and (d) are 10, 20, 30 and 40 days, respectively. (e) represents real Arabidopsis
with a growth period of 59 days [55].

The Arabidopsis we generated using the above algorithm is shown in Figure 3(a). The generated
Arabidopsis consists of a large number of triangles meshes of different sizes, as shown in Figure 3(b).
The simplest method to convert the mesh model into a point cloud was to directly use the intersection
points in the mesh as sampling points, but this results in significant shape errors in the point cloud.
Alternatively, we sampled one point from each triangle repeatedly until the specified number of points
was obtained. However, because there were more small triangles than large triangles, the point cloud
had highly uneven point density. Moreover, the method was inefficient since the time complexity of
randomly selecting triangles each time was 𝑂(ே), where 𝑁 was the number of triangles. To address
these issues, we introduced the surface-weighted sampling method, where triangles were selected
based on their weight, and points on their surfaces were randomly sampled.

First, we utilized the 𝐴𝑙𝑖𝑎𝑠 𝑀𝑒𝑡ℎ𝑜𝑑 [56], a non-uniform random sampling algorithm that trades
space for time. The triangle area as the weight to sample one triangle at a time. The sampling process
was mainly as follows: For a grid with 𝑁 triangles, 𝐴𝑙𝑖𝑎𝑠 𝑀𝑒𝑡ℎ𝑜𝑑 compressed the entire probability
distribution into a 1 × 𝑁 rectangle, where each event 𝑖 (corresponding to different-sized triangles)
was transformed into the area it occupies within the rectangle. The area occupied by each event in the
rectangle can be expressed as follows:

𝑆௜ =
௣೔×ே

∑ ௣ೖ
ೖషಿ
ೖసభ

. (1)

4675

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4669–4697.

The area occupied by event 𝑖 in the rectangle may have cases where 𝑆௜ > 1 or 𝑆௜ < 1 . We
supplemented the excess area of events with 𝑆௜ > 1 to the corresponding event with 𝑆௜ < 1, forming
small rectangles with 𝑆௜ = 1. Additionally, we ensured that each small rectangle stores a maximum of
two events. Lists 𝑃𝑟𝑜𝑏 and 𝐴𝑙𝑖𝑎𝑠 were constructed, where 𝑃𝑟𝑜𝑏[𝑖] represented the area proportion
of event 𝑖 in the 𝑖-th small rectangle, representing the probability of event 𝑖. 𝐴𝑙𝑖𝑎𝑠[𝑖] indicated the
index of another event in the same small rectangle. This preprocessing step generated a list with a time
complexity of 𝑂(ே) and a space complexity of 𝑂(ே) . When selecting a triangle, we generated a
random number 𝑖 ∈ [0, 𝑁) and then generated another random number 𝑟~𝑈𝑛𝑖𝑓(0,1) . If 𝑟 <

𝑃𝑟𝑜𝑏[𝑖], it meant event 𝑖 was accepted; otherwise, event 𝑖 was rejected and 𝐴𝑙𝑖𝑎𝑠[𝑖] was returned.
The time complexity here was only 𝑂(ଵ). In summary, for a mesh of N triangles, 𝐴𝑙𝑖𝑎𝑠 𝑀𝑒𝑡ℎ𝑜𝑑 could
pre-generate a list with a time complexity of 𝑂(ே) and a space complexity of 𝑂(ே), and then randomly
selected triangles in constant time (𝑂(ଵ)).

Figure 3. Virtual Arabidopsis models transforms into point cloud models. (a) is Arabidopsis
original model, (b) is triangle mesh model, (c) is fully annotated point cloud model.

Then, we performed point sampling inside the selected triangle. For each selected △ 𝐴𝐵𝐶, we
generated two random numbers 𝑢 and 𝑣 on (0,1) and obtained the surface sampling point 𝑃(௫,௬)
using Eq (2).

ቊ
𝑥 = ൫1 − √𝑣൯𝑥௔ + √𝑣(1 − 𝑢)𝑥௕ + √𝑣𝑢𝑥௖

𝑦 = ൫1 − √𝑣൯𝑦௔ + √𝑣(1 − 𝑢)𝑦௕ + √𝑣𝑢𝑦௖

 𝑢, v ∈ (0,1). (2)

𝑥௔, 𝑥௕ , 𝑥௖ and 𝑦௔, 𝑦௕ , 𝑦௖ represent the 𝑥 and 𝑦 coordinates of vertices 𝐴, 𝐵, 𝐶 , respectively. √𝑣
represents the percentage from vertex A to the opposite edge 𝐵𝐶, while 𝑢 represents the percentage
along the edge 𝐵𝐶 (see Figure 4).

In summary, we decomposed the original model’s surface into numerous triangles of varying sizes.
Next, we employed the surface-weighted sampling method to repeatedly select triangles and sample
random points within each selected triangle, resulting in the final point cloud. The resulting point cloud
is depicted in Figure 5(c), where points of different colors correspond to different labels.

4676

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4669–4697.

Figure 4. Sampling a random point in a triangle.

2.2. Point cloud sampling

Since neural networks have a small and fixed number of points fed during training, after obtaining
the virtual Arabidopsis point cloud, downsampling is required to reduce the number of points to a fixed
value. In point cloud downsampling, it is necessary to rapidly and significantly reduce the number of
points while preserving the geometric shape and structural information of the plant as much as possible.
In order to rapidly reduce the large and dense point cloud to a specified size, Voxel Centroid Sampling
and Random Sampling methods are commonly used. Voxel Centroid Sampling first partitions the point
cloud into voxels, and each voxel is sampled with only one centroid point [57]. Therefore, it can
preserve the geometric information of the point cloud and reduce the existence of redundant data, but
the number of points after sampling is uncertain. Random Sampling randomly samples points with the
same probability, ensuring a more uniform distribution of points in the point cloud, and the number of
sampled points can be specified [58]. However, during the sampling process, geometric information
may be overlooked, which may lead to distortion in the sampling results.

In order to preserve the geometric information of point clouds while controlling the number of
points after sampling, we combined these two sampling methods in the downsampling process, as
shown in Figure 5. We define the point cloud as 𝒫 = {𝑝௜|𝑖 = 1, … , 𝑛}, where 𝑝௜ = (𝑥௜, 𝑦௜, 𝑧௜).

For each point, we used K-Dimensional Tree to find its nearest neighbors and calculate the
Euclidean distance between 𝑝௜ and its nearest neighbor 𝑝௜

ᇱ. Then, we average the distances of all
points to obtain the average point spacing of the entire point cloud.

𝑠𝑝𝑎𝑐𝑒௠௘௔௡ =
ଵ

௡
∑ ඥ(𝑥௜ − 𝑥௜

ᇱ)ଶ + (𝑦௜ − 𝑦௜
ᇱ)ଶ + (𝑧௜ − 𝑧௜

ᇱ)ଶ௡
௜ୀଵ . (3)

Next, we computed the size of the voxels in the point cloud. The 𝑠𝑖𝑧𝑒 =
௦௣௔௖௘೘೐ೌ೙

√௥
೏ , where 𝑑 is the

dimension of the point cloud, and 𝑟 is a scaling factor usually ranging from 0.5 to 0.8. The point cloud
was divided into voxels of the selected size, and the centroid of each voxel was calculated as

𝑝௖௘௡௧ ቀ
ଵ

௡
∑ 𝑥௜

௡
௜ୀଵ ,  

ଵ

௡
∑ 𝑦௜

௡
௜ୀଵ ,  

ଵ

௡
∑ 𝑧௜

௡
௜ୀଵ ቁ. The centroids of all voxels were output as the new point cloud

in Figure 5(b). Finally, the new point cloud was sampled randomly to output the specified number of
points in Figure 5(c). To meet the limitations on the input point cloud size for point-based point cloud
segmentation networks, the number of points in the final downsampled point cloud was set to 8192.

