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Abstract: Jaw cysts are mainly caused by abnormal tooth development, chronic oral inflammation, 

or jaw damage, which may lead to facial swelling, deformity, tooth loss, and other symptoms. Due to 

the diversity and complexity of cyst images, deep-learning algorithms still face many difficulties and 

challenges. In response to these problems, we present a horizontal-vertical interaction and multiple 

side-outputs network for cyst segmentation in jaw images. First, the horizontal-vertical interaction 

mechanism facilitates complex communication paths in the vertical and horizontal dimensions, and it 

has the ability to capture a wide range of context dependencies. Second, the feature-fused unit is 

introduced to adjust the network’s receptive field, which enhances the ability of acquiring multi-scale 

context information. Third, the multiple side-outputs strategy intelligently combines feature maps to 

generate more accurate and detailed change maps. Finally, experiments were carried out on the self-

established jaw cyst dataset and compared with different specialist physicians to evaluate its clinical 

usability. The research results indicate that the Matthews correlation coefficient (Mcc), Dice, and 

Jaccard of HIMS-Net were 93.61, 93.66 and 88.10% respectively, which may contribute to rapid and 

accurate diagnosis in clinical practice. 

Keywords: jaw cyst; image segmentation; horizontal-vertical interaction; feature-fused unit; 

multiple side-outputs 
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1. Introduction 

A jaw cyst is a kind of non-neoplastic lesion, which is usually formed gradually by the 

formation of the epithelial tissue in the jawbone under certain conditions. During the pathological 

process, the cyst fluid continuously seeps out, causing a series of clinical symptoms such as facial 

swelling, tooth loosening, pathological fracture, and skin numbness. At present, the diagnosis of jaw 

diseases mainly depends on histopathological examination and the clinician’s judgment of image 

results. The former is an invasive examination, while the latter, as a non-invasive examination, has 

the advantages of reducing patient discomfort, prevention of complications, faster recovery and less 

downtime, cost effectiveness, wider accessibility, repeatability, early detection, and disease 

surveillance, and it plays an important role in benign and malignant diagnosis, tumor staging, and 

boundary determination. In some cases, it is even possible to make a reliable diagnosis based on 

patient imaging. However, jaw cyst tissue often changes size and shape over time. Also, the tissue 

boundaries may not be well-defined and could be overlapping, which can be harsh and subjective for 

physicians. Some of the original images and their corresponding labels are shown in Figure 1. 

Therefore, it is necessary to find an efficient and accurate diagnosis method. 

 

Figure 1. Some original sample images of jaw cysts and their corresponding labels. The 

original images (top) with their corresponding labels (bottom). 

With the development of machine vision and imaging technology, deep-learning [1–5] plays an 

increasingly important role in the field of intelligent diagnosis, and a large number of algorithms 

have been applied to medical image segmentation. As the most well-known variant of full 

convolutional networks, U-Net [6] has a classic encoder-decoder symmetric structure. The encoder is 

used to identify and capture the contextual semantic information, while the decoder converts the 

high-level semantic information and the detailed features passed by the jump connection into the 

semantic labels required by the training. As a result, it greatly improves the performance of deep-

learning. Since then, many improved U-Net architectures have been proposed, mainly based on 

residual mechanism [7,8], attention module [9,10], multi-scale features [11,12], and dilated 

convolution [13,14]. Among them, Vidal et al. [15] proposed a dynamic contrast enhancement 

framework based on U-Net to effectively solve the problem of class imbalance and confusing organs 

by using different input combinations and introducing residual basic blocks. Sun et al. [16] 

incorporated adaptive scaling block and feature refinement block into U-Net framework, which can 

better capture multi-scale features and channel dependencies, so the network obtained better 
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performance evaluation on DDSM-BCRP and INbreast databases. In addition, many algorithms have 

been proposed for the segmentation of jaw cyst images. Among them, Abdolali et al. [17] presented a 

segmentation approach based on asymmetry analysis that is versatile and applicable to various types 

of jaw cysts. It comprises three main steps: preprocessing and symmetry detection, image partition 

and correction, and intensity analysis with constraint enforcement. Alsmadi et al. [18] proposed a 

hybrid approach combining fuzzy c-means and neutrosophic techniques for segmenting jaw cysts in 

