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Abstract: Biomedical images have complex tissue structures, and there are great differences between
images of the same part of different individuals. Although deep learning methods have made some
progress in automatic segmentation of biomedical images, the segmentation accuracy is relatively low
for biomedical images with significant changes in segmentation targets, and there are also problems
of missegmentation and missed segmentation. To address these challenges, we proposed a biomed-
ical image segmentation method based on dense atrous convolution. First, we added a dense atrous
convolution module (DAC) between the encoding and decoding paths of the U-Net network. This
module was based on the inception structure and atrous convolution design, which can effectively cap-
ture multi-scale features of images. Second, we introduced a dense residual pooling module to detect
multi-scale features in images by connecting residual pooling blocks of different sizes. Finally, in the
decoding part of the network, we adopted an attention mechanism to suppress background interference
by enhancing the weight of the target area. These modules work together to improve the accuracy
and robustness of biomedical image segmentation. The experimental results showed that compared to
mainstream segmentation networks, our segmentation model exhibited stronger segmentation ability
when processing biomedical images with multiple-shaped targets. At the same time, this model can
significantly reduce the phenomenon of missed segmentation and missegmentation, improve segmen-
tation accuracy, and make the segmentation results closer to the real situation.
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1. Introduction

In recent years, the number of cancer patients has been continuously increasing and cancer has be-
come a common concern. Early detection and treatment of cancer can greatly improve the survival
rate of patients. In this context, using medical image segmentation technology to accurately identify
and segment the lesion area of patients can help doctors accurately assess the patient’s condition and
formulate appropriate treatment plans. However, the tissue structure of biomedical images is relatively
complex, with not only a large number of organs but also significant differences in images of the same
part of different individuals, which greatly increases the difficulty of medical image segmentation [1].
At the same time, the problem of missegmentation and missed segmentation in existing medical im-
age segmentation methods greatly affects the accuracy of image segmentation, thereby interfering with
doctors making correct judgments and affecting the patient’s treatment process. Therefore, it is partic-
ularly important for the treatment of diseases to efficiently utilize computer technology to improve the
accuracy of medical image segmentation and reduce the phenomenon of missegmentation and missed
segmentation.

The essence of image segmentation is to predict the value of each pixel in an image, but without
precondition, the color value of a pixel is diverse and the result of color prediction for the same pixel
is inaccurate. Traditional segmentation methods rely on detecting the grayscale changes of pixels in
the target region and extracting the boundaries by using the abrupt changes of pixel grayscale and the
discontinuity of the image to achieve image segmentation. Chen et al. used the single-scale Harris
corner point method combined with a statistical algorithm, spatial domain algorithm, and dynamic
queuing method to detect the edge contour features of ultrasound images and enhance and fuse the
features of the detected edge information [2]. Aslam et al. used the Sobel edge detection algorithm
combined with the correlation thresholding method to find different regions using closed contours;
they finally segmented tumors from the images according to the different intensities of the information
within the contours and achieved good segmentation results [3]. Eijnatten et al. divided the pixel points
in the image into several classes by converting the grayscale image into a binary image, and segmented
the image into different regions according to the grayscale difference between the target object to be
segmented and the background [4].

