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Abstract: The electrocardiogram (ECG) is a widely used diagnostic tool for cardiovascular diseases. 

However, ECG recording is often subject to various noises, which can limit its clinical evaluation. To 

address this issue, we propose a novel Transformer-based convolutional neural network framework 

with adaptively parametric ReLU (APtrans-CNN) for ECG signal denoising. The proposed APtrans-

CNN architecture combines the strengths of transformers in global feature learning and CNNs in local 

feature learning to address the inadequacy of learning with long sequence time-series features. By fully 

exploiting the global features of ECG signals, our framework can effectively extract critical 

information that is necessary for signal denoising. We also introduce an adaptively parametric ReLU 

that can assign a value to the negative information contained in the ECG signal, thereby overcoming 

the limitation of ReLU to retain negative information. Additionally, we introduce a dynamic feature 

aggregation module that enables automatic learning and retention of valuable features while discarding 

useless noise information. Results obtained from two datasets demonstrate that our proposed APtrans-

CNN can accurately extract pure ECG signals from noisy datasets and is adaptable to various 

applications. Specifically, when the input consists of ECG signals with a signal-to-noise ratio (SNR) 

of -4 dB, APtrans-CNN successfully increases the SNR to more than 6 dB, resulting in the diagnostic 

model's accuracy exceeding 96%. 
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1. Introduction  

The electrocardiogram (ECG) signal is a crucial health indicator that enables physicians to 

diagnose cardiovascular diseases and perform biometric identification [1]. However, the accuracy of 

ECG recordings can be severely compromised by baseline wander, power line interference, and 

physiological artifact during the recording process [2]. Furthermore, in telemedicine applications 

involving the transmission and storage of ECGs, poor channel conditions can introduce additional 

noise [3]. Noise can obscure critical clinical features in ECG signals, rendering their identification and 

diagnosis challenging [4]. As a result, obtaining pure ECG signals has become an important task in 

ECG signal processing. 

In ECG signal processing, traditional denoising methods mainly adopt filtering or decomposition 

techniques to separate the signal and noise. Among them, empirical mode decomposition (EMD) [5,6], 

adaptive filters [7], and the wavelet transform [8,9] have been widely studied and applied for a long 

time. For instance, Weng et al. [10] proposed a noise reduction method based on EMD and validated 

its effectiveness on the MIT-BIH Arrhythmia Database. Chandrakar et al. [11] proposed an adaptive 

filter using a recursive least squares algorithm, which outperformed traditional LMS-based adaptive 

filters. Reddy et al. [12] proposed an improved threshold denoising method, which combined hard and 

soft thresholding to achieve superior denoising performance. However, these traditional methods have 

some limitations in ECG signal denoising, such as being effective only under specific noise 

conditions [13]. For instance, EMD could suffer from modal aliasing when the sampling frequency of 

ECG signals is too low. Moreover, these methods require frequent parameter adjustment to achieve 

satisfactory denoising performance across different ECG signals due to the inconsistent attenuation 

features of the high-frequency and low-frequency components in the signal [14]. 

According to the above analysis, the existing ECG noise reduction methods still need 

improvement. Deep learning possesses a vast array of applications and showcases superior 

robustness [15,16]. Hong et al. [17] reviewed existing deep learning methods and proved that deep 

learning methods generally perform better than traditional methods by testing them on multiple 

datasets. Deep learning is highly dependent on data, meaning that larger amounts of data make the 

network perform better. The widespread use of telemedicine and wearable ECG devices provides a 

large database for ECG studies. This provides a good precondition for applying deep learning to the 

field of ECG. Antczak [18] presented a novel deep recurrent neural network for ECG noise reduction. 

The architecture is tested on a real dataset. Experimental results show that the proposed method is 

better than traditional methods, such as the band pass filter and wavelet filter in signal-to-noise ratio 

(SNR) from 0 to -10 dB. In [13], Arsene et al. proposed two deep learning models and a traditional 

wavelet-based noise reduction method. The results on different datasets prove the superiority of the 

CNN. In addition, autoencoders are a classic and effective architecture for signal denoising [19]. For 

example, Chiang et al. [20] proposed a denoising auto-encoder (DAE) based on full convolution, which 

can effectively reduce the noise of ECG signals. Singh et al. [21] proposed a novel attention-based 

convolutional denoising autoencoder (ACDAE) model that utilizes skip links and attention modules 

to reliably reconstruct ECG signals from extreme noise conditions. Samann et al. [22] proposed a 

running DAE (RunDAE) for denoising short ECG segments without relying on the R-peak detection 

algorithm for alignment. Xiong et al. [23] designed a DAE architecture that combines the wavelet 

transform (WT), which improved the performance of DAE on removing baseline drift. Fotiadou et al. [24] 

established a convolutional encoder-decoder network structure with skip connections, which achieved 

remarkable results in fetal cardiac noise reduction.  
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Although the CNN has strong feature extraction capability, there are still some problems when it 

is applied to ECG signal noise reduction. 

1) As the CNN is developed based on image recognition, it rarely cares about negative value 

information in data. The ECG signal is different from the image data. The ECG data fluctuates based 

on zero values. Therefore, it contains much valuable negative information. The commonly used ReLU 

function is unsuitable for ECG signal processing. 

2) The CNN developed based on image recognition, focuses on learning local neighborhood 

information. The ECG signal is a long-term sequence signal, and learning global features is essential 

for ECG analysis. Limited by the structure of the CNN itself, it is difficult for CNNs to perform well 

in such tasks. 

