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Abstract: The threat posed by forged video technology has gradually grown to include individuals,
society, and the nation. The technology behind fake videos is getting more advanced and modern. Fake
videos are appearing everywhere on the internet. Consequently, addressing the challenge posed by
frequent updates in various deepfake detection models is imperative. The substantial volume of data
essential for their training adds to this urgency. For the deepfake detection problem, we suggest a cascade
network based on spatial and channel reconstruction convolution (SCConv) and vision transformer.
Our network model’s front portion, which uses SCConv and regular convolution to detect fake videos
in conjunction with vision transformer, comprises these two types of convolution. We enhance the
feed-forward layer of the vision transformer, which can increase detection accuracy while lowering the
model’s computing burden. We processed the dataset by splitting frames and extracting faces to obtain
many images of real and fake faces. Examinations conducted on the DFDC, FaceForensics++, and
Celeb-DF datasets resulted in accuracies of 87.92, 99.23 and 99.98%, respectively. Finally, the video
was tested for authenticity and good results were obtained, including excellent visualization results.
Numerous studies also confirm the efficacy of the model presented in this study.
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1. Introduction

A fake video of Ukrainian President Zelensky declaring surrender on March 16 during the 2022
Russian-Ukrainian battle went viral on social media. This caused a frenzy among netizens. As intelligent
information technology becomes more widespread, people’s lives increasingly intertwine with social
media and short videos. Deepfake video technology [1], which was initially used in art to create a new
video by swapping out the images in the original video, now holds a significant position in the new era.
Currently, people can create hyper-realistic fake videos. They use off-the-shelf models with minimal
effort or expertise. This raises the possibility of spreading false media messages. It could even be used
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to disrupt the societal system. However, this technology has also brought about many negative impacts.
Previous researchers have proposed a variety of related algorithms and detection performance re-

search for deepfake video detection, including those based on biological [2] data, image null-domain
features [3], the temporal characteristics of video frames, image frequency-domain features, and more.
According to [4] and others, the fabricated video will blur the lips between adjacent frames. This happens
because the human visual system can detect minor irregularities in the movement of the created mouth.
The network will pick up detailed spatiotemporal representations of the mouth cavity. By applying the
learned skills to face deepfake detection, Yu et al. [5] presented the lip-forensics model. It is suggested
that an attribution network design be used. The model makes use of the GAN fingerprint data that was
obtained to find the fake videos. Although there has been significant progress in studying convolutional
neural network-based architectures, there is still room to enhance their accuracy and computation. This
paper centers on analyzing videos generated through face swapping and face reproduction, aiming to
advance the efficacy of deepfake video detection. To this end, we introduce an enhanced convolutional
visual transformer. Convolutional neural networks (CNN) [6] can recognize and characterize fake facial
features. This mechanism is employed to extract distinctive features from the manipulated facial images.
CNN is essential to identify the irregularities in the picture patches. It is cascaded with a transformer [7]
and used as a feature extractor. As a result, we decided to use the enhanced CNN and vision transformer
(ViT) as parts of the deepfake detector. It is called transformer-based cascade networks with spatial and
channel reconstruction convolution (SCViT). We anticipate great success from the union of these two
elements.

CNN is employed to extract and comprehend visual features. The ViT assimilates more meaningful
correlations from the input sequence of information to enhance detection efficacy. The ensuing elucida-
tion encompasses the principal contributions emanating from our research:

1) We present an enhanced convolutional vision converter model. It utilizes a conventional con-
volutional neural network (CNN) as a feature extractor. The model employs spatial and channel
reconstruction convolutional techniques to reduce feature redundancy [8]. The next classification
step uses the extracted features as input, which can increase detection precision while requiring less
processing and input space.

2) To enhance the transformer encoder’s versatility in managing arbitrary size, we introduce zero-
padding positional coding into the feed-forward network of the ViT.

3) Through comparison tests, we confirm the efficacy of our technique. This confirmation is done at
both the picture and video levels. We use many deepfake datasets, deepfake videos, preprocessing, and
data augmentation.

The structural organization of this manuscript is outlined as follows: Section 2 summarizes the
related work and describes the fake video techniques and the fake video detection methods used in the
study. Section 3 details the network architecture proposed in this paper and outlines the dataset used
for the study. Section 4 focuses on the procedural aspects of the experimental design, the subsequent
experimental results, and the visualization results. Section 5 concludes and looks forward to future work.

2. Related work

Hyper-realistic deepfake images [9], videos [10], and audio signals can be produced with ease thanks
to the rapid development of cellular neural networks [11] and generative adversarial networks (GANs).
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We analyze the current deepfake techniques and the deepfake detection methods currently put forth by
other researchers.