4677

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4669–4697.

Figure 5. The downsampling process. Voxel Centroid Sampling was performed on the
original point cloud (a) to obtain the voxelized point cloud (b). After sampling a fixed
number of points through Random Sampling, the sampling point cloud (c) is finally obtained.

2.3. Network architecture

We improved the state-of-the-art method Stratified Transformer in the field of point cloud
semantic segmentation and proposed the Plant Stratified Transformer for semantic segmentation of
plant point clouds. We designed the Fast Downsample Layer, utilizing point sampling from PSNet [59]
and feature normalization from Pre-LN [60] to accelerate the downsampling process.

2.3.1. Stratified transformer

Stratified Transformer [52] is a novel point-based 3D point cloud segmentation network that
effectively captures long-range contextual information and exhibits strong generalization capability
and high performance. To accelerate convergence speed and enhance performance, Stratified
Transformer utilizes First-layer Point Embedding to aggregate local information. The greatest
advantage of this network lies in its novel key sampling strategy, the Stratified Key-sampling Strategy.
For each query point, it densely samples nearby points and sparsely samples distant points in a
stratified manner as its keys, enabling the model to expand the effective receptive field and acquire
long-range context at a lower computational cost.

The Stratified Transformer mainly consists of the First-layer Point Embedding, Transformer
Block, Downsample Layers, and Upsample Layers. The Downsample Layer first performs FPS
(Farthest Point Sampling) to obtain the sampled points and then uses kNN (k-Nearest Neighbors) to
query the original points for grouping indices. However, the computational cost of FPS significantly
increases with the number of points [61]. The sampling results of FPS are influenced by the initial
point selection during the sampling process and the order of points in the point cloud. In addition, FPS
only considers the Euclidean distance between points and does not take into account the local features

4678

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4669–4697.

or global structure of the point cloud. kNN requires computing the Euclidean distance between each
sampled point and all other points, but it has a high time and space complexity [62].

2.3.2. Fast downsample layer

We proposed the Fast Downsample Layer as a replacement for the original Downsample Layer.
PSNet replaced FPS and kNN in Downsample Layer to perform sampling and grouping tasks, reducing
computation and improving speed. Additionally, Pre-LN normalized features, and Max Pooling
aggregated the projected features through grouped indexing. The entire structure of the downsampling
layer is illustrated in Figure 6, where the input consists of points and features, and the output consists
of sampled points and features.

Figure 6. The structure of the downsampling layer. (a) represents the processing flow of
points and point features in the downsampling. 𝑛௜ , 𝑛௜ାଵ indicate the number of points,
𝑑ଵ, 𝑑ଶ, 𝑘 denote the dimensions. (b) is a schematic diagram of the points data structure in
each step of PSNet. In the (b) rightmost image, the gray areas in each column represent
points outside the grouping, the light-yellow areas represent points within the same group,
and the top dark yellow area indicates the sampled points.

PSNet performs simultaneous sampling and grouping, illustrated in Figure 6(a). In Figure 6(b),
𝒫 is the input point cloud with 𝑛 points, represented as 𝒫 = {𝑝ଵ, 𝑝ଶ, … , 𝑝௡} . Each point 𝑝௜ has
spatial coordinates 𝑐௜ = (𝑥௜, 𝑦௜, 𝑧௜, 𝜃௜ , 𝜑௜) , where 𝑐௜ ∈ ℝௗ . 𝜃௜ and 𝜑௜ are the polar and azimuthal
angles, respectively, of each point in spherical coordinates. Their values can be calculated using the
following formulas:

ቐ
𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 ൬

ඥ௫మା௬మ

௭
൰

𝜑 = 𝑎𝑟𝑐𝑡𝑎𝑛 ቀ
௬

௫
ቁ

. (4)

4679

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4669–4697.

The point cloud 𝒫 is divided into multiple sub-point clouds, which can be represented as 𝒜 =

{𝑎ଵ, 𝑎ଶ, … , 𝑎௠}, 𝑚 is the number of local regions, and it is also the number of sampled points.
First, the point cloud 𝒫 is processed using the Multilayer Perceptron (MLP) network with

multiple layers of 1 × 1 convolutions to achieve the Spatial Features Transform Function (SFTF). For
the spatial feature 𝑐௜ of point 𝑝௜, the SFTF function can be expressed as: 𝑣௜ = 𝑡𝑟𝑎𝑛𝑓𝑜𝑟𝑚(𝑐௜), where
the function 𝑡𝑟𝑎𝑛𝑓𝑜𝑟𝑚(𝑥) transforms the 𝑑 dimensional feature of each point into a higher-
dimensional 𝑚 feature, i.e., ℝௗ → ℝ௠. The output 𝑣௜ ∈ ℝ௠ of the transform function is a vector
representing the correlation between point 𝑝௜ and each of the 𝑚 local regions. Extending the SFTF
to the entire point cloud P, with the input as the features of n points 𝒞 = {𝑐ଵ, 𝑐ଶ, … , 𝑐௡} , the
corresponding 𝒱 is obtained:

𝒱 =  𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝒞), (5)

where the input 𝒞 ∈ ℝ௡×ௗ and the output 𝒱 ∈ ℝ௡×௠ (the two-dimensional matrix with 𝑛 rows).
Next, we use the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function 𝑞௜ = 𝜎(𝑣௜) to obtain the probability vector 𝑞௜ based on

the correlation vector 𝑣௜. The probability vector 𝑞௜ represents the probability that point 𝑝௜ belongs
to one of the 𝑚 local regions 𝑎௝(𝑗 = 1,2, … , 𝑚), where 𝑞௜ ∈ (0,1). When extended to the entire
point cloud, the sigmoid function can be expressed as:

𝒬 = σ(𝒱), (6)

where 𝒬 ∈ ℝ௡×௠ is the probability matrix that represents the membership probabilities between each
point in the point cloud 𝒫 and each local region in the set of local regions 𝒜. The columns of 𝒬
represent the probabilities of each point belonging to the corresponding local region, which can be
denoted as 𝑒௝ ∈ ℝ௡. Each value in 𝑒௝ represents the probability of point 𝑝௜ belonging to the local
region 𝑎௝.

The column 𝑒௝ in 𝒬 is sorted in descending order, and the indices of the top s probability values
are selected. Here, the top s elements refer to the first s elements after sorting in descending order. The
size of the point cloud for local region 𝑎௝ is denoted as 𝑠. This process can be expressed as:

𝑖𝑛𝑑𝑖𝑐𝑒𝑠௝ = 𝑎𝑟𝑔𝑡𝑜𝑝௦ ቀ𝑑𝑒𝑠𝑐൫𝑒௝൯ቁ . (7)

Here, 𝑑𝑒𝑠𝑐(𝑥) is a function that sorts the elements of 𝑒௝ in descending order, and 𝑎𝑟𝑔𝑡𝑜𝑝௦ is a
function that returns the indices of the top 𝑠 elements after sorting. 𝑖𝑛𝑑𝑖𝑐𝑒𝑠௝ ∈ ℝ௦.