3) The primary objective of ECG denoising is to restore the original ECG signal while preserving 

its valuable feature information. However, in the process of optimizing the denoising network, it is 

possible to inadvertently minimize the distance between the denoised signal and the original signal. 

This may cause the CNN-based region network to overlook some weak but important features that 

could reflect disease information. For example, irregular R-R intervals, missing or abnormal P-Waves, 

variation in QRS complex width, ST segment and T-Wave abnormalities, and atrioventricular block 

all reflect specific related disease information. Consequently, valuable information may be lost, even 

if the denoising indicators appear to be excellent. 

For encoding long-term global information, Transformer has demonstrated excellent performance 

and has been successfully applied in ECG analysis. For example, Hu et al. [25] proposed a novel 

transformer-based deep learning neural network that detects arrhythmia on single-lead ECG segments. 

Meng et al. [26] proposed a novel lightweight fussing transformer, which can achieve dynamic ECG 

heartbeat classification using fewer parameters. Xia et al. [27] proposed a generative adversarial 

network based on Transformer and convolution to solve the data imbalance problem. Xia et al. [28] 

proposed a novel framework based on a lightweight Transformer and combining CNN and DAE, 

which uses a DAE to extract local features from a single heartbeat and adopts a lightweight 

Transformer to focus on global features. In addition, the Transformer also plays an important role in 

ECG signal-denoising applications. For example, Yin et al. [29] proposed a GAN-guided parallel CNN 

and Transformer network, significantly outperforming existing networks in various artifact removal 

tasks. Pu et al. [30] proposed a new transformer-based EEG signal denoising network, which can 

effectively remove eye artifacts and muscle artifacts. 

Based on the problems CNN faces in ECG noise reduction, this paper aims to propose a deep 

learning-based ECG signal noise reduction algorithm to solve them. Therefore, this paper constructs a 

novel Transformer-based convolutional neural network framework with adaptively parametric ReLU 

(APtrans-CNN). APtrans-CNN can accurately learn local detail features and important global context 

features from the noise signal while retaining the disease information contained in the ECG signal 

while reducing noise. To be specific, the Transformer is combined with CNN, which preserves the 

CNN's excellent local detail perception and greatly improves the ability to capture global features of 

ECG signals. This improves the inadequacy of CNN long-sequence time-series feature learning. In 

addition, we introduced the activation function AP-ReLU, especially for one-dimensional ECG signal 

processing. It solves the problem that the traditional activation function cannot preserve the negative 

features of ECG signals. Inspired by [31,32], a dynamic feature aggregation module (DAM) was 

proposed in this paper. The module enhances the network’s ability to capture valuable features, which 

allows the network to complete the noise reduction task while retaining valuable disease information.  

The contributions of this paper are summarized as follows: 
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1) The proposed method introduces AP-ReLU to replace the general ReLU and was embedded 

into the network. AP-ReLU realizes the full utilization of ECG information by assigning weight values 

to negative information. 

2) The proposed method inherits the advantages of CNN and Transformer through the organic 

combination of the CNN and Transformer, thus having efficient local and global feature perception ability. 

3) This paper proposes a novel feature extraction architecture APtrans-CNN. By combining the 

CNN and Transformer, the local-global feature fusion extraction is realized. The framework can be 

applied to ECG signal noise reduction for people with different health conditions due to its excellent 

disease information retention ability.  

4) The proposed method is verified on two real datasets, and the results show that it has excellent 

performance under different noises and has good application potential. 

The paper is organized as follows: In Section 2, the proposed ECG denoising method is 

introduced in detail. In Section 3, the effectiveness and superiority of APtrans-CNN are verified. 

Section 4 summarizes this paper. 

2. Methodology 

2.1. Problem definition 

The general form of the ECG signal is defined as follows: 

  (1) 

where  represents the observed ECG signal, and  represents the original ECG signal 

without noise.  represents the noise generated during signal acquisition and storage.  

represents the length of each ECG signal. The main task of denoising is to extract pure ECG signals 

from noise-polluted signals. For the training of the proposed method, we set  as the 

training set, where N is the number of training samples.  represents the ECG signal 

matrix used for denoising and  represents the pure ECG signal matrix we want to 

get. We take the noise-doped ECG signal as the input signal, and the original ECG signal as the target 

for training. The main training method of the network is to optimize the parameters of the network by 

minimizing the noise reduction error, which is defined as 

  (2) 

where  represents the loss function, and  represents the ECG signal predicted by the network. 

We selected the mean square error (MSE) as the loss function. This formula can be expressed as: 

  (3) 

2.2. Transformer-based ECG signal denoising framework 

Figure 1 illustrates the overall architecture of the proposed model, which comprises two stages: 

signal compression and signal reconstruction. In the compression stage, convolutional layers are 
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employed to capture the essential details of ECG signals. Additionally, a Transformer module is 

incorporated at the bottom of the encoding layer to extract valuable global feature information. In the 

reconstruction stage, deconvolution and feature aggregation are performed on the feature image to 

recover the information of the ECG signal. Moreover, the skip connection mechanism is integrated 

into the network to facilitate the restoration of missing details and obtain a pure ECG signal. 
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Figure 1. The network architecture of APtrans-CNN. C represents that the number of 

channels, K represents the convolution kernel, and S represents the step size. 

