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Abstract: Roguing and elimination of vectors are the most commonly seen biological control strate-
gies regarding the spread of plant viruses. It is practically significant to establish the mathematical
models of plant virus transmission and regard the effect of removing infected plants as well as elimi-
nating vector strategies on plant virus eradication. We proposed the mathematical models of plant virus
transmission with nonlinear continuous and pulse removal of infected plants and vectors. In terms of
the nonlinear continuous control strategy, the threshold values of the existence and stability of multiple
equilibria have been provided. Moreover, the conditions for the occurrence of backward bifurcation
were also provided. Regarding the nonlinear impulsive control strategy, the stability of the disease-free
periodic solution and the threshold of the persistence of the disease were given. With the application
of the fixed point theory, the conditions for the existence of forward and backward bifurcations of the
model were presented. Our results demonstrated that there was a backward bifurcation phenomenon in
continuous systems, and there was also a backward bifurcation phenomenon in impulsive control sys-
tems. Moreover, we found that removing healthy plants increased the threshold R1. Finally, numerical
simulation was employed to verify our conclusions.
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1. Introduction

Plant virus diseases are transmitted between plant individuals through vectors, including the tomato
leaf roll virus and cassava mosaic virus. Plant viruses seriously affect crop yields, which can result in
great economic losses and increased poverty, especially in developing countries [1]. According to [2],
the annual wheat rust can cause yield loss of up to 80 percent, posing a great threat to global wheat
production. Moreover, it is estimated that 12.5 million hectares were disturbed annually from 2003 to
2012 by plant disease, mostly Asia and Europe [3]. Therefore, the control of plant virus transmission
remains a major economic and agricultural issue. The effective methods to control plant viruses include

https://www.aimspress.com/journal/mbe
https://dx.doi.org/10.3934/mbe.2024179


4057

gene control, chemical control, and biological control. It is extremely effective to improve the antiviral
ability of plants by changing genes, but it cannot be greatly used due to the high cost. Chemical control
aims to control the vector by spraying insecticide. However, long-term use will not only pollute the
environment, but also lead to drug resistance and increase the incidence of plant viruses. Biological
control is widely used to control the spread of diseases by manually removing infected plants or intro-
ducing vector natural enemies, having significant effects and causing no pollution to the environment.
Thus, biological control is increasingly used as an efficient method to control plant viruses.

Although biological control of plant viruses provides an effective method for controlling the spread
of plant viruses, a successful control plan needs to understand the transmission mechanism of plant
viruses in plants and vectors as well as the interaction between biological controllers and plants and
vectors. Mathematical modeling has exerted a main and probably greater role in the epidemiology of
plant viruses. Mathematical models enable us to comprehend the observed transmission routes and
disease control of plant viruses, as well as grasp a deeper understanding of the mechanism of plant
disease transmission dynamics. At present, there are numerous research achievements on biological
control of plant viruses. As mentioned in [4], the authors consider the evolution of within-plant virus
titer as the response to the application of various disease control methods. Moreover, they demonstrate
that the process of new and improved disease control methods for viral diseases of vegetatively prop-
agated staple food crops need to consider the evolutionary responses of the virus. According to [5],
the authors concentrate on the contribution made by developing mathematical models with a scope of
techniques that is extensive and their use for investigating plant virus disease epidemics. Their focus is
on the extent to which models can help answer biological questions and raised questions in association
with the epidemiology and ecology of plant viruses and the caused diseases. Based on [6, 7], the au-
thors applied optimization theory to investigate the plant vector virus model with continuous replanting
and roguing, aiming to maximize the harvest of healthy plants and examine the best strategy to fight
plant virus disease. In [8], the authors concentrate on a plant disease model with a latent period and
nonautonomous phenomenon. Their focus is to explore the long-run behavior of the epidemic model.

In reality, considering that people control plant viruses at discrete time points, the establishment of
impulse differential equations to reveal the propagation dynamics and control strategies of plant viruses
has been favored by numerous scholars in recent years. In [9], the authors proposed and analyzed a
plant virus disease model under periodic environment and pulse roguing. Based on their research, with
the high infection rate, it can probably not be possible to eliminate the disease by easily roguing the
infectious plant, and elevating the replanting rate is not conducive to the control of disease. In [10],
to detect and design suitable plant disease control strategies, the authors proposed and investigated
the dynamics of plant disease models by adopting continuous and impulsive cultural control strate-
gies. Under a certain parameter space, it can be demonstrated that a nontrivial periodic solution occurs
through a supercritical bifurcation. In [11], the authors formulated an epidemiological model for mo-
saic diseases considering plant and vector populations. They discovered that roguing is the most cost
effective and beneficial management for mosaic disease eradication of plants if used at an appropriate
rate and interval. In [12, 13], with the purpose of eradicating plant diseases or keeping the number
of infected plants below the economic threshold, the authors proposed and analyzed the plant disease
models, including nonlinear impulsive functions and cultural control strategies. In [14], based on the
purpose of minimizing losses and maximizing returns, the authors introduce a discontinuous plant dis-
ease model, which incorporates a threshold policy control. Their results suggest that we can adopt the
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proper replanting and roguing rates for designing the threshold policy, and thus the number of infected
plants is within an acceptable level. Recently, pulse control methods can be applied in almost every
field of applied science. The theoretical research and application analysis of pulse control can be found
in many studies [15–18].

However, most of the above studies consider only (1) Continuous removal of infected plants or
replanting of healthy plants, without considering removal of infected plants at discrete time points. (2)
Pulse removes the infected plants without destroying the vector on the plants. Therefore, considering
the shortcomings of the above literature, based on the above two points, we aim to develop a plant virus
disease transmission model with nonlinear continuous and pulse control, analyze its dynamic behavior,
and discuss the impact on plant virus disease control when removing infected plants and vectors on
plants.

2. A model for continuous control

2.1. System description

According to the model proposed in [19], we develop a vector-borne plant virus disease model with
roguing control. The basic idea is that removing the infected plants will also eliminate the vectors on
the plants. For plant populations, we classified plants into healthy plants X(t), infected plants Y(t), and
the total number of plant populations at time t with N(t) = X(t) + Y(t). The recruitment rate of plant
population is constant r. The newly recruited plants enter healthy plant populations X(t). The plant
harvesting or death rate is denoted as g. Healthy plants are infected through contact with infection
vectors, and the infection rate is k1V(t)

N(t) , where k1 is the probability of transmission from infected vectors
to healthy plant. The expression of infection rate k1V(t)

N(t) is acquired as follows. The probability that a
vector selects a particular plant is assumed to be 1

N(t) , which is the probability of each plant selected
by total N(t). Therefore, a plant receives in average M(t)

N(t) contacts per unit of time. Later, the infection
rate per healthy plant is offered by M(t)

N(t)
k1V(t)
M(t) . Considering using removal control on infected plants, the

removal rate of diseased plants is α.

Vector populations are divided into non-infective U(t) and infective vectors V(t), and the total num-
ber of vector populations at time t denote M(t) = U(t)+V(t). The recruitment rate of vector population
is constant µ. The newly recruited vectors enter non-infective vector populations U(t). The vector death
rate is c. Uninfected vectors become infected through contact with infected plants, and the infection
rate is k2Y(t)

N(t) , where k2 is the probability of transmission from infected plants to non-infective vectors.

The elimination of vectors occurs when the infected plants are removed with elimination rate of
ραY(t)

N(t) which is explained as follows. The average number of vector on each plant is M(t)
N(t) , and parameter

ρ represents the elimination ratio of vectors on infected plants while removing each infected plant.
Since the number of infected plants removed is αY(t), with the removal of the infected plants, the total
number of eliminated vector is ραY(t)M(t)

N(t) . Thus, the elimination rate of vectors is ραY(t)M(t)
N(t)

1
M(t) . Therefore,
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our basic plant disease model reads as
dX(t)

dt = r − k1X(t)V(t)
N(t) − gX(t),

dY(t)
dt =

k1X(t)V(t)
N(t) − gY(t) − αY(t),

dU(t)
dt = µ −

k2U(t)Y(t)
N(t) − cU(t) − ραU(t)Y(t)

N(t) ,
dV(t)

dt =
k2U(t)Y(t)

N(t) − cV(t) − ραV(t)Y(t)
N(t) .

(2.1)

We suppose that all parameter values are strictly positive.
Next, we indicate the boundedness of system (2.1), and it can follow from system (2.1) that:

dN(t)
dt = r − gX(t) − (α + g)Y(t) ≤ r − gN(t),

which suggests:

N(t) ≤ N(0) exp(−gt) + r
g (1 − exp(−gt))→ r

g , for t → ∞.

Similarly, we have
dM(t)

dt = µ − cM(t) − ραM(t)Y(t)
N(t) ≤ µ − cM(t),

and thus, we obtain:

M(t) ≤ M(0) exp(−ct) + µc (1 − exp(−ct))→ µ

c , for t → ∞.

Therefore, the total plant population N(t) and vector population M(t) remain uniformly bounded.
Moreover, the region

Ω = {(X(t), Y(t), U(t), V(t)) ∈ R4
+ : X(t) + Y(t) ≤

r
g

; U(t) + V(t) ≤
µ

c
} (2.2)

is positively-invariant, indicating that this study concentrates on the dynamics of system (2.1) on the
set Ω in the following.

2.2. Disease-free equilibrium and stability analysis

With no disease in both of the populations(i.e., Y(t) = 0, V(t) = 0), the model (2.1) has one disease-
free equilibrium E0 = (N0, 0,M0, 0) = ( r

g , 0,
µ

c , 0). By [20], we define the basic reproductive number

R0 =

√
k1k2µg

c2r(g + α)
. (2.3)

We note that
R0 =

√
R01R02,

where

R01 =
k1

c
refers to the expected number of plants that one vector infects via its infectious life time. R01 can be
provided by the product of the infection rate of infectious vectors k1 and the average duration in the
infectious stage 1

c .
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Similarly, we have

R02 = k2
M0

N0

1
(g + α)

=
k2gµ

cr(g + α)
,

which is the expected number of vectors that one plant infects via its infectious life time. R02 is given
by the product of the infection rate of infectious plants k2

M0
N0

and the average duration in the infectious
stage 1

g+α .

The basic reproduction number equals to the geometric mean of R01 and R02 since infection from
plant to plant goes via one generation of vectors. In addition, the local asymptotic stability result of
equilibrium E0 is provided:

Theorem 2.1. When R0 < 1, the disease-free equilibrium E0 = ( r
g , 0,

µ

c , 0) remains locally asymptoti-
cally stable in Ω.