X-ray images, which may be helpful for early diagnosis of jaw lesions. Considering that transfer 

learning relies on the number of damaged samples and lacks reliability, He et al. [19] proposed a 

location-constrained dual network for the diagnosis of jaw cysts. Through self-supervision and pre-

training of the feature extractor and the introduction of auxiliary segmentation branches to extract 

different features, the problem of data scarcity and reliability is effectively solved. Utilizing 

panoramic dental images, Sivasundaram et al. [20] proposed an improved LeNet for the 

classification of oral cyst images. Despite significant advances in existing methods, their 

fundamental reliance on convolutional computation inherently limits the ability to grasp global and 

remote features. Veena et al. [21] developed a geodesic active contour model for generating 

panoramic dental X-ray images, which plays a vital role in extracting relevant features that can 

greatly help clinicians for further analysis. Additionally, the existing approaches address inherent 

problems relating to a large number of training parameters. The complexity of these models often 

demands substantial computational resources, hindering their practical scalability. As these networks 

deepen, a phenomenon known as the vanishing gradient problem can occur, leading to deteriorating 

segmentation performance. These issues accentuate the need for more robust architectures that can 

mitigate these challenges and effectively learn both local details and broader, global context, 

ultimately enhancing the precision and efficiency of cyst segmentation in medical images. 

In response to the above problems, an improved convolutional neural network framework is 

established to better segment cyst from jaw images. In our approach, there are three high-level 

blocks: horizontal-vertical interaction mechanism, feature-fused unit and multiple side-outputs 

strategy. The fusion of the above blocks has an efficient segmentation performance, which can 

achieve 93.61% Mcc, 93.66% Dice and 88.10% Jaccard. This paper has three specific contributions: 

1) The horizontal-vertical interaction mechanism is adopted to make the network have stronger 

feature reuse capability without increasing parameters. 

2) We propose a feature-fusion unit that utilizes extended convolution and standard convolution 

to obtain receptive fields with different sizes, so that the network can have richer context information. 

3) The multi-side outputs strategy is used to fuse the feature information of different semantic 

levels. Moreover, the weighted loss function of binary cross entropy and Dice is utilized to improve 

the segmentation accuracy and reduce the influence of sample imbalance. 

2. Materials and methods 

2.1. Overview of HIMS-Net 

Currently, there exists a large number of studies demonstrating the effectiveness of encoder-

decoder architecture in medical image segmentation. Therefore, our HIMS-Net represents a 

noteworthy modification of the UNet++ [22,23] encoder-decoder structure, which is mainly 

composed of input layer, down-sampling layer, skip connect, feature-fusion unit layer, up-sampling 
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layer, and output layer, as shown in Figure 2. Each of these components plays a crucial role in the 

network’s functioning. Specifically, the down-sampling layer serves to further compress the feature 

map through operations like maximum pooling or average pooling. Conversely, the up-sampling 

layer works to enlarge the feature map, restoring it to a higher resolution, which is vital for 

preserving intricate details in the output. Unlike the original UNet++, HIMS-Net eliminates dense 

connections at each stage and introduces the horizontal-vertical interaction mechanism that enables 

seamless information exchange between adjacent layers. This innovation enhances the network’s 

ability to capture long-range dependencies within the data, thereby improving its performance. Then, 

the feature-fusion unit is used to replace traditional convolution kernel to obtain receptive fields with 

different sizes. This adaptation allows the network to better capture features at different scales and 

complexities within the input data. Moreover, there are multiple side-outputs at the top layer of the 

network, followed by a deep supervision layer. That is, each output branch is followed by a 1 × 1 

convolutional layer. Finally, the loss function used for training HIMS-Net combines binary cross-

entropy and Dice scores, which are weighted to facilitate lesion segmentation using the Softmax 

function. This combination of loss functions ensures that the network is trained to accurately 

segment lesions in the input data. For a more comprehensive understanding of each module and their 

specific functionalities, see the following subsections, where we will explain the HIMS-Net 

architecture in more depth. 