2.1. Deepfake techniques

Currently, deepfake generation techniques are rapidly becoming more sophisticated. Popular tech-
niques include encoder-decoder, CNN, and generative adversarial networks. Mukhopadhyay et al.
[12] proposed LipGAN toward automatic face-to-face translation. A proposed method based on GAN
technology can provide realistic lip synchronization between a person’s native language and the target
language in video form. Prajwal et al. [13] proposed that the Wav2Lip model uses a trained lip-sound
synchronization model to oversee the model and produce natural-sounding, human-like speech. With
precise lip motion, the “master and puppet” connection is likened to a puppet master. Deepfake detection
can also be categorized as face replacement, facial reenactment, attribute editing, etc., for different facial
regions, as well as the difference in the goal of the tampering, as shown in Figure 1. This technique is
frequently used in movie post-production to dub actors’ voices or alter their facial expressions.

Figure 1. Examples of face synthesis using three different deepfake techniques.

2.1.1. Face-swapping

Face-swapping technology, characterized by the transplantation of one individual’s facial features
onto another person’s visage, is another name for face replacement. Face swapping [14] employs a
3D face reconstruction model. The final target image is obtained by using a 3D face reconstruction
model to model the essential features of the face, render the texture of the 3D face model, and then
apply affine transformation, color correction, and other procedures to the image—an occlusion-aware,
high-fidelity face swap algorithm with two stages. Xu et al. [15] presented a lightweight identity-aware
dynamic network (IDN) for face swapping by dynamically changing model parameters based on the
identification information. Wang et al. [16] introduced a practical attribute-preserving framework
known as AP-Swap. This framework utilizes a landmark-guided feature entanglement module and a
global residual attribute-preserving encoder. Its purpose is to perform face swapping while significantly
preserving important facial attributes.
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2.1.2. Reenacting a face

With the help of facial reenactment [17], we can alter the head stance and facial expression of one
individual while maintaining their identity. These algorithms, specifically, the process involves using a
source face image as input. Various strategies are implemented to ensure changes in traits related to
facial expressions. The goal is to prevent any alteration of identifying information. As an illustration,
some researchers [18] have used 12-dimensional gesture coding to control the position of the face,
giving the video character a genuine appearance that makes it appear as though they are changing their
expressions. Furthermore, several researchers [19] have developed the concept of a neural radiation
field. This field directly considers the characteristics of the audio stream to create a dynamic neural
radiation field. It provides a more detailed depiction of the facial video, resulting in a more realistic
appearance. To produce more realistic synthetic effects, several researchers [20] focus on creating more
natural, smooth, and vibrant face films by separating the speech content from the speaker’s identifying
information in the audio. A neural face-reenacting method called HyperReenact [21] has been proposed.
It serves as a solution to the problem of artifacts generated during face reenacting. Additionally,
face keypoint estimation modules [22] are utilized to generate highly realistic reenactment videos of
conversations. In conclusion, facial reenactment algorithms have numerous potential applications in
various fields. They excel at creating synthetic face videos that appear highly genuine and natural while
preserving the identity of the target person.

2.1.3. Altering attributes

The process of altering a specific region of an attribute, such as skinning the face, erasing scars, or
adding eyeglasses, is known as attribute manipulation. This technique can also involve more powerful
features that change attributes like gender and age without affecting other regions of the same attribute.
A hybrid scattering-based module, named WS-SE [23], is introduced for face attribute classification.
This module integrates frequency-domain (WST) and image-domain features in a channel-attention
manner. To improve the interaction between space generative adversarial networks (GANs), Xu et
al. [24] adopted a strategy based on the transformer architecture. Additionally, Sun et al. [25]
proposed a 3D perceptual generator based on neural radial fields, which enhances the consistency of the
generated images between various points of view by spatially aligning semantic, geometric, and textural
information. This makes the results of attribute manipulation highly effective in quality and increases
the generalization.

2.2. Deepfake detection

The network architecture examined in this paper is based on image null domain features, and various
architectures designed and developed for deepfake detection are discussed below. Deepfake detection
methods can be categorized according to biological information, temporal features of video frames,
image frequency domain features, and image null domain features.

Since these models are not designed explicitly for deepfake detection, they can be used for various
image classification tasks, including deepfake detection. Examples of such models include ResNet
[26], DenseNet [27], Xception [28] and EfficientNet [29]. Insufficient generalization for deepfake films
produced by various fraud detection systems is evident in this model. It lacks specialization in deepfake
detection. Afchar combines the inception module with MesoNet [30], a lightweight CNN-based network
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that focuses on the deepfake techniques Face2Face and DeepFake, and Zhao et al. [7], who contend that
since there is little distinction between real and fake faces for deepfake detection, the model should be
generalized to include both types of faces. Deepfake detection is considered a fine-grained classification
challenge since minute distinctions exist between actual and phony faces. They introduced a module for
texture enhancement and another for attention-getting. A bilinear attention pooling module was also
implemented to guide the network’s attention to different localizations. This process magnifies subtle
artifacts in shallow features, enhancing the model’s accuracy in face feature extraction and increasing
the effectiveness of deepfake detection.