Finally, the grouping and sampling of the point cloud 𝒫 are completed as shown in the far right
of Figure 6(b). The 𝑖𝑛𝑑𝑖𝑐𝑒𝑠௝ are used to obtain the grouping indices for each sampled point, forming
a grouping index matrix of size (𝑛௜ାଵ, 𝑘) . Moreover, for each local region, the point 𝑝௜ with the
highest probability is selected as the downsampled point. This point is the one in the local region 𝑎௝

that best matches the features of both the point and the local region. Here, 𝑙 = 𝑎𝑟𝑔𝑡𝑜𝑝ଵ ቀ𝑑𝑒𝑠𝑐൫𝑒௝൯ቁ

represents the index of the top-ranked point. Therefore, the set of downsampled points can be
expressed as:

𝑑𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒 = ቄ 𝑝௟ ∣
∣ 𝑙 = 𝑎𝑟𝑔𝑡𝑜𝑝ଵ ቀ𝑑𝑒𝑠𝑐൫𝑒௝൯ቁ ቅ 𝑤ℎ𝑒𝑟𝑒 𝑗 = 1,2, … , 𝑚. (8)

The final output is the set of sampled points 𝒫௜ାଵ(𝑛௜ାଵ, 𝑑ଶ), 𝒫௜ାଵ ⊂ 𝒫௜.
Pre-LN consists of Layer Normalization [63] and a Linear layer, which helps reduce internal

4680

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4669–4697.

covariate shift and improve the stability of the model during training. As shown in the upper part of
Figure 6(a), we input the features ℱ௜(𝑛௜, 𝑑ଵ) into Layer Normalization to normalize and stabilize the
distribution of data features for each sample point. Layer Normalization calculates the mean 𝜇 and
standard deviation 𝜎 for all feature dimensions at each sample point.

𝜇 =
ଵ

௡೔
∑ 𝑓௝

௡೔
௝ୀଵ ; 𝜎 = ට

ଵ

௡೔
∑ ൫𝑓௝ − 𝜇௜൯

ଶ௡೔
௝ୀଵ

. (9)

Here, 𝑓௝ represents the feature of each point, and 𝑓௝ ∈ ℱ௜. Then, through the Linear layer, the
output dimensions remain unchanged at (𝑛௜, 𝑑ଵ). To aggregate the projected features from the Pre-LN
output while preserving feature invariance, we use the Max Pooling layer with grouping indices
(𝑛௜ାଵ, 𝑘) generated by the grouping operation of PSNet. This aggregates the projected features and
generates the output features ℱ௜ାଵ(𝑛௜ାଵ, 𝑑ଵ), where ℱ௜ାଵ ⊂ ℱ௜.

2.3.3. The modified network

The network architecture utilizes the Stratified Transformer as the backbone and incorporates the
Fast Downsample Layer to create the Plant Stratified Transformer for semantic segmentation of small-
scale complex plant structures in point clouds. The overall network architecture is illustrated in Figure 7.

Figure 7. The overall structure of the Plant Stratified Transformer.

The network architecture resembles U-Net [64] and is divided into symmetric contracting and
expanding paths. The left side of Figure 7 represents the contracting path, which is used to capture
contextual information and perform hierarchical feature extraction, but it may lose some spatial
information. At the beginning of the contracting path, the first-layer point embedding module
aggregates the features of local neighbors for each point. Each subsequent module consists of a
downsampling layer and several Transformer modules that capture local and long-range dependencies
in the point cloud. The right side of Figure 7 represents the expanding path, which is used to upsample
the features extracted from the contracting path and achieve precise localization of the segmented parts
in the point cloud. The expanding path comprises multiple Upsample Layers, which densify features
layer by layer. However, upsampling alone cannot recover spatial information. Hence, skip
connections are employed to output shallow features from each stage of the contracting path to the

4681

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4669–4697.

corresponding upsampling layer in the expanding path. The network preserves more high-resolution
details from shallow feature maps by fusing shallow and deep features in the Upsample Layers, thereby
enhancing the accuracy of semantic segmentation.

The first-layer point embedding module in the network aggregates local features from adjacent
points in the point cloud to enhance the model's generalization and expressive capabilities. The
Transformer blocks employ Stratified Self-attention and Stratified Key-sampling Strategy [52] to
increase the effective receptive field and enable the effective aggregation of long-range contextual
information by query features.

2.4. Evaluation metrics

In order to verify the semantic segmentation performance of the Plant Stratified Transformer(our)
on plant point clouds, we used four metrics: Precision (Prec), Recall (Rec), F1, and Intersection over
Union (IoU) to compare the success rate of organ segmentation in plants. For all four semantic metrics
(expressed as percentages), a higher value indicates better performance. Specifically, Prec represents
the ratio of correctly classified points in a semantic class to all points predicted by the network. Rec
reflects the ratio of correctly classified points in this semantic class to the total number of points in this
class according to the true labels. F1 is a comprehensive metric calculated as the harmonic mean of
Prec and Rec. For each semantic class, IoU reflects the degree of overlap between the predicted region
of each semantic class and the corresponding true region. The four metrics are defined as follows:

𝑃𝑟𝑒𝑐௖ =
்௉೎

்௉೎ାிே೎
, (10)

𝑅𝑒𝑐௖ =
்௉೎

்௉೎ାி௉೎
, (11)

𝐹1௖ = 2 ⋅
௉௥௘ ೎×ோ௘௖೎

௉௥௘௖೎ାோ௘௖೎
, (12)

𝐼𝑜𝑈௖ =
்௉೎

்௉೎ାிே೎ାி௉೎
, (13)

where 𝑇𝑃௖ represents the true positive point count of the current semantic class, 𝐹𝑃௖ represents the
false positive point count of the current class, and 𝐹𝑁௖ represents the false negative point count. 𝑐
is the semantic label, 𝑐 ∈ {𝑙𝑒𝑎𝑓, 𝑠𝑡𝑒𝑚, 𝑓𝑙𝑜𝑤𝑒𝑟}.

3. Results

3.1. Data preparation and training environment

In this study, we used a generated virtual Arabidopsis dataset and a real Arabidopsis dataset with
semantic labels. The latter was a dataset we created from 10 real 3D Arabidopsis plants selected from
Ziamtsov et al. [65] dataset.

Virtual Arabidopsis dataset: We simulated Arabidopsis models with a developmental period of
approximately 6 weeks using the L-Py framework. The generated models were converted into fully
annotated point clouds using the surface-weighted sampling method. To simplify the labeling

4682

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4669–4697.

categories of the models, we unified the siliques and flowers of Arabidopsis as ‘flower’. The final
generated Arabidopsis models had semantic labels for ‘leaf’, ‘stem’, and ‘flower’. The downsampling
method described earlier was applied to reduce the number of points in the generated point cloud
models. Through these steps, a total of 930 Arabidopsis point cloud models with diverse morphologies
were generated. Figure 8(b) displays different morphological Arabidopsis point cloud models, each
containing 8192 points. The information of an individual point included coordinates and semantic
labels. The semantic labels ‘leaf’, ‘stem’, and ‘flower’ were represented by red, green, and blue points
in the point cloud, respectively, and were denoted as ‘0’, ‘1’ and ‘2’ in the point information, as shown
in Figure 8(a). Since we could directly generate point cloud models with significantly different
morphological structures, it reduced the possibility of overfitting and eliminates the need for traditional
data augmentation operations. We divided the dataset into a training set and a validation set in a ratio
of 4:1.

Figure 8. Fully annotated Arabidopsis point cloud model. (a) represents the information
representation of points in the point cloud. (b) shows Arabidopsis point clouds with
different structures.

Real Arabidopsis dataset: The dataset from Ziamtsov et al. [65] comprises high-resolution
measurement data of plant structures generated using 3D scanning techniques. We selected 47
Arabidopsis 3D scanning models from this dataset with distinct structural features, as shown in Figure 9(a).
Compared to our generated virtual Arabidopsis, these real Arabidopsis models exhibited more complex
morphological structures. The proportion of siliques and flowers was lower, while the rosette part had
a higher proportion.

We used CloudCompare to convert these models into point clouds and performed semantic
annotation on leaves, stems, and flowers. For data augmentation, random rotations, cropping, and stitching
operations were applied to point clouds to enhance the diversity among the data. Subsequently, we
downsampled the point cloud to 8192 points using the method in Section 2.2, as shown in Figure 9(b). To
ensure the separation of training and test dataset, 27 point clouds were randomly selected from the 47

4683

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4669–4697.

real point clouds and augmented five times, resulting in 135 point clouds for the training set. The
remaining 20 real point clouds were used as the test set.

