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Abstract: Due to their high bias in favor of the majority class, traditional machine learning classifiers
face a great challenge when there is a class imbalance in biological data. More recently, generative
adversarial networks (GANs) have been applied to imbalanced data classification. For GANs, the
distribution of the minority class data fed into discriminator is unknown. The input to the generator is
random noise (z) drawn from a standard normal distribution N(0, 1). This method inevitably increases
the training difficulty of the network and reduces the quality of the data generated. In order to solve
this problem, we proposed a new oversampling algorithm by combining the Bootstrap method and the
Wasserstein GAN Network (BM-WGAN). In our approach, the input to the generator network is the
data (z) drawn from the distribution of minority class estimated by the BM. The generator was used to
synthesize minority class data when the network training is completed. Through the above steps, the
generator model can learn the useful features from the minority class and generate realistic-looking
minority class samples. The experimental results indicate that BM-WGAN improves the classification
performance greatly compared to other oversampling algorithms. The BM-WGAN implementation is
available at: https://github.com/ithbjgit1/BMWGAN.git.

Keywords: imbalanced data; generative adversarial networks (GANs); Bootstrap method (BM); data
generation; probability distribution

1. Introduction

In recent years, the research area of imbalanced classification problems has attracted considerable
interest. Different from previous traditional classification problems, imbalanced task refers to a situation
where the distribution of classes is not equal. This means that one class, typically the majority class, has
more instances than another class, which is known as the minority class. In addition, this phenomenon is
a very common problem in many aspects of scientific research, such as medical diagnosis [1], abnormal
activity recognition [2], fraud detection [3] and so on. However, in these imbalanced tasks, minority
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class predictions typically perform worse than majority class predictions, leading to a high proportion
of minority class predictions that are incorrect. Therefore, a variety of methods have been proposed
to address imbalanced problems. Generally speaking, these techniques can often be divided into two
groups: Data level approaches and algorithmic level approaches.

Data level approaches have attracted much attention because of their better performance. Among
them, oversampling and undersampling are two major methods to tackle class imbalance in data level
approaches. Synthetic minority oversampling technique (SMOTE) [4] is a well-known method for
dealing with this problem by going along the line connection with one or more k-nearest neighbors to
generate new data. However, this method does not consider the effect of overlap between the minority
class and the majority class. Therefore, many variants have been proposed to solve this problem.
Borderline-SMOTE [5], for each minority instance, chooses boundary samples to balance data by
calculating the number of minority and majority classes in k-nearest neighbors. Kmeans-SMOTE [6] can
further improve the classification performance by combining SMOTE and the clustering algorithm.
Safe-level-SMOTE (SaSMO) [7], uses information from the k-nearest neighbors to improve the quality of
generated data. Adaptive Synthetic Sampling Approach for Imbalanced Learning (ADASYN) [8], an
adaptive synthetic sampling method for imbalanced data, makes use of neighboring minority and
majority class information. Gaussian Distribution based Oversampling for Imbalanced Data
Classification (GDO) [9] is a novel method based on a Gaussian distribution. In GDO, for each minority
instance, this method designed a Gaussian distribution to fit the minority class data. Local density-based
adaptive sampling for imbalanced data classification (LDAS) [10], provides a local density sampling
method, which alleviates the overlapping of majority class instances and assigns a local density to each
minority class instance. Based on the samples’ selection strategy [11], a method for oversampling that
involves identifying the k-nearest minority class neighbors of the minority class is proposed. A new
approach for imbalanced data classification based on data gravitation (IDGC) [12] is a novel method for
classifying imbalanced data based on data gravity. To pay attention to noise, a radial-based oversampling
method is proposed [13], which can identify areas where synthetic items from the minority class should
be generated. With the development of artificial intelligence technology, Classification Enhancement
Generative Adversarial Networks for unraveling data imbalance problems (CEGAN) [14] is proposed,
which is a classification enhancement generative adversarial networks to enhance the quality of
generated synthetic minority data. A differential evolution based oversampling approach for highly
imbalanced datasets (DEBOHID) [15] is a differential evolution based oversampling approach, which
has an effective candidate individual generation mechanism. Density-based [16] weighting is a good
way to deal with imbalanced data classification. On the other hand, undersampling is also a popular
technique for imbalanced datasets to reduce the skew in class distributions. In epilepsy and Parkinson’s
disease, the improved overlap based undersampling approach is proposed in this study as a way to make
instances of minority class more visible in the overlapped [17] region. However, it is important to note
that undersampling may result in the loss of valuable information present in majority samples, so this
method is rarely used in the imbalanced research field.