Proof. The Jacobian matrix of system (2.1) at disease-free equilibrium E0 can be provided by:

JE0 =


−g 0 0 −k1

0 −(g + α) 0 k1

0 −
(k2+ρα)µg

cr −c 0
0 k2µg

cr 0 −c

 .
The characteristic polynomial of JE0 can be expressed by:

P(λ) = (λ + g)(λ + c)φ(λ),

where φ(λ) = λ2 + a1λ + a2, with a1 = c(g + α) and a2 = c(g + α)(1 − R2
0).

The roots of P(λ) are λ1 = −g, λ2 = −c and the others roots are the roots of φ(λ). Because R0 < 1, all
coefficients of φ(λ) are always positive. Now, we just have to verify that the Routh-Hurwitz criterion

holds for polynomial φ(λ). Therefore, setting H1 = a1, H2 =

∣∣∣∣∣∣ a1 1
0 a2

∣∣∣∣∣∣ = a1a2. We have H1 > 0

and H2 > 0 if R0 < 1. Thus, by the Routh-Hurwitz criterion the trivial equilibrium E0 is locally
asymptotically stable when R0 < 1.

In general, the biological implication of Theorem 2.1 is that with the basic reproduction number R0

being less than 1, a small number of infected vectors are introduced into the plant population, which
will not cause disease outbreak, and the disease disappears in time. Nevertheless, in the following
subsection, we present that the disease can persist even with R0 < 1.

2.3. The existence of endemic equilibria and backward bifurcation

With the purpose of determining whether there is an endemic equilibrium, we need to find the
solution of the algebraic system of equations acquired through equating the right sides of system (2.1)
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to zero.

r −
k1X∗(t)V∗(t)

N∗(t)
− gX∗(t) = 0,

k1X∗(t)V∗(t)
N∗(t)

− gY∗(t) − αY∗(t) = 0,

µ −
k2U∗(t)Y∗(t)

N∗(t)
− cU∗(t) −

ραU∗(t)Y∗(t)
N∗(t)

= 0,

k2U∗(t)Y∗(t)
N∗(t)

− cV∗(t) −
ραV∗(t)Y∗(t)

N∗(t)
= 0.

(2.4)

For the sake of easier readability, we express the quantities as follows,

λ∗p =
V∗

N∗
, λ∗v =

Y∗

N∗
.

By addressing the equations in the system (2.4) in terms of λ∗p and λ∗v, we can obtain:

X∗ =
r

k1 ∗ λ∗p + g
, Y∗ =

rk1λ
∗
p

(g + α)(k1λ∗p + g)
, (2.5)

and
U∗ =

µ

c + (k2 + ρα)λ∗v
, V∗ =

k2µλ
∗
v

(c + ραλ∗v)((k2 + ρα)λ∗v + c)
. (2.6)

By substituting (2.5) and (2.6) into the expression of λ∗p and λ∗v, we have

A(λ∗p)2 + Bλ∗p +C = 0, (2.7)

where

A = k2
1r(c + ρα)(c + ρα + k2) > 0,

B =
k1(g + α)2c2r

g
(R2
ρ − R2

0), C = c2r(g + α)2(1 − R2
0),

Rρ =

√
(2(c + ρα) + k2)r2

c(g + α)
.

We aimed to investigate the existence of endemic equilibria in the following cases:
(1) There is a unique endemic equilibrium if

(C < 0) or (B < 0 and C = 0) or (B < 0 and C > 0 and B2 − 4AC = 0);
(2) There are two endemic equilibria if

B < 0 and C > 0 and B2 − 4AC > 0;
(3)There are no endemic equilibria otherwise.

Hence, we present the result in the theorem below.

Theorem 2.2. For system (2.1),
(1) If R0 > 1, there is a unique endemic equilibrium E∗.
(2) If R0 = 1 and B < 0 there is a unique endemic equilibrium E∗. Otherwise, there exists no endemic
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equilibrium.
(3) If R0 < 1, and

(a) B < 0 and B2 − 4AC > 0, there are two equilibria E1 and E2.

(b) B < 0 and B2 − 4AC = 0, there exists a unique endemic equilibrium.
(c) There are no endemic equilibria otherwise.

Obviously, case (3) (item(a)) of Theorem 2.2 indicates the possibility of backward bifurcation in
the model (2.1). Next, by applying the method of literature [21] to model (2.1), we present a rigorous
proof that model (2.1) experiences a backward bifurcation.

Theorem 2.3. If cα
g > r+k2+2ρα, the direction of the bifurcation of system (2.1) at R0 = 1 is backward.

Proof. Let k1 be the bifurcation parameter. To apply the method in reference [21], we introduce the
notation x1 = X, x2 = Y, x3 = U, x4 = V, the system (2.1) becomes

dx1
dt = r − k1 x1 x4

x1+x2
− gx1 := f1(x1, x2, x3, x4),

dx2
dt =

k1 x1 x4
x1+x2

− gx2 − αx2 := f2(x1, x2, x3, x4),
dx3
dt = µ −

k2 x2 x3
x1+x2

− cx3 −
ραx2 x3
x1+x2

:= f3(x1, x2, x3, x4),
dx4
dt =

k2 x2 x3
x1+x2

− cx4 −
ραx2 x4
x1+x2

:= f4(x1, x2, x3, x4),

(2.8)

with R0 = 1 corresponding to k1 = k∗1 =
c2r(g+α)

k2µg
. The disease-free equilibrium is E0 = ( r

g , 0,
µ

c , 0). The
linearization matrix of system (2.8) around the disease-free equilibrium when k1 = k∗1 is

DE0 f =


−g 0 0 −k∗1
0 −(g + α) 0 k∗1
0 −

(k2+ρα)µg
cr −c 0

0 k2µg
cr 0 −c

 ,
where f = ( f1, f2, f3, f4)′. Clearly, 0 indicates a simple eigenvalue of DE0 f . A right eigenvector related
to 0 eigenvalue is ω = [− cr(g+α)

k2µg2 ,
cr

k2µg
,− k2+ρα

ck2
, 1

c ]′, and the left eigenvector υ meeting ω · υ = 1 is
υ = [0, k2µg

r(c+g+α) , 0,
c(g+α)

(c+g+α) ]. Algebraic calculations demonstrate that

∂2 f2

∂x2∂x4
=
∂2 f2

∂x4∂x2
= −

cr(g + α)
k2µ

,
∂2 f4

∂x2∂x1
=
∂2 f4

∂x1∂x2
= −

k2µg2

cr2 ,
∂2 f4

∂x2
2

= −
2k2µg2

cr2 ,

∂2 f4

∂x3∂x2
=
∂2 f4

∂x2∂x3
=

k2g
r
,

∂2 f4

∂x4∂x2
=
∂2 f4

∂x2∂x4
= −
ραg

r
,

∂2 f2

∂x2∂k1
= 1.

The remaining of the second derivatives appear in the formula for a and b are all zero. The a and b
presented in Theorem 4.1 of [21] are

a =
n∑

k,i, j=1

υkωiω j
∂2 f
∂xi∂x j

(0, 0), b =
n∑

k,i=1

υkωi
∂2 f
∂xi∂ϕ

(0, 0).
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Hence,

a =
2c(g + α)

k2µ(c + g + α)
(
cα
g
− (r + k2 + 2ρα)),

b =
k2µg

cr(c + g + α)
> 0.

By [21], if cα
g > r + k2 + 2ρα, then a > 0, and the direction of the bifurcation of system (2.1) at R0 = 1

is backward.

The backward bifurcation phenomenon indicates that with the basic reproductive number R0 < 1,
the disease-free equilibrium is locally stable. Therefore, it is insufficient to only reduce the basic re-
productive number R0 < 1 in order to eliminate the disease. Figure 1 depicts the associated bifurcation
diagram. This clearly demonstrates the coexistence of two locally-asymptotically stable equilibria with
R0 < 1, proving that the model (2.1) reveals the phenomenon of backward bifurcation. Therefore, to
eradicate plant diseases, it is of necessity to increase α, and thus R0 is less than R0(α0), where R0(α0)
is the threshold for the appearance of two endemic equilibria.

Figure 2 presents the occurrence of the backward bifurcation. In this study, R0 < 1, while according
to the initial condition, the solution of the model (2.1) can approach either the endemic equilibrium
point or the disease-free equilibrium point.

Figure 1. The backward bifurcation curves for system of (2.1) in the (R0,Y∗) and (R0,V∗)
planes. The parameter α varied within the range (0.03,0.08) in order to allow R0 to be differ-
ent in the rang (0, 1.04). Red lines suggest stable equilibria and blue lines indicate unstable
equilibria. There is a positive value R0(α0), and when R0 is less than R0(α0), there is no pos-
itive equilibrium. The used parameter values are: k1 = k2 = 0.003, g = 0.002, µ = 400,
c = 0.2, ρ = 0.86.
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Figure 2. Solution of model (2.1) of the number of infectious plants Y(t) and vectors V(t),
for parameter values provided in the bifurcation diagram in Figure 1 with α = 0.0315, and
thus R0 = 0.9975 < 1, for two different sets of initial conditions. The first initial conditions
(corresponding to the red line) is (7, 0.5, 750, 30) and the second initial conditions (conform-
ing to the blue line) is (70, 0.5, 750, 30).

3. A model for impulsive control

The current section extends model (2.1) by replacing the continuous infected plants with a periodic
pulse roguing control strategy, which is shown to be more realistic. Therefore, our impulsive control
model of plant virus diseases reads as

dX(t)
dt = r − k1X(t)V(t)

N(t) − gX(t),
dY(t)

dt =
k1X(t)V(t)

N(t) − gY(t),
dU(t)

dt = µ − k2U(t)Y(t)
N(t) − cU(t),

dV(t)
dt =

k2U(t)Y(t)
N(t) − cV(t),


t , nT,

X(t+) = (1 − p)X(nT ),

Y(t+) = (1 − α)Y(nT ),

U(t+) = (1 − ραY(nT )
N(nT ) −

ρpX(nT )
N(nT ) )U(nT ),

V(t+) = (1 − ραY(nT )
N(nT ) )V(nT ),


t = nT,

X(0+) = X0, Y(0+) = Y0, U(0+) = U0, V(0+) = V0,

(3.1)

where T indicates a fixed positive constant and suggests the periodic of the impulsive effect, where
n ∈ N represents the positive integer set. The parameter α suggests the proportion of the infected
plants, which is rogued at each pulse perturbation. Considering the inevitable impact of control mea-
sures on healthy plants, we use p representing the proportion of the healthy plants, which is rogued at
each pulse perturbation. Here, we assume that p < α. Similar to the continuous model, the ratio of re-
moving uninfected and infected vectors while removing plants is ραY(nT )

N(nT ) . As there are only uninfected
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vectors on healthy plants, only uninfected vectors can be eliminated while removing healthy plants.
The elimination ratio is ρpX(nT )

N(nT ) , where ρ represents the vectors elimination rate of vectors, which prob-
ably means that some of the uninfected vectors and infected vectors will be occasionally eliminated
due to the rogued plants.