Figure 9. 3D scanning models and point clouds of real Arabidopsis.

Due to the scarcity of real Arabidopsis, overfitting was likely to occur during network training,
leading to an inability to achieve the expected performance. We merged the training sets of virtual and
real Arabidopsis to create a mixed training set, comprising 744 virtual point clouds and 135 real point
clouds. The validation set consists of the validation set of virtual Arabidopsis, comprising 186 virtual
point clouds. The test set consists of the test set of real Arabidopsis, comprising 20 real point clouds.

Properly setting the learning rate is crucial during the network training phase. A high learning rate
could lead to gradient explosions, causing significant oscillation in the loss and hindering model
convergence. Conversely, A low learning rate slows down the model’s learning speed and increases
training time. For improved network convergence, we applied a learning rate decay with a fixed step
size of 0.5 every 20 epochs, starting from an initial learning rate of 0.001. We trained the network with
a batch size of 8 for a total of 250 epochs in the training environment specified in Table 1. For testing,
we conducted training and evaluation on the Arabidopsis dataset using PointNet++ [38], PAConv [66]
and the Stratified Transformer with identical parameters and environment, and then compared their
performance with our improved network.

Table 1. Training environment.

Name Parameter
CPU Intel(R) Core(TM) i7-7700 CPU
GPU GeForce GTX 1070
Memory 16 GB
Operating system Ubuntu 20.04
Deep learning framework Pytorch 1.8.0
Programming language Python 3.9

3.2. Validation on virtual data

In this section, we individually trained four different networks on the mixed training set and
validated them using the virtual Arabidopsis validation set. We compared the segmentation

4684

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4669–4697.

performance of our network with the other three networks. Table 2 presents the segmentation results
of the improved network, Plant Stratified Transformer (ours), and three other segmentation methods
for comparison. The table displayed the values of various metrics for the epoch with the highest IoU
after network convergence. The values related to ‘stem’ are significantly lower compared to ‘leaf’ and
‘flower’ in the table. This is due to the stem category having fewer points in each Arabidopsis point
cloud compared to the other two categories, leading to potential confusion during network training.
Furthermore, our network achieve performance similar to the original network in mean precision, mean
recall, mean F1-score, and mean IoU, with values of 88.12, 91.44, 89.64 and 85.56%. The differences
between the two networks in these metrics are only 0.28, 0.22, 0.08 and 0.09%, indicating that the
inclusion of the Fast Downsample Layer do not affect the performance of the network in semantic
segmentation. Both networks outperform PointNet++ and PAConv, as the Transformer module
effectively capture long-range contextual information, resulting in a larger receptive field and
improved generalization ability for the model. In contrast, PointNet++ and PAConv rely on local
feature aggregation and do not directly establish long-range dependencies, making it difficult to
capture long-range contextual information. Consequently, due to the lower number of points in the
stem category, PointNet++ and PAConv exhibit poorer performance in the metrics related to the stem
category compared to the other two networks, whereas their performance differences in the other
categories are less significant. PAConv, which is an improvement over the original backbone network
PointNet, performs slightly better than PointNet++ but do not fully utilize global information. From the
table, it could be seen that PointNet++ performs the worst, especially in the stem category, indicating
that this network is not suitable for handling sparse plant point clouds with complex structures.

Table 2. The comparison of semantic segmentation across the four networks on the
validation set. The best results are in boldface.

 PointNet++ PAConv Stratified

Transformer

Plant Stratified

Transformer (ours)

Prec (%) Leaf 95.78 95.39 98.57 98.49

Stem 69.48 73.18 77.59 78.18

Flower 91.26 94.23 96.32 96.79

Mean 85.51 87.60 90.83 91.15

Rec (%) Leaf 94.67 95.48 97.83 97.93

Stem 72.35 75.83 80.41 80.37

Flower 92.94 95.21 98.15 98.61

Mean 86.65 88.84 92.13 92.30

F1 (%) Leaf 95.22 95.43 98.20 98.21

Stem 70.89 74.48 78.97 79.26

Flower 92.09 94.72 97.23 97.69

Mean 83.05 84.96 88.59 91.72

IoU (%) Leaf 90.88 91.27 96.46 96.48

Stem 54.90 59.34 65.25 65.65

Flower 85.34 89.97 94.60 95.49

Mean 77.04 80.19 85.44 85.87

4685

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4669–4697.

Figure 10. The qualitative segmentation comparison of the four networks on the validation set.

The visualization results of semantic segmentation for the four networks are shown in Figure 10.
The leftmost images represent the ground truth, and the images on the right display the test results of
different networks. We select four Arabidopsis point clouds with significant morphological differences
to demonstrate the visualization results of semantic segmentation. From Figure 10, it is visually evident
that the number of points belonging to the stem is significantly fewer than those belonging to the leaf
and flower. The segmentation performance is clearly the worst at the boundaries between different
organ structures, leading to confusion, especially at the boundaries between the stem and the other two
structures. The figure also shows that the segmentation of the leaf was superior to that of the stem and
flower. This is because the leaf had fewer intersections with the stem and flower, it has a clear structure,
and there are also more points.

3.3. Segmentation of real data

We tested the networks trained on the mixed dataset on the real Arabidopsis testing set, and the

4686

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4669–4697.

segmentation results are shown in Table 3, compared with the other three networks. Clearly, the
segmentation performance of all networks significantly decreases. PointNet++, PAConv and Stratified
Transformer had mean IoU of 57.93, 61.02 and 69.86%, respectively, which were decreased by 19.11, 19.17
and 15.58% compared to the segmentation results on virtual Arabidopsis. The segmentation
performance of PointNet++ and PAConv was notably poor, failing to meet the requirements for
semantic segmentation, possibly due to limitations in their generalization abilities. The improved
network achieved mean Prec, Rec, F1-score and IoU of 80.42, 82.18, 81.29 and 70.04%, respectively,
which decreased by 10.73, 10.12, 10.43 and 15.83% compared to the segmentation results on virtual
Arabidopsis. Both the Stratified Transformer and our network’s mean IoU could maintain around 70%,
meeting the requirements for semantic segmentation and showcasing good generalization capability.
Furthermore, Table 3 shows that the primary reason for the decrease in Mean IoU is a significant drop
in the metrics related to the ‘Flower’ category. This is due to the scarcity of the ‘flower’ label in the
tested real Arabidopsis compared to the virtual Arabidopsis.

Table 3. The comparison of semantic segmentation across the four networks on the test
set. The best results are in boldface.

 PointNet++ PAConv Stratified

Transformer

Plant Stratified

Transformer (ours)

Prec (%) Leaf 92.54 94.42 97.51 97.93

Stem 72.58 75.34 80.21 79.85

Flower 65.35 69.10 75.12 74.81

Mean 76.82 79.62 84.28 84.20

Rec (%) Leaf 89.25 93.25 95.82 96.14

Stem 66.89 66.48 80.22 79.68

Flower 60.57 67.31 72.93 73.28

Mean 72.24 75.68 82.99 83.03

F1 (%) Leaf 90.87 93.83 96.66 97.03

Stem 69.62 70.63 80.21 79.76

Flower 62.87 68.19 74.01 74.04

Mean 74.45 77.55 83.63 83.61

IoU (%) Leaf 83.26 88.38 93.53 94.23

Stem 53.40 54.60 66.97 66.34

Flower 45.85 51.74 58.74 58.78

Mean 60.83 64.91 73.08 73.11

Figure 11 presents a qualitative comparison of the performance of four networks on the real
Arabidopsis testing set. It can be visually observed that the segmentation is poorest at boundaries
between different organs. Compared to virtual Arabidopsis, the testing performance on real
Arabidopsis is relatively poor due to morphological differences between the real and virtual
Arabidopsis used in the experiments. This difference primarily lies in the virtual Arabidopsis having
far more flowers and siliques than the real Arabidopsis, with significantly fewer points on the rosette’s
leaf compared to the real Arabidopsis. Similarly, there are more points on the rosette’s leaf of the real
Arabidopsis. This results in a smaller proportion of non-rosette points in the real Arabidopsis under the
condition of the same point cloud size. Consequently, fewer non-rosette point features are captured by

4687

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4669–4697.

the network compared to virtual Arabidopsis, leading to a further decline in segmentation performance.