In the signal compression stage, a typical convolutional network architecture is employed along 

with the AP-ReLU [33] to replace the modified linear unit, thereby endowing the model with more 

flexible linear transformation capabilities. The batch normalization layer is also included to expedite 

the training process of the network. Furthermore, the Transformer [34] module is added at the end of 

the encoding layer to compensate for the convolutional network's limitations in global signal feature 

extraction and extract the essential features of ECG signals more effectively. In the signal 

reconstruction stage, we chose the transpose convolution over upsampling since it can carry more 

information. Additionally, a DAM module is added after each transpose convolution layer to enable 

the network to learn crucial features of ECG signals and mitigate the noise’s impact on feature 

extraction. Furthermore, because some edge features of ECG signals may be lost during signal 

compression due to sampling, we utilize skip connections to extract the features of each convolution 

layer and connect them with the corresponding features of the deconvolution layers. This enables the 

retrieval of some edge features of ECG signals. 

2.3. Adaptively parametric ReLU 

In conventional CNNs, ReLU is often used as the classical activation function. However, due to 

the definition of the function, when the input information is negative, the function will be in an inactive 

state. As a result, only half of the information contained in the ECG signal can be utilized by the 

network. Although some improved activation functions, such as PReLU and Leaky ReLU, have been 
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proposed in subsequent studies to give a small output to the negative part, they do not consider the 

essential property that both the negative and positive parts of the ECG signal are equally important. 

Furthermore, since each individual has different physical conditions and external interference during 

signal acquisition, their ECG signals may vary. The ReLU function is the same for all input 

transformations, which is not conducive to improving the universality of the ECG noise reduction model. 
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Figure 2. The network architecture of adaptively parametric ReLU (AP-ReLU). 

To solve this problem, inspired by [33], we introduced AP-ReLU as the activation function of 

this model. As shown in Figure 2, the input feature  is first divided into positive and 

negative parts and . To improve the stability of the method, the positive and 

negative feature maps go through a global average pooling layer respectively, and the dimension of 

feature maps is changed into . 

  (4) 

  (5) 

After that, the two new feature maps are combined according to the time dimension to get a new 

feature , which is then input into a nonlinear mapping module. The feature map 

 first passes through a BN layer and then maps  to  through a fully 

connected and ReLU layer. Then, the new features pass through a BN layer, a fully connected layer, 

and sigmoid layer again to get . Finally, the dimension of  is extended to obtain the 

feature weights  of negative signals. 

Finally, the feature weight  is assigned to the negative feature , which is then added to the 

positive feature to obtain the final output feature y. The parameter transfer of the whole AP-ReLU 

module is shown as follows, where x and y represent input signals and output signals respectively.  

represents the feature weight obtained by the FCN module. 

  (6) 

The AP-ReLU module facilitates the involvement of negative features in ECG signals in network 

learning. The module’s global feature weight varies for each input, producing distinct output sets, 

which enhances the network’s nonlinear transformation capability. This feature also results in 

significant improvements in the network's denoising ability. 
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2.4. Dynamic feature aggregation module (DAM) 

Inspired by the SENet [31], this paper designed the dynamic feature aggregation module (DAM) 

to overcome the limitations of the CNN. The architecture of the DAM is shown in Figure 3. It consists 

of two continuously connected sub-modules: the channel feature aggregation module (CFAM) and the 

time feature aggregation module (TFAM). Since convolution operations extract information features 

by both channel and time information, DAM guides the network on what and where to pay attention 

by processing channel and time dimension information. 
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Figure 3. The architecture of dynamic feature aggregation module (DAM). 

In CFAM, it compresses the time dimension of the signal to make the network pay more attention 

to the channel information. The input features  pass through the global average pooling 

(GAP) and global max pooling (GMP) to get two size of  feature vectors. GAP generates feature 

vectors by calculating the average value of each channel feature, which is spatially invariant. GMP 

generates feature vectors by calculating the maximum value of each channel feature, which can retain 

the most significant features in the feature map. A weighted feature map of channel attention is 

obtained by adding the two feature maps through a linear network and applying a set of nonlinear 

transformations based on the sigmoid activation function. Then, the output of CFAM is 

obtained by the following calculation: 

  (7) 

 represents the sigmoid activation function, and  means the element-wise multiplication is used 

to calculate the number between two matrices.  and  represent the features after average 

pooling and max-pooling in the time dimension. W0 and W1 represent the weight dimensions in the 

MLP, which are shared by the two inputs. 

To make the network better aggregate the important features in the time dimension, the F1 is 

average pooled and maximum pooled based on the channel dimension, which generates two feature 

vectors with a size of . Then, they are connected according to the channel dimension to obtain 

, which is propagated through a convolution layer with a kernel size of 7. Finally, the weight 

coefficient is generated through a sigmoid function. Then, the output  of TFAM is 

obtained by the following calculation: 

  (8) 
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means that the convolutional kernel size is 7. 

2.5. Transformer for global feature encoding 

CNNs have achieved remarkable success in various fields. However, their convolution operations 

can only capture local information near the convolution kernel, whereas global features often contain 

critical information for ECG signals. On the other hand, Transformers, a model originally designed for 

natural language processing tasks, have been extensively employed in computer vision tasks and have 

shown significant performance improvements. Thanks to its self-attention mechanism, Transformers 

can model long-range correlated features effectively. Thus, we propose to integrate CNNs and 

Transformers in our network to leverage the complementary strengths of these models. 

As shown in Figure 4, in this module, features extracted by the CNN are used as inputs, and more 

abundant output features are obtained through a multi-head attentional mechanism module. Skip 

connection operation is performed on the input and output signals to recover the details of lost ECG 

signals, and normalization is carried out to speed up network operation. The multi-attentional 

mechanism comprises multiple parallel scaled dot product attentional mechanisms. 
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Figure 4. The network architecture of a single transformer encoder layer. 