Algorithmic level approaches mainly include two aspects: Cost-sensitive learning and ensemble
learning. Cost-sensitive learning is an effective method in the imbalanced data classification field [18]. It
assigns higher misclassification cost to the minority class samples [19]. Compared to sampling methods,
cost sensitive learning is less common due to the difficulties in accurately assigning misclassification
costs. Cost-sensitive learning methods are categorized into three types. The first type involves data
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space weighting by modifying the training dataset distribution according to misclassification costs. The
second type involves building a cost-sensitive classifier by changing the learning process of a classifier.
The third type is based on Bayes risk theory and assigns each instance to the class with the lowest risk [20].
Ensemble learning dependent technique is a type of hybrid model that embeds data-level approaches into
general classifiers for better classification and generalization. It can also be divided into three subclasses:
Ensemble based on bagging, boosting, and hybrid. Underbagging [21] randomly undersamples the dataset
in each bagging iteration, leaving all the minority class instances in each iteration. SMOTEBagging [22]
uses SMOTE in each iteration. The new dataset contains twice the number of instances of majority
class. SMOTEBoost [23] is another algorithm that combines boosting and data sampling to improve the
performance of the model based on unbalanced data training. RUS (random undersampling) Boost [24]
uses RUS, a technique for randomly deleting instances from majority classes.

However, researchers often tend to focus on oversampling methods, because too much valuable
information would be lost due to undersampling [25]. Additionally, some studies have emphasized the
importance of class overlap [26], and this effect has been extensively examined in previous research. To
improve the classification performance of minority class, it is advantageous to use the deep learning to
synthetic data.

As mentioned in above methods in data level strategies, the oversampling and undersampling
approaches have some advantages and limitations. At this time, we regard oversampling approaches as
our main research direction. As shown in Figure 1, blue dots represent the majority class and green dots
represent the minority class and we can see that the number of minority class is greatly less than that of
the majority class.

Additionally, the current oversampling algorithms synthesize new minority class data by interpolation
within the available minority class data via the k-nearest neighbors algorithm. It is worth noting that
there is a disadvantage: The oversampling algorithms cannot fully utilize the information of minority
class samples. It inevitably leads to a reduction in classification performance. Therefore, Wasserstein
Generative Adversarial Network (WGAN) is used to extract information from minority class samples
and generates realistic-looking minority class samples. Nowdays, WGAN uses a standard normal
distribution as random noise since the distribution of the minority class is unknown. It leads to more
complicated network and increases difficulty of network training. To alleviate this problem, we use the
Bootstrap method (BM) to estimate the distribution of the minority class and improve the quality of
the data fed into the generator. After the network training is completed, the saved generator network is
used to generate new minority class data. Through the above steps, the classification performance of
minority class is further improved.

Specifically, the main contributions of this article include the following:
(1) In order to enhance the diversity of generated data, we change the type of random noise input to

the generator. Through this dynamic change, the data generated by the generator will not be concentrated
in part of the minority class data.

(2) Since the number of minority classes is small, this will increase the difficulty of training in the
WGAN to a certain extent. Therefore, we use the BM to estimate the distribution of the minority class,
which significantly increases the capacity of the WGAN to learn more sophisticatedly and ultimately
improves the quality of the generated data.

(3) Class overlap has been demonstrated to have a significantly negative impact on the classification
performance. To reduce the degree of class overlap, the trained generator is used to generate new
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minority class data.
The remainder of this paper is organized into four sections, namely, Section 2 introduces preliminary

knowledge, Section 3 introduces our new algorithm BM-WGAN, Section 4 introduces the experimental
results and Section 5 describes prospects for the future.
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Figure 1. Imbalanced dataset.

2. Related work

2.1. WGAN

GAN [27] is an important class of deep learning models and contains two major components,
Generator (G) produces synthetic data when given the noisy data and Discriminator (D) to
distinguishes data that is real or fake. A robust generative adversarial networks for time series
augmentation (TSA-GAN) [28] is a robust GAN, which designs a newly merged weight to solve the
problem of training saturation. Generative Adversarial Nets for Extremely Imbalanced Data
Augmentation (EID-GAN) [29] designs a new penalty function by subtracting the outliers from the
cropped region of generated instance to guide the generator to learn the features of outliers. Judging
from the above situation, neural networks are difficult to train and may suffer from the aforementioned
vanishing gradient problem. As shown in Figure 2, we input the minority class data into the
discriminator to train the GAN until the discriminator should be able to classify whether the given data
is real or fake. In order to increase both generation and discrimination’s capacity to locate a Nash
equilibrium, the two models in a GAN compete against one another while training. Next, the minimax
two-player game depending on G and D is evaluated with a cost function L(G,D) as defined as follows:

min
G

max
D

E
x∼pr

[logD(x)] + E
z∼pz

[log(1 − D(G(z)))], (1)

where x is real data from the real data distribution pr, z is noise data from the input noise variables pz

and E is the expectation.
It is worth noting that one model is fixed and the other is optimized during the GAN training process.