Zhao et al. [31] introduced pairwise self-consistency learning (PCL) by measuring the consistency
of the source features in the image and calculating the cosine similarity of the local blocks between two
grayscale maps. The method aims to explore an efficient and dependable representation for deepfake
detection. By dynamically creating annotations of forged images and their operational zones, inconsistent
image generators are also suggested as an effective way to help PCL training. Shiohara et al. [32] proposed
self-blended images (SBI). This method synthesizes a forgery image by fusing the fake source and target
images from a single original image. This approach enhances the model’s generalization of unknown
manipulations and scenes. This method exhibits excellent generalization capacity. It is effective for fake
photographs created by unidentified forgery methods. The model does not rely on the fake faces of a
specific forgery method for training. [33] introduce conditional decoder and contrast regularization
loss so the model avoids overfitting. Xu et al. [34] proposed the multi-channel xception attentional
pairwise interaction (MCX-API) approach. This approach uses pairwise learning and data from various
color space representations. The goal is to capture complementary information in a fine-grained manner.
This method transforms the underlying network into a multi-channel network. It executes pairwise
learning by mimicking attentional pairwise learning. The approach is believed to apply to new methods
of forgery creation. Two further losses [35] are introduced to allow the CNN backbone to integrate
face images into the implicit identity space: the explicit identity comparison (EIC) loss and the implicit
identity exploration (IIE) loss. A face forgery detection framework [36] with multi-scale adapters is
proposed based on SAM. A reconstruction-guided attention (RGA) module is also introduced to enhance
generalization. [37] proposed the CSTD method to fully utilize spatio-temporal inconsistent information
through a two-stage spatio-temporal video encoder. A fine-grained spatial frequency distillation module
enhances the detection of high-compression depth forged video. Simultaneously, a mutual information
temporal contrast extraction module is introduced for effective detection.

3. Method

We suggest methods for detecting deep forgeries in this section. To detect fake videos, our network
model’s feature extraction section uses ordinary convolution and SCConv [8]. We also enhanced
ViT’s [38] feed-forward layer, and the data preprocessing section includes face extraction and data
enhancement. Section 3.1 describes the function and characteristics of SCConv in deepfake detection.
Section 3.2 gives our entire network architecture and the data preprocessing procedure.

3.1. Data preprocessing

Deepfake datasets are expanding in variety because of the constant upgrading of deepfake creation
algorithms, moving beyond the early days of limited data volumes, murky films, the development of
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supplying audio as well as the appearance of several faces in the same film, and video homogeneity forging
faces with more excellent quality and more lifelike. Figure 2 shows a sample of the extracted faces.

Figure 2. Extracted datasets comprising real and fake images are presented, with the Celeb-
DF-v2 dataset on the left and the DFDC dataset on the right.

We primarily utilize the following openly accessible datasets for this paper:
1) FaceForensiac++ [39] dataset: In 2019, Rössler et al. published FaceForensiac++, a well-

known dataset in falsified videos. The dataset comprises 5000 synthetic films generated using fake
techniques such as DeepFakes, Face2Face, FaceSwap, NeuralTextures and 1000 real videos. Despite
being traditional and famous, it has subpar video quality and blatantly fake features.

2) DFDC [40] dataset: one of the most challenging deepfake detection datasets currently available,
was proposed by Dolhansky et al. The dataset comprises 19,154 authentic videos and 99,992 manipulated
videos; the original videos are all filmed by actors; the videos contain many interferences such as
compression, extreme lighting, etc.

3) Celeb-DF [41] dataset: consists of 5626 fake videos and 590 actual videos. The increased data
volume and better video resolution dramatically lessen artifacts in the fabricated videos when using an
upgraded deepfake face technique.

Table 1. Information pertaining to datasets utilized for deepfake analysis.

Datasets Original videos Fake videos Source
FaceForensics++ 1000 4000 Youtube
DFDC 19,154 99,992 Deepfakes competition
Celeb-DF 590 5962 Youtube

The Celeb-DF-v2 dataset has dramatically expanded the earlier Celeb-DF-v1 dataset. In Table 1,
Celeb-DF videos exhibit relatively high resolution and fewer artifacts in the manipulated videos. In
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contrast, the DFDC dataset comprises 19,154 authentic videos and 99,992 abused videos, presently
acknowledged as one of the most formidable datasets within the domain of deepfake detection. The
FaceForensics++ dataset is widely used and contains four deepfake methods for generating fake videos
using Face2Face, FaceSwap, DeepFakes, and NeuralTextures. We chose these three datasets as our base
dataset. After selecting the dataset, we used BlazeFace, a sophisticated face detector, to preprocess the
dataset to identify and extract the face region from each frame of images.