The biomedical image segmentation algorithm based on deep learning can be traced back to 2015,
when Long et al. proposed the famous fully convolutional neural networks (FCN) [5]. Based on this,
Ronneberger et al. proposed a U-shaped convolutional neural network (U-Net) for biomedical image
segmentation, which is a symmetric structure with encoding and decoding paths [6]. The feature fusion
between the two paths is performed by jumping connections, which effectively alleviates the situation
that the semantic information and the spatial domain information in the FCN model are incompati-
ble. The highest accuracy was achieved in the segmentation of cell images and liver CT (Computed
Tomography) images at that time. Oktay et al. improved based on U-Net and proposed AtU-Net (At-
tention U-Net), which improves segmentation efficiency by introducing the attention mechanism in the
decoding stage [7]. Zhou et al. proposed U-Net++, in which the encoder and decoder subnetworks are
connected by a series of dense hopping paths. The redesigned hopping paths can reduce the semantic
gap between the feature mappings of the encoder and decoder subnetworks, which can process similar
semantic images more easily [8]. Alom et al. formed R2U-Net (recurrent residual convolutional neu-
ral network based on U-Net) by combining residual networks, U-Net, and recurrent neural networks,
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which ensures better feature representation for segmentation tasks through feature accumulation in the
convolutional layer, and these models have greatly advanced the development progress in the field of
medical image segmentation [9]. Based on the idea of feature fusion, Huang et al. proposed DenseNet,
which fuses any two layers of the network into a convolutional neural network with dense connectivity.
The input feature of the current layer is the set of the output feature mapping of all previous network
layers during the network propagation [10]. It can maximize the preservation of feature information in
the network propagation process, alleviate the gradient disappearance problem, and make the network
easier to train and have a certain regularity effect. Based on the research of V-net (a fully convolutional
neural network for volumetric medical image segmentation), Zhu et al. proposed a three-dimensional
(3D) end-to-end FCN called semantic V-net (SV-net), which consists of a downsampling path and an
upsampling path, with the downsampling path used for feature extraction and the upsampling path
used for recovering downsampling features. During the downsampling process, features are automat-
ically extracted from the image through convolution operators. The ultimate goal is to automatically
extract thyroid-related ophthalmopathy (EOM) and optic nerve (ON) from orbital CT through this net-
work [11]. Li et al. proposed an improved FCN network, namely, AtFcn, which makes full use of
a FCN and attention mechanism to achieve pixel-level accurate segmentation of images of arbitrary
size [12]. Liu et al. proposed an OCTA (Optical Coherence Tomography Angiography) retinal vessel
segmentation network, which mainly includes a dual-branch encoder based on adaptive gated axial
transformer and residual module, a decoder, and a point repair module based on residual network.
The encoder branch of the network exchanges a large amount of global and local information through
feature interaction units, thereby preserving a large amount of detailed information. The point repair
module of the network re-predicts the uncertain points in the low visibility region in the OCTA image.
The various modules in this network work together to finally achieve the precise segmentation of the
retinal vascular [13]. Mu et al. proposed an attention-based multi-scale supervised fully convolutional
encoder-decoder network (ARU-Net), which combines depth-aware attention gates and multi-scale su-
pervision strategy to achieve accurate segmentation of intracranial aneurysms and adjacent arteries in
three-dimensional rotational angiography (3DRA) images [14].

At the same time, we have also noticed that customizing segmentation methods for specific tasks
can lead to fragmentation between various segmentation tasks, so many advanced studies have focused
on improving the consistency of segmentation models. Qin et al. proposed a unified, universal, and
open framework for local image segmentation, namely, FreeSeg. It is mainly divided into two stages:
The first stage extracts universal mask proposals, and the second stage uses CLIP (Contrastive Lan-
guage–Image Pretraining) to perform zero sample classification on the masks generated in the first
stage. At the same time, an adaptive prompt learning method was proposed to encode arbitrary tasks
and categories into compact textual abstraction, improving the robustness of the model in multiple tasks
and different scenarios [15]. Kirillov et al. proposed a model that can segment everything, namely,
SAM (segment everything model). SAM is a prompt-based model that exhibits strong zero sample
generalization ability, greatly promoting the development of basic models. Its architecture mainly con-
sists of three components: image encoder, prompt encoder, and fast mask decoder. The image encoder
uses a pretrained visual converter (ViT) using MAE (masked autoencoders), the computational com-
plexity of ViT is the square of the number of pixels, and its development in visual tasks is limited
by its enormous computational cost [16]. The prompt encoder mainly includes two sets of prompts,
namely, sparse prompts (points, boxes, text) and dense prompts (masks), which are represented in dif-
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ferent ways. The mask decoder maps the image embedding, prompt embeddings, and an output token
to a mask. The SAM network has achieved good results in multiple tasks [17]. However, the high
computational cost of this model limits its widespread application in industry scenarios. To address
this issue, Zhao et al. subsequently proposed a high-performance accelerated alternative method called
FastSAM, which consists of two stages: all-instance segmentation and prompt-guided selection. Fast-
SAM uses the YOLOv8-Seg (an instance segmentation model based on YOLO series object detection
framework) method for the all-instance segmentation phase. After successfully segmenting all objects
or regions in the image using the YOLOv8 method, the second stage task is to use various prompts to
identify specific objects of interest. It mainly involves point prompts, box prompts, and text prompts.
Compared with the SAM model, FastSAM has lower computational costs while ensuring segmentation
performance [18].