To increase the discrimination accuracy, the discriminator divides the real samples into positive and the
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generated samples as negatively feasible after fixing the generator. When the discriminator network is
trained to the optimal situation, the discriminator network can be expressed as:

D(x) =
pr(x)

pr(x) + pg(x)
, (2)

where pg(x) is the distribution of generated data. For a fixed D, the generator is trained by minimizing
log(1−D(G(z))). Finally, the optimal value is reached when pg(x) = pr(x), but this is only an ideal state
and it is difficult to achieve.

However, there are still some significant challenges and unstable behaviors [30] in GAN training. In
order to tackle the above problems, the Wasserstein distance [31] is introduced to replace the Jensen-
Shannon (JS) and Kullback-Leibler (KL) divergences. The objective function between the generator
and the discriminator is expressed as follows:

min
G

max
D

E
x∼pr

[D(x)] − E
z∼pg

[D(z)], (3)

where x is real data sampled from the real data distribution pr and z is the noise data sampled from a
gaussian distribution pg. The equation demonstrates that by treating the discriminator as a classifier, the
Wasserstein distance between the actual data distribution and the distribution assumed by the generator
is minimized.

W(pr, pg) = inf
γ∼
∏

(pr ,pg)
E(x,y)∼γ[||x − y||], (4)

where W(pr, pg) is Wasserstein distance,
∏

(pr, pg) is a collection that contains all joint distributions of
pr and pg, (x, y) is a sample from pr and pg and E(x,y)∼γ[||x − y||] is the sample’s expectation of distance.

In summary, the WGAN addresses the vanishing gradient problem and outperforms the KL and JS
divergence. Therefore, the probability density function of the minority class data can be obtained by
the competitive process between the generator and discriminator. Figure 3 shows the evolution of the
loss function during the training process in minority class data. By constructing the loss curve, we can
see that the loss of the discriminator is close to zero, which indicates that the network has been trained
successfully.

Figure 2. The structure of a basic GAN.
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Figure 3. Discriminator loss of BM-WGAN.

3. Proposed method

Many variants of SMOTE differentiate the minority examples by counting the number of majority
examples in minority neighbors in data generation. However, most of them not fully utilize the
information of the minority class. It will inevitably lead to a waste of data information. Therefore,
WGAN is a new and powerful machine learning approach to extract data information and generate
new minority class data. Since the distribution of the data is not known, the input z to the generator is
sampled from a standard normal distribution N(0, 1), where mean is zero and standard deviation is one.
It increases the difficulty of training and reduces the quality of generated data. To alleviate this problem,
we propose a new method (BM-WGAN) by leveraging the BM to optimize random noise.

Figure 4. The structure of BM-WGAN.

The Bootstrap is a method for estimating the distribution of an estimator or test statistic by resampling
one’s data [32]. It is introduced by Efron [33] as an approach to calculate confidence intervals for
parameters in circumstances where standard methods cannot be applied. An example of this would be
one in which few data points are available, so that approximate large sample methods are inapplicable.
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The BM has subsequently been used to solve many other problems that would be too complicated
for traditional statistical analysis. Let X = {X1, X2, · · · , Xm} be a sample and a collection of m numbers
be drawn at random from a completely unspecified distribution F. Let γ be an unknown parameter of
the distribution F, such as its mean. The way to obtain the distribution of γ or its characteristics is to
repeat the experiment of a sufficient number of time and approximate the distribution of γ by the so
obtained empirical distribution. The BM suggests that we resample from a distribution chosen to be
close to F in some sense. For example, the sample distribution F̂ that approaches F is n → ∞. The
pseudocode of the BM algorithm is given in Algorithm 1.

Algorithm 1 Bootstrap method
Input: Minority class Dmin, Mean=[], Cov=[].
Output: The parameters of minority class distribution.
1: for t = 1 : 1000 do
2: Generate a bootstrap sample x = {x1, x2, · · · , xm} by sampling the X = {X1, X2, · · · , Xm}

randomly.
3: Calculate mean of the bootstrap sample x = {x1, x2, · · · , xm}.
4: Calculate covariance of the bootstrap sample x = {x1, x2, · · · , xm}.
5: Mean← mean.
6: Cov← covariance.
7: Calculate mean Mean

1000 of the minority class.
8: Calculate covariance Cov

1000 of the minority class.