3.2. The proposed method

There are two primary steps to our suggested bogus video-detecting system. We start by preparing
the data. In this stage, the forged video is split into several frame pictures via frame-splitting. Next,
we find and extract face regions from each frame image using Blaze-Face [42], a sophisticated face
detector. The retrieved face photos are then cropped to create consistently sized face photographs.
These pre-processed photos are then fed into our phony video detector. Our detection model, SCViT,
comprises a ViT-based module incorporating SCConv for video authenticity assessment and a feature
learning component dedicated to acquiring salient features from the input image. After the detection,
the face detection frames and authenticity detection results are tagged to each frame. Finally, new video
output is synthesized, thus completing the detection process by displaying the detection results of the
video frame by frame. We may examine every frame in this method to see if it contains a deepfake.
The secret to this technology is that it can accurately identify forged videos and deliver dependable
authenticity judgment for each frame thanks to rigorous data preparation and effective detection models.

Figure 3. Two convolutional modules in the backbone network.

3.2.1. Overall network structure

SCConv and ViT components make up our SCViT model. The image feature map produced by
the SCConv component serves as the input to the ViT. By primarily using convolutional techniques
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and the ViT architecture, we enhanced the original ViT. To improve efficiency and decrease model
parameters and floating point operations (FLOPs), we used a stack of SCConv and regular convolutions
for effective feature extraction. We employed 16 standard convolutions and 1 SCConv in the model’s
front section, with the SCConv coming after the first standard convolutional layer. Our convolutional
modules are stacked as in Figure 3. To safeguard against inter-layer modifications that might impede
the learning dynamics of the CNN architecture, and the convolution kernel is applied with a step size of
1 and padding of 1. Following each standard convolution, batch normalization and the Mish activation
function [43] procedures, known for their exemplary generalization and optimization capabilities, are
implemented.

Furthermore, a maximum pooling layer with a pixel window size of 2 × 2 and a step size of 2 is
utilized to reduce computational complexity efficiently. The convolutional layer’s channel width doubles
after each maximum pooling operation, starting with 32 channels and rising through the layers to reach
512 channels. The image size is halved using the ultimate pooling operation. The ViT architecture
receives the output from low-level feature extraction. The (C, H, W) tensor can represent the feature
extraction’s internal state. A 512 × 7 × 7 feature of the input image results from the feature extraction.

Figure 4. The process of detecting forged video using SCViT.

ViT applies transformer to a series of image blocks to further hone the picture categorization task.
Following the creation of sequences, the segmented image chunks are sent to the transformer’s multi-
head self-attention layer for feature extraction. The size of the image after SCConv is 7 × 7. The
feature map is separated into 7 × 7 inch blocks, which are then assembled to form sequences and sent to
the transformer’s multi-head self-attention layer for feature extraction. Six transformer encoders are
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configured, and Cls Token is used for categorization. Specifically, Figure 4 depicts the entire network.

3.2.2. Transformer encoder improvement

Our encoder is unique from the original transformer encoder because it has DW-MLP [44] and
multi-head self-attention [13] blocks. Zero-padded positional coding replaces fixed-size positional
coding and adds a DW convolution with padding size one between the feed-forward network’s first
fully connected (FC) layer and the GELU. The multi-layer perceptron (MLP) block comprises a GELU
activation layer, a fully connected layer, and a depthwise (DW) convolution.

Figure 5. Improved structure of the MLP layer.

As shown in Figure 5, a is the original MLP layer, b and c are the improved MIP layer, and the
enhanced model is used as our SCViTDW model. We also apply the DW convolution with added jump
connections to the MLP layer, and the enhanced model is used as our SCViTDS model. The output layer
consists of 2 channels, denoting the two classes associated with genuine and synthetic facial features. In
contrast, the input layer encompasses 2048 channels. For the identification of the counterfeit class, the
Softmax function operates on the output from the MLP header, producing a probability value within the
range of 0 to 1. The proximity of the score to 1 serves as an indicator of enhanced model performance.
The following formula, which employs the logarithmic loss function, is used:

LogLoss = −
1
n

n∑
i=1

[
xi log

(
yi
)
+
(
1 − xi

)
log
(
1 − yi

)]
(3.1)

3.2.3. SCConv

We intend to utilize a CNN for the feature extraction component. However, conventional CNN
architectures are characterized by substantial computational and storage requirements. The structured
convolutional convolution (SCConv) method, as illustrated in Figure 6, is adapted to facilitate feature
extraction efficacy while concurrently mitigating model parameters and FLOP counts. This enhancement
is achieved by incorporating two distinct modules within the SCConv framework: the spatial redundancy
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reduction unit (SRU) and the channel reconstruction unit (CRU). The SRU specifically addresses spatial
redundancy, thus optimizing computational efficiency.