2.5.1. Scaled dot product attention (SDPA) 

In the SDPA module, the calculation of the attention can be divided into three steps. First, three 

learnable weight matrices are defined by three different linear transformation layers. Then, the input 

features  are mapped to Query (Q), Key (K), and Value (V), respectively, using the three weight 

matrices, which are defined as follows: 

  (9) 

  (10) 

  (11) 

After that, the similarity between Query and Key is calculated by the dot product of Q and KT. To 

improve numerical stability, the similarity first needs to undergo a scale transformation, that is, divide 
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by the square root of the scale factor dk. Then, the similarity is input into the softmax function  for 

normalization. Finally, these values are multiplied by the output weight to get the final Attention. 

  (12) 

2.5.2. Multi-head attention (MHA) 

In MHA, it is proposed to define multiple groups of Q, K, and V, and put them into the self-

attention mechanism module respectively, hoping that they can obtain ECG information from the 

subspace of different aspects, thus extracting richer and more comprehensive ECG features than a 

single SDPA module. As shown in Figure 4, in this part of the module, we generated different output 

matrices  by using eight parallel SDPA, and these SDPA modules are independent of each 

other and do not share their parameters. The process can be expressed as follows: 

  (13) 

where  represents the number of heads in MHA, and are learnable parameter mapping matrices 

used for the aggregation of ECG signal features.  

2.5.3. Feedforward network (FFN) 

After the MHA module, the skip connections are added to reduce the degradation of the network. 

Then the obtained features are normalized to accelerate the training speed of the network. 

  (14) 

  (15) 

where  represents mean calculation, and  represents variance calculation. And  is added to 

prevent the denominator from being zero. Then, the FFN is used to enhance the feature extraction 

capability of the Transformer. The FFN consists of two linear connection layers with weights W0, W1 

and a ReLU activation function. After skip connection and layer normalization, the encoder will enter 

the next sublayer. This can be expressed as follows: 

  (16) 

3. Experimental verification 

3.1. Experimental setup 

To improve the reliability of the experiment, real ECG signals from the MIT-BIH arrhythmia 

database [35] and MIT-BIH atrial fibrillation database [36] were used in the experiment [37]. The 
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arrhythmia dataset included 48 dual-channel electrocardiogram recordings from 47 subjects at a 

sampling frequency of 360 Hz, each recording lasting 30 minutes. The atrial fibrillation dataset 

consisted of 23 dual-channel ambulatory electrocardiogram recordings from 25 subjects sampled at 250 

Hz, each recording lasting 10 hours. 

For these two datasets, we add noise manually to simulate signal doping in the process of signal 

acquisition. To make the results more convincing, we selected three kinds of noise that are most likely 

to occur in ECG signal extraction, including baseline drift, muscle artifacts , and motion artifact noise. 

All the source of the noise is randomly selected from the MIT-BIH Noise Stress Test Database 

(NSTDB) [38]. Based on the length of the ECG cycle, we segmented every 250 data points, and the 

duration of each ECG signal was approximately one ECG cycle. To simulate the randomness of noise 

generation in the real world, we randomly select three kinds of noise from the NSTDB dataset. The 

signal intensity of the noise was changed to meet the certain , and was added to the ECG signal 

fragments randomly selected from the MIT-BIH arrhythmia database and atrial fibrillation database. 

Then, the mixed noisy ECG signal is used as the input signal. The original pure ECG signal as the 

target signal. Then, all the data are normalized so that the amplitude of the data can be kept in the range 

of (0, 1). In order to have a quantitative standard for the added noise signal intensity, we define  

via the following formula: 

  (17) 

 represents the power of the signal after adding noise, and  represents the power of the 

noise signal. 

The Transformer model requires a large amount of data for training, so we use the sliding 

segmentation method to obtain more training samples. In addition, we use 80% of the samples in the 

two data sets as the training set, 10% of the samples as the validation set, and 10% of the samples as 

the test set. In the arrhythmia data set, 81,882 ECG segments and 9094 ECG segments were randomly 

selected for training and validation, and 9602 ECG segments were selected for the test. For the atrial 

fibrillation data set, 224,730 ECG segments and 24,971 ECG segments were randomly selected for 

training and validation, and 26,299 ECG segments were selected for the test. The training set, 

validation set, and test set shared the same input of -4, -2, 0 and 4 dB, respectively. The proposed 

model is implemented by Pytorch and Python. During the model training process, the Adam 

optimization algorithm was adopted, the learning rate was set to 0.0001, and the batch size was set to 

64. Each experiment was repeated three times, and the average value was used as the final result to 

avoid accidental experimental results. 

3.2. Evaluation metrics 

In this study, the signal-to-noise ratio (SNR) and the MSE were used to evaluate the network 

denoising performance.  represents the SNR of the output predicted signal. When the input 

 is the same, the larger the  is, the better the denoising performance is.  can 

be expressed as: 

  (18) 
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MSE is used to determine the variance between the predicted ECG signal and the pure ECG signal. 

The smaller the MSE value is, the difference between the reconstructed signal and the original pure 

signal is smaller. MSE can be expressed as: 

  (19) 

where  represents the original pure ECG signal, represents the reconstructed and enhanced ECG 

signal, and N represents the sample number of input ECG signals. 

3.3. Denoising performance for arrhythmia database 

3.3.1. Effectiveness of proposed method 

To explore the effect of the three main modules that we proposed on the performance 

improvement of the traditional autoencoder noise reduction network, we select the autoencoder 

network as the basic network and add three modules, AP-ReLU, DAM, and Transformer, respectively, 

on the network and compare them with the original network and the proposed method APtrans-CNN. 