3.1. The existence and stability of the disease-free periodic solution

When Y(t) = 0, V(t) = 0, then model (3.1) is the subsystem below:

dX(t)
dt = r − gX(t),

dU(t)
dt = µ − cU(t),

 t , nT,

X(nT+) = (1 − p)X(nT ),
U(nT+) = (1 − ρp)U(nT ),

 t = nT,

X(0+) = X0, U(0+) = U0,

(3.2)

which presents the dynamics of the system in the absence of the infected plants and vectors. For system
(3.2), we can address it in any impulsive interval (nT, (n + 1)T ] and obtain:X(t) = (X(nT+) − r

g ) exp(−g(t − nT )) + r
g ,

U(t) = (U(nT+) − µc ) exp(−c(t − nT )) + µc .
(3.3)

Denote Xn = X(nT+) and Un = U(nT+), then:Xn+1 = (1 − p)Xn exp(−gT ) + r(1−p)
g (1 − exp(−gT )),

Un+1 = (1 − pρ)Xn exp(−cT ) + µ(1−pρ)
c (1 − exp(−cT )).

(3.4)

There is a steady state (X∗,U∗), which suggests that system (3.2) has a positive periodic solution
(X∗(t),U∗(t)), where X∗(t) = (X∗ − r

g ) exp(−g(t − nT )) + r
g , U

∗(t) = (U∗ − µc ) exp(−c(t − nT )) + µc with
X∗ = r(1−p)(1−exp(−gT ))

g(1−(1−p) exp(−gT )) and U∗ = µ(1−pρ)(1−exp(−cT ))
c(1−(1−pρ) exp(−cT )) . Hence, the following lemma can be obtained.

Lemma 3.1. System (3.2) has a positive periodic solution (X∗(t),U∗(t)). For any solution of (3.2), this
study obtains X(t)→ X∗(t), U(t)→ U∗(t) as t → ∞.

Proof. From (3.3) and (3.4), we obtain the solution of (3.2) asX(t) = (X0(1 − p)n exp(−ngT ) + (1−(1−p)n exp(−ngT ))r(1−p)(1−exp(−gT ))
g(1−(1−p) exp(−gT )) − r

g ) exp(−g(t − nT )) + r
g ,

U(t) = (U0(1 − pρ)n exp(−ncT ) + (1−(1−p)n exp(−ncT ))µ(1−pρ)(1−exp(−ncT ))
c(1−(1−pρ) exp(−cT )) −

µ

c ) exp(−c(t − nT )) + µc ,
(3.5)

which indicates that X(t)→ X∗(t) and U(t)→ U∗(t) as n→ ∞ and t ∈ (nT, (n + 1)T ].

Therefore, system (3.1) has a disease-free periodic solution (X∗(t), 0,U∗(t), 0) and its stability has
been solved.

To determine the stability of disease-free periodic solution (X∗(t), 0,U∗(t), 0) of system (3.1), we
first calculate the basic reproduction number for the impulsive model (3.1) with the application of the
next infection operator for the piecewise continuous periodic system being proposed in [22]. A(t) can
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be denoted as a n × n matrix, ΦA(.)(t) is suggested as the fundamental solution matrix of the linear
ordinary differential system χ

′

= A(t)χ, and r(ΦA(.)(t)) is indicated as the spectral radius of ΦA(.)(t).
Define X(t) = x(t) + X∗(t), Y(t) = y(t), U(t) = u(t) + U∗(t), V(t) = v(t), χ(t) = (x(t), u(t), y(t), v(t)). The
corresponding linear system (3.1) reads asχ

′

(t) = G(t)χ(t), t , nT,

χ(t+) = Hχ(t), t = nT,
(3.6)

where

G(t) =
(

G1(t) G2(t)
O F(t) − Vr(t)

)
,H =

(
H1 H2

O H3

)
(3.7)

with

G1(t) =
(
−g 0
0 −c

)
,G2(t) =

(
0 −k1

−k2
U∗(t)
X∗(t) 0

)
, F(t) =

(
0 k1

k2
U∗(t)
X∗(t) 0

)
,Vr =

(
g 0
0 c

)
(3.8)

and

H1 =

(
1 − p 0

0 1 − ρp

)
,H2 =

(
0 0

U∗(nT )ρ(p−α)
X∗(nT ) 0

)
,H3 =

(
1 − α 0

0 1

)
. (3.9)

Let ΦG(t) = Φi j, 1 ≤ i, j ≤ 2, the fundamental solution matrix of system (3.6). Then, we have
Φ
′

G(t) = G(t)ΦG(t) with the initial value ΦG(0) = I4. Based on the further computation, it is suggested
that:

ΦG(t) =
(

exp(G1t) Φ12

O ΦF−Vr (t)

)
, (3.10)

then we have

HΦG(T ) =
(

H1 exp(G1T ) H2Φ12

O H3ΦF−Vr (T )

)
. (3.11)

It is obvious that r(H1 exp(G1T )) < 1, by [22], the basic reproduction number for system (3.6) is
provided as follow

R1 = r(H3ΦF−Vr (T )). (3.12)

Using Floquet theory, if R1 < 1, we obtain the following result.

Theorem 3.2. The disease-free periodic solution (X∗(t), 0,U∗(t), 0) of model (3.1) is locally asymptot-
ically stable when R1 < 1.

3.2. Persistence of the disease

According to the persistence of the system, it can be found that plants (susceptible and infected)
and vectors (susceptible and infected) can coexist, indicating that some conditions are satisfied, and
the disease will not disappear. If we aim to eliminate the disease, the persistence indicates that control
strategies are inefficient. Moreover, the permanent condition acquired from the exploration of the
system can offer scientific support for determining the key factors causing failure and the effectiveness
of control strategies, which later benefit us in establishing a good control program.

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4056–4084.



4067

Theorem 3.3. When R2 = r(H
′

3ΦF−Vr (T )) > 1, the disease is uniform persistence, i.e., there exists
η > 0 such that lim

t→∞
inf Y(t) ≥ η > 0, lim

t→∞
inf V(t) ≥ η > 0. Here,

H
′

3 =

(
1 − α 0

0 1 − ρα

)
. (3.13)

Proof. At first, we claim that there exists η > 0, and thus:

lim
t→∞

sup Y(t) ≥ η > 0, lim
t→∞

sup V(t) ≥ η > 0. (3.14)

Next, there is a t1 > 0 such that Y(t) < η,V(t) < η for all t ≥ t1. According to the first and third
equations in system (3.1), the following can be obtained:

dX(t)
dt ≥ r − k1

X(t)
N(t)η − gX(t), t , nT,

dU(t)
dt ≥ µ − k2

U(t)
N(t)η − cU(t), t , nT,

X(t+) = (1 − p)X(t), t = nT,

U(t+) ≥ (1 − ρ(α + p))U(t), t = nT,

(3.15)

and focus on the auxiliary system
dz1(t)

dt = r − k1η − gz1(t), t , nT,
dz2(t)

dt = µ − k2
z2(t)
N(t)η − cz2(t), t , nT,

z1(t+) = (1 − p)z1(t), t = nT,

z2(t+) = (1 − ρ(α + p))z2(t), t = nT.

(3.16)

Since system (3.16) refers to a quasimonotone increasing system, based on the comparison theorem
[23], the following can be obtained:

X(t) ≥ z1(t), U(t) ≥ z2(t). (3.17)

Using the solution of system (3.2), we acquire that model (3.16) admits a globally asymptotically stable
positive periodic solution z∗(t) = (z∗1(t), z∗2(t)), and lim

η→0
z∗(t) = (X∗(t),U∗(t)). Then, there exists η1 small

enough and ε1 > 0 such that z∗1(t) ≥ X∗(t) − ε1 and z∗2(t) ≥ U∗(t) − ε1for η < η1. Therefore, by the
comparison theorem, there is t2 ≥ t1 and ε2 > 0, and thus

X(t) ≥ z1(t) ≥ z∗1(t) − ε2 ≥ X∗(t) − ε1 − ε2,

U(t) ≥ z2(t) ≥ z∗2(t) − ε2 ≥ U∗(t) − ε1 − ε2.
(3.18)

By substituting the above inequalities into the second and fourth equations of system (3.1), we acquire:
dY(t)

dt ≥ k1
V(t)
N(t) (X

∗(t) − ε1 − ε2) − gY(t), t , nT,
dV(t)

dt ≥ k2
Y(t)
N(t) (U

∗(t) − ε1 − ε2) − cV(t), t , nT,

Y(t+) = (1 − α)Y(t), t = nT,

V(t+) = (1 − ραY(t)
N(t) )V(t), t = nT.

(3.19)
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Supplementing the equations of plant population and vector population respectively provides:
dN(t)

dt = r − gN(t), t , nT,
dM(t)

dt = µ − cM(t), t , nT,

N(t+) = (1 − p)X(t) + (1 − α)Y(t) ≤ (1 − p)N(t), t = nT,

M(t+) = (1 − ρpX(t)
N(t) −

ραY(t)
N(t) )U(t) + (1 − ραY(t)

N(t) )V(t) ≤ M(t), t = nT.

(3.20)

Denoting (N1(t),M1(t)) is the solution of system (3.20) and (X1(t),U1(t)) as that of system (3.2). Com-
paring the equations in system (3.20) and (3.2) yields N1(t) ≤ X1(t),M1(t) ≤ U1(t). Since X1(t) ≤ X∗(t),
U1(t) ≤ U∗(t), then we have N1(t) ≤ X∗(t), M1(t) ≤ U∗(t), and system (3.19) can be modified as

dY(t)
dt ≥ k1V(t) − gY(t), t , nT,

dV(t)
dt ≥ k2

U∗(t)
X∗(t) Y(t) − cV(t), t , nT,

Y(t+) = (1 − α)Y(t), t = nT,

V(t+) = (1 − ραY(t)
N(t) )V(t) ≥ (1 − ρα)V(t), t = nT.

(3.21)

Further, we concentrate on an auxiliary system
dz3(t)

dt = k1z4(t) − gz3(t), t , nT,
dz4(t)

dt = k2
U∗(t)
X∗(t) z3(t) − cz4(t), t , nT,

z3(t+) = (1 − α)z3(t), t = nT,

z4(t+) = (1 − ρα)z4(t), t = nT.