Figure 6. The SCConv architecture is seamlessly integrated with the SRU and CRU.

SRU uses separation-reconstruction operations. The group normalization (GN) layer’s scaling factor
is used in the separation operation to compare the information content of various feature maps. This
allows us to analyze feature maps with various information contents separately. We initially normalize
the input features X ∈ RN×C×H×W by dividing by the standard deviation σ and removing the mean µ. γ
and β is the trainable affine transformation, with an added tiny positive constant ε for division stability,
where N denotes the batch axis, C represents the channel axis, and H and W denote the axes of spatial
height and width, respectively. The specifics are displayed below:

Xout = GN
(
X
)
= γ

X − µ
√
σ2 + ε

+ β (3.2)

The trainable parameters γ ∈ RC within the GN layer are subsequently utilized to compute the variance of
spatial pixels within each batch and channel. A higher resultant γ value signifies a more comprehensive
representation of geographical information. The normalized correlation weights Wγ ∈ RC are again
applied to the feature map using a sigmoid function, which converts the weight values to ranges (0, 1).
The specifics are displayed below:

Wγ =
{
ωi

}
=

γi∑C
j=1 γi
, i, j = 1, 2, · · · ,C (3.3)

The process of gating is completed by thresholding for various weight values. Parts with less information
will be suppressed and deemed redundant in this way. Through the amalgamation of informative features
with less informative ones during the reconstruction operation, we achieve the generation of more
information-rich features. Reducing redundant features in the spatial dimension contributes to refining
representative features.

W = Gate
(
S igmoid

(
Wγ (GN (X))

))
(3.4)

Channel redundancy is handled using the CRU. CRU uses the split-transform-fuse operation. First,
we convolutionally compress the αC channel and (1 − α) C channel portions of the input feature Xw.
After separating the upper Xup and lower Xlow portions of the compressed features, Xup is then utilized
in the top transformation step. This approach reduces computational costs by employing efficient
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convolution techniques such as GWC and PWC instead of standard convolution. Xlow as a complement
to the enriched feature extractor is then passed into the bottom transformation stage, where the PWC
operation is used to create feature maps with shallowly buried information. The final transformation
stage might be written as follows:

Y1 = MGXup + M
P1 Xup (3.5)

The learnable weight matrix for GWC and PWC is MG ∈ R
αc
gr ×k×k×c, MP1 ∈ R

αc
r ×1×1×c and the uppermost

input and output feature maps are denoted as Xup ∈ R
αc
r ×h×w and Y1 ∈ R

c×h×w, respectively. The output
of the following level is created by connecting the generated and reused features as follows:

Y2 = MP2 Xlow ∪ Xlow (3.6)

The learnable weight matrix of the PWC is denoted as MP2 ∈ R
(1−α)c

r ×1×1×( 1−α
r )c, with Xlow ∈ R

(1−α)c
r ×h×w

and Y2 ∈ R
c×h×w representing the corresponding lower input and output feature maps. Then, channel

statistics are used to capture global spatial information [45] using global average pooling, and the upper
and lower features are combined using channels to produce channel-refined features. With channel
statistics, global average pooling is used to gather global geographic information S m ∈ R

c×1×1, which is
calculated as:

S m = Pooling(Ym) =
1

H ×W

H∑
i=1

W∑
j=1

Yc (i, j) ,m = 1, 2 (3.7)

The higher and lower global channel S 1, S 2 descriptions are up next are layered one on top of the other,
and the feature importance vector β1, β2 ∈ R

c is produced using the channel soft attention procedure as
follows:

β1 =
eS 1

eS 1 + eS 2
, β2 =

eS 2

eS 1 + eS 2
, β1 + β2 = 1 (3.8)

The upper and lower features Y1,Y2 can then be combined channel by channel, guided by the feature
importance vector β1, β2, to produce channel refinement features:

Y = β1Y1 + β2Y2 (3.9)

As a component of our backbone network, SCConv comprises sequential connections of SRUs and
CRUs, which can enhance model detection performance while lowering computation and storage.

4. Experiments

4.1. Dataset

As shown in Table 2, we acquired 89,635 face images from the Celeb-DF dataset, 179,016 images
from the DFDC dataset, and 99,906 images from the FaceForensics++ dataset. The FaceForensics++
dataset includes versions with different compression rates: raw quality (quantization = 0), high quality
(HQ, quantization = 23), and low quality (LQ, quantization = 40). We chose to train and test the model
on FF++ (LQ). We chose these three datasets as our base dataset. The face images are stored in JPG
files with consistent image quality. After scaling the dataset, we partitioned it into training, validation,
and testing sets. The Celeb-DF and FaceForensics++ datasets were divided in a ratio of 70:15:15. In
contrast, the DFDC dataset was divided in a ratio of 70:20:10. A substantial number of datasets, ample
for training the model, have been amassed.
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Table 2. Outcome of dataset partitioning.