X0,0 X0,1 X0,2 X0,3 X0,4

X1,0 X1,1 X1,2 X1,3

X2,0 X2,1 X2,2

X3,0 X3,1

X4,0

Down-sampling

Up-sampling

Sigmoid

Feature-fused unitXi,jConnection

L

Y0,4Y0,3Y0,2Y0,1Y

Skip connection

Backbone

Multiple

side-outputs

 

Figure 2. Architecture of HIMS-Net. 

2.2. Horizontal-vertical interaction mechanism 

In traditional architectures, communication is predominantly restricted to the forward and 
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backward propagation of data, leading to certain limitations in capturing long-range dependencies 

and holistic contextual information. The horizontal-vertical interaction mechanism embedded within 

the HIMS-Net architecture significantly influences information exchange across various network 

layers, playing a crucial role in preserving spatial details, enhancing feature reuse, and enabling the 

exchange of high-level semantic information and fine-grained details. This mechanism operates 

through both vertical and horizontal interactions, fostering the seamless flow of information. 

Vertically, it establishes connections between down-sampled and up-sampled layers, ensuring the 

propagation of information between lower-resolution compressed feature maps and higher-resolution 

detailed feature maps. Horizontally, within the same layer, lateral connections facilitate the exchange 

of long-range dependencies and lateral information among adjacent layers, allowing for 

comprehensive integration of global context and local details. Different from HRNet’s [24] 

comprehensive high-to-low and low-to-high full connection, our approach specifically involves 

merging feature maps solely from adjacent stages. This interaction strategy enables the network to 

capture and process complex spatial structures in jaw images, contributing significantly to the 

accuracy of cyst segmentation without the unwarranted burden of augmenting network parameters 

and computational burden. Therefore, the horizontal-vertical interaction mechanism can be 

summarized into three ways, defined as follows: 
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where D  and U  are down-sampling and up-sampling operations, F
 
is the feature-fusion unit, [ ]  

represents the concatenation layer, and 
,i jx  denotes the output of node ,i jX . Specifically, node 

0j =  only accepts input from the previous layer; node 0i =  receives two inputs from different 

layers; and for other nodes, the feature maps are three inputs from the previous layer, the same layer, 

and the next layer. In summary, the horizontal-vertical interaction mechanism within HIMS-Net 

represents a breakthrough approach that fosters intricate communication pathways across both 

vertical and horizontal dimensions of the network. By facilitating information exchange not only 

between adjacent layers but also among layers at the same resolution, it empowers the network to 

capture extensive contextual dependencies, ultimately enhancing the precision and accuracy of jaw 

cyst segmentation within medical imaging tasks. 

2.3. Feature-fusion unit 

In deep-learning methods (such as object detection and image segmentation), images often 

exhibit diverse structures and varying scales of relevant features. Specifically, low-level features 

have higher resolution and contain more position and detail information but have lower semantics 

and more noise due to fewer convolution operations. High-level features have stronger semantic 

information but the resolution is very low and the perception of detail is poor. Traditional 

convolutional neural networks face the challenge of adequately leveraging these multi-scale features 

to achieve accurate segmentation. To obtain richer context information, a feature-fusion unit is 

introduced to obtain receptive fields with different sizes, as shown in Figure 3. This unit operates as 

an advanced feature integration mechanism, aimed at enriching the network’s capacity to capture 
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multi-scale contextual information essential for accurate segmentation. First, for a given feature map 

inf , it branches out the feature map into two streams, utilizing 3 × 3 kernel filters with varying 

expansion sizes. These streams capture features at different receptive field scales, one focusing on a 

smaller field and the other on a larger field. Second, the results from the two branches were fused by 

summing the elements. After that, global averaging pooling (GAP), Dense, ReLU, Sigmoid, and 

Lambda were used. This sequence of operations aims to accentuate the inherent features captured 

from varying scales while minimizing noise and enhancing the network’s ability to extract rich 

context information. Then, the above results were weighted with the feature graphs 1f  and 2f , and 

the output of the feature-fusion unit was calculated. In essence, the feature-fusion unit enriches the 

network’s ability to capture contextual information across multiple scales, crucial for achieving 

accurate segmentation in jaw cyst images.  
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Figure 3. Structure of feature-fusion unit. 