Medical image segmentation has gone through three stages: manual segmentation, traditional seg-
mentation, and methods based on deep learning; among which, manual segmentation has the highest
accuracy, but it is often time-consuming and laborious, and manual segmentation varies according to
doctors’ experience and subjective judgment, and different doctors may have different segmentation re-
sults for the same biomedical image. Traditional segmentation algorithms have good generality, but the
segmentation accuracy is low. In recent years, the rapid development of image segmentation based on
deep learning can significantly improve the efficiency of image segmentation, but for the segmentation
of biomedical images with large differences in feature size, missed segmentation and missegmentation
can easily occur, resulting in low segmentation accuracy. To address the above problems, based on
the structure design of U-Net, this paper proposes a biomedical image segmentation method based on
dense atrous convolution. The method designs a dense atrous convolution module based on the ini-
tial structure and atrous convolution with the aim of extracting multi-scale information from images.
Compared to traditional convolutions, atrous convolution can support exponential expansion of recep-
tive domains to adapt to multi-scale contextual information without losing image resolution, which is
often overlooked by most existing models. In addition, fully extracting multi-scale features of images
is of great significance in biomedical image segmentation tasks, and effectively understanding and uti-
lizing these features is also a highly important aspect in achieving medical image segmentation tasks.
Therefore, this method fully utilizes the multi-scale information of the extracted image by introducing
dense residual pooling. Finally, this method restores the size of the feature map through upsampling
during the decoding stage, introduces an attention gate during the decoding stage, and enhances the
target features by reducing the background weight. The specific content of this paper’s innovation is
as follows:

(1) A dense atrous convolution module has been added between the encoding and decoding paths of
the U-Net network. This module is designed based on the Inception structure and atrous convolution
and extracts multi-scale image features through multi-channel and multi-scale convolution kernels,
enhancing the network’s ability to extract image features. At the same time, it avoids the problem of
gradient explosion and vanishing when extracting multi-scale image features.

(2) This paper designs a dense residual pooling module to widen the network using the Inception
structure to make full use of the acquired image features. The combination of this module and the
dense atrous convolution module not only improves the network’s feature extraction ability, but also
enhances the network’s ability to process image features.

(3) Introducing the attention mechanism in the decoding stage highlights the target by increasing the
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weight of the target area while suppressing the influence of irrelevant areas on segmentation, thereby
improving segmentation accuracy and reducing the occurrence of missegmentation and missed seg-
mentation.

2. Materials and methods

2.1. Related work

2.1.1. Inception structure

Convolutional neural networks usually extract local features during convolutional operations. Since
the relevant features in an image may be far apart, smaller convolutional kernels often fail to learn the
true features, and larger convolutional kernels may result in less detailed extracted features. The Incep-
tion structure can efficiently express the sparse structure of features, aiming to solve the computational
redundancy caused by the stacking of convolutional layers. It was first proposed in 2015 by Szegedy
et al. [19]. After that, from Incep-tion-V2 [20], Inception-V3 [21] (Ioffe and Szegedy; Szegedy et
al.), to Inception-V4 [22] (Szegedy et al.), Inception networks have been continuously improved and
innovated to achieve better performance.

The Inception structure can solve the computational redundancy caused by the accumulation of
convolutional layers and deepen the number of layers and breadth of the network. By connecting
convolutional kernels of different scales in parallel, multiple branches can be used to extract multi-
scale image information, enhance the generalization ability of the network, and improve the learning
ability of the convolutional neural network for features [23].

Multiple Inception modules in series will form the Inception structure. As shown in Figure 1,
the Inception module consists of four channels, each of which uses convolutional kernels of different
sizes to extract rich features [24]. To reduce computational complexity, each channel contains a 1 × 1
convolution kernel for dimensionality reduction. Each Inception module cascades the feature maps of
the four channels through mapping to the next Inception module, forming the whole Inception structure
and enhancing the feature extraction capability of the network.

Figure 1. Original inception module diagram [24].
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2.1.2. Atrous convolution

Traditional image segmentation algorithms use larger convolution kernels to increase the percep-
tual field and, finally, upsampling to restore the image size. In this process, the feature map undergoes
shrinking and enlarging, which degrades the image accuracy. Compared with traditional image seg-
mentation methods, atrous convolution automatically enlarges the image field by extracting sparse
features and inserting cavities into the convolution kernel to form atrous convolution kernels with dif-
ferent expansion rates to obtain different sizes of the image field [25]. The size of the feature map can
be kept constant while expanding the field so that the image accuracy will not be degraded during the
feature extraction.

The atrous convolution with different expansion rates is shown in Figure 2, where the expansion
rates are 1, 2, and 4, respectively [26].