(3.22)

It can be re-expressed as 

 dz3(t)
dt

dz4(t)
dt

 = (F(t) − Vr(t))

 z3(t)
z4(t)

 , t , nT, z3(t+)
z4(t+)

 = H
′

3

 z3(t)
z4(t)

 , t = nT.

(3.23)

The solution of system (3.23) can be shown as (z3(t), z4(t))T = ΦF−Vr (t− nT )(z3(nT+), z4(nT+))T . Then,
(z3((n+1)T+), z4((n+1)T+))T = H

′

3ΦF−Vr (T )(z3(nT+), z4(nT+))T .While R2 > 1, z3(t)→ ∞ and z4(t)→
∞ as t → ∞. Consequently, lim

t→∞
Y(t) = ∞ and lim

t→∞
V(t) = ∞.Moreover, this is a contradiction with the

Y(t) and V(t). Thus, the claim is demonstrated, i.e.,

lim
t→∞

sup Y(t) ≥ η > 0, lim
t→∞

sup V(t) ≥ η > 0. (3.24)

We obtain the two possibilities.
(i) Y(t) ≥ η and V(t) ≥ η for all large t;
(ii) Y(t) and V(t) oscillations concerning η for all large t.
When case (i) is true, our proof is completed. Next, we will consider case (ii). Because

lim
t→∞

sup Y(t) ≥ η, lim
t→∞

sup V(t) ≥ η, we can select a t1 ∈ (n1T, (n1 + 1)T ] such that Y(t1) ≥ η and
V(t1) ≥ η. If the oscillation exists, there must be another t2 ∈ (n2T, (n2 + 1)T ] such that Y(t2) ≥ η and
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V(t2) ≥ η, in which n2 − n1 ≥ 0 is finite. Next, this study will focus on the solution of system (3.1) in
the interval [t1, t2] :  dY(t)

dt = k1
V(t)
N(t) X(t) − gY(t) ≥ −gY(t), t , nT,

Y(t+) = (1 − α)Y(t), t = nT.
(3.25)

Which suggests that

Y(t) ≥ η(1 − α)n2−n1 exp(−g(t2 − t1)) ≥ η(1 − α)n2−n1 exp(−g(n2 − n1)T ). (3.26)

Moreover, it follows fromdV(t)
dt = k2

Y(t)
N(t)U(t) − cV(t) ≥ −cV(t), t , nT,

V(t+) = (1 − ραY(t)
N(t) )V(t) ≥ (1 − ρα)V(t), t = nT.

(3.27)

Then we obtain:

V(t) ≥ η(1 − ρα)n2−n1 exp(−c(t2 − t1)) ≥ η(1 − ρα)n2−n1 exp(−c(n2 − n1)T ). (3.28)

Let δ1 = min{η(1− α)n2−n1 exp(−g(n2 − n1)T ), η(1− ρα)n2−n1 exp(−c(n2 − n1)T )}, then δ1 > 0 cannot
be infinitely small due to the n2 − n1 ≥ 0 is finite, leading to Y(t) ≥ δ1 > 0 and V(t) ≥ δ1 > 0.

When t > t2, we take the same steps and get another non-infinitesimal positive δ2. There-
fore, the sequence {δi}(i = 1, 2, 3, ...), in which δi = min{η(1 − α)ni+1−ni exp(−g(ni+1 − ni)T ), η(1 −
ρα)ni+1−ni exp(−c(ni+1 − ni)T )} is non-infinitesimal since ni+1 − ni ≥ 0 is finite. The solution of system
(3.1) Y(t) ≥ δk > 0 and V(t) ≥ δk > 0 is true in the time interval [tk, tk+1], tk ∈ (nkT, (nk + 1)T ], tk+1 ∈

(nk+1T, (nk+1 + 1)T ]. Let η = min{δ1, δ2, ...}, then η ∈ {δ1, δ2, ...} and it is shown that Y(t) ≥ η and
V(t) ≥ η for all t ≥ t1. The proof is complete.

Remark: It becomes easy to observe that R2 is less than R1. Therefore, when R1 > R2 > 1,
the disease persists. Nevertheless, due to the complexity of the model, we obtain only the stronger
condition for the persistence in the (3.3), that is R2 > 1, than R1 > 1.

3.3. Bifurcation analysis of nontrivial endemic periodic solution

In the current subsection, to study the influence of the removal rate of infected plants on the model,
we choose α as the bifurcation parameter to investigate the possible behaviors of nontrivial periodic
solution. Now, we proceed to explore bifurcation based on the bifurcation theorem of [24] and [25].
Let x1(t) = X(t), x2(t) = U(t), x3(t) = Y(t), x4(t) = V(t). Then, we employ the following notations in
model (3.1)

dx1(t)
dt = r − k1 x1(t)x4(t)

x1(t)+x3(t) − gx1(t) := F1(x1(t), x2(t), x3(t), x4(t)),
dx2(t)

dt = µ − k2 x2(t)x3(t)
x1(t)+x3(t) − cx2(t) := F2(x1(t), x2(t), x3(t), x4(t)),

dx3(t)
dt =

k1 x1(t)x4(t)
x1(t)+x3(t) − gx3(t) := F3(x1(t), x2(t), x3(t), x4(t)),

dx4(t)
dt =

k2 x2(t)x3(t)
x1(t)+x3(t) − cx4(t) := F4(x1(t), x2(t), x3(t), x4(t)),


t , nT,

x1(t+) = (1 − p)x1(t) := Θ1(α, x1(t), x2(t), x3(t), x4(t)),

x2(t+) = (1 − ρpx1(t)
x1(t)+x3(t) −

ραx3(t)
x1(t)+x3(t) )x2(t) := Θ2(α, x1(t), x2(t), x3(t), x4(t)),

x3(t+) = (1 − α)x3(t) := Θ3(α, x1(t), x2(t), x3(t), x4(t)),

x4(t+) = (1 − ραx3(t)
x1(t)+x3(t) )x4(t) := Θ4(α, x1(t), x2(t), x3(t), x4(t)),


t = nT,

x1(0+) = x1(0), x2(0+) = x2(0), x3(0+) = x3(0), x4(0+) = x4(0).

(3.29)
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First, the following notations are introduced: The solution vector ξ(t) := (x1(t), x2(t), x3(t), x4(t)), the
mapping F(ξ(t)) = (F1(ξ(t)), F2(ξ(t)), F3(ξ(t)), F4(ξ(t))) : R4 → R4 by the right hand side of the first
four equations of system (3.29), and the mapping with impulse to be

Θ(α, ξ(t)) = (Θ1(α, ξ(t)),Θ2(α, ξ(t)),Θ3(α, ξ(t)),Θ4(α, ξ(t)))

= ((1 − p)x1(t), (1 −
ρpx1(t)

x1(t) + x3(t)
−
ραx3(t)

x1(t) + x3(t)
)x2(t), (1 − α)x3(t), (1 −

ραx3(t)
x1(t) + x3(t)

)x4(t)).

Let Φ(t, ξ0) the solution of the system which is consisted of the first four equations of system (3.29),
where ξ0 = ξ(0). Next, ξ(T ) = Φ(T, ξ0) =: Φ(ξ0) and ξ(T+) = Θ(α,Φ(ξ0)). The operator Ψ is defined
by:

Ψ(α, ξ) := (Ψ1(α, ξ),Ψ2(α, ξ),Ψ3(α, ξ),Ψ4(α, ξ)) = Θ(α,Φ(ξ)), (3.30)

and denote by DξΨ the derivative of Ψ with respect to ξ. Later, ξ indicates a periodic solution of period
T for system (3.29) if and only if Ψ(α, ξ0) = ξ0. Therefore, to obtain the nontrivial periodic solution of
system (3.29), we are required to demonstrate the presence of nontrivial fixed point of Ψ.

All parameters are fixed except the infective plants removal rate α. Denote that α0 is the critical
remove rate, corresponding to R1 = r(H3ΦF−VR(T )) = 1. Let ξ = (x∗1, x

∗
2, 0, 0) be the disease-free

periodic solution of system (3.29).
Denote α = α0 + α, ξ = ξ0 + ξ, with ξ0 is the starting point for the disease-free periodic solution

with the removal rate α0, and let

N(α, ξ) = (N1(α, ξ),N2(α, ξ),N3(α, ξ),N4(α, ξ))
= ξ0 + ξ − Ψ(α0 + α, ξ0 + ξ).

Next, the fixed point problem can be expressed:

N(α, ξ) = 0. (3.31)

The derivative of N(α, ξ) with respect to ξ provides:

DξN(α, ξ) = E4 − DξΘ(Φ(t, ξ0)) · DξΦ(ξ), (3.32)

where E4 refers to the identity matrix. Based on system (3.29), the equality can be obtained:

d
dt

(DξΦ(t, ξ0)) = DξF(Φ(t, ξ0))DξΦ(t, ξ0), (3.33)

with DξΦ(0, ξ0) = E4 and Φ(t, ξ0) = (Φ1(t, ξ0),Φ2(t, ξ0), 0, 0), then Eq (3.33) takes the form

d
dt

(DξΦ(t, ξ0)) = G(t)DξΦ(t, ξ0). (3.34)

The following can be obtained:

DξN(0,O) =
(

E2 − H1eG1T −H2Φ12

0 E2 − H3ΦF−Vr (T )

)
, (3.35)
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where O = (0, 0, 0, 0). The essential condition for the bifurcation of nontrivial zeros of function N
refers to that the determinant of the Jacobian matrix DξN(0,O) is shown to be equal to zeros, for
example,

det(DξN(0,O)) = 0. (3.36)

It is not difficult to observe from (3.35) that det(E2 − H1eG1T ) , 0. Then det(DξN(0,O)) = 0 can
reduce to det(E2 − H3ΦF−Vr (T )) = 0. If R1 = r(H3ΦF−Vr (T )) = 1, then det(E2 − H3ΦF−Vr (T )) = 0. Now
we investigate the sufficient conditions for the existence of bifurcation nontrivial period solutions. With
the consideration of convenience, we denote the elements in matrix DξN(0,O) as

DξN(0,O) =


e0 0 a1 b1

0 f0 c1 d1

0 0 a0 b0

0 0 c0 d0

 , (3.37)

from the calculation in Appendix A, we can obtain the expression of each element in the above matrix
as follows:

e0 = 1 − (1 − p)e−gT , f0 = 1 − (1 − ρp)e−cT , a0 = 1 − (1 − α0)
∂Φ3(T, ξ0)
∂ξ3

,

b0 = −(1 − α0)
∂Φ3(T, ξ0)
∂ξ4

, c0 = −
∂Φ4(T, ξ0)
∂ξ3

, d0 = 1 −
∂Φ4(T, ξ0)
∂ξ4

,

a1 = −(1 − p)
∂Φ1(T, ξ0)
∂ξ3

, b1 = −(1 − p)
∂Φ1(T, ξ0)
∂ξ4

,

c1 = −(1 − ρp)
∂Φ2(T, ξ0)
∂ξ3

−
Φ2(T, ξ0)ρ(p − α0)

Φ1(T )
∂Φ3(T, ξ0)
∂ξ3

,

d1 = −(1 − ρp)
∂Φ2(T, ξ0)
∂ξ4

−
Φ2(T, ξ0)ρ(p − α0)
Φ1(T, ξ0)

∂Φ3(T, ξ0)
∂ξ4

.