These comparison methods are CNN, AP-CNN, DAM-CNN, and Trans-CNN. CNN: The 

convolutional autoencoder architecture with skip connections consists of four encoding and decoder 

layers. AP-CNN: Replacing ReLU in the CNN encoding and decoding layers with the AP-ReLU. 

DAM-CNN: Adding DAMs in each decoding layer of CNN. Trans-CNN: The encoder part of the 

Transformer network is added at the bottom of the encoder module of CNN. 

To prove the versatility of the network model for ECG signals under different noise conditions, 

four  were selected for input ECG signals, which were -4, -2, 0, and 4 dB, respectively. The 

SNR and mean square error of the enhanced ECG signal were compared. The experimental results are 

shown in Table 1 and Figure 5. 
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Figure 5. The comparison among denoising performance. (a) SNR, (b) MSE of different 

architectures under different noise environments. 

Obviously, the proposed method, particularly the Trans-CNN architecture, has demonstrated 

remarkable performance in all four tested SNRdB conditions. Incorporating the AP-ReLU and DAM 

techniques into the CNN network resulted in significant improvements. For SNRdB = -4 dB, the SNROut 
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values of AP-CNN and DAM-CNN were 4.53 and 4.25 dB, respectively. The use of AP-ReLU 

facilitated the inclusion of valuable negative information in the ECG signal. The DAM-CNN network 

bolstered the feature extraction capability of the network, allowing for the automatic extraction of 

valuable feature information and the elimination of useless noise. Notably, Trans-CNN exhibited the 

best performance in high-noise environments, with a SNROut of 5.19 dB at SNRdB = -4 dB, which can 

be attributed to the Transformer’s self-attention mechanism. Networks that integrate this module can 

learn more valuable global features that are typically ignored during convolution operations. From 

another evaluation index, MSE, the performance of the three proposed architectures are very similar, 

and each has its advantages under different noise conditions. Through tests in different noise 

environments, we also obtained that the proposed APtrans-CNN can combine the advantages of each 

module. It can maintain an SNROut of more than 6 dB in a noise environment from -4 to 4 dB, and can 

adapt to different noise environments. 

Table 1. Experiment results under four noise environments (MIT-BIH arrhythmia database). 

Method SNROut MSE 

Noise -4 dB -2 dB 0 dB 4 dB -4 dB -2 dB 0 dB 4 dB 

CNN 1.95 dB 2.56 dB 3.52 dB 5.70 dB 0.153 0.117 0.094 0.058 
AP-CNN 4.53 dB 5.70 dB 7.63 dB 8.62 dB 0.077 0.057 0.042 0.025 

DAM-CNN 4.25 dB 5.39 dB 6.71 dB 8.78 dB 0.081 0.062 0.045 0.027 

Trans-CNN 5.19 dB 5.76 dB 7.26 dB 8.87 dB 0.074 0.062 0.048 0.029 

APtrans-

CNN 

6.45 dB 7.09 dB 8.12 dB 10.38 dB 0.057 0.040 0.036 0.020 

3.3.2. Visualization of denoising results 

To further explore the noise reduction effect of each module, we visualized the predicted signal 

under different noise conditions. The results in Figure 6 showed that by adding AP-ReLU, DAM, and 

combining the CNN with Transformer, the data quality after noise reduction was significantly improved. 

The data processed by the CNN network has restored some data from the original ECG signal, 

but it can be seen that the denoised signal still has many high-frequency noise components. In addition, 

the signal’s peak does not reach the peak of the original signal wave. Although AP-CNN has good 

performance in terms of SNR and MSE, the visualized signal contains a lot of useless signals. However, 

the ECG data after the AP-CNN processing still preserved most of the information in the original ECG 

signal. The R-wave peaks also reached the original expectations. This is because AP-ReLU enables 

the network to learn more valuable feature information. With the addition of the DAM module, the 

network is more likely to eliminate those irrelevant high-frequency noise components and separate the 

original pure signal from the noise signal. After adding the DAM module, the network can 

automatically aggregate ECG features, eliminating a large part of the high-frequency noise. The 

combination of CNN and Transformer greatly improves the ECG signal’s smoothness and restores 

each part’s waveform very well. The combination of CNN and Transformer enables the network to 

improve the ability to extract global features and can restore the original waveform signal well. We 

also found that the proposed three methods have advantages, but also have some shortcomings. Our 

proposed method successfully combines the advantages of the above methods. It has excellent 

performance during the whole SNRdB throughout the test, and the denoised signals successfully 

preserve most of the features of disease information. 
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In our study, we considered very severe and extreme experimental circumstances. For example, 

when the signal-to-noise ratio is 0 dB, the energy of the noise signal is the same as the energy of the 

original signal. This means that the ECG signal is seriously interfered by noise. Generally speaking, 

under good experimental conditions, the signal-to-noise ratio of ECG signals can reach more than 20 

to 30 dB. Therefore, in actual scenarios, we basically will not encounter noise interference around 0 

dB. In addition, it can be seen from Figure 6 that, when the signal-to-noise ratio is 4 dB, the denoised 

signal obtained by APtrans-CNN is consistent with the original signal. This shows that in actual 

scenarios, the proposed method can have excellent performance and will not cause medical personnel 

to ignore important information. 