(a) Expansion rate = 1 (b) Expansion rate = 2 (c) Expansion rate = 4

Figure 2. Schematic diagram of atrous convolution [26].

The size of the convolution kernel after the atrous convolution and the size of the original convolu-
tion kernel are calculated as

k′ = k + (k + 1)(d − 1) (2.1)

where k
′

denotes the size of the actual convolution kernel after expansion, k denotes the size of the
original convolution kernel, and d denotes the expansion rate. When the expansion rate of the atrous
convolution is 1, the effect of the atrous convolution is the same as that of the normal convolution.
When the atrous convolution is used for image segmentation, the image feature map resolution can be
maintained and the feature information in the image can be located more accurately.

2.1.3. Attention mechanism

The attention mechanism is similar to the human perception process, using top information to guide
the bottom-up pre-feedback process, and has been applied to deep and recurrent neural networks [27].
Since the attention module pools resources to process useful information, the training time is signifi-
cantly reduced. Each attention mask in the attention module can be used not only as a feature selector
in forward pushing, but also as a gradient updater in back propagation. In recent years, the attention
module has been used in a lot of stacking structures to mine more image depth features by stacking
attention modules [28].
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Figure 3. Attention module diagram.

The incremental nature of the stacked structure can refine the processing of complex images, and
the features become clearer as the depth increases. In this paper, we use the attention mechanism in the
decoding stage to extract the image depth features, suppress the background interference by increasing
the target region weight, refine the processing of the image, make the features clearer, and reduce the
information redundancy.

The internal structure of the attention module is shown in Figure 3. The inputs to this module are
the feature map xl and the upsampled feature map g. The feature map xl is a coded feature of the same
resolution passed through a jump connection, and the upsampled feature g can be regarded as a gating
signal to enhance the learning ability of feature xl. After the 1×1 convolution of the two inputs, the
two feature maps are fused and activated by the ReLU (Rectified Linear Unit) function. The combined
features are convolved again and the Sigmoid activation function is used to obtain the final attention
coefficient AG, which is

AG = σ(C1×1(ReLU(C1×1(G) ×C1×1(X)))) × X (2.2)

where X, G correspond to the feature map xl and feature map g in the above figure, C1×1 denotes 1×1
convolution, and σ denotes Sigmoid activation function.

2.2. Segmentation model of this paper

2.2.1. Network structure

The convolutional segmentation network based dense atrous is designed based on U-Net, and the
network structure consists of encoding and decoding paths, as shown in Figure 4. The encoding stage
of the network contains four downsampling modules, which can reduce the feature map size and learn
more semantic information about the image. In the middle of the encoding and decoding paths of
the network, the dense atrous convolution module is designed by combining Inception structure and
atrous convolution to fully extract the multi-scale information in the image, and after the dense atrous
convolution module, dense residual pooling is designed and introduced to fully utilize the extracted
multi-scale information by concatenating multiple residual pooling modules.

In the decoding stage of the network, the feature map size is recovered by upsampling, and the
attention gate is introduced in the decoding stage to enhance the target features by reducing the back-
ground weights. The convolutional kernel sizes for the encoding and decoding stages are shown in
Table 1.
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Figure 4. Network structure of this paper.

Table 1. Network structure parameters of this paper.

Encoding stage Convolution kernel size Decoding stage Convolution kernel size
1 [3,3,3,64] 6 [3,3,1024,512]
2 [3,3,64,128] 7 [3,3,512,256]
3 [3,3,128,256] 8 [3,3,256,128]
4 [3,3,256,512] 9 [3,3,128,64]
5 [3,3,512,1024] 10 [3,3,64,1]

2.2.2. Dense atrous convolution

The structure of biomedical images is complex, and it is difficult to extract image boundary infor-
mation and deep linguistic information for a small perceptual field model, so we use atrous convolution
to increase the perceptual field of the model.

Based on the Inception structure and atrous convolution, we propose a dense atrous convolution
module to encode deep semantic feature maps. As shown in Figure 5, the dense atrous convolution has
four channels with an increasing number of convolutions in each channel, and the perceptual fields of
the four channels are 3, 7, 9, and 19, respectively. Each channel is activated by 1×1 convolution. In
this module, the features extracted from the four channels are fused with the original features through
the jump connection to avoid the gradient disappearance and gradient explosion effectively.

With the support of multiple perceptual fields of the dense atrous convolution module, it is possible
to extract the boundary information of biomedical images and the contextual relationship with other
regions. Padding is used to keep the size of the feature map constant after convolution with cavities,
and the size of the feature map after convolution with cavities is calculated as follows.