2.4. Multi-side outputs 

For the HIMS-Net structure, the network depth continuously increases from left to right, and the 

output feature maps corresponding to each input image also becomes more and more refined. At the 

rightmost end of the network, the region segmentation of the target is best due to the increase of the 

convolutional layer. When making lesion prediction, the deepest network output is usually selected 

as the final result. However, sometimes the relatively shallow output can contain useful information, 

and even if the error area appears in the deepest output prediction result, other shallow output results 

may get the correct prediction result. Therefore, combining the useful information in shallow feature 

and deep feature is conducive to improving the prediction and segmentation accuracy of the 

whole network.  

As shown in Figure 1, the feature maps generated by the four convolution units 
0,1 0,2 0,3 0,4{ , , , }X X X X  are obtained by a 1 × 1 convolution and Sigmoid function, and the results of 

the corresponding four side outputs are 0,1 0,2 0,3 0,4{ , , , }Y Y Y Y . The new convolution unit Y  generated 

by the four output results can be expressed as: 
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0,1 0,2 0,3 0,4

Y Y Y Y Y=    , (2) 

where   represents the concatenation operation. Through the multi-side outputs fusion operation, 

the feature information from the four output layers will be fused into the final output Y , and the loss 

will be calculated according to the output result 0,1 0,2 0,3 0,4{ , , , , }Y Y Y Y Y . By adjusting the network 

weight parameters through back-propagation, the output results of different depth layers can be 

optimized to different degrees, so that finer detection and identification details can be captured. 

2.5. Loss function 

The development and implementation of an appropriate loss function play a pivotal role in the 

training process of deep-learning networks, particularly in tasks like image segmentation. The loss 

function used in the HIMS-Net is a strategic combination of the binary cross-entropy loss and the 

Dice loss, amalgamated to maximize the network’s accuracy and robustness in segmenting jaw cysts. 

Among them, binary cross entropy loss [25–28] is to predict the category of each pixel and then 

average all pixels. In essence, it is still equal learning for each pixel of the image, which reduces the 

feature extraction ability of non-mainstream categories if there is an imbalance in multiple categories 

of the image. On the other hand, Dice loss [29–32] considers all pixels in a category as a whole and 

calculates the proportion of the intersection in the whole, so it will not be affected by a large number 

of mainstream pixels and can extract better effects. Therefore, the HIMS-Net strategically combines 

the binary cross-entropy and Dice losses, emphasizing the advantages of both methods while 

compensating for their individual limitations. The weight of the binary cross entropy loss and the 

Dice loss is defined as: 

 
j j j

side bce dice
L L L= + , (3) 

where {1, 2,3, 4,5}j , 
j
bceL  represents the binary cross entropy loss, 

j
diceL  shows the dice loss, 

0.5 =
 
is the weight coefficient of the two losses, and 

j
sideL  represents the loss value from the thj  

output. Therefore, the total loss function L
 
can be written as: 
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where 
i

  is the weight coefficient of each side-output layer. 

3. Experiments and results 

To verify the effectiveness of HIMS-Net for cyst segmentation in jaw images, thirteen common 

algorithms were used for comparison, including U-Net [6], UNet++ [22,23], UNet 3+ [33], FSP2-

Net [34], SAR-U-Net [35], FCSNet [36], FF‑UNet [37], DUDA‑Net [38], BCDU-Net [39], UNet++-

MSOF [40], META-Unet [41], MSU-Net [42], and CE-Net [43]. The image data involved in the 

experiment, sourced from the records of Quzhou People’s Hospital, is a critical foundation for our 

exploration into jaw cyst segmentation within medical images. The dataset itself comprises a total 
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of 1535 images, of which 306 were used for testing, 922 for training, and 307 for verification. In 

order to facilitate rigorous experimentation and ensure the reliability of our findings, we imposed a 

strict standardization of image sizes across the entire dataset, each bearing the dimensions of 256 × 256 

pixels. At the same time, all models were implemented based on Keras library and run on an NVIDIA 

RTX6000 graphics card with 24 GB of memory. In the training process, the batch-size was set to 16, 

initial learning rate was 0.001, the number of iterations was 200, and Adam optimization strategy [44] 

was adopted to achieve gradient descent. When the model has not improved beyond 50 epoch 

validation set metrics, iterative updates are stopped. 