CNN

AP-CNN

DAM-

CNN

Trans-

CNN

0       200     400    600    800  1000 0       200     400    600    800  1000 0       200     400    600    800  1000 0       200     400    600    800  1000

-4dB -2dB 0dB 4dB

APtrans-

CNN

 

Figure 6. The visualization of the denoising results produced by CNN with the proposed modules. 

3.3.3. Comparison with existing denoising methods 

To validate the effectiveness of the APtrans-CNN model, we compared it with the discrete 

wavelet transform (DWT), and we also employed several existing deep learning models, including the 

LSTM network used by Arsene et al. [13], the FCN proposed by Chiang et al. [39], the DNN proposed 

by Sannino et al. [40], and the IMUnet proposed by Qiu et al. [41]. The experimental results are 

presented in Table 2. It is evident that some of the methods only exhibit satisfactory performance in 

certain noise environments with SNRdB values of -4, -2, 0, and 4 dB. In contrast, the proposed APtrans-

CNN consistently exhibits superior denoising performance compared to other benchmarked networks 

under all four noise conditions. 

The proposed APtrans-CNN architecture exhibits significant improvements in SNR compared to 

other comparison networks. Specifically, when SNRdB = -4 dB, the SNROut of APtrans-CNN is 6.45 

dB, representing an increase of more than 10 dB compared to SNRdB. Among the comparison networks, 
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the IMUnet has the highest SNROut of 5.76 dB, while the DNN and FCN only achieve 4.38 and 2.13 

dB, respectively. Although LSTM shows improved results compared to the input when SNRdB = -4dB, 

its denoising ability is greatly reduced as the noise level decreases. In contrast, the APtrans-CNN 

architecture utilizes the Transformer module to obtain more global feature information, making it 

better suited for processing extremely long feature sequences such as ECG signals. In terms of the 

evaluation metric MSE, the DWT has the highest MSE of 0.164, followed by FCN with 0.137, while 

APtrans-CNN has the lowest MSE of 0.057, demonstrating its ability to accurately extract valuable 

ECG information by retaining the ability to capture important detail features while improving the 

network’s performance in handling long sequence time-series with the help of Transformer. 

Table 2. Experiment results under four noise environments (MIT-BIH arrhythmia database). 

Method SNROut MSE 

Noise -4 dB -2 dB 0 dB 4 dB -4 dB -2 dB 0 dB 4 dB 

DWT 2.25dB 2.51 dB 2.94 dB 4.27 dB 0.164 0.102 0.096 0.074 

FCN 2.13 dB 2.43 dB 3.47 dB 5.94 dB 0.137 0.111 0.095 0.052 

DNN 4.38 dB 5.19 dB 6.20 dB 6.89 dB 0.072 0.053 0.050 0.041 

LSTM 4.46 dB 5.37 dB 5.88 dB 6.52 dB 0.088 0.078 0.052 0.046 

IMUnet 5.76 dB 6.63 dB 7.82 dB 9.67 dB 0.059 0.046 0.037 0.032 

APtrans-CNN 6.45 dB 7.09 dB 8.12 dB 10.38 dB 0.057 0.040 0.036 0.020 
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Figure 7. The visualization of the denoising results produced by APtrans-CNN and other 

methods: DWT, CNN, FCN, LSTM, IMUnet. 
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3.3.4. Visualization of denoising results 

To further explore the noise reduction effect of each module, we visualized the predicted signal 

under different noise conditions, and the visualization results are shown in Figure 7. The smoothness 

of ECG signals processed by discrete wavelet transform is obviously improved. However, its actual 

performance is not satisfactory because the signal’s baseline drift noise is difficult to solve. This 

problem was more pronounced in the atrial fibrillation dataset. Although the SNR of the signal was 

improved for FCN, it could be seen that the signal is still greatly affected by the noise and was mixed 

with many high-frequency noises. DNN performed better than FCN. Most high-frequency noises were 

removed from the visualized signal, and no baseline drift occurred. However, most of the peak 

information is not captured and displayed successfully. After noise reduction by LSTM, the noise of 

the ECG signal is greatly reduced, but the fluctuation of the ECG signal is severe. Moreover, very 

similar to DNN, the wave peak after processing is far lower than that of real ECG signals. It solves the 

problem of baseline drifts well. However, its elimination effect on other types of noise is not obvious. 

For IMUnet, both the smoothness degree and SNR of the ECG signal have been significantly improved. 

However, there are still some deficiencies in ECG signals after IMUnet processing. The peak of the 

QRS wave cannot reach the expected peak of the original ECG signals. The APtrans-CNN architecture 

has an astonishing performance in the field of noise reduction. It can be found that the signals processed 

by APtrans-CNN are very close to pure ECG signals in both datasets. 

3.4. Denoising performance for atrial fibrillation database 

3.4.1. Effectiveness of proposed method 

The same network model used in the arrhythmia dataset was also applied in the atrial fibrillation 

dataset. The experimental results are shown in Table 3. It was found that the proposed method also 

performed well in the MIT-BIH atrial fibrillation database under four SNRdB conditions. The three 

modules all provide great help to improve the noise reduction performance of the CNN. This shows 

that the proposed network is capable of noise reduction of different ECG signals. For example, when 

the SNRdB is -4 dB, the SNROut of AP-CNN is 3.61 dB higher than that of CNN without AP-ReLU and 

the MSE of AP-CNN is 0.066 lower than that of the CNN. With the increase of SNRdB, Trans-CNN 

showed higher performance improvement compared with the other two networks. For example, when 

the SNRdB is -4dB, the MSE of Trans-CNN is 0.090, which is 0.017 worse than that of DAM-CNN. 