Figure 11. The qualitative comparison of segmentation on the test set by the four networks.

3.4. Time-consuming analysis

To assess the efficiency of our improved network on our dataset, we recorded the Training time
and Inference time for each network during the experiments. Training time referred to the time taken
during the training phase, from extracting a batch of data from the training set to feeding it into the
neural network and obtaining the output results of the model during each iteration. Inference time was
the time taken for forward propagation, which was the duration it takes for the model to process new
input data and produce output predictions during the testing phase. From Table 4, it can be observed
that, using the FPS and kNN sampling and grouping method, both the Training time and Inference
time for Stratified Transformer are longer compared to PointNet++ and PAConv. This was because the
Transformer block required processing a large number of point-wise self-attention weights.

4688

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4669–4697.

Table 4. The mean training time (ms) and inference time (ms) for each method. The best
results are in boldface.

Methods Training time Inference time
PointNet++ 792.7 761.5
PAConv 678.8 652.3
Stratified Tranformer 1035.2 869.7
Plant Stratified Tranformer(our) 714.3 597.9

The training time and inference time of our improved network were 714 and 597.9 ms, respectively,
which were reduced by 320.9 and 271.8 ms compared to the original network. PAConv had the shortest
training time, 678.8 ms, which was 35.5 ms less than our network. However, our network’s inference
time was 54.4 ms less than PAConv, and our inference time was the optimal among the compared
networks. All of these demonstrated that, compared to the original network, the Fast Downsample
Layer replacing the original downsampling layer had shortened the time required for point cloud
sampling and grouping.

4. Discussion

4.1. Ablation study

In this section, we designed several independent ablation experiments to verify the effectiveness of
the Fast Downsample Layer proposed in the Plant Stratified Transformer. This includes assessing the
effectiveness of sampling and grouping in PSNet, as well as the functionality of the Pre-LN module. For
the sake of comparison and demonstration, we used traditional sampling and grouping methods, FPS and
KNN, as benchmarks, and named the sampling and grouping parts of PSNet as S1 and G1, FPS as S2,
and kNN as G2. Since G1 needs to work in conjunction with S1, it cannot exist independently of S1.
Ablation experiments for semantic segmentation are presented in Table 5, and ablation experiments for
mean training and inference time in semantic segmentation are shown in Table 6.

In Tables 5 and 6, the “Ver” column provides the names of the ablated network versions. We
compared eight version networks named “V1” to “V5” with the complete network (“V0”). Each
version was created by removing or replacing existing modules from the original Plant Stratified
Transformer. In the comparison of different sampling and grouping methods, we found that sampling
and grouping methods can slightly improve the effectiveness of the network model. Removing or
adding the Pre-LN module also had an impact on the network’s performance, possibly because
normalized features are more conducive to the stability of the model during training, to some extent
improving the model’s effectiveness. This may be because the Fast Downsample Layer can provide
more suitable local grouping compared to the original model.

In Table 6, we compared the impact of different modules on the training and inference time. Pre-
LN somewhat accelerated the network’s speed because normalization can expedite network
convergence. Most importantly, our sampling and grouping methods are significantly faster than the
combination of FPS and kNN. This is because the time complexity of FPS + kNN is much greater than
that of PSNet. The time complexity of FPS is O(n2) [61]. The time complexity of kNN includes O(nm)
for distance calculation and O(nlog2n) for heap sorting. Therefore, the time complexity of FPS+kNN
is O(n2 + nm + nlog2n). In contrast, the time complexity of PSNet is O(nm + nlog2n), which includes

4689

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4669–4697.

SFTF and heap sorting. (n represents the number of sampled points, and m represents the number
of groups).

Table 5. The ablation analysis of our network on the validation set. The best results are in boldface.

 Ver Sampling Grouping Pre-LN Leaf Stem Flower Mean
Prec
(%)

V0 S1 G1 √ 98.49 78.18 96.79 91.15
V1 S1 G1 98.03 77.80 96.23 90.69
V2 S1 G2 √ 98.35 77.93 96.64 90.97
V3 S1 G2 98.12 77.67 96.19 90.66
V4 S2 G2 √ 98.57 77.59 96.32 90.83
V5 S2 G2 97.93 77.14 96.12 90.40

Rec
(%)

V0 S1 G1 √ 97.93 80.37 98.61 92.30
V1 S1 G1 97.34 79.87 98.13 91.78
V2 S1 G2 √ 97.91 80.29 98.28 92.16
V3 S1 G2 97.30 80.03 98.06 91.80
V4 S2 G2 √ 97.83 80.41 98.15 92.13
V5 S2 G2 97.42 79.81 98.01 91.75

F1 (%)

V0 S1 G1 √ 98.21 79.26 97.69 91.72
V1 S1 G1 97.68 78.82 97.17 91.23
V2 S1 G2 √ 98.13 79.09 97.45 91.56
V3 S1 G2 97.71 78.83 97.12 91.22
V4 S2 G2 √ 98.20 78.97 97.23 91.47
V5 S2 G2 97.67 78.45 97.06 91.06

IoU
(%)

V0 S1 G1 √ 96.48 65.65 95.49 85.87
V1 S1 G1 95.47 65.05 94.50 85.01
V2 S1 G2 √ 96.33 65.42 95.03 85.59
V3 S1 G2 95.52 65.06 94.39 84.99
V4 S2 G2 √ 96.46 65.25 94.60 85.44
V5 S2 G2 95.45 64.54 94.28 84.76

Table 6. The ablation analysis of our network on the training time (ms) and inference
time (ms). The best results are in boldface.

Ver Sampling Grouping Pre-LN Training time Inference time
V0 S1 G1 √ 721.4 613.9
V1 S1 G1

735.9 624.5

V2 S1 G2 √ 754.8 643.5
V3 S1 G2

773.5 659.4

V4 S2 G2 √ 1041.5 873.2
V5 S2 G2

1059.8 894.3

4.2. The effect of virtual data on network training

To study the impact of the ratio of virtual to real data on network training and validate whether

4690

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4669–4697.

the inclusion of virtual plants in the mixed dataset enhances accuracy, we divided the training set into
V, R1, R2 and R3, as shown in Table 7. R1, R2 and R3 were obtained by augmenting data from 9, 18
and 27 real plants, respectively, five times. These four parts were combined to form 7 training sets,
each trained separately. The seven sets of data included virtual data (V), real data (R1, R2, R3), and
mixed data (V + R1, V + R2, V + R3). The test set remained as 20 real point clouds. The four networks
were trained separately seven times, and the variations in testing results were compared when using
different combinations of training sets.

Table 7. Partitioning of training data.

V R1 R2 R3
Data Virtual Real Real Real
Training 744 9:45 18:90 27:135

Figure 12. The variation in test results of the four networks on different combinations of
training sets.