3.1. Evaluation metrics 

Segmentation of a jaw cyst is essentially a pixel-level binary classification problem. If a pixel 

belongs to the cyst class, it corresponds to the label 1. If a pixel is a background class, its 

corresponding label is 0. The closer the predicted value is to 1, the higher the probability of a cyst 

and the lower the probability of a background. Therefore, in order to do quantitative analysis of these 

methods, Mcc [45], Dice [46], and Jaccard [47] are utilized, which can be given as: 

 
( )( )( )( )

TP TN FP FN
Mcc

TP FN TP FP TN FN TN FP

 − 
=

+ + + +
, (5) 

 2

2

TPDice
TP FN FP

=
+ +

, (6) 

 
TP

Jaccard
TP FN FP

=
+ +

, (7) 

where TP indicates that the judgment is positive and the fact is positive, TN means the judgment is 

negative and the fact is negative, FP indicates that the judgment is positive and the fact is negative, 

and FN means the judgment is negative and the fact is positive. 

3.2. Parameter setting 

3.2.1. Effect of optimizer 

To determine the optimal optimizer to improve the performance of the proposed model, the 

power of the model was evaluated using a series of optimizers, including Adagrad, RMSProp, SGD, 

Adamax, and Adam, as shown in Table 1. Upon meticulous examination of the segmentation 

outcomes presented in the table, it becomes evident that the SGD optimizer displays the least 

favorable performance among the evaluated optimizers with Mcc, Dice and Jaccard of 90.51, 90.54 

and 82.88%. Conversely, the Adam optimizer emerges as the standout performer, demonstrating 

exceptional segmentation performance with notably higher metrics of 93.50% for Mcc, 93.51% for 

Dice and 87.86% for Jaccard. The Adam optimizer’s superiority in the context of jaw cyst 

segmentation with HIMS-Net can be attributed to its adaptive learning rates, momentum-based 

updates, and superior performance in achieving high accuracy. In contrast, Adagrad, RMSProp, SGD, 

and Adamax may face the challenge of navigating effectively in complex, high, and non-convex 
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optimized landscapes. Therefore, the robustness and efficiency in complex optimization landscapes 

are key factors that position Adam as the preferred optimizer for the specific task of jaw cyst 

segmentation in this study. This decision was informed by the clear advantages and superior 

performance displayed by Adam, indicating its robustness and efficiency in optimizing the proposed 

model for precise and effective segmentation tasks. 

Table 1. HIMS-Net of different optimization algorithms. 

Optimizer Mcc Dice Jaccard 

Adagrad 0.9210 0.9214 0.8552 

RMSprop 0.9280 0.9281 0.8669 

SGD 0.9051 0.9054 0.8288 

Adamax 0.9164 0.9154 0.8479 

Adam 0.9350 0.9351 0.8786 

3.2.2. Effect of parameter i  

The loss function holds a pivotal role in the final outcomes of jaw cyst segmentation. In 

particular, the coefficient i , which meticulously governs the weighting of loss term associated with 

each side-output layer. To gain a comprehensive understanding of the parameter’s sensitivity and its 

impact on the segmentation outcomes, we conducted an extensive series of experiments with 

different values for i . After analyzing the segmentation results, we selected the optimal 

combination 1 2 3 4 5{ 0.5, 0.5, 0.75, 0.5, 1.0}    = = = = =  according to the literature [32]. The 

experiment data details are shown in Tables 2. 

Table 2. Mcc, Dice, and Jaccard of HIMS-Net with different values for i . 

1  2  3  4  5  Mcc Dice Jaccard 

0.05 0.05 0.05 0.05 0.8 0.9299 0.9300 0.8702 

0.1 0.1 0.1 0.1 0.6 0.9288 0.9285 0.8689 

0.15 0.15 0.15 0.15 0.4 0.9291 0.9293 0.8691 

0.2 0.2 0.2 0.2 0.2 0.9289 0.9290 0.8690 

0.5 0.5 0.5 0.5 0.5 0.9268 0.9265 0.8655 

1.0 1.0 1.0 1.0 1.0 0.9316 0.9319 0.8732 

0.5 0.5 0.75 0.5 1.0 0.9350 0.9351 0.8786 

3.3. Results of HIMS-Net 

The HIMS-Net network was trained on the jaw cyst data set, and its performance was tested 