S =
a + 2p − d × ( f − 1) − 1

l
+ 1 (2.3)

where S denotes the output feature map size, a denotes the input feature map size, p denotes the number
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of layers filled with 0 by Padding operation, d denotes the expansion rate of the atrous convolution, f
denotes the original convolution kernel size, and l denotes the convolution step size.

Figure 5. Dense atrous convolution module.

2.2.3. Dense residual pooling

One of the challenges in biomedical image segmentation is the great variation in target size, and
biomedical images have more complex tissue structures. Not only is the number of organs large, but
also the images of the same part of an individual are extremely different, and the same part of the same
body can be very different at different times, so it is important to enhance the segmentation network
for feature extraction of different sizes.

Figure 6. Dense residual pooling module.

The size of the perceptual field roughly determines how much contextual information we can use.
Dense atrous convolution can enhance the extraction of features of different sizes, but ordinary pooling
cannot effectively process multiple features after extraction, so this paper proposes a dense residual
pooling to enhance the processing of features after extraction of dense atrous convolution, relying on
multiple effective fields of view to detect targets of different sizes.
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4360

As shown in Figure 6, the dense residual pooling module uses four different sizes of perceptual
fields to encode global contextual information, and the four pooling kernels are 2×2, 3×3, 5×5, and
6×6. The four branches output feature maps of various sizes. To reduce the feature dimensionality
and computational cost, we use 1×1 convolution after each pooling branch. It reduces the size of the
feature map to 1/N of the original dimension, where N denotes the number of channels in the original
feature map. The low-dimensional feature map is upsampled to obtain the same dimensional features
as the original feature map, and, finally, the original features are combined with the upsampled feature
map.

3. Experiment and analysis

3.1. Experimental data and environment

This paper aims to improve the problem of missegmentation and missed segmentation in complex
biomedical image segmentation. To verify the effectiveness and stability of this method, experiments
were conducted on the Dsb2018Cell dataset (https://www.kaggle.com/c/data-science-bowl-2018) and
the Luna dataset (https://www.kaggle.com/kmader/finding-lungs-in-ct-data), respectively.

Dsb2018Cell is a dataset for cell image segmentation, provided by the Data Science Bowl 2018
competition organized by Kaggle, to promote the application of computer vision and machine learning
technologies in the field of biomedical image analysis. This dataset contains 576 original cell images of
256 × 256 pixels and their corresponding nuclei manually annotated with segmentation results. Luna
is an important medical imaging dataset used for lung nodule detection and analysis, which includes
manually segmented two-dimensional and 3D images of the lungs. This dataset is widely used in
various medical image analysis competitions and research. In this paper, we only use 2-dimensional
CT images, which contain 267 images and their corresponding labeled images, and we uniformly resize
their original images to 256×256 pixels.

All experiments were performed on the same computer with a 64-bit Windows 10 operating system,
Intel(R) Core(TM) i9-10900X CPU @ 3. 70 GHz 3. 70 GHz), NVIDIA GeForce RTX 2080Ti graphics
card, and scientific computing libraries Python3. 7, PyTorch1. 7. 0, CUDA11.1. Github repository
link: https://github.com/mmywcbysj/Biomedical-Image-Segmentation-Code.

3.2. Experimental procedure and evaluation index

Four common segmentation evaluation metrics, Iou (Intersection of Union), Dice (Dice Coefficient),
Hd (Hausdorff distance) and Loss, were used to evaluate the segmentation results.

Iou is a common index of image segmentation, which indicates the similarity between the area of
the segmented object and the original object. The value range is [0,1]; the larger the value means the
segmentation result is closer to the real result and the better the segmentation effect. The formula is

Iou(A, B) =
A

⋂
B

A
⋃

B
(3.1)

where A represents the area of the prediction result of the model and B represents the area of the manual
labeling result.

The Dice measures the similarity index of two sets and the value range is [0,1]. The higher value
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means the better segmentation result, and the calculation formula is

Dice =
2|A

⋂
B|

|A| + |B|
(3.2)

where A represents the set of samples segmented by the model in this paper and B represents the set of
manually labeled samples.

Hd is a measure of the similarity between two sets of points, which represents the maximum value
of the shortest distance between the segmentation result and the labeled result. The smaller the value,
the smaller the image segmentation error and the better the quality.