Figure 12 presents the test results of models trained by various networks on different
combinations of training sets. PointNet++ shows the smallest increase in various metrics as the
combinations change. In contrast, Stratified Transformer and our model exhibit the largest increases.
This indicates that the latter two can learn more features similar to both virtual and real data. Training
exclusively with virtual data (V) yields unsatisfactory results, especially as PointNet++ fails to achieve
even a 45% mIoU. Training exclusively with different quantities of real data (R1, R2 and R3) shows
improved performance with an increase in the amount of real data. The metrics between R1 and R2
clearly show a higher improvement compared to that between R2 and R3. This suggests that the

V R1 R2 R3 V+R1 V+R2 V+R3
40

45

50

55

60

65

70

75

80

85

90

V R1 R2 R3 V+R1 V+R2 V+R3
40

45

50

55

60

65

70

75

80

85

90

V R1 R2 R3 V+R1 V+R2 V+R3
40

45

50

55

60

65

70

75

80

85

90

V R1 R2 R3 V+R1 V+R2 V+R3
40

45

50

55

60

65

70

75

80

85

90
PointNet++

 mPrec
 mRec
 mF1
 mIoU

PAConv

 mPrec
 mRec
 mF1
 mIoU

Stratified Transformer

 mPrec
 mRec
 mF1
 mIoU

Our model

 mPrec
 mRec
 mF1
 mIoU

4691

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4669–4697.

improvement in network training effectiveness diminishes with the increase in real data. In the case of
the combination of R1, R2, R3 and V, the training performance is evidently better than training with
real data alone. This indicates that in this study, virtual plant data can indeed enhance the overall
training effectiveness when combined with a certain amount of real data. The combination of a large
amount of virtual data with a small amount of real data achieves acceptable training results.

4.3. Limitations

Our virtual plants have certain shortcomings when compared to other virtual plants. For instance,
Morel et al. [67] used a TLS simulator to generate point clouds from virtual tree mesh models. This
method simulates LiDAR scanning of trees at certain heights and distances. The references [68,69]
considered the impact of simulating the distance between real scanning devices and plant objects on
point cloud density. However, our method does not simulate the position of scanning devices on point
clouds. In future work, we can introduce variable point density and artificial noise into point clouds
by simulating acquisition systems such as ToF cameras and LiDAR in a virtual environment.

Point clouds obtained from scanning real plants are typically very large, whereas the maximum point
cloud size our network takes as input is 8912. For plants with dense foliage or larger leaves, this can result
in very sparse leaf point clouds, thus affecting the final segmentation results. The structure of real
Arabidopsis is more complex. In real environments, it is challenging to fully capture the stems, leading to
significant differences in the proportions of flowers and stems in various Arabidopsis. Typically,
Arabidopsis rosette leaves are abundant, causing the proportion of non-rosette features to be too low in a
fixed-size point cloud. This results in the loss of more phenotypic features. In future work, Arabidopsis,
such as rosette plants, we can separate the rosette and non-rosette parts before segmenting individually.

5. Conclusions

In this study, virtual Arabidopsis models generated by L-system were used as experimental data.
This allowed for the involvement of virtual plants in network training alongside real plants, addressing
the scarcity of Arabidopsis point cloud data. Since the generated virtual plants came with semantic
labels, this eliminated the need for manual annotation. We proposed the Plant Stratified Transformer
for semantic segmentation tasks on plants. Our network was based on the Stratified Transformer
backbone, incorporating the Fast Downsample Layer to accelerate network speed. In our dataset, the
training set was a mixture of virtual and real Arabidopsis point clouds, while the test set consisted of
real data. The improved network, alongside PointNet++, PAConv and the original Stratified
Transformer, was trained and tested on this dataset. In terms of segmentation performance, the
improved network was comparable to the original network but significantly outperforms the other two.
Regarding time consumption, the improved network had much shorter training and inference times
compared to the original network. This indicated that the improved network enhanced training and
inference efficiency while maintaining the segmentation performance of the original network. The
research results thoroughly demonstrated the significant potential of virtual plants and deep learning
methods in rapidly extracting plant phenotypes. Synthetic virtual data could effectively facilitate the
training of deep learning models, thereby reducing costs and time. This not only has a positive impact
on plant phenotype research but also injects new vitality into the field’s development.

In future work, we plan to acquire 3D point cloud models by scanning Arabidopsis to obtain additional

4692

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4669–4697.

real data for network training. We will improve or design new deep learning architectures to handle plant
point cloud models more efficiently, meeting the real-time requirements of practical applications.

Use of AI tools declaration

The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of
this article.

Acknowledgments

This work was supported by National Key Research and Development Program of China (Project
no. 2023YFD200140301), Project of China Construction Center Construction Engineering Co., LTD
(Project no. ZX&AZ02202200016001), Shandong Province Postgraduate Quality Case Library
Project (Project no. SDYAL2022143), National Key R&D Program of China (Project no.
2022YFE0125800), Basic Scientific Research Project of Liaoning Provincial Department of Education
(Project no. LJKQZ20222458) and the National Modern Agricultural Industry Technology System
Post Scientist Project (CARS-13-National Peanut Industry Technology System-Sowing and Field
Management Mechanization Post).

Conflict of interest

The authors declare that there are no conflicts of interest.

References

1. R. Pieruschka, U. Schurr, Plant phenotyping: past, present, and future, Plant Phenomics, 2019
(2019). https://doi.org/10.34133/2019/7507131

2． C. Costa, U. Schurr, F. Loreto, P. Menesatti, S. Carpentier, Plant phenotyping research trends, a
science mapping approach, Front. Plant Sci., 9 (2019), 1933.
https://doi.org/10.3389/fpls.2018.01933

3. A. K. Singh, B. Ganapathysubramanian, S. Sarkar, A. Singh, Deep learning for plant stress
phenotyping: trends and future perspectives, Trends Plant Sci., 23 (2018), 883–898.
https://doi.org/10.1016/j.tplants.2018.07.004

4. S. Arya, K. S. Sandhu, J. Singh, S. Kumar, Deep learning: as the new frontier in high-throughput
plant phenotyping, Euphytica, 218 (2022), 47. https://doi.org/10.1007/s10681-022-02992-3

5. S. Bhagat, M. Kokare, V. Haswani, P. Hambarde, R. Kamble, Eff-UNet++: A novel architecture
for plant leaf segmentation and counting, Ecol. Inf., 68 (2022), 101583.
https://doi.org/10.1016/j.ecoinf.2022.101583

6. K. Khan, R. U. Khan, W. Albattah, A. M. Qamar, End-to-end semantic leaf segmentation
framework for plants disease classification, Complexity, 2022 (2022).
https://doi.org/10.1155/2022/1168700

7. D. Zendler, N. Malagol, A. Schwandner, R. Töpfer, L. Hausmann, E. Zyprian, High-throughput
phenotyping of leaf discs infected with grapevine downy mildew using shallow convolutional
neural networks, Agronomy, 11 (2021), 1768. https://doi.org/10.3390/agronomy11091768

4693

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4669–4697.

8. J. Wu, C. Wen, H. Chen, Z. Ma, T. Zhang, H. Su, et al., DS-DETR: A model for tomato leaf disease
segmentation and damage evaluation, Agronomy, 12 (2022), 2023.
https://doi.org/10.3390/agronomy12092023

9. Y. Wu, L. Xu, Crop organ segmentation and disease identification based on weakly supervised
deep neural network, Agronomy, 9 (2019), 737. https://doi.org/10.3390/agronomy9110737

10. Z. Li, R. Guo, M. Li, Y. Chen, G. Li, A review of computer vision technologies for plant
phenotyping, Comput. Electron. Agric., 176 (2020), 105672.
https://doi.org/10.1016/j.compag.2020.105672

11. Y. Jiang, C. Li, Convolutional neural networks for image-based high-throughput plant
phenotyping: a review, Plant Phenomics, 2020 (2020). https://doi.org/10.34133/2020/4152816

12. W. D. Kissling, Y. Shi, Z. Koma, C. Meijer, O. Ku, F. Nattino, et al., Laserfarm–A high-throughput
workflow for generating geospatial data products of ecosystem structure from airborne laser
scanning point clouds, Ecol. Inf., 72 (2022), 101836.
https://doi.org/10.1016/j.ecoinf.2022.101836