Let D = [X1, X2, · · · , XN] be the given training set composed of Dmin and Dma j, where Dmin =

[x1, x2, · · · , xm] represents the minority data and Dma j = [x1, x2, · · · , xn] represents the majority data.
Nmin and Nma j is the number of Dmin and Dma j. For each minority instance xi ∈ Dmin , let ki = kmin

i ∪ kma j
i

be the collection of k-nearest neighbors of xi, where kmin
i and kma j

i is the collection of minority instance
and majority instance in ki.

BM-WGAN mainly primarily comprises two essential components: Bootstrap estimation of minority
class distribution and synthesizes new data by WGAN. In the first component, we employ the BM
to calculate the probability distribution of the minority class. For the second component, the random
noise (z) drawn from the distribution of minority class is fed into the generator to train WGAN. After
the training is completed, new minority class data is generated through the generator. By using these
two essential steps, the quality of synthetic data can be improved. The pseudocode of the BM-WGAN
algorithm is given in Algorithm 2.

GANs are a leading neural network architecture for generative modeling. At this point, the input
of the generator model is a Gaussian random noise data. This may be an unreasonable way because
it increases the difficulty of training the network when the real distribution is very different from the
generated distribution. In BM-WGAN, we use the BM to find generated distribution which is the closest
to the real distribution in a new feasible area. Interestingly, the generated distribution is more likely
to cross with the real distribution. This additionally reduces the difficulty of getting convergence in
network training.

In addition, the new data generated by the trained generator is of higher quality. This means the
data point from the original dataset is more similar to the generated data. Once the neural network is
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trained with a suitable dataset, the generator network is used to synthesize new minority class data. The
generator stops synthesizing minority class data when the sample data size of the minority class is the
same as the sample data size of the majority class.

Algorithm 2 BM-WGAN
Input: training set D, Ds=[].
Output: Resampled dataset Dnew

1: Calculate the distribution of minority class by Bootstrap method.
2: for s=1:S do
3: Train Discriminator.
4: for j=1:J do
5: Discriminator← minority class data.
6: Generator← data from the distribution of minority class.
7: Train Generator.
8: Generator← data from the distribution of minority class.
9: while Nmin < Nma j do

10: Synthesize new data xn by Generator .
11: Ds ← xn.
12: return result Dnew = D ∪ Ds

4. Experiment

4.1. Performance metrics and datasets

Datasets: Table 1 gives the detailed properties of the seven selected KEEL (Knowledge Extraction
Evolutionary Learning) datasets. It shows the number of instances (Size), the number of attributes
(Attribute), the number of classes (Class), the number of minority and majority instances (Nmin and
Nma j) and the imbalance ratio (IR) for each datasets. IR is a very important indicator to measure the
degree of imbalanced data, which is defined as follows:

IR =
Nma j

Nmin
(5)

where Nma j and Nmin is the number of majority and minority class instance. According to the KEEL
dataset, four of these datasets are low imbalanced data with IR < 9.0, and the other three datasets are
high imbalanced data with IR > 9.0. In this study, the 10-folder cross-validation is used.

Performance Measures: The confusion matrix is the basis in measuring a classifier, The rows and
columns of the confusion matrix are tabulated in Table 2, corresponding to predicted class and actual
class. True positive (TP) is the number of positive samples that are correctly classified, false positive
(FP) is the number of negative samples that are incorrectly classified as positive samples, true negative
(TN) is the number of negative samples that are correctly classified, and false negative (FN) is the
number of positive samples that are incorrectly classified as negative samples.
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Table 1. Description of KEEL Datasets.

Datasets Size Attribute Class Nmin Nmaj IR
glass0 214 9 2 70 144 2.06
glass1 214 9 2 76 138 1.82
glass2 214 9 2 17 197 10.39
yeast12897 1004 8 2 30 917 30.57
yeast4 947 8 2 51 1433 28.1
pima 768 8 2 268 500 1.90
wisconsin 683 9 2 239 444 1.86

Table 2. Confusion matrix.

Actual
Predicted

Minority class Majority class
Minority class TP FN
Majority class FP TN

On this basis, three indicators, Geometric Mean (G-mean), F1-score (F1-measure) and Area Under
the ROC Curve (AUC), are used to evaluate the classification performance, and detailed definitions are
shown in Eqs (9)–(11). It can be seen from Eqs (9) and (10) that G-mean considers the proportion of
correctly classified instances in both minority and majority classes, while F-measure focuses more on
the average performance of precision and recall.