Then det(E2 −H3ΦF−Vr (T )) = 0 suggests that there is a constant k , 0 such that c0 = ka0 and d0 = kb0.

Moreover, since det(DξN(0,O)) = 0, we cannot employ the Implicit Function Theorem for giving
variable ξ as a function of α. By [24] and [25], we perform a Lyapunov-Schmide reduction to obtain
a system of equations, where the Implicit Function Theorem can be applied. It is easy to observe that
dimKer(DξN(0,O)) = 1 and a basis in Ker(DξN(0,O)) is

Y1 = (Y11,Y12,Y13,Y14) = (
a1b0

a0e0
−

b1

e0
,

c1b0

a0 f0
−

d1

f0
,−

b0

a0
, 1).

Moreover, Y2 = (1, 0, 0, 0), Y3 = (0, 1, 0, 0) and Y4 = (0, 0, 1, 0) compose a basis in Im(DξN(0,O)).
Later, for ξ ∈ R4, based on the decomposition R4 = Ker(DξN(0,O)) ⊕ Im(DξN(0,O)), the following
can be obtained:

ξ = α1Y1 + α2Y2 + α3Y3 + α4Y4, (3.38)

where αi ∈ R(i = 1, 2, 3, 4) are special. Thus, (3.31) is equivalent to

Ni(α, α1Y1 + α2Y2 + α3Y3 + α4Y4) = 0, i = 1, 2, 3, 4. (3.39)
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From the first three equations of (3.39), the following can be obtained:

D(N1,N2,N3)(0,O)
D(α2, α3, α4)

= a0e0 f0 , 0. (3.40)

Thus, from the Implicit Function Theorem, one can deal with equations (3.39) as i = 2, 3, 4 regarding
(0,O) with respect to αi, i = 2, 3, 4 as function of α and α1, and find α̃i = α̃i(α, α1) and thus α̃i(0, 0) = 0,
i = 2, 3, 4, and

Ni(α, αY1 + α̃2Y2 + α̃3Y3 + α̃4Y4) = 0, (3.41)

i = 1, 2, 3. Next, only N(ᾱ, ξ̄) = 0 if and only if

f (ᾱ, α1) = N4(ᾱ, α1Y1 + α̃2Y2 + α̃3Y3 + α̃4Y4) = 0. (3.42)

It can be known that f (ᾱ, α1) vanishes at (0, 0). Therefore, it becomes essential to compute higher
order derivatives of f (ᾱ, α1) up to the order i for which Di f (0, 0) , 0. Similar to the calculation in [24]
and [25], the first partial derivatives of f about ᾱ and α1 satisfy

∂ f (0, 0)
∂ᾱ

=
∂ f (0, 0)
∂α1

= 0. (3.43)

(See Appendix B). Therefore, we obtain D f (0, 0) = (0, 0). Then, it becomes essential to calculate the
second partial derivative of f .

Let A = ∂
2 f (ᾱ,α1)
∂ᾱ2 , B =

∂2 f (ᾱ,α1)
∂ᾱα1

and C = ∂
2 f (ᾱ,α1)
∂α2

1
. From the calculation in Appendix C, it can be found

that A = 0,

B = k(
∂Φ3(ξ0)
∂ξ3

Y13 +
∂Φ3(ξ0)
∂ξ4

Y14) (3.44)

and

C =
4∑

i=1

4∑
j=1

Y1iY1 j(−
∂2Φ4(ξ0)
∂ξi∂ξ j

− k(1 − α0)
∂2Φ3(ξ0)
∂ξi∂ξ j

). (3.45)

Therefore, we have

f (ᾱ, α1) = 2Bᾱα1 +Cα2
1 + o(ᾱ, α1)(ᾱ2 + α2

1) = α1 f̃ (ᾱ, α1), (3.46)

where
f̃ (ᾱ, α1) = 2Bᾱ +Cα1 +

1
α1

o(ᾱ, α1)(ᾱ2 + α2
1). (3.47)

Furthermore,
∂ f̃ (0, 0)
∂α̃

= 2B,
∂ f̃ (0, 0)
∂α1

= C. (3.48)

Thus, for B , 0, we can employ the Implicit Function Theorem, implying that ᾱ = φ1(α1), such that
for all α1 near 0, f̃ (φ1(α1), α1) = 0. Furthermore, for C , 0, we can also be α1 = φ1(ᾱ), such that for
all ᾱ near 0, f̃ (φ2(ᾱ), ᾱ) = 0. Then, if BC , 0, we have α1

ᾱ
≃ −2B

C . There is a supercritical bifurcation
to a nontrivial periodic solution near the fixed point ξ0, if BC < 0, and it is subcritical, if BC > 0.We
know that the threshold R1 lowers with the increasing α, then a supercritical bifurcation in the ᾱ − α1

plane indicates a backward bifurcation in the model. Additionally, the subcritical bifurcation equated
to a forward bifurcation. Finally, the following theorem below can be concluded.

Theorem 3.4. If BC < 0, system (3.29) admits a backward bifurcation as α passes via the critical
value α0. Then, a forward bifurcation will occur BC > 0.
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Figure 3. Sensitivity analysis of R1 to all parameters.

4. Numerical simulations

First, the analysis result of model (2.1) suggests that the system has backward bifurcation with the
basic reproduction number R0 = 1. As shown in Figure 1, we fixed other parameters to let α change,
and gave the backward bifurcation diagram of the system (2.1). It can be observed from the Figure 1
that when R0(α0) ≤ R0 < 1, the system has a stable positive equilibrium point and an unstable positive
equilibrium point. The disease can be eradicated only when R0 < R0(α0). Thus, when the infected
plants are removed, the disease can be eradicated only if the removal rate α > α0. As presented in
Figure 2, we choose the parameter such that R0 = 0.9975 < 1 changes the initial value of the system.
With the initial value being (7, 0.5, 750, 30), the system has a disease free equilibrium point that remains
globally asymptotically stable. When the initial value is (70, 0.5, 750, 30), the system possesses a
stable positive solution. Therefore, it is necessary to consider the initial infection when preventing and
controlling plant viruses.

Table 1. The definitions of all parameters and their baseline values.

Parameter Interpretation Standard value Range Source

r Recruitment rate of plant 0.015(day−1) 0–0.025 Assumed

α Plant roguing rate 0.003(day−1) 0–0.033 [19]

g Plant loss/harvesting rate 0.003(day−1) 0.002–0.004 [19]

µ Recruitment rate of vector 400(day−1) 0–2500 Assumed

c Vector mortality 0.12(day−1) 0.06–0.18 [19]

k1 Infection rate 0.008(vector−1day−1) 0.002–0.032 [19]

k2 Acquisition rate 0.008(plant−1day−1) 0.002–0.032 [19]

Second, the disease control threshold condition R1 is obtained by analyzing the model (3.1). How-
ever, owing to the complexity of the model, we cannot obtain the explicit expression of the threshold
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Figure 4. The impacts of the parameter p on the threshold level R1. The set of parameter
values is k1 = k2 = 0.003, µ = 400, c = 0.12, g = 0.002, α = 0.9, ρ = 0.86 and T = 15.

R1. To describe the effect of parameters on the threshold conditions, the method in [26] is used to give a
sensitivity analysis of the threshold R1. Owing to the lack of information, we choose uniform distribu-
tion for all parameters and possible ranges of parameters in Table 1. It can be observed from Figure 3
that among the four control parameters, the increasing α and ρ can decrease R1, while increasing p and
T leads to an increase in R1. As presented in Figure 4, we fixed other parameters except the removal
rate p of healthy plants and applied numerical simulation to explore the impact of the removal rate p
of healthy plants on the threshold R1. The results demonstrated that the threshold R1 increased with the
increasing removal rate p of healthy plants. Therefore, when controlling the spread of plant diseases,
we should attempt to avoid removing healthy plants. Moreover, because R1 depends on α and ρ, we use
a three-dimensional surface (Figure 5) to illustrate the dependence of R1 on these two parameters. The
numerical simulation indicates that high values of ρ and α will guarantee R1 < 1. As a result, when the
control strategy is implemented, not only should the infected plants be removed, but also the vectors
should be eliminated together, aiming to ensure that the plant virus disease can be controlled.

Finally, it can be found from Theorem 3.4 that system (3.1) may have backward bifurcation. In
Figure 6, we select the parameter to make R1 = 0.9775 < 1. For different initial values, it is found that
(1) the system with initial value (2, 0.1, 1000, 15) has a stable disease eradication periodic solution; and
(2) with the initial value being (2, 0.1, 1000, 150), the system has a stable positive periodic solution.

5. Discussion

Roguing control is a very vital and effective control strategy for plant virus transmission. In [27],
the author considered the removal of infected plants and did not consider the elimination of vectors
on plants when removing infected plants. We consider two kinds of plant virus transmissions control
strategies to remove infected plants and vectors in a continuous and pulse manner.
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Figure 5. The impacts of the parameter α and ρ on the threshold level R1. The set of param-
eter values is k1 = k2 = 0.003, µ = 400, c = 0.12, g = 0.002 and T = 15.
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Figure 6. Solution of system (3.1) of the number of infectious plants, Y(t), The set of param-
eter values is k1 = k2 = 0.003, µ = 400, c = 0.12, g = 0.002, α = 0.8, T = 15, and ρ = 0.86,
so R1 = 0.9721 < 1, for two different sets of initial conditions. The first initial conditions
(conforming to the red line) is (7, 0.1, 1000, 150). The second initial conditions (conforming
to the blue line) is (7, 0.1, 1000, 15).
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For control strategies with continuous removal of infected plants and vectors, through the analysis
of system (2.1), we obtain that when the threshold R0 < 1, the disease-free equilibrium is locally
asymptotically stable, and the system may have two positive equilibrium points. Using the conclusion
in [21], we demonstrate the sufficient condition for the existence of backward bifurcation in system
(2.1). Based on the results, the disease can be eliminated only when R0 < R0(α0), not R0 < 1.