Datasets Real Fake Train Validation Test
Celeb-DF 44,819 44,816 62,747 13,445 13,443
FaceForensics++ 49,962 49,944 69,935 14,986 14,985
DFDC 90,024 88,992 120,296 41,928 16,792

4.2. Experiment setting

The experimental hardware comprised an Intel (R) Xeon (R) CPU E5-2630 v3 @2.40GHz and
NVIDIA GeForce RTX 3090 GPU, with debugging conducted using the PyTorch framework. Before
entering the network, ensuring that the input image has been scaled to 224 × 224 pixels is imperative.
Training occurs over 50 epochs, employing a batch size of 16. The optimization utilizes an Adam
optimizer with a learning rate of 0.1 × 10−3 and a weight decay rate of 0.1 × 10−6.

4.3. Evaluation metrics

1) Accuracy
A measurement used to assess classification models is accuracy. It is merely the proportion of all the

model’s accurate predictions produced. It can be determined using positive and negative categories in
binary categorization in the manner shown below:

Acc =
T P + T N

T P + FP + T N + FN
(4.1)

In the context of the presented metrics, FP represents false positive cases, TN denotes true negative
cases, FP signifies false positive cases, and FN corresponds to false negative cases.
2) AUC

The receiver operating characteristic (ROC) curve illustrates the relationship between true positive
rate (TPR) and false positive rate (FPR), with the Area Under the Curve (AUC) quantifying this
correlation. FPR is plotted along the ROC curve’s horizontal axis, while TPR is represented on the
vertical axis. Mathematically, their relationship is expressed as:

FPR =
FP

FP + T N
(4.2)

T PR =
T P

T P + FN
(4.3)

3) F1-score
A statistic called the F1Score is used in statistics to assess a model’s accuracy in binary classification,

also known as multi-task binary classification. It considers the categorization model’s recall as well
as accuracy. The F1 Score constitutes a weighted average encompassing the model’s precision and
recall metrics, encompassing values from 0 to 1, where higher values correspond to superior model
performance. The F1 Score is calculated using the following formula:

P =
T P

T P + FP
(4.4)
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R =
T P

T P + FN
(4.5)

F1 − score = 2 ×
P × R
P + R

(4.6)

4) Params
The parameter count indicates the total number of parameters that undergo training during the model

training process. This metric serves as a measure of the model’s size, reflecting its computing space
complexity.
5) Floating point operations

When calculating FLOPS, we typically add, subtract, multiply, divide, find the power, find the
square root, and do other operations as a single FLOP to count. However, the number of floating point
operations, understood as the amount of computation (computational time complexity), can be used to
measure the algorithm’s complexity.

4.4. Experimental results

The efficacy of the suggested SCViT network is assessed in this section. We train different models
on the same dataset using the same training procedure, settings, and assessment metrics.

4.4.1. Comparing other approaches

Table 3 summarizes the follow-up tests performed on the FaceForensics++ dataset with 7490 real
and manipulated facial images. The SCViTDW model shows impressive performance with an accuracy
of 99.23%, an AUC of 0.9995, and an F1 score of 99.23%. Meanwhile, the SCViTDS model also
performed very well, with an accuracy of 99.21%, an AUC of 0.9996, and an F1 score of 99.21%. The
effectiveness of the enhanced model is highlighted by a comparative analysis with previous methods,
especially the SCViT architecture that combines the SCConv convolution and ViT components.

Table 3. Comparison of different model results on the FaceForensics++ dataset.

Method Acc AUC F1-score
Xception 94.95 0.9911 94.87
EfficientNetB0 78.83 0.8723 78.07
EfficientNetV2S 87.84 0.9515 88.08
MesoInception 65.06 0.7003 64.22
MesoNet 56.78 0.6347 35.00
EfficientNetB0ViT 85.62 0.9361 85.07
SCViT(ours) 99.07 0.9994 99.07
SCViTDS(ours) 99.21 0.9996 99.21
SCViTDW(ours) 99.23 0.9995 99.23

In addition, the SCViTDW and SCViTDS implemented by combining deep convolution (DW)
perform excellently in accuracy, further confirming the model’s effectiveness. The findings on the
DFDC dataset are shown in Table 4, which includes 17,355 real and fake facial images. Of particular
note, SCViTDW performs well in all metrics with an accuracy of 87.92%, an AUC of 0.9533, and an F1
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score of 88.11%, second only to the highest score. Table 5 demonstrates the performance comparison
when using the normal convolutional layer cascade ViT and adding DS convolution, and after adding SC
convolution. The results show that SCViTDW and SCViTDS improve the test accuracy while reducing
the computational effort, with FLOPs reduced from 6221.34 M to 5855.26 M and Params reduced from
88.52 to 88.51.