13. J. Zhou, X. Fu, S. Zhou, J. Zhou, H. Ye, H. T. Nguyen, Automated segmentation of soybean plants
from 3D point cloud using machine learning, Comput. Electron. Agric., 162 (2019), 143–153.
https://doi.org/10.1016/j.compag.2019.04.014

14. X. Ma, K. Zhu, H. Guan, J. Feng, S. Yu, G. Liu, Calculation method for phenotypic traits based
on the 3D reconstruction of maize canopies, Sensors, 19 (2019), 1201.
https://doi.org/10.3390/s19051201

15. S. Wu, W. Wen, Y. Wang, J. Fan, C. Wang, W. Gou, et al., MVS-Pheno: a portable and low-cost
phenotyping platform for maize shoots using multiview stereo 3D reconstruction, Plant
Phenomics, 2020 (2020). https://doi.org/10.34133/2020/1848437

16. H. You, Y. Liu, P. Lei, Z. Qin, Q. You, Segmentation of individual mangrove trees using UAV-
based LiDAR data, Ecol. Inf., (2023), 102200. https://doi.org/10.1016/j.ecoinf.2023.102200

17. P. Li, X. Zhang, W. Wang, H. Zheng, X. Yao, Y. Tian, et al., Estimating aboveground and organ
biomass of plant canopies across the entire season of rice growth with terrestrial laser scanning,
Int. J. Appl. Earth Obs. Geoinf., 91 (2020), 102132. https://doi.org/10.1016/j.jag.2020.102132

18. Y. Sun, Y. Luo, Q. Zhang, L. Xu, L. Wang, P. Zhang, Estimation of crop height distribution for
mature rice based on a moving surface and 3D point cloud elevation, Agronomy, 12 (2022), 836.
https://doi.org/10.3390/agronomy12040836

19. F. Tardieu, Virtual plants: modelling as a tool for the genomics of tolerance to water deficit, Trends
Plant Sci., 8 (2003), 9–14. https://doi.org/10.1016/S1360-1385(02)00008-0

20. P. Prusinkiewicz, Graphical applications of L-systems, in Proceedings of Graphics Interface,
Canadian Information Processing Society, Vancouver, Canada, 86 (1986), 247–253.

21. R. Karwowski, P. Prusinkiewicz, Design and implementation of the L+ C modeling language,
Electron. Notes Theor. Comput. Sci., 86 (2003), 134–152. https://doi.org/10.1016/S1571-
0661(04)80680-7

22. F. Boudon, C. Pradal, T. Cokelaer, P. Prusinkiewicz, C. Godin, L-Py: an L-system simulation
framework for modeling plant architecture development based on a dynamic language, Front.
Plant Sci., 3 (2012), 76. https://doi.org/10.3389/fpls.2012.00076

23. R. Barth, J. IJsselmuiden, J. Hemming, E. J. V. Henten, Synthetic bootstrapping of convolutional
neural networks for semantic plant part segmentation, Comput. Electron. Agric., 161 (2019), 291–
304. https://doi.org/10.1016/j.compag.2017.11.040

4694

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4669–4697.

24. M. Cieslak, N. Khan, P. Ferraro, R. Soolanayakanahally, S. J. Robinson, I. Parkin, et al., L-system
models for image-based phenomics: case studies of maize and canola, In Silico Plants, 4 (2021),
diab039. https://doi.org/10.1093/insilicoplants/diab039

25. E. Fiestas, O. E. Ramos, S. Prado, RPA and L-system based synthetic data generator for cost-
efficient deep learning model training, in 2021 IEEE 3rd Eurasia Conference on IOT,
Communication and Engineering (ECICE), National Formosa University, Yunlin, Taiwan, (2021),
645–650. https://doi.org/10.1109/ECICE52819.2021.9645719

26. D. Ward, P. Moghadam, N. Hudson, Deep leaf segmentation using synthetic data, preprint, arXiv:
1807.10931. https://doi.org/10.48550/arXiv.1807.10931

27. R. Barth, J. IJsselmuiden, J. Hemming, E. J. V. Henten, Data synthesis methods for semantic
segmentation in agriculture: A Capsicum annuum dataset, Comput. Electron. Agric., 144 (2018),
284–296. https://doi.org/10.1016/j.compag.2017.12.001

28. J. Ubbens, M. Cieslak, P. Prusinkiewicz, I. Stavness, The use of plant models in deep learning: an
application to leaf counting in rosette plants, Plant Methods, 14 (2018), 1–10.
https://doi.org/10.1186/s13007-018-0273-z

29. K. Turgut, H. Dutagaci, D. Rousseau, RoseSegNet: An attention-based deep learning architecture
for organ segmentation of plants, Biosyst. Eng., 221 (2022), 138–153.
https://doi.org/10.1016/j.biosystemseng.2022.06.016

30. A. Chaudhury, P. Hanappe, R. Azaïs, C. Godin, D. Colliaux, Transferring PointNet++
segmentation from virtual to real plants, in ICCV 2021-International Conference on Computer
Vision, IEEE computer society, Montreal, (2021), 13.

31. Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, M. Bennamoun, Deep learning for 3d point clouds: A
survey, IEEE Trans. Pattern Anal. Mach. Intell., 43 (2020), 4338–4364.
https://doi.org/10.1109/TPAMI.2020.3005434

32. H. Su, S. Maji, E. Kalogerakis, E. Learned-Miller, Multi-view convolutional neural networks for
3d shape recognition, in Proceedings of the IEEE International Conference on Computer Vision,
IEEE computer society, Montreal, QC, Canada, (2015), 945–953.
https://doi.org/10.1109/ICCV.2015.114

33. W. Shi, R. van de Zedde, H. Jiang, G. Kootstra, Plant-part segmentation using deep learning and
multi-view vision, Biosyst. Eng., 187 (2019), 81–95.
https://doi.org/10.1016/j.biosystemseng.2019.08.014

34. X. Wang, C. Wang, B. Liu, X. Zhou, L. Zhang, J. Zheng, et al., Multi-view stereo in the deep
learning era: A comprehensive review, Displays, 70 (2021), 102102.
https://doi.org/10.1016/j.displa.2021.102102

35. D. Maturana, S. Scherer, Voxnet: A 3d convolutional neural network for real-time object
recognition, in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Hamburg, Germany, (2015), 922–928. https://doi.org/10.1109/IROS.2015.7353481

36. R. Du, Z. Ma, P. Xie, Y. He, H. Cen, PST: Plant segmentation transformer for 3D point clouds of
rapeseed plants at the podding stage, ISPRS J. Photogramm. Remote Sens., 195 (2023), 380–392.
https://doi.org/10.1016/j.isprsjprs.2022.11.022

37. C. R. Qi, H. Su, K. Mo, L. J. Guibas, Pointnet: Deep learning on point sets for 3d classification
and segmentation, in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, IEEE computer society, Honolulu, HI, USA, (2017), 652–660.
https://doi.org/10.48550/arXiv.1612.00593

4695

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4669–4697.