For control strategies with an impulse to remove infected plants and vectors, through the analysis
of system (3.1), we find that when the threshold R1 < 1, the disease-free periodic solution of system
(3.1) is locally asymptotically stable. Due to the complexity of the model, we use a strong threshold
condition threshold R2 > 1 (R2 < R1) to prove the persistence of the disease. Using the nonlinear
fixed point theory, we give the conditions for forward and backward bifurcation of impulsive control
systems. The results show that the disease can be eradicated only when R1 < R1(α0), not R1 < 1.

Backward bifurcation of the system indicates that based on different initial conditions, the system
may have stable disease free periodic solutions or stable positive periodic solutions, which undoubtedly
brings great difficulties to plant disease control. Our results suggest that there is a backward bifurcation
phenomenon in continuous systems, and there is also a backward bifurcation phenomenon in impulsive
control systems. Therefore, when controlling plant virus diseases, if the initial infection scale is large,
we should kill a large number of plants and vectors to control the disease.

Finally, we note that the introduction of natural enemies will control the number of vectors. This
is undoubtedly beneficial to the spread of plant viruses. Therefore, how to establish a plant virus
transmission model with the mixed control of natural enemies and the removal of infected plants will
be our focus in the later stage.
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Appendix

A. The Expression of each element of matrix Dξ(0,O)

From

DξΨ(α, ξ) = DξΘ(α,Φ(ξ))DξΦ(ξ)
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=


∂Θ1(α,ξ)
∂ξ1

∂Θ1(α,ξ)
∂ξ2

∂Θ1(α,ξ)
∂ξ3

∂Θ1(α,ξ)
∂ξ4

∂Θ2(α,ξ)
∂ξ1

∂Θ2(α,ξ)
∂ξ2

∂Θ2(α,ξ)
∂ξ3

∂Θ2(α,ξ)
∂ξ4

∂Θ3(α,ξ)
∂ξ1

∂Θ3(α,ξ)
∂ξ2

∂Θ3(α,ξ)
∂ξ3

∂Θ3(α,ξ)
∂ξ4

∂Θ4(α,ξ)
∂ξ1

∂Θ4(α,ξ)
∂ξ2

∂Θ4(α,ξ)
∂ξ3

∂Θ4(α,ξ)
∂ξ4




∂Φ1(ξ)
∂ξ1

∂Φ1(ξ)
∂ξ2

∂Φ1(ξ)
∂ξ3

∂Φ1(ξ)
∂ξ4

∂Φ2(ξ)
∂ξ1

∂Φ2(ξ)
∂ξ2

∂Φ2(ξ)
∂ξ3

∂Φ2(ξ)
∂ξ4

∂Φ3(ξ)
∂ξ1

∂Φ3(ξ)
∂ξ2

∂Φ3(ξ)
∂ξ3

∂Φ3(ξ)
∂ξ4

∂Φ4(ξ)
∂ξ1

∂Φ4(ξ)
∂ξ2

∂Φ4(ξ)
∂ξ3

∂Φ4(ξ)
∂ξ4


at ξ0 = (ξ10, ξ20, 0, 0) (ξ10 = x∗1(0), ξ10 = x∗1(0)), we have

DξΨ(α0, ξ0) = DξΘ(α0,Φ(ξ0))DξΦ(ξ0)

=


1 − p 0 0 0

0 1 − ρp ρ(p−α0)Φ2(ξ0)
Φ1(ξ0) 0

0 0 1 − α0 0
0 0 0 1




∂Φ1(ξ0)
∂ξ1

∂Φ1(ξ0)
∂ξ2

∂Φ1(ξ0)
∂ξ3

∂Φ1(ξ0)
∂ξ4

∂Φ2(ξ0)
∂ξ1

∂Φ2(ξ0)
∂ξ2

∂Φ2(ξ0)
∂ξ3

∂Φ2(ξ0)
∂ξ4

∂Φ3(ξ0)
∂ξ1

∂Φ3(ξ0)
∂ξ2

∂Φ3(ξ0)
∂ξ3

∂Φ3(ξ0)
∂ξ4

∂Φ4(ξ0)
∂ξ1

∂Φ4(ξ0)
∂ξ2

∂Φ4(ξ0)
∂ξ3

∂Φ4(ξ0)
∂ξ4


From the variational equation related to the first four equation of system (3.29),

d
dt

(DξΦ(t, ξ0)) = DξF(Φ(t, ξ0))DξΦ(t, ξ0) (A.1)

with the initial condition DξΦ(0, ξ0) = E4 and Φ(t, ξ0) = (Φ1(t, ξ0),Φ2(t, ξ0), 0, 0), we obtain

∂Φ1(ξ0)
∂ξ1

= e−gT ,
∂Φ2(ξ0)
∂ξ2

= e−cT , (A.2)

∂Φ1(ξ0)
∂ξ2

=
∂Φ2(ξ0)
∂ξ1

=
∂Φ3(ξ0)
∂ξ1

=
∂Φ3(ξ0)
∂ξ2

=
∂Φ4(ξ0)
∂ξ2

∂Φ2(ξ0)
∂ξ2

= 0. (A.3)

Then, from (3.30) and (A.3), we get

Dξ̄N(0,O) =


e0 0 a1 b1

0 f0 c1 d1

0 0 a0 b0

0 0 c0 d0

 , (A.4)

where

e0 = 1 − (1 − p)e−gT , f0 = 1 − (1 − ρp)e−cT , a0 = 1 − (1 − α0)
∂Φ3(ξ0)
∂ξ3

, d0 = 1 −
∂Φ4(ξ0)
∂ξ4

,

a1 = −(1 − p)
∂Φ1(ξ0)
∂ξ3

, b1 = −(1 − p)
∂Φ1(ξ0)
∂ξ4

, c1 = −(1 − ρp)
∂Φ2(ξ0)
∂ξ3

−
ρ(p − α0)Φ2(ξ0)
Φ1(ξ0)

∂Φ3(ξ0)
∂ξ3

,

d1 = −(1 − ρp)
∂Φ2(ξ0)
∂ξ4

−
ρ(p − α0)Φ2(ξ0)
Φ1(ξ0)

∂Φ3(ξ0)
∂ξ4

, b0 = −(1 − α0)
∂Φ3(ξ0)
∂ξ4

, c0 = −
∂Φ4(ξ0)
∂ξ3

.

B. The first partial derivatives of f

We obtain:

∂ f (0,O)
∂ᾱ

= Φ4(ξ0)(
(ρΦ3(ξ0) + ρ(α0 + ᾱ)

3∑
i=1

∂Φ3(ξ0)
∂ξi

∂α̃i+1
∂ᾱ

)

(Φ1(ξ0) + Φ3(ξ0))
−

ρα0Φ3(ξ0)(
3∑

i=1

∂Φ1(ξ0)
∂ξi

∂α̃i+1
∂ᾱ
+

3∑
i=1

∂Φ3(ξ0)
∂ξi

∂α̃i+1
∂ᾱ

)

(Φ1(ξ0) + Φ3(ξ0))2 )
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− (1 −
ρα0Φ3(ξ0)

Φ1(ξ0) + Φ3(ξ0)
)

3∑
i=1

∂Φ4(ξ0)
∂ξi

∂α̃i+1

∂ᾱ
. (B.1)

Since

Φ3(ξ0) = Φ4(ξ0) = 0,
∂Φ3(ξ)
∂ξ1

=
∂Φ3(ξ)
∂ξ2

=
∂Φ4(ξ)
∂ξ1

=
∂Φ4(ξ)
∂ξ2

= 0, (B.2)

then

∂ f (0,O)
∂ᾱ

= c0
∂α̃4

∂ᾱ
. (B.3)

Consider Eq (3.41) as i = 1, we have

0 =
∂N1(0,O)
∂ᾱ

=
∂α̃0(0,O)
∂ᾱ

− (1 − p)(
∂Φ1(ξ0)
∂ξ1

∂α̃2(0,O)
∂ᾱ

+
∂Φ1(ξ0)
∂ξ2

∂α̃3(0,O)
∂ᾱ

+
∂Φ1(ξ0)
∂ξ3

∂α̃4(0,O)
∂ᾱ

)

= e0
∂α̃2(0,O)
∂ᾱ

+ 0 ·
∂α̃3(0,O)
∂ᾱ

+ a1
∂α̃4(0,O)
∂ᾱ

. (B.4)

One can similarly acquire from Eq (3.41) as i = 2, 3 that

f0
∂α̃3(0,O)
∂ᾱ

+ c1
∂α̃4(0,O)
∂ᾱ

= 0,

a0
∂α̃4(0,O)
∂ᾱ

= 0. (B.5)

It can be deduced from (B.4) and (B.5) that

∂α̃2(0,O)
∂ᾱ

=
∂α̃3(0,O)
∂ᾱ

=
∂α̃4(0,O)
∂ᾱ

= 0. (B.6)

Thus ∂ f (0,O)
∂ᾱ
= 0. Additionally,

0 =
∂N1(0,O)
∂ξ1

(Y11 +
∂α̃2(0,O)
∂α1

) +
∂N1(0,O)
∂ξ2

(Y12 +
∂α̃3(0,O)
∂α1

) +
∂N1(0,O)
∂ξ3

(Y13 +
∂α̃4(0,O)
∂α1

) +
∂N1(0,O)
∂ξ4

Y11

=
∂N1(0,O)
∂ξ1

Y11 +
∂N4(0,O)
∂ξ2

Y12 +
∂N1(0,O)
∂ξ3

Y13 +
∂N1(0,O)
∂ξ4

Y14 +
∂N1(0,O)
∂ξ1

∂α̃2(0,O)
∂α1

+
∂N1(0,O)
∂ξ2

∂α̃3(0,O)
∂α1

+
∂N1(0,O)
∂ξ3

∂α̃4(0,O)
∂α1

, (B.7)

because Y1 is a basis in Ker(Dξ(0,O), that is:

∂Ni(0,O)
∂ξ1

Y11 +
∂Ni(0,O)
∂ξ2

Y12 +
∂Ni(0,O)
∂ξ3

Y13 +
∂Ni(0,O)
∂ξ4

Y14 = 0, i = 1, 2, 3, 4. (B.8)

Therefore, we can deduce from (A.3) and (B.7) that

e0
∂α̃2(0,O)
∂α1

+ 0 ·
∂α̃3(0,O)
∂α1

+ a1
∂α̃4(0,O)
∂α1

= 0. (B.9)
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Similarly, as i = 2, 3, we can obtain that

0 ·
∂α̃2(0,O)
∂α1

+ f0
∂α̃3(0,O)
∂α1

+ c1
∂α̃4(0,O)
∂α1

= 0,

0 ·
∂α̃2(0,O)
∂α1

+ 0 ·
∂α̃3(0,O)
∂α1

+ a0
∂α̃4(0,O)
∂α1

= 0.
(B.10)

From (B.9) and (B.10) we obtain that

∂α̃2(0,O)
∂α1

=
∂α̃3(0,O)
∂α1

=
∂α̃4(0,O)
∂α1

= 0. (B.11)

Since
∂ f (0,O)
∂α1

=
∂N4(0,O)
∂ξ1

(Y11 +
∂α̃2(0,O)
∂α1

) +
∂N4(0,O)
∂ξ2

(Y12 +
∂α̃3(0,O)
∂α1

) +
∂N4(0,O)
∂ξ3

(Y13 +
∂α̃4(0,O)
∂α1

)

+
∂N4(0,O)
∂ξ4

Y11

=
∂N4(0,O)
∂ξ1

Y11 +
∂N4(0,O)
∂ξ2

Y12 +
∂N4(0,O)
∂ξ3

Y13 +
∂N4(0,O)
∂ξ4

Y14 +
∂N4(0,O)
∂ξ1

∂α̃2(0,O)
∂α1

+
∂N4(0,O)
∂ξ2

∂α̃3(0,O)
∂α1

+
∂N4(0,O)
∂ξ3

∂α̃4(0,O)
∂α1

= 0, (B.12)

submitting (B.11) into (B.12), we get ∂ f (0,O)
∂α1
.