H(A, B) = max(h(A, B), h(B, A)) (3.3)

where h(A, B) = max
a∈A

{
min
b∈B
‖a − b‖

}
, h(A, B), and h(B, A) are the one way Hds from set A to set B and

set B to set A, respectively. h(A, B) first ranks the distance between each point ai in set A to the nearest
point b j in set B, and finally takes the maximum value of this distance as h(A, B).

The cross entropy loss function BCELoss (Binary CrossEntropy Loss) can be used not only for
binary classification but also for multiclassification, and it has good results in multiclassification image
segmentation problems. The smaller the loss value is, the closer the model segmentation result is to
the real labeling result. The calculation formula is

BCELoss = −
1
N

N∑
i=1

[yilog(pi) + (1 − yi)log(1 − pi)] (3.4)

where N is the total number of biomedical image samples, yi is the category to which the i sample
belongs, and pi is the predicted value of the i sample.

3.3. Analysis of experimental results

3.3.1. Ablation experiments

In order to verify the effectiveness of several modules in this paper for biomedical image segmen-
tation, we conducted ablation experiments based on U-Net network with dense atrous convolution,
multi-scale pooling module, and attention mechanism. The results are shown in Table 2.

Table 2. Results of ablation experiment.

Method Iou Dice Hd Loss
U-Net 0.8182 0.8863 4.3902 2.9444

U-Net+Attn 0.8144 0.8845 4.3800 4.2741
U-Net+ Attn+ DAC 0.8335 0.9024 4.3271 1.0289
U-Net+ Attn +MP 0.8287 0.9001 4.3657 1.1962

U-Net+ DAC+ MP+ Attn 0.9389 0.9629 4.5293 0.4640
Note: Bolded font is the optimal value of each column, Attn stands for attention mechanism, DAC stands for dense atrous

convolution, and MP stands for dense residual pooling.
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From the comparison results, we can see that when the U-Net network incorporates both dense
atrous convolution modules and dense residual pooling modules, the Iou and Dice metrics have signif-
icantly improved, with values of 0.9389 and 0.9629, respectively. Compared with the U-Net network
and the U-Net fusion attention mechanism network, the Iou metric has increased by 0.1207 and 0.1245,
and the Dice metric has increased by 0.0766 and 0.0784, respectively. Compared with the U-Net net-
work that incorporates an attention mechanism and dense atrous convolutional module, the Iou metric
has improved by 0.1054 and the Dice metric has improved by 0.0766; and compared with the U-Net
network that integrates the attention mechanism and dense residual pooling module, the IoU index has
increased by 0.1102 and the Dice index has increased by 0.0628. This is because the dense atrous
convolution module extracts multi-scale image features through multi-channel and multi-scale convo-
lution kernels, enhancing the network’s ability to extract image features. The dense residual pooling
effectively utilizes the extracted image features through multiple residual pooling kernels. After in-
troducing dense atrous convolution and dense residual pooling, attention mechanisms are added to
increase target weights and reduce background weights to enhance target features, thereby improving
the segmentation performance of the network. At the same time, the method proposed in this paper
also performs the best on the Loss index, with no significant difference in the Hd index.

3.3.2. Comparison with other algorithms

In order to be more objective about the segmentation effect of different algorithms, the proposed
network is compared with U-Net [6], R2U-Net [7], AtU-Net [29], and AtFcn [10]. All experiments
were conducted in the same experimental environment, and the average of each index of 256 images
in the Dsb2018Cell dataset was selected. The average segmentation data of each model training is
shown in Table 3, and the results of quantitative analysis of the comparison experiments are shown in
Figure 7.

Table 3. Comparative experimental results under Dsb2018Cell dataset.

Method Iou Dice Hd Loss
U-Net 0.8182 0.8863 4.3902 2.9444

R2U-Net 0.7076 0.7999 5.2819 2.4472
AtU-Net 0.8144 0.8845 4.3800 4.2741
AtFcn 0.8293 0.8998 4.3155 0.7269
ours 0.9389 0.9629 4.5293 0.4640

Note: Bolded font is the best value of each column, all indicators are kept in four valid digits.

In the comparison experiment of Table 3, Our method performed the best on all other indicators
except for Hd, which was slightly inferior. Compared with AtFcn, Iou and Dice increased by 0.1096
and 0.0631, respectively, and Loss decreased by 0.2629. Compared with AtU-Net, Iou and Dice in-
creased by 0.1245 and 0.0784, respectively, and Loss decreased by 3.8101. Compared with R2U-Net,
Iou and Dice increased by 0.2313 and 0.163, respectively, and Loss decreased by 1.9832. Compared
with U-Net network, Iou and Dice have increased by 0.1207 and 0.0766, respectively, and Loss has
decreased by 2.4804.