Recall =
T P

T P + FN
, (6)

Precision =
T P

T P + FP
, (7)

S peci f icity =
T N

T N + FP
, (8)

G − mean =
√

Recall ∗ S peci f icity, (9)

F1 − measure =
2 ∗ Precision ∗ Recall

Precision + Recall
. (10)

AUC, which is another significant metric obtained from the receiver operating characteristic (ROC)
curve, can also be defined using Recall and S peci f icity as follows:

AUC =
Recall + S peci f icity

2
. (11)
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4.2. Comparison of the BM with normally distributed N(0, 1) random noise

In this section, to better verify the effectiveness of the BM, the following experiments are conducted.
When network training is completed, we record the discriminator loss between the BM with random
noise. For WGAN, the closer the loss function of discriminator is to zero, the more successful the
network training is. Table 3 shows the discriminator loss of different methods. At this point, we can find
that the loss function of our proposed algorithm is smaller, and the results show that the BM is better
than the random noise. Therefore, the quality of the data attainable by the BM is very high.

Table 3. Discriminator loss of the Random noise and the BM.

Datasets Random noise Bootstrap method
glass0 –4.00 × 10−4 –6.83 × 10−6

glass1 –2.00 × 10−4 –2.35 ×10−5

glass2 –5.00 × 10−4 –2.09 × 10−5

yeast12897 –2.12 × 10−6 –4.57 × 10−7

yeast4 –4.45 × 10−6 –4.35 × 10−7

pima –7.00 × 10−3 –1.00 × 10−3

wisconsin –4.96 × 10−5 –1.54 × 10−5

4.3. Results and discussion

In addition, we compared our proposal with eight sampling algorithms, namely, SaSMO, Kernel-
ADASYN (KADA) [34], Gaussian-SMOTE (GSMO) [35], SMOTE-IPF (SIPF) [36], PDFOS [37],
ADOMS [38], ADASYN (ADA), LoRAS [39] and GANs [40]. To better verify the effectiveness of the
BM-WGAN, the data with two dimensions is simulated in Figure 5, one for minority class and the other
for majority class.

Figure 5 shows the significance of BM-WGAN by comparing GSMO, SIPF, KADA, PDFOS and
ADOMS in two folds. In Figure 5(b) and (d), most of the instances synthesized by KADA and GSMO
may be more fit for the distribution of minority class. However, the synthetic data has class overlap
with the majority class, which affects the classification performance of the classifier. In Figure 5(c) and (e),
more new synthetic data pays more attention to the impact of high-density areas on minority class data.
As can be seen, BM-WGAN not only takes into account the location of generated data, but also further
reduces the intersection and overlap with majority class. When compared with KADA and GSMO, the
data generated by the BM-WGAN is more consistent with the distribution of the initial minority class. By
doing so, the class information of data samples is fully utilized. Therefore, more minority class data located
among the majority class can be distinguished to improve the classification performance of the classifier.

Tables 4–6 presents the specific parameter configurations of the compared algorithms. Decision
Tree is used as the base learning model for BM-WGAN and the compared algorithms. Table 7 shows
the distribution parameters of the Gaussian distribution estimated by the BM. Tables 8–10 presents
the AUC, G-mean and F-measure results of the experimental study and the best result of each datasets
is highlighted in boldface. It can be seen from Tables 8 that BM-WGAN has the best performances
on AUC. Moreover, our method has been validated in seven independent datasets and performs well,
such as ‘glass0’. Second, ADOMS has also demonstrated a good classification performance in these
experiments, such as ‘glass2’. In ‘glass1’, we found that the classification performance of the new
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algorithm is greatly improved compared with other algorithms. For ADOMS, the AUC value of ADOMS
is not much different from that of SIPF.

Table 9 presents the G-mean results of the experimental study, and BM-WGAN performs best for five
of the seven dataset. However, LoRAS is slightly worse than the new algorithm and performs better on the
one datasets. It is worth noting that ADOMS achieves good results on ‘glass2’, which may be BM-WGAN
cannot fully utilize the information of the minority class and generate high-quality data. In addition, because
GSMO and SaSMO algorithms worse on all datasets when compared to SIPF and ADOMS. In short,
compared with other oversampling algorithms, the results of the new algorithm are better.
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Figure 5. Data visualization of different sampling methods.

Table 4. Parameter settings of the BM-WGAN.