C. The second-order derivatives of f

Let A = ∂
2 f (0,O)
∂ᾱ2 , B =

∂2 f (0,O)
∂ᾱ∂α1

, C = ∂
2 f (0,O)
∂α2

1
.

Calculation of A.

∂2 f (0,O)
∂ᾱ2 =

∂

∂ᾱ
(
∂ f (0,O)
∂ᾱ

)

=

3∑
i=1

∂Φ4(ξ0)
∂ξi

∂α̃i+1

∂ᾱ
(
(ρΦ3(ξ0) + ρ(α0 + ᾱ)

3∑
i=1

∂Φ3(ξ0)
∂ξi

∂α̃i+1
∂ᾱ

)

(Φ1(ξ0) + Φ3(ξ0))
−

ρα0Φ3(ξ0)(
3∑

i=1

∂Φ1(ξ0)
∂ξi

∂α̃i+1
∂ᾱ
+

3∑
i=1

∂Φ3(ξ0)
∂ξi

∂α̃i+1
∂ᾱ

)

(Φ1(ξ0) + Φ3(ξ0))2 )

+ Φ4(ξ0)
∂

∂ᾱ
(
(ρΦ3(ξ0) + ρ(α0 + ᾱ)

3∑
i=1

∂Φ3(ξ0)
∂ξi

∂α̃i+1
∂ᾱ

)

(Φ1(ξ0) + Φ3(ξ0))
−

ρα0Φ3(ξ0)(
3∑

i=1

∂Φ1(ξ0)
∂ξi

∂α̃i+1
∂ᾱ
+

3∑
i=1

∂Φ3(ξ0)
∂ξi

∂α̃i+1
∂ᾱ

)

(Φ1(ξ0) + Φ3(ξ0))2 )

−

3∑
i=1

∂Φ4(ξ0)
∂ξi

∂α̃i+1

∂ᾱ

∂

∂ᾱ
(1 −

ρα0Φ3(ξ0)
Φ1(ξ0) + Φ3(ξ0)

) − (1 −
ρα0Φ3(ξ0)

Φ1(ξ0) + Φ3(ξ0)
)
∂

∂ᾱ
(

3∑
i=1

∂Φ4(ξ0)
∂ξi

∂α̃i+1

∂ᾱ
), (C.1)

submitting (B.2) and (B.6) into (C.1), it can be deduced that

∂2 f (0,O)
∂ᾱ2 = −

∂Φ4(ξ0)
∂ξ3

∂2α̃4

∂ᾱ2 = c0
∂2α̃4

∂ᾱ2 . (C.2)

Consider Eq (3.41) as i = 3, we obtains that

0 =
∂2N3(0,O)
∂ᾱ2 =

∂

∂ᾱ
(
∂N3(0,O)
∂ᾱ

)
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=
∂

∂ᾱ
(
∂α̃4(0,O)
∂ᾱ

+ Φ3(ξ0) − (1 − α0 − ᾱ)
3∑

i=1

∂Φ3(ξ0)
∂ξi

∂α̃i+1(0,O)
∂ᾱ

)

=
∂2α̃4(0,O)
∂ᾱ2 + 2

3∑
i=1

∂Φ3(ξ0)
∂ξi

∂α̃i+1(0,O)
∂ᾱ

− (1 − α0)
∂

∂ᾱ
(

3∑
i=1

∂Φ3(ξ0)
∂ξi

∂α̃i+1(0,O)
∂ᾱ

)

=
∂2α̃4(0,O)
∂ᾱ2 + 2

3∑
i=1

∂Φ3(ξ0)
∂ξi

∂α̃i+1(0,O)
∂ᾱ

− (1 − α0)(
∂α̃2(0,O)
∂ᾱ

∂

∂ᾱ
(

3∑
i=1

∂Φ3(ξ0)
∂ξi

∂α̃i+1(0,O)
∂ᾱ

)

+
∂Φ3(ξ0)
∂ξ1

∂2α̃2(0,O)
∂ᾱ2 +

∂α̃2(0,O)
∂ᾱ

∂

∂ᾱ
(

3∑
i=1

∂Φ3(ξ0)
∂ξi

∂α̃i+1(0,O)
∂ᾱ

) +
∂Φ3(ξ0)
∂ξ2

∂2α̃3(0,O)
∂ᾱ2

+
∂α̃4(0,O)
∂ᾱ

∂

∂ᾱ
(

3∑
i=1

∂Φ3(ξ0)
∂ξi

∂α̃i+1(0,O)
∂ᾱ

) +
∂Φ3(ξ0)
∂ξ3

∂2α̃4(0,O)
∂ᾱ2 ). (C.3)

Similarly, by submitting (B.2) and (B.6) into (C.3), we can obtain that

a0
∂2α̃4(0,O)
∂ᾱ2 = 0, (C.4)

then ∂
2α̃4(0,O)
∂ᾱ2 = 0. By substitute the result of the above formula into (C.2), we have that A = ∂

2 f (0,O)
∂ᾱ2 = 0.

Calculation of B.
First, we calculate the value of ∂

2α̃4(0,O)
∂ᾱ∂α1

,

0 =
∂2N3(0,O)
∂α1∂ᾱ

=
∂

∂α1
(
∂α̃4(0,O)
∂ᾱ

+ Φ3(ξ0) − (1 − α0 − ᾱ)
3∑

i=1

∂Φ3(ξ0)
∂ξi

∂α̃i+1(0,O)
∂ᾱ

)

=
∂2α̃4(0,O)
∂ᾱ∂α1

+
∂Φ3(ξ0)
∂α1

− (1 − α0)
∂

∂α1
(
∂Φ3(ξ0)
∂ξ1

∂α̃2(0,O)
∂ᾱ

+
∂Φ3(ξ0)
∂ξ2

∂α̃3(0,O)
∂ᾱ

+
∂Φ3(ξ0)
∂ξ3

∂α̃4(0,O)
∂ᾱ

)

=
∂2α̃4(0,O)
∂ᾱ∂α1

+
∂Φ3(ξ0)
∂ξ1

(Y11 +
∂α̃2(0,O)
∂ᾱ

) +
∂Φ3(ξ0)
∂ξ2

(Y12 +
∂α̃3(0,O)
∂ᾱ

) +
∂Φ3(ξ0)
∂ξ3

(Y13 +
∂α̃4(0,O)
∂ᾱ

)

+
∂Φ3(ξ0)
∂ξ4

Y14 − (1 − α0)(
∂α̃2(0,O)
∂ᾱ

∂

∂α1
(
∂Φ3(ξ0)
∂ξ1

) +
∂Φ3(ξ0)
∂ξ1

∂2α̃4(0,O)
∂ᾱ∂α1

+
∂α̃3(0,O)
∂ᾱ

∂

∂α1
(
∂Φ3(ξ0)
∂ξ2

)

+
∂Φ3(ξ0)
∂ξ2

∂2α̃4(0,O)
∂ᾱ∂α1

+
∂α̃4(0,O)
∂ᾱ

∂

∂α1
(
∂Φ3(ξ0)
∂ξ3

) +
∂Φ3(ξ0)
∂ξ3

∂2α̃4(0,O)
∂ᾱ∂α1

), (C.5)

submitting (B.2) and (B.6) into (C.5), we can therefore deduce that

∂2α̃4(0,O)
∂ᾱ∂α1

= −
1
a0

(
∂Φ3(ξ0)
∂ξ3

Y13 +
∂Φ3(ξ0)
∂ξ4

Y14). (C.6)

It can be calculated that

∂2 f (0,O)
∂ᾱ∂α1

=
∂

∂α1
(Φ4(ξ0)(

(ρΦ3(ξ0) + ρ(α0 + ᾱ)
3∑

i=1

∂Φ3(ξ0)
∂ξi

∂α̃i+1
∂ᾱ

)

(Φ1(ξ0) + Φ3(ξ0))
−

ρα0Φ3(ξ0)(
3∑

i=1

∂Φ1(ξ0)
∂ξi

∂α̃i+1
∂ᾱ
+

3∑
i=1

∂Φ3(ξ0)
∂ξi

∂α̃i+1
∂ᾱ

)

(Φ1(ξ0) + Φ3(ξ0))2 )

− (1 −
ρ(α0 + ᾱ)Φ3(ξ0)
Φ1(ξ0) + Φ3(ξ0)

)
3∑

i=1

∂Φ4(ξ0)
∂ξi

∂α̃i+1

∂ᾱ
)

=
∂Φ4(ξ0)
∂α1

(
ρΦ3(ξ0) + ρ(α0 + ᾱ)

3∑
i=1

∂Φ3(ξ0)
∂ξi

∂α̃i+1
∂ᾱ

Φ1(ξ0) + Φ3(ξ0)
−

ρ(α0 + ᾱ)(
3∑

i=1

∂Φ1(ξ0)
∂ξi

∂α̃i+1
∂ᾱ
+

3∑
i=1

∂Φ3(ξ0)
∂ξi

∂α̃i+1
∂ᾱ

)

(Φ1(ξ0) + Φ3(ξ0))2 )
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+ Φ4(ξ0)(
∂

∂α1
(
ρΦ3(ξ0) + ρ(α0 + ᾱ)