Both the Iou and Dice metrics compare the segmented images and labels in terms of segmentation
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(a) Iou (b) Dice

(c) Hd (d) Loss

Figure 7. Graph of quantitative analysis results of different models.

effect, and their values can indicate the percentage of correctly segmented regions in the whole image
area. The first and second columns of Table 3 show that the results of this paper are significantly better
than other algorithmic models, indicating that the dense atrous convolution module and dense residual
pooling module in the method proposed in this paper can effectively capture multi-scale features in
images, thereby improving the accuracy of image segmentation. The Hd coefficient indicates the sim-
ilarity relationship between point sets, and the lower value indicates the higher similarity. As shown
in the third column of Table 3, there is no big difference between this paper and the AtFcn model with
the best Hd coefficient. As shown in the fourth column of Table 3 and Figure 7(d), all models converge
with the training iterations, but the method in this paper can achieve fast convergence and is optimal.
This indicates that the attention mechanism improves the training efficiency by highlighting the target
features.

The issue in nucleus segmentation is that the nuclei are too small and the spacing between nuclei
is too small for the segmentation to cause adhesions. As shown in Figure 8, only this method and the
AtFcn model can avoid cell adhesion during the segmentation process.

The U-Net and AtFcn models avoid the phenomenon of segmentation adhesion, improve the seg-
mentation accuracy, and reduce the probability of false segmentation. Although both AtU-Net and
R2U-Net have jump connections, they are not suitable for segmenting small targets such as cell nuclei
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and more pixels are mis-segmented. Compared with other segmentation models, the segmentation re-
sults of this model do not show cell adhesion, which is closer to the label of expert segmentation. In
the second and fourth rows of Figure 8, this model can segment more correct nucleus regions without
mis-segmentation at the cell and boundary. It is shown that dense atrous convolution and dense resid-
ual pooling can effectively extract image feature information and accurately identify boundary features
when segmenting, thus achieving more accurate segmentation.

(a) Original

image

(b) Label (c) U-Net (d) AtU-Net (e) R2U-Net (f) AtFcn (g) Ours

Figure 8. Comparison effect of cell nucleus image.

In order to verify the effectiveness of the algorithm in this paper, we continue the validation on the
Luna lung dataset, and the comparison test is shown in Figure 9. Compared with the Dsb2018Cell
nucleus dataset, the image complexity of the Luna lung dataset is lower, and the different models can
achieve the segmentation purpose for the same images compared with the segmented labeled images.
The first row of Figure 9 has significantly lower image complexity and clearer image boundaries, so
the overall segmentation results are good. The third column of the second row of Figure 9 shows
the segmentation results of the U-Net model, where the left lung is well segmented, but there is large
missegmentation in the upper part of the right lung. It is worth noting that this method can extract the
information of different scales in the image, so that the segmented image boundary at the boundary is
clearer and missegmentation is avoided. In the fourth and fifth columns of Figure 9, the left and right
lungs are well segmented, but there is missegmentation in the lower part of the right lung, indicating
that the background features and the target features are similar, so we add an attention mechanism in
the decoding stage to reduce the weight of the background features to highlight the target features,
ultimately achieving more accurate segmentation.
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(a) Original

image
(b) Label (c) U-Net (d) R2U-Net (e) AtU-Net (f) AtFcn (g) Ours

Figure 9. Comparison results of lung images.

4. Dicussion

In recent years, many advanced methods have emerged in the field of medical image segmentation.
ARP-Net is a novel OCTA retinal vessel segmentation method based on the Adaptive gated axial trans-
former (AGAT), Residual and Point repair modules [13]. It has achieved good performance in various
indicators, such as Dice of 0.9513, BACC (Balance Accuracy) of 0.9781, and JAC (Jaccard Index)
of 0.9126 on the OCTA-3M dataset. ARU-Net is an attention-based multi-scale supervised fully con-
volutional encoder-decoder network that achieves segmentation tasks for intracranial aneurysms and
adjacent arteries in 3DRA images [14]. The network has also achieved good performance on multiple
indicators, such as SE (Sensitivity) of 0.8533, SP (Specificity) of 0.9978, and DSC (Dice Similarity
Coefficient) of 0.8681. ARP-Net and ARU-Net both adopt encoding and decoding structures, and both
focus on extracting multi-scale information from images. Unlike the method proposed in this paper, the
encoder of ARP-Net exchanges a large amount of global and local information through feature inter-
action units, thereby preserving a large amount of detailed information. ARU-Net follows the classic
U-Net framework and effectively emphasizes important targets on 3DRA images through depth-aware
attention gates, thereby improving the accurate segmentation of small but critical vessels. At the same
time, the ability of the network to integrate multilevel spatial and semantic information is improved
through multi-scale supervision strategies to enhance the sensitivity of smaller aneurysms and vessels.