Parameter Value
Optimizer of Discriminator RMSprop(l r= 1 × 10−5)
Optimizer of Generator RMSprop(lr = 1 × 10−3)
Epochs 500
Batch Size Nmin

Generator layers sizes {(Attribute,(Attribute,64))}
Discriminator layers sizes {(Attribute,(Attribute,128))}
Activation function of hidden layers Leaky ReLU
Number of Generator crosslayers 3
Number of Discriminator crosslayers 3
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Table 5. Parameter settings of the GANs.

Parameter Value
Optimizer of Discriminator Adamprop(lr = 1 × 10−8)
Optimizer of Generator Adamprop(lr = 1 × 10−3)
Epochs 500
Batch Size Nmin

Generator layers sizes {(32,(32,64))}
Discriminator layers sizes {(Attribute,(Attribute,128))}
Activation function of hidden layers Leaky ReLU
Number of Generator crosslayers 3
Number of Discriminator crosslayers 3

Table 6. Parameter settings of the compared algorithms.

Oversampling method Parameter
Safe-level-SMOTE n neighbors = 5, n jobs = 1
Gaussian-SMOTE n neighbors = 5, sigma = 1.0, n jobs = 1
SMOTE-IPF n neighbors = 5, k = 3, p = 0.01, n jobs = 1
Kernel-ADASYN k = 5, h = 1.0, n jobs = 1
PDFOS n jobs = 1
ADOMS n neighbors = 5, n jobs = 1,
ADASYN n neighbors = 5, sampling strategy = “auto”
LoRAS std = 0.005, sampling strategy = “auto”
Decision tree criterion = “gini”, splitter= “best”

Figure 6 demonstrates the Precision-Recall Curve (PR Curve) for each model to more clearly
demonstrate how the six models’ different performances are further displayed by their ROC curves.
ROC curves for all six advanced methodologies are represented in Figure 6: (a) PR Curve of BM-
WGAN; (b) PR Curve of GSMO; (c) PR Curve of SIPF; (d) PR Curve of KADA; (e) PR Curve of
ADOMS; (f) PR Curve of FDFOS. For BM-WGAN, the closer the AUC value to one demonstrates that
the overall performance is better. In Figure 6, we show only six oversampling methods and BM-WGAN
ranked first for six oversampling methods. In addition, we can also find that the AUC value of SIPF is
slightly worse than the value of BM-WGAN.

Table 10 shows the F1-measure results of the nine oversampling algorithms in this paper. For F-
measure, BM-WGAN performs best in seven datasets. In this case, ADOMS and LoRAS still achieved
good classification results, such as ‘glass2’ and ‘yeast12897’. Meanwhile, we note that the F-measure
result for BM-WGAN in ‘glass1’ is greatly improved compared to other oversampling algorithms.
Additionally, compared to SIPF and ADOMS, there is not much difference between two algorithms. On
the contrary, the classification performance of GSMO and SaSMO has not greatly improved.
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Table 7. Parameter settings on KEEL datasets by the BM.
Datasets Parameter
glass0 µ = (1.51, 13.25, 3.55, 1.16, 72.61, 0.44, 8.80, 0.01, 0.03)

σ2 = (5.05 × 10−6, 2.60 × 10−1, 6.06 × 10−2, 7.36 × 10−2, 3.20 × 10−1, 4.57 × 10−2,

3.56 × 10−1, 7.13 × 10−3, 4.52 × 10−3)
glass1 µ = (1.51, 13.11, 3.00, 1.40, 72.60, 0.52, 9.07, 0.05, 0.05)

σ2 = (1.41 × 10−5, 4.34 × 10−1, 1.45, 1.00 × 10−1, 5.23 × 10−1, 4.44 × 10−2, 3.63, 1.33 × 10−1, 1.02 × 10−2)
glass2 µ = (1.51, 13.42, 3.54, 1.20, 72.39, 0.40, 8.78, 0.008, 0.05)

σ2 = (3.43 × 10−6, 2.48 × 10−1, 2.51 × 10−2, 1.12 × 10−1, 2.49 × 10−1, 4.98 × 10−2, 1.36 × 10−1,

1.23 × 10−3, 1.08 × 10−2)
yeast12897 µ = (0.54, 0.52, 0.46, 0.20, 0.50, 0, 0.52, 0.25)

σ2 = (0.019, 0.017, 0.008, 0.008, 0, 0, 0.002, 0.002)
yeast4 µ = (0.72, 0.60, 0.41, 0.28, 0.51, 0, 0.51, 0.24)