38. C. R. Qi, L. Yi, H. Su, L. J. Guibas, Pointnet++: Deep hierarchical feature learning on point sets
in a metric space, Adv. Neural Inf. Process. Syst., 30 (2017).
https://doi.org/10.48550/arXiv.1706.02413

39. H. Kang, H. Zhou, X. Wang, C. Chen, Real-time fruit recognition and grasping estimation for
robotic apple harvesting, Sensors, 20 (2020), 5670. https://doi.org/10.3390/s20195670

40. T. Masuda, Leaf area estimation by semantic segmentation of point cloud of tomato plants, in
Proceedings of the IEEE/CVF International Conference on Computer Vision, IEEE computer
society, Montreal, QC, Canada, (2021), 1381–1389.
https://doi.org/10.1109/ICCVW54120.2021.00159

41. D. Li, G. Shi, J. Li, Y. Chen, S. Zhang, S. Xiang, et al., PlantNet: A dual-function point cloud
segmentation network for multiple plant species, ISPRS J. Photogramm. Remote Sens., 184 (2022),
243–263. https://doi.org/10.1016/j.isprsjprs.2022.01.007

42. M. Ghahremani, B. Tiddeman, Y. Liu, A. Behera, Orderly disorder in point cloud domain, in
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, (2020), 494–509.
https://doi.org/10.1007/978-3-030-58604-1_30

43. M. Ghahremani, K. Williams, F. M. K. Corke, B. Tiddeman, Y. Liu, J. H. Doonan, Deep
segmentation of point clouds of wheat, Front. Plant Sci., 12 (2021), 608732.
https://doi.org/10.3389/fpls.2021.608732

44. M. H. Guo, J. X. Cai, Z. N. Liu, T. J. Mu, R. R. Martin, S. M. Hu, Pct: Point cloud transformer,
Comput. Visual Media, 7 (2021), 187–199. https://doi.org/10.1007/s41095-021-0229-5

45. H. Zhao, L. Jiang, J. Jia, P. H. Torr, V. Koltun, Point transformer, in Proceedings of the IEEE/CVF
International Conference on Computer Vision, IEEE computer society, Montreal, QC, Canada,
(2021), 16259–16268. https://doi.org/10.1109/ICCV48922.2021.01595

46. N. Engel, V. Belagiannis, K. Dietmayer, Point transformer, IEEE Access, 9 (2021), 134826–
134840. https://doi.org/10.1109/ACCESS.2021.3116304

47. J. Lin, M. Rickert, A. Perzylo, A. Knoll, Pctma-net: Point cloud transformer with morphing atlas-
based point generation network for dense point cloud completion, in 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, (2021), 5657–
5663. https://doi.org/10.1109/IROS51168.2021.9636483

48. L. Hui, H. Yang, M. Cheng, J. Xie, J. Yang, Pyramid point cloud transformer for large-scale place
recognition, in Proceedings of the IEEE/CVF International Conference on Computer Vision, IEEE
computer society, Montreal, QC, Canada, (2021), 6098–6107.
https://doi.org/10.1109/ICCV48922.2021.00604

49. X. Yu, L. Tang, Y. Rao, T. Huang, J. Zhou, J. Lu, Point-bert: Pre-training 3d point cloud
transformers with masked point modeling, in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, IEEE computer society, New Orleans, LA, USA,
(2022), 19313–19322. https://doi.org/10.48550/arXiv.2111.14819

50. D. Li, J. Li, S. Xiang, A. Pan, PSegNet: Simultaneous semantic and instance segmentation for
point clouds of plants, Plant Phenomics, 2022 (2022). https://doi.org/10.34133/2022/9787643

51. E. Nezhadarya, E. Taghavi, R. Razani, B. Liu, J. Luo, Adaptive hierarchical down-sampling for
point cloud classification, in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, IEEE computer society, Seattle, WA, USA, (2020), 12956–12964.
https://doi.org/10.1109/CVPR42600.2020.01297

4696

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4669–4697.

52. X. Lai, J. Liu, L. Jiang, L. Wang, H. Zhao, S. Liu, et al., Stratified transformer for 3d point cloud
segmentation, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, IEEE computer society, New Orleans, LA, USA, (2022), 8500–8509.
https://doi.org/10.1109/CVPR52688.2022.00831

53. M. Tomkins, Towards modelling emergence in plant systems, Quant. Plant Biol., 4 (2023), e6.
https://doi.org/10.1017/qpb.2023.6

54. A. Chaudhury, F. Boudon, C. Godin, 3D plant phenotyping: All you need is labelled point cloud
data, in Computer Vision–ECCV 2020 Workshops, Glasgow, UK, 16 (2020), 244–260.
https://doi.org/10.1007/978-3-030-65414-6_18

55. U. Krämer, Planting molecular functions in an ecological context with Arabidopsis thaliana, Elife,
4 (2015), e06100. https://doi.org/10.7554/eLife.06100

56. C. Wyman, The Alias Method for Sampling Discrete Distributions, Ray Tracing Gems II: Next
Generation Real-Time Rendering with DXR, Vulkan, and OptiX, (2021), 339–343.
https://doi.org/10.1007/978-1-4842-7185-8_21

57. S. Laine, T. Karras, Efficient sparse voxel octrees, in Proceedings of the 2010 ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games, Association for Computing Machinery, New
York, NY, USA, (2010), 55–63. https://doi.org/10.1145/1730804.1730814

58. Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, et al., Learning semantic segmentation of large-
scale point clouds with random sampling, IEEE Trans. Pattern Anal. Mach. Intell., 44 (2021),
8338–8354. https://doi.org/10.1109/TPAMI.2021.3083288

59. L. Li, L. He, J. Gao, X. Han, Psnet: Fast data structuring for hierarchical deep learning on point
cloud, IEEE Trans. Circuits Syst. Video Technol., 32 (2022), 6835–6849.
https://doi.org/10.1109/TCSVT.2022.3171968

60. R. Xiong, Y. Yang, D. He, K. Zheng, S. Zheng, C. Xing, et al., On layer normalization in the
transformer architecture, in International Conference on Machine Learning, Association for
Computing Machinery, New York, NY, USA, (2020), 10524–10533.
https://doi.org/10.48550/arXiv.2002.04745

61. C. Moenning, N. A. Dodgson, A new point cloud simplification algorithm, in Proc. Int. Conf.
Visualization Imaging Image Proc., (2003), 1027–1033.

62. M. Connor, P. Kumar, Fast construction of k-nearest neighbor graphs for point clouds, IEEE Trans.
Visual Comput. Graphics, 16 (2010), 599–608. https://doi.org/10.1109/TVCG.2010.9

63. J. L. Ba, J. R. Kiros, G. E. Hinton, Layer normalization, Preprint. ArXiv:160706450.
https://doi.org/10.48550/arXiv.1607.06450

64. O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image
segmentation, in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015:
18th International Conference, Munich, Germany, 18 (2015), 234–241.
https://doi.org/10.1007/978-3-319-24574-4_28

65. I. Ziamtsov, K. Faizi, S. Navlakha, Branch-Pipe: Improving graph skeletonization around branch
points in 3D point clouds, Remote Sens., 13 (2021), 3802. https://doi.org/10.3390/rs13193802

66. M. Xu, R. Ding, H. Zhao, X. Qi, PAConv: Position adaptive convolution with dynamic kernel
assembling on point clouds, in 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), IEEE computer society, Nashville, TN, USA, (2021), 3172–3181.
https://doi.org/10.1109/CVPR46437.2021.00319

4697

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4669–4697.

67. J. Morel, A. Bac, T. Kanai, Segmentation of unbalanced and in-homogeneous point clouds and its
application to 3D scanned trees, Visual Comput., 36 (2020), 2419–2431.
https://doi.org/10.1007/s00371-020-01966-7

68. J. Le Louëdec, G. Cielniak, 3D Shape sensing and deep learning-based segmentation of
strawberries, Comput. Electron. Agric., 190 (2021), 106374.
https://doi.org/10.1016/j.compag.2021.106374

69. H. Weiser, L. Winiwarter, J. Schäfer, F. E. Fassnacht, K. Anders, A. M. E. Pena, et al., Virtual laser
scanning (VLS) in forestry-Investigating appropriate 3D forest representations for LiDAR
simulations with HELIOS++, in EGU General Assembly Conference Abstracts, Vienna, Austria,
(2021), EGU21-9178. https://doi.org/10.5194/egusphere-egu21-9178

©2024 the Author(s), licensee AIMS Press. This is an open access
article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0)