Table 4. Comparison of different model results on the DFDC dataset.

Method Acc AUC F1-score
Xception 90.14 0.9754 90.16
EfficientNetB0 80.66 0.9107 80.57
EfficientNetV2S 85.03 0.9379 84.57
MesoInception 60.71 0.7543 44.18
MesoNet 61.68 0.7037 58.14
EfficientNetB0ViT 83.61 0.9206 83.05
SCViT(ours) 86.12 0.9425 86.41
SCViTDS(ours) 87.76 0.9537 87.98
SCViTDW(ours) 87.92 0.9533 88.11

Table 5. Experimental results of different convolutional modules cascaded with ViT on the
DFDC dataset.

module DFDC
Method SC DS DW Acc AUC F1-score FLOPs (M) Params (M)
SC + ViT ✓ 86.12 0.9425 86.41 5855.04 88.39
ViT + DS ✓ 87.97 0.9518 88.10 6221.34 88.52
SC + ViT + DS ✓ ✓ 87.76 0.9537 87.98 5855.26 88.51
SC + ViT + DW ✓ ✓ 87.92 0.9533 88.11 5855.26 88.51

Table 6. Experimental results of different convolutional modules cascaded with ViT on the
Celeb-DF dataset.

module Celeb-DF
Method SC DS DW Acc AUC F1-score
SC + ViT ✓ 99.51 0.9954 99.51
SC + ViT + DS ✓ ✓ 100.00 1.000 100.00
SC + ViT + DW ✓ ✓ 99.98 0.9998 99.98

Finally, we tested on the Celeb-DF dataset, and Table 6 showed impressive results. The accuracy of
SCViTDW and SCViTDS are close to 100%, highlighting the remarkable performance of the models
in terms of training accuracy and computational efficiency. We further evaluated our approach against
other state-of-the-art models. As shown in Table 7, the best performance in terms of AUC metrics
is achieved on the FF++ and Celeb-DF datasets. With the second-highest AUC value on the DFDC
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dataset, the results demonstrate the practical generalization ability of our framework.As shown in Table
8, not only does our model outperform others in terms of AUC values, but it also boasts lower FLOPs
and parameters. This further highlights the efficiency and superiority of our method. The results of
other works are mainly cited from [32,33,38,46–53].

Table 7. Comparison with state-of-the-art methods on FF++, CelebDF and DFDC.

Test Set AUC
Method DFDC FF++ Celeb-DF Avg
SBIs [32] 0.7242 0.9964 0.9318 0.8841
UCF [33] 0.8050 0.9960 0.8240 0.8750
M2TR [46] - 0.9531 0.9980 0.9756
MARLIN [47] - 0.9305 0.9561 0.9433
TALL-Swin [48] 0.7678 0.9457 0.9079 0.8738
Face X-ray [49] 0.6550 0.6160 0.7950 0.6887
LipForensics [4] 0.7350 0.9810 0.8240 0.8460
RealForensics [50] 0.7590 0.9950 0.8690 0.8743
Xception [28] 0.9754 0.9910 0.9027 0.9564
SCViTDW (ours) 0.9533 0.9995 0.9998 0.9842

Table 8. Performance of different models.

Method DFDC Celeb-DF FLOPs (G) Params (M)
VidTR [51] 0.7330 0.8330 117.0 93
ISTVT [52] 0.7420 0.8410 455.8 -
VTN [53] 0.7350 0.8320 296.6 46
TALL-Swin [48] 0.7678 0.9079 47.5 86
EfficientNetB0ViT 0.9206 - - 109
SCViTDW(ours) 0.9533 0.9998 5.9 89

4.4.2. Visualized results

We can observe the inferred outcomes for authentic and fake faces in Figure 7. Above the photographs
are the anticipated categories and scores. The images in the first row are fake, while the pictures in the
second row are real. The exemplary performance of a model is notably exemplified by its proximity
to a score of 1. Consequently, our detection categories and scores closely resembling the actual
scenario demonstrate our hybrid model’s exceptional performance. As shown in Figures 8 and 9, The
detection procedure concludes with synthesizing a novel video output after extracting facial features
from the input video. Subsequently, the extracted faces undergo scrutiny through our deepfake detection
model, wherein the detection outcomes are annotated per frame. Ultimately, our method achieves the
discrimination between authentic and manipulated videos. The precision of our proposed approach is
manifested through the meticulous delineation of the actual state of each face in the cinematic sequence,
as discerned through a frame-by-frame presentation of the detection results. As illustrated in Figure 10,
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to exemplify the comprehensiveness of our approach, we conducted a comparative analysis of three
metrics inherent to our model against those of other state-of-the-art models for deepfake detection. This
evaluation was performed on two distinct datasets. The outcomes of our investigation strongly indicate
the efficacy of our method. Additionally, we present detailed ROC curves for each model, elucidating
their performance characteristics in Figure 11. Our ROC curve is the second closest to the top left corner
of the DFDC dataset, and it is most relative to the entire left curve on the FaceForensics++ dataset. This
indicates that our model performs better than the competition.