σ2 = (0.025, 0.014, 0.005, 0.015, 0.004, 0, 0.003, 0.002)
pima µ = (4.85, 141.21, 70.79, 22.15, 100.73, 35.16, 0.55, 37.11)

σ2 = (1.39 × 101, 1.00 × 103, 4.61 × 102, 3.12 × 102, 1.91 × 104, 5.24 × 101, 1.38 × 10−1, 1.19 × 102)
wisconsin µ = (7.19, 6.57, 6.55, 5.60, 5.32, 7.61, 5.98, 5.85, 2.59)

σ2 = (5.92, 7.38, 6.58, 10.16, 5.91, 9.70, 5.20, 11. 17, 6.52)

Table 8. AUC results on KEEL datasets obtained by Decision Tree.
BM-WGAN SaSMO GSMO SIPF KADA PDFOS ADOMS ADA LoRAS GANs

glass0 0.865 ± 0.081 0.841 ± 0.090 0.757 ± 0.054 0.844 ± 0.078 0.677 ± 0.119 0.830 ± 0.091 0.844 ± 0.065 0.818 ± 0.086 0.792 ± 0.105 0.847 ± 0.100
glass1 0.795 ± 0.068 0.630 ± 0.074 0.743 ± 0.085 0.771 ± 0.097 0.742 ± 0.101 0.783 ± 0.105 0.759 ± 0.041 0.759 ± 0.077 0.695 ± 0.085 0.792 ± 0.076
glass2 0.920 ± 0.018 0.759 ± 0.102 0.868 ± 0.103 0.928 ± 0.036 0.770 ± 0.094 0.894 ± 0.114 0.931 ± 0.058 0.924 ± 0.065 0.851 ± 0.116 0.920 ± 0.118
yeast12897 0.961 ± 0.043 0.876 ± 0.116 0.959 ± 0.042 0.945 ± 0.013 0.951 ± 0.048 0.930 ± 0.043 0.951 ± 0.038 0.909 ± 0.039 0.966 ± 0.044 0.961 ± 0.043
yeast4 0.969 ± 0.050 0.897 ± 0.100 0.966 ± 0.049 0.960 ± 0.017 0.951 ± 0.045 0.966 ± 0.049 0.954 ± 0.019 0.912 ± 0.024 0.954 ± 0.036 0.967 ± 0.049
pima 0.779 ± 0.108 0.619 ± 0.038 0.708 ± 0.069 0.753 ± 0.068 0.735 ± 0.117 0.696 ± 0.064 0.746 ± 0.055 0.732 ± 0.047 0.746 ± 0.101 0.792 ± 0.105
wisconsin 0.961 ± 0.037 0.949 ± 0.038 0.948 ± 0.037 0.957 ± 0.042 0.939 ± 0.026 0.938 ± 0.022 0.952 ± 0.029 0.953 ± 0.022 0.955 ± 0.041 0.960 ± 0.040

Table 9. G-mean results on KEEL datasets obtained by Decision Tree.
BM-WGAN SaSMO GSMO SIPF KADA PDFOS ADOMS ADA LoRAS GANs

glass0 0.858 ± 0.086 0.834 ± 0.099 0.753 ± 0.055 0.838 ± 0.083 0.662 ± 0.124 0.822 ± 0.098 0.840 ± 0.068 0.813 ± 0.094 0.787 ± 0.112 0.839 ± 0.108
glass1 0.788 ± 0.066 0.608 ± 0.085 0.734 ± 0.091 0.758 ± 0.114 0.733 ± 0.113 0.771 ± 0.120 0.753 ± 0.042 0.752 ± 0.082 0.683 ± 0.092 0.781 ± 0.081
glass2 0.900 ± 0.173 0.738 ± 0.127 0.851 ± 0.144 0.928 ± 0.036 0.752 ± 0.125 0.874 ± 0.167 0.930 ± 0.059 0.921 ± 0.070 0.833 ± 0.161 0.900 ± 0.173
yeast12897 0.959 ± 0.048 0.876 ± 0.160 0.957 ± 0.046 0.945 ± 0.013 0.949 ± 0.052 0.928 ± 0.047 0.950 ± 0.040 0.908 ± 0.040 0.964 ± 0.049 0.959 ± 0.048
yeast4 0.966 ± 0.05 0.888 ± 0.119 0.964 ± 0.055 0.959 ± 0.017 0.950 ± 0.050 0.964 ± 0.055 0.954 ± 0.020 0.911 ± 0.025 0.953 ± 0.040 0.965 ± 0.055
pima 0.774 ± 0.110 0.608 ± 0.043 0.707 ± 0.070 0.751 ± 0.069 0.721 ± 0.122 0.692 ± 0.068 0.744 ± 0.055 0.731 ± 0.046 0.743 ± 0.103 0.774 ± 0.112
wisconsin 0.960 ± 0.037 0.948 ± 0.038 0.948 ± 0.037 0.957 ± 0.042 0.938 ± 0.027 0.937 ± 0.023 0.951 ± 0.030 0.952 ± 0.022 0.954 ± 0.043 0.960 ± 0.041