But, when the SNRdB is 4 dB, Trans-CNN is 0.003 better than DAM-CNN. This is because 

Transformer can efficiently model relevant features of ECG.  

Table 3. Experiment results under four noise environments (MIT-BIH atrial fibrillation database). 

Method SNROut MSE 

Noise -4 dB -2 dB 0 dB 4 dB -4 dB -2 dB 0 dB 4 dB 

CNN 2.66dB 3.40 dB 3.84 dB 6.24 dB 0.146 0.133 0.119 0.065 

AP-CNN 6.27 dB 6.90 dB 7.53 dB 9.62 dB 0.080 0.059 0.049 0.031 

DAM-CNN 5.83 dB 6.81 dB 7.21 dB 9.23 dB 0.073 0.066 0.058 0.036 

Trans-CNN 5.29 dB 5.66 dB 6.35 dB 8.67 dB 0.090 0.077 0.067 0.033 

APtrans-CNN 7.48 dB 7.94 dB 8.49 dB 9.95 dB 0.049 0.046 0.035 0.027 
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By combining the respective advantages of AP-CNN, DAM-CNN, and Trans-CNN, SNROut can 

be maintained above 7 dB in the noise environment of -4 to 4 dB. In addition, the tests on two datasets 

prove that APtrans-CNN does not require any hyperparameter tuning, and can be applied to different 

databases and achieve good performance with only retraining. 
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Figure 8. The visualization of the denoising results produced by CNN with the proposed modules. 

3.4.2. Visualization of denoising results 

This part explores the performance improvement brought by the three modules. Through the 

method of visualization of noise reduction results, the influence of AP-ReLU, DAM, and Transformer 

is more directly explained. As shown in Figure 8, the first row is the denoising performance of the 

original CNN. It is better at processing noise such as baseline drift, but the effect is not obvious on 

high-frequency noise such as EMG noise. Its actual performance is greatly affected by noise 

components and its performance is not stable. After introducing AP-ReLU, the waveform after noise 

reduction is closer to the pure signal, especially in the QRS wave part. However, the signal contains a 

lot of high-frequency noise that has not been eliminated. This is because AP-ReLU can help extract 

more feature information, but it lacks effective means to determine which information is valuable. 

DAM-CNN has successfully removed the interference of most baseline drift and time-frequency noise. 

The validity of DAM is proved, but some of the peaks did not meet expectations. Combining the CNN 

and Transformer in a certain order can fully combine the advantages of both. After Trans-CNN 

processing, the smoothness of the signal is greatly improved, which means that most of the high-

frequency noise is eliminated. The trained network can effectively extract ECG signals from noise. 

For APtrans-CNN, it combines the advantages of the above networks. This allows the denoised signal 

to be very close to the original ECG signals. Although there are still some deficiencies, the key features 
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containing disease information are preserved. The smoothness of the processed signal has also been 

significantly improved, which will facilitate subsequent disease detection tasks. 

3.4.3. Comparison with existing denoising methods 

The experimental results are shown in Table 4. This study was based on the MIT-BIH atrial 

fibrillation dataset, SNR remains above 7 dB for SNRdB = -4, -2, 0, and 4 dB. This indicates that the 

ECG signal processed by APtrans-CNN is very close to real ECG signal in most noisy environments. 

The proposed network structure has strong universality, which can complete the denoising task well 

for ECG signals under different noise conditions. For example, when SNRdB = 4 dB, the SNR of 

IMUnet reached 9.89 dB, which is very close to our proposed method. But, at the high noise condition 

SNRdB = -4 dB, the SNR of IMUnet is only 6.06 dB. APtrans-CNN has the best performance under the 

given experimental conditions. Similarly, for another evaluation index, MSE, APtrans-CNN also 

performs best under the four noise conditions. This proves that the designed architecture has excellent 

predictive ability and the output signal is very close to the real ECG signal. This is because the 

Transformer’s self-attention mechanism enables the proposed architecture to better model the 

correlation features of ECG internal information with high feature aggregation and extraction 

capabilities under any noise conditions. In summary, compared with these comparison networks, the 

architecture proposed by us has excellent performance in the whole range of SNRdB, which proves the 

excellence of APtrans-CNN. 

Table 4. Experiment results under four noise environments (MIT-BIH atrial fibrillation database). 

Method SNROut MSE 

Noise -4 dB -2 dB 0 dB 4 dB -4 dB -2 dB 0 dB 4 dB 

DWT 1.75 dB 2.21 dB 2.64 dB 4.63 dB 0.211 0.116 0.112 0.094 

FCN 2.74 dB 3.22 dB 4.07 dB 6.41 dB 0.142 0.124 0.100 0.066 

DNN 4.53 dB 5.23 dB 5.42 dB 7.48 dB 0.090 0.086 0.074 0.052 

LSTM 3.82 dB 4.18 dB 4.89 dB 6.13 dB 0.120 0.112 0.096 0.067 

IMUnet 6.06 dB 6.52 dB 7.76 dB 9.89 dB 0.062 0.056 0.035 0.029 

APtrans-CNN 7.48 dB 7.94 dB 8.49 dB 9.95 dB 0.049 0.046 0.035 0.027 

3.4.4. Visualization of denoising results 

In this section, we visualize the experimental results to further explore the performance of the 

proposed network. Visualization of the atrial fibrillation database shown in Figure 9 demonstrates the 

superiority of the proposed architecture. DWT has a very significant effect on noise reduction of 

baseline drift type. However, the noise reduction effect is not obvious with high frequency noise with 

large amplitude. A similar situation also occurs in the fully convolutional neural network, where the 