3∑
i=1

∂Φ3(ξ0)
∂ξi

∂α̃i+1
∂ᾱ

Φ1(ξ0) + Φ3(ξ0)
) −

∂

∂α1
(
ρ(α0 + ᾱ)(

3∑
i=1

∂Φ1(ξ0)
∂ξi

∂α̃i+1
∂ᾱ
+

3∑
i=1

∂Φ3(ξ0)
∂ξi

∂α̃i+1
∂ᾱ

)

(Φ1(ξ0) + Φ3(ξ0))2 ))

−
∂

∂α1
(1 −

ρ(α0 + ᾱ)Φ3(ξ0)
Φ1(ξ0) + Φ3(ξ0)

)
3∑

i=1

∂Φ4(ξ0)
∂ξi

∂α̃i+1

∂ᾱ
− (1 −

ρ(α0 + ᾱ)Φ3(ξ0)
Φ1(ξ0) + Φ3(ξ0)

)
∂

∂α1
(

3∑
i=1

∂Φ4(ξ0)
∂ξi

∂α̃i+1

∂ᾱ
), (C.7)

submitting (B.2), (B.6) and (C.6) into (C.7), we have

B =
∂2 f (0,O)
∂ᾱ∂α1

=
1
a0

(
∂Φ3(ξ0)
∂ξ3

Y13 +
∂Φ3(ξ0)
∂ξ4

Y14)
∂Φ4(ξ0)
∂ξ3

= k(
∂Φ3(ξ0)
∂ξ3

Y13 +
∂Φ3(ξ0)
∂ξ4

Y14). (C.8)

Calculation of C.
∂2 f (0,O)
∂α2

1

=
∂

∂α1
(
∂N4(0,O)
∂ξ1

(Y11 +
∂α̃2(0,O)
∂α1

) +
∂N4(0,O)
∂ξ2

(Y12 +
∂α̃3(0,O)
∂α1

)

+
∂N4(0,O)
∂ξ3

(Y13 +
∂α̃4(0,O)
∂α1

) +
∂N4(0,O)
∂ξ4

Y14)

= (Y11 +
∂α̃2(0,O)
∂α1

)
∂

∂α1
(
∂N4(0,O)
∂ξ1

) +
∂N4(0,O)
∂ξ1

∂2α̃2(0,O)
∂α2

1

+ (Y12 +
∂α̃3(0,O)
∂α1

)
∂

∂α1
(
∂N4(0,O)
∂ξ2

)

+
∂N4(0,O)
∂ξ2

∂2α̃3(0,O)
∂α2

1

+ (Y13 +
∂α̃4(0,O)
∂α1

)
∂

∂α1
(
∂N4(0,O)
∂ξ3

) +
∂N4(0,O)
∂ξ3

∂2α̃4(0,O)
∂α2

1

+ Y14
∂

∂α1
(
∂N4(0,O)
∂ξ4

)

=
∂

∂α1
(Y11
∂N4(0,O)
∂ξ1

+ Y12
∂N4(0,O)
∂ξ2

+ Y13
∂N4(0,O)
∂ξ3

+ Y14
∂N4(0,O)
∂ξ4

) +
∂N4(0,O)
∂ξ3

∂2α̃4(0,O)
∂α2

1

= Y11(
∂2N4(0,O)
∂ξ21

(Y11 +
∂α̃2(0,O)
∂α1

) +
∂2N4(0,O)
∂ξ1∂ξ2

(Y12 +
∂α̃3(0,O)
∂α1

) +
∂2N4(0,O)
∂ξ1∂ξ3

(Y13 +
∂α̃4(0,O)
∂α1

)

+
∂2N4(0,O)
∂ξ1∂ξ4

Y14) + Y12(
∂2N4(0,O)
∂ξ1∂ξ2

(Y11 +
∂α̃2(0,O)
∂α1

) +
∂2N4(0,O)
∂ξ22

(Y12 +
∂α̃3(0,O)

∂α1
)

+
∂2N4(0,O)
∂ξ2∂ξ3

(Y13 +
∂α̃4(0,O)
∂α1

) +
∂2N4(0,O)
∂ξ2∂ξ4

Y14) + Y13(
∂2N4(0,O)
∂ξ1∂ξ3

(Y11 +
∂α̃2(0,O)
∂α1

)

+
∂2N4(0,O)
∂ξ2∂∂ξ3

(Y12 +
∂α̃3(0,O)
∂α1

) +
∂2N4(0,O)
∂ξ23

(Y13 +
∂α̃4(0,O)
∂α1

) +
∂2N4(0,O)
∂ξ3∂ξ4

Y14)

+ Y14(
∂2N4(0,O)
∂ξ1∂ξ4

(Y11 +
∂α̃2(0,O)
∂α1

) +
∂2N4(0,O)
∂ξ2∂∂ξ4

(Y12 +
∂α̃3(0,O)
∂α1

) +
∂2N4(0,O)
∂ξ3∂ξ4

(Y13 +
∂α̃4(0,O)
∂α1

)

+
∂2N4(0,O)
∂ξ24

Y14) +
∂N4(0,O)
∂ξ3

∂2α̃4

∂α2
1

=

4∑
i=1

4∑
j=1

Y1iY1 j
∂2N4(0,O)
∂ξi∂ξ j

+ c0
∂2α̃4(0,O)
∂α2

1

. (C.9)

Consider Eq (3.41) as i = 1, we obtains that

0 =
∂2N1(0,O)
∂α2

1

=
∂

∂α1
(
∂N1(0,O)
∂ξ1

(Y11 +
∂α̃2(0,O)
∂α1

) +
∂N1(0,O)
∂ξ2

(Y12 +
∂α̃3(0,O)
∂α1

)

+
∂N1(0,O)
∂ξ3

(Y13 +
∂α̃4(0,O)
∂α1

) +
∂N1(0,O)
∂ξ4

Y14)
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= (Y11 +
∂α̃2(0,O)
∂α1

)
∂

∂α1
(
∂N1(0,O)
∂ξ1

) +
∂N1(0,O)
∂ξ1

∂2α̃2(0,O)
∂α2

1

+ (Y12 +
∂α̃3(0,O)
∂α1

)
∂

∂α1
(
∂N1(0,O)
∂ξ2

)

+
∂N1(0,O)
∂ξ2

∂2α̃3(0,O)
∂α2

1

+ (Y13 +
∂α̃4(0,O)
∂α1

)
∂

∂α1
(
∂N1(0,O)
∂ξ3

) +
∂N1(0,O)
∂ξ3

∂2α̃4(0,O)
∂α2

1

+ Y14
∂

∂α1
(
∂N1(0,O)
∂ξ4

)

=
∂

∂α1
(Y11
∂N1(0,O)
∂ξ1

+ Y12
∂N1(0,O)
∂ξ2

+ Y13
∂N1(0,O)
∂ξ3

+ Y14
∂N1(0,O)
∂ξ4

) +
∂N1(0,O)
∂ξ1

∂2α̃2(0,O)
∂α2

1

+
∂N1(0,O)
∂ξ3

∂2α̃4(0,O)
∂α2

1

= Y11(
∂2N1(0,O)
∂ξ21

(Y11 +
∂α̃2(0,O)
∂α1

) +
∂2N1(0,O)
∂ξ1∂ξ2

(Y12 +
∂α̃3(0,O)
∂α1

) +
∂2N4(0,O)
∂ξ1∂ξ3

(Y13 +
∂α̃4(0,O)
∂α1

) +
∂2N4(0,O)
∂ξ1∂ξ4

Y14)

+ Y12(
∂2N1(0,O)
∂ξ1∂ξ2

(Y11 +
∂α̃2(0,O)
∂α1

) +
∂2N1(0,O)
∂ξ22

(Y12 +
∂α̃3(0,O)

∂α1
) +
∂2N4(0,O)
∂ξ2∂ξ3

(Y13 +
∂α̃4(0,O)
∂α1

) +
∂2N4(0,O)
∂ξ2∂ξ4

Y14)

+ Y13(
∂2N1(0,O)
∂ξ1∂ξ3

(Y11 +
∂α̃2(0,O)
∂α1

) +
∂2N1(0,O)
∂ξ2∂∂ξ3

(Y12 +
∂α̃3(0,O)
∂α1

) +
∂2N4(0,O)
∂ξ23

(Y13 +
∂α̃4(0,O)
∂α1

) +
∂2N4(0,O)
∂ξ3∂ξ4

Y14)

+ Y14(
∂2N1(0,O)
∂ξ1∂ξ4

(Y11 +
∂α̃2(0,O)
∂α1

) +
∂2N1(0,O)
∂ξ2∂∂ξ4

(Y12 +
∂α̃3(0,O)
∂α1

) +
∂2N4(0,O)
∂ξ3∂ξ4

(Y13 +
∂α̃4(0,O)
∂α1

) +
∂2N4(0,O)
∂ξ24

Y14)

+
∂N1(0,O)
∂ξ3

∂2α̃4

∂α2
1

=

4∑
i=1

4∑
j=1

Y1iY1 j
∂2N1(0,O)
∂ξi∂ξ j

+ a0
∂2α̃2(0,O)
∂α2

1

+ a1
∂2α̃4(0,O)
∂α2

1

, (C.10)

then we have that

e0
∂2α̃2(0,O)
∂α2

1

+ a1
∂2α̃4(0,O)
∂α2

1

= −

4∑
i=1

4∑
j=1

Y1iY1 j
∂2N1(0,O)
∂ξi∂ξ j

. (C.11)

Similarly, we can obtain from Eq (3.41) as i = 2, 3 that

f0
∂2α̃3(0,O)
∂α2

1

+ c1
∂2α̃4(0,O)
∂α2

1

= −

4∑
i=1

4∑
j=1

Y1iY1 j
∂2N2(0,O)
∂ξi∂ξ j

,

a0
∂2α̃4(0,O)
∂α2

1

= −

4∑
i=1

4∑
j=1

Y1iY1 j
∂2N3(0,O)
∂ξi∂ξ j

. (C.12)

By solving (C.11) and (C.12), we can get the values of ∂
2α̃i(0,O)
∂α2

1
, i = 2, 3, 4, and submit it as i = 4 into

(C.9), one can obtain:

C =
∂2 f (0,O)
∂α2

1

=

4∑
i=1

4∑
j=1

Y1iY1 j(
∂2N4(0,O)
∂ξi∂ξ j

− k
∂2N3(0,O)
∂ξi∂ξ j

)

=

4∑
i=1

4∑
j=1

Y1iY1 j(−
∂2Φ4(ξ0)
∂ξi∂ξ j

− k(1 − α0)
∂2Φ3(ξ0)
∂ξi∂ξ j

). (C.13)
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