Figure 7. The detection outcomes for facial images, where the first row encompasses
counterfeit images, and the second row comprises authentic images.

Figure 8. Frame-by-frame detection outcomes for genuine videos.

4.4.3. Discussion

Recently, researchers have proposed a series of innovative approaches to address the limitations of
deep forgery detection models regarding accuracy and localization. For example, in [37], they offered
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Figure 9. Frame-by-frame detection outcomes for fake videos.

Figure 10. Performance comparison on different datasets. (a) shows three performance
comparisons between our model and other models on FaceForensics++ dataset, and (b) shows
three performance comparisons between our model and its model on DFDC dataset.

the detect any deepfakes (DADF) framework with multi-scale adapters based on SAM, efficiently
fine-tuned by capturing both short-term and long-term forgery contexts. Although the model achieved
an average accuracy of 95.94% on the FF++ dataset, our model achieves superior results on the same
dataset, reaching an accuracy of 99.23%. Meanwhile, other scholars have proposed the Xception LSTM
algorithm to capture and enhance spatio-temporal correlations before Xception downscaling. Although
our method achieved better results on the Celeb-DF dataset than [54], it failed to outperform the results
of [54] on the DFDC dataset. For the video-level detection of forged faces, [38] utilized a new contrast
spatiotemporal extraction method to improve the detection of high compression depth generated videos
through fine-grained spatial frequency cues and temporal contrasts, improving model stability.

Our model achieves better results in predicting Celeb-DF, FaceForensics++, and DFDC datasets
and demonstrates the effectiveness of cascade networks in deep forgery detection, surpassing other
cutting-edge deep forgery detection techniques. The results also validate the improvement of test frames
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Figure 11. ROC curves comparing our model with others. (a) ROC curves on the FaceForen-
sics++ dataset. (b) ROC curves on the DFDC dataset.

when using DW convolution, showing that DW plays an active role in our work. It is worth noting that
when we jump-connect the DW convolution, we can achieve 100% accuracy on the Celeb-DF dataset,
and the spatial and channel-based reconstruction convolution (SCConv) can effectively alleviate the
computational burden of the model and reduce the computational amount of the model, demonstrating
the broad applicability of our cascade network. In addition, the model excels in its ability to differentiate
between still images and dynamic video sequences and addresses various classification challenges by
utilizing alternative structural configurations in the feature extraction module of the detection model.

To better address future research directions, we propose the following recommendations: enhance
research on 3D faces, including the creation of more 3D face datasets covering different populations,
ages, and ethnicities to improve the generalization performance of the model; consider enhancing the
robustness of models in dynamic environments so that they can effectively detect moving and changing
3D faces; promote the synthesis of multimodal data to improve the model’s understanding of natural
scenes and enhance the experience of new forgery method modes in response to continuously updated
forgery techniques to build more effective detection systems.

5. Conclusions

This paper presents a deepfake detection model structured as a cascaded network, incorporating
a ViT and an SCConv convolution module. Our dataset for fake video detection is curated through
the application of the BlazeFace face detector to identify facial regions within the dataset. The ViT
effectively assimilates global and local features, with the initial convolutional segment dedicated to
feature extraction from the input image. The incorporation of SCConv serves to curtail the number
of parameters and computational workload, thereby enhancing the efficiency of the feed-forward
neural layer. Furthermore, it augments the adaptability of the transformer encoder to accommodate
arbitrary input sizes. We have added zero-padded positional coding to the ViT feed-forward network
to improve the model’s performance. On the FaceForensics++ dataset, our model attained an AUC of
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0.9995, an accuracy (Acc) of 99.23%, and an F1 score of 99.23%. Likewise, on the DFDC dataset,
our model exhibited an AUC of 0.9533, an accuracy of 87.92%, and an F1 score of 88.11%. On the
Celeb-DF dataset, our model shows AUC, accuracy, and F1 scores close to 100 percent. Furthermore,
enhancements were made to the feed-forward neural layer to augment the adaptability of the transformer
encoder in handling diverse sizes, consequently reducing both the number of model computations and
parameters. Lastly, to accurately verify the authenticity of deepfake films, we also carried out visual
inspection at the picture and video levels. We plan to enhance the accuracy of our detection model in
further work.
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