denoised signal contains too much useless noise. The signal processed by FCN can effectively 

eliminate the high frequency noise, but the wave peak is far from the expected result. This problem 

also exists in LSTM; the higher the noise content, the greater the gap between the wave peak and the 

actual wave peak. In addition, it is difficult for the above-mentioned networks to capture useful disease 

information under the condition of high noise. This can be extremely disruptive to the diagnosis of the 

medical staff. IMUnet performance has been significantly improved, and the signal smoothness and 
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noise level have been greatly improved. However, some details are still omitted, which brings greater 

uncertainty to diagnosis. APtrans-CNN has strong noise reduction ability in the whole noise 

environment. The signal after noise reduction almost perfectly eliminates the influence of baseline 

drift electromyography interference and other noises. Meanwhile, the signal also retains information 

about atrial fibrillation, which is used to help diagnose the patient’s condition. 
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Figure 9. The visualization of the denoising results produced by APtrans-CNN and other 

methods: DWT, CNN, FCN, LSTM, IMUnet. 

3.5. Application to diseases diagnosis 

This section introduces the improvement brought by APtrans-CNN for disease diagnosis under 

noisy conditions. We chose the MIT-BIH Arrhythmia Database as the standard test dataset for 

evaluating arrhythmia detectors. The MIT-BIH Arrhythmia Database has high confidence and is 

widely used as a dataset for ECG evaluation. Based on the AAMI criteria, we performed a four-

category assessment of this dataset including normal beats (N), supraventricular ectopic beats (S), 

ventricular ectopic beats (V), and fused beats (F). 

We adopted the model proposed by Wang et al. [42] and the model designed by Xu et al. [43]. 

The model of Wang et al. uses a three-head input, which contains a total of two convolutional layers, 

two pooling layers, and three fully connected layers. The network proposed by Xu et al. consists of 

four convolutional layers, two subsampling layers, two fully connected layers and a softmax layer. 

Each method is tested on the original dataset, the noisy dataset, and the APtrans-CNN denoised dataset. 

APtrans-CNN is trained in the same way as in the previous section for noise reduction. After denoising 
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the MIT-BIH Arrhythmia Database with APtrans-CNN and IMUnet, we subject the dataset to 5-fold 

cross-validation. The average accuracy is used as the final evaluation metric. The experimental results 

are shown in Table 5. 

Table 5. Diagnostic accuracy under different noise levels (MIT-BIH arrhythmia database). 

Methods Noise Level -4 dB -2 dB 0 dB 4 dB 

Wang et al. [42] 

Noise-free 98.47% 

Noised 42.22% 57.43% 64.11% 76.82% 

IMUnet (Denoised) 77.63% 78.47% 84.71% 95.35% 

APtrans-CNN (Denoised) 81.76% 85.02% 91.36% 96.21% 

Xu et al. [43] 

Noise-free 99.07% 

Noised 46.03% 60.66% 68.91% 78.61% 

IMUnet (Denoised) 80.28% 82.51% 85.18% 96.36% 

APtrans-CNN (Denoised) 83.20% 86.85% 93.36% 97.17% 

In the absence of noise, the diagnostic accuracy of the two disease diagnosis methods is very close 

to 100%. But, with the addition of noise, the diagnostic performance of both methods is greatly limited, 

and the worst-case accuracy is only around 40%. The addition of APtrans-CNN greatly avoids this 

situation. For Method Ⅰ, when the SNRdB = -4 and -2 dB, after APtrans-CNN training, the accuracy 

was improved by 39.54 and 27.59%. In the test, the denoised network can always maintain a diagnostic 

accuracy of more than 80%. For Method Ⅱ, under high noise intensity, APtrans-CNN has a significant 

improvement in the accuracy of disease diagnosis, and can maintain an accuracy of more than 83%. 

APtrans-CNN can also play a good role in low noise environments. When SNRdB = 4 dB, the diagnostic 

accuracy of the two methods after noise reduction reached 93.36 and 97.17%, which is very close to 

the ECG under pure signal. It can be seen from the test results that APtrans-CNN can effectively help 

the diagnosis of diseases in a noisy environment, and effectively improve the accuracy of the diagnosis 

of ECG diseases. 

4. Conclusions 

ECG signals are an important indicator of human health. Thus, how to separate the pure ECG 

signal from the noisy ECG signal is an important task. Based on this problem, this paper proposed a 

novel Transformer-based convolutional neural network framework with adaptively parametric ReLU 

(APtrans-CNN). APtrans-CNN consists of a Transformer with global feature extraction capabilities 

and a CNN module which performs well in local feature extraction. This architecture combines the 

advantages of both and greatly improves the denoising performance of the task. In addition, the AP-

ReLU function is introduced to make this model more suitable for the denoising task of ECG signals. 

The proposed DAM module enables the framework to automatically learn more valuable features from 

noisy ECG signals. 

Through the comparison experiment with the existing ECG signal denoising methods, such as 

DWT, FCN, DNN, LSTM and IMUnet, we demonstrate the advantages of the proposed method. 

APtrans-CNN can effectively restore pure ECG signals from noisy ECG signals. It also shows strong 

robustness at different noise levels and has excellent performance for ECG signals from different 
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populations. In addition, the experiments also visualize the denoised data and use the denoised results 

for disease diagnosis tasks. The results showed that ECG signals after denoising retained valuable 

information which could reflect the patient's health condition well. APtrans-CNN has the potential to 

become an efficient tool for ECG signal processing, enabling professionals to analyze ECG signals 

more easily. 
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