Our method is based on the Inception structure and atrous convolution to design a DAC module,
which is added between the encoding and decoding paths of the U-Net. The DAC module extracts
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multi-scale image features through multi-channel and multi-scale convolution kernels, enhancing the
network’s ability to extract image features. Atrous convolution automatically enlarges the image field
by extracting sparse features and inserting cavities into the convolution kernel to form atrous convo-
lution kernels with different expansion rates to obtain different sizes of the image field. The size of
the feature map can be kept constant while expanding the field so that the image accuracy will not
be degraded during the feature extraction. At the same time, fully utilizing the extracted image fea-
tures plays a crucial role in segmentation work. Therefore, this paper designs a dense residual pooling
module, which, combined with dense atrous convolution, can achieve the goal of fully extracting and
utilizing multi-scale image features. Our method also introduces attention mechanism in the decoding
stage, highlighting the target by increasing the weight of the target area while suppressing the influence
of irrelevant areas on segmentation, thereby improving segmentation accuracy and reducing the occur-
rence of missegmentation and missed segmentation. Although the above methods are slightly different
from the algorithm proposed in this paper in the field of medical applications, the network structure
design of different methods has brought great inspiration to our future research.

Customizing segmentation methods for specific tasks can lead to fragmentation between various
segmentation tasks, so there have been many recent algorithms dedicated to improving the consistency
of image segmentation networks. The FreeSeg model [15] is a unified, universal, and open framework
for local image segmentation, which has good robustness in multiple tasks and different scenes. For
example, it achieves 20.6% mAP (mean Average Precision) of unseen classes on COCO (a dataset
that can be used for image recognition) and achieves 16.3%/15.4% mAP of seen/unseen classes on
ADE20k (large scale datasets for scene analysis). SAM [16] is a prompt-based model with strong zero
sample generalization ability, which breaks through segmentation boundaries and greatly promotes the
development of basic models. Although the SAM model has strong zero sample generalization ability,
its application in industrial production is limited due to its high computational cost. Subsequently, in
order to address the issues of SAM, the FastSAM model was proposed [16]. Compared to the SAM
model, FastSAM achieves performance comparable to SAM while running at a speed (32 × 32) 50
times faster than SAM (64 × 64) 170 times faster. Good operating speed makes FastSAM the choice
for industrial applications.

In the future, we will conduct detailed comparative analysis with various advanced segmentation
models, aiming to design more lightweight models and improve the universality of our models in other
image segmentation tasks.

5. Conclusion

In order to efficiently process biomedical images for more accurate computer-aided diagnosis, this
paper proposes a biomedical image segmentation network based on dense atrous convolution, which
consists of an encoding path and a decoding path. In the middle of the encoding and decoding paths, the
dense atrous convolution is proposed by combining Inception structure and atrous convolution, which
can expand the size and number of perceptual fields and extract the multi-scale information in the
images. By introducing dense residual pooling, the extracted effective information can be more fully
utilized. The feature map size is recovered by upsampling in the decoding stage, and attention gates are
introduced in the decoding stage to enhance the target features by reducing the background weights.
Experiments on the nucleus and lung datasets show that this method is closer to the real segmentation

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4351–4369.



4367

results, reduces the occurrence of missegmentation, and improves the segmentation accuracy. It can
provide more accurate biomedical image data for computer-aided diagnosis and treatment. However,
although our model has achieved good segmentation results and reduced the occurrence of misseg-
mentation and missed segmentation, the results show that our method still needs further improvement
when segmenting finer structures. In addition, our method faces certain challenges in balancing image
segmentation accuracy and model complexity, making it difficult to achieve the lightweight design of
the model while maintaining high segmentation accuracy. In the future, our research will mainly focus
on reducing model complexity and improving model robustness. Meanwhile, we will consider improv-
ing the generalization ability of our method and applying it to images in other fields, such as remote
sensing image segmentation.
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