Table 10. F-measure results on KEEL datasets obtained by Decision Tree.
BM-WGAN SaSMO GSMO SIPF KADA PDFOS ADOMS ADA LoRAS GANs

glass0 0.856 ± 0.095 0.840 ± 0.092 0.757 ± 0.046 0.842 ± 0.082 0.685 ± 0.106 0.825 ± 0.102 0.848 ± 0.065 0.824 ± 0.070 0.796 ± 0.098 0.848 ± 0.099
glass1 0.797 ± 0.078 0.593 ± 0.098 0.746 ± 0.091 0.781 ± 0.095 0.750 ± 0.073 0.786 ± 0.100 0.772 ± 0.051 0.753 ± 0.076 0.688 ± 0.107 0.791 ± 0.078
glass2 0.890 ± 0.211 0.633 ± 0.151 0.842 ± 0.177 0.930 ± 0.036 0.746 ± 0.157 0.866 ± 0.205 0.931 ± 0.060 0.920 ± 0.077 0.827 ± 0.199 0.890 ± 0.211
yeast12897 0.958 ± 0.052 0.778 ± 0.116 0.956 ± 0.051 0.946 ± 0.012 0.950 ± 0.055 0.928 ± 0.053 0.950 ± 0.043 0.905 ± 0.043 0.963 ± 0.053 0.958 ± 0.052
yeast4 0.965 ± 0.061 0.802 ± 0.139 0.963 ± 0.061 0.960 ± 0.017 0.948 ± 0.056 0.963 ± 0.061 0.955 ± 0.019 0.908 ± 0.026 0.952 ± 0.043 0.963 ± 0.055
pima 0.770 ± 0.132 0.579 ± 0.062 0.702 ± 0.072 0.750 ± 0.075 0.710 ± 0.155 0.679 ± 0.082 0.748 ± 0.059 0.730 ± 0.053 0.736 ± 0.119 0.769 ± 0.112
wisconsin 0.959 ± 0.039 0.942 ± 0.044 0.947 ± 0.039 0.956 ± 0.044 0.938 ± 0.029 0.936 ± 0.025 0.951 ± 0.031 0.951 ± 0.023 0.953 ± 0.046 0.959 ± 0.043
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(a) BM-WGAN (b) GSMO (c) SIPF

(d) KADA (e) ADOMS (f) PDFOS

Figure 6. Precision-Recall Curve of different sampling methods in glass0.
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Figure 7. Comparison of different oversampling algorithms in different datasets.
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Figure 8. Comparison of winning times.

As shown in Figure 7–8, it describes the comparison of different sampling methods for different
KEEL datasets and the winning times of nine different oversampling methods. In summary, BM-WGAN
has the most winning times than other oversampling techniques. The winning times of BM-WGAN has
reached 15 times. The second place is ADOMS and LoRAS, which also has good performance and its
winning times has reached three times. The rest of the oversampling algorithm achieved a lower number
of winning times compared to the new algorithm. These results indicate that our new method is more
effective in imbalanced data classification.

5. Conclusions

This paper proposed a new oversampling algorithm based on BM and WGAN. First, the distribution
of minority class data is unknown. The random noise from a standard normal distribution increases
the complexity of the WGAN when fed into the generator. Therefore, we used the BM to estimate the
distribution of minority class. The data from the distribution of minority class as random noise was fed
into the generator to train WGAN. It increased the training accuracy of the WGAN. In addition, the
generated data lacked diversity, which is a common problem that occurs when using the SMOTE family.
However, the data generated by the WGAN will not be concentrated, enhancing the diversity of the data.
Finally, BM-WGAN reduced the degree of class overlap and tried to make use of as many instances that
contain further information as possible. Combining the above methods, our method ensures the stability
of minority class distribution and improves the quality of the generated data.

Although the method proposed in this paper performed well, it still has some limitations. For example,
the information about the neighbors for each minority sample is not sufficient. In addition, the information
of majority class is not fully utilized. In future research, we will pay more attention to these limitations.
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