under the test set. Figure 4 shows the loss function curve and accuracy curve of HIMS-Net during 

training and verification. It can be observed that in the initial training stage, with the increase of the 

number of iterations, the loss decreases rapidly and gradually becomes stable. This convergence, a 

key milestone in training, reflects the model’s ability to adapt to the dataset, learning the underlying 

patterns and features essential for jaw cyst identification. In addition, the proposed network has a fast 

convergence rate, and the difference between the accuracy value of the model in the training set and 
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the accuracy value in the verification set is small, which indicates that the network has a good 

generalization performance. Thus, the stabilization of the loss function and accuracy metrics during 

the training process indicates a well-balanced learning trajectory, mitigating issues of over-fitting or 

under-fitting that could potentially compromise the model’s performance on unseen data. 

 

Figure 4. Each index of HIMS-Net during training and verification. Loss function (top) 

and accuracy curve (bottom). 

3.4. Ablation experiments 

Table 3. Ablation experiments of different structures. 

Structure Mcc Dice Jaccard 

baseline 0.9064 0.9061 0.8307 

Baseline + multiple side-outputs 0.9215 0.9213 0.8562 

Baseline + feature-fusion unit 0.9194 0.9199 0.8521 

Baseline + multiple side-outputs + feature-fusion 0.9350 0.9351 0.8786 

In order to verify the validity of feature-fusion unit and multiple side-outputs, we used 

horizontal-vertical interaction network as the baseline model and then added modules to verify the 

outputs step by step. As shown in Table 3, by incorporating the horizontal-vertical interaction 

mechanism, the baseline method has significantly improved performance when compared to U-Net. 

From the third and fourth rows, it can be found that by adding multi-side outputs or feature-fusion 



4046 

Mathematical Biosciences and Engineering  Volume 21, Issue 3, 4036-4055. 

unit alone, evaluation metric of the model has been greatly increased. However, the most noteworthy 

enhancement was observed when HIMS-Net was structured with a combination of cascaded multiple 

side-outputs+feature-fusion design, showcasing improved performance across all evaluation indices. 

Moreover, a detailed comparison in Figure 5 distinctly illustrates the method’s capacity to effectively 

mitigate false segmentations and exhibit superior connectivity. This visual representation emphasizes 

the method’s exceptional ability to reduce inaccuracies in segmentation while ensuring better overall 

connectivity in the generated output. This observation strongly suggests that the incorporation of 

these additional modules significantly augments the method’s capability to focus on crucial features, 

thereby contributing to heightened robustness in the segmentation process. 

 

Figure 5. Ablation experiments of our method. The first and second rows show the 

original images with their corresponding labels. The third to last rows are the results of 

baseline, baseline+multiple side-outputs, baseline+feature-fusion, and baseline+multiple 

side-outputs+ feature-fusion. 

3.5. Comparison with other models 

To verify the effectiveness of the proposed approach on lesion area, thirteen algorithms such as 

U-Net, UNet++, UNet 3+, FSP2-Net, SAR-U-Net, FCSNet, FF‑UNet, DUDA‑Net, BCDU-Net, 

UNet++-MSOF, META-Unet, MSU-Net, and CE-Net were selected as comparison methods. Among 

them, UNet, UNet++, and UNet 3+ are classic segmentation algorithms, and AR-U-Net, FCSNet, 
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FF‑UNet, BCDU-Net, and META-Unet introduce self-guided attention mechanism into the network. 

Additionally, the comparison involved innovative network architectures such as DUDA‑Net, a 

double U-shaped network, FSP2-Net, and UNet++_MSOF with multiple side-outputs structure. To 

ensure the integrity and reliability of the comparison, the experimental settings and environmental 

conditions for each method were standardized. The results of these fourteen algorithms on the test set 

of real jaw cyst pathological images were counted in the experiment, as shown in Table 4. Among all 

methods, the performance of U-Net, FSP2-Net, SAR-U-Net, DUDA‑Net, META-Unet, and MSU-

Net is slightly different from other methods, which reflects the suggest limitations within their un-

optimized encoders to effectively represent specific focal features in the segmentation process. 

Conversely, UNet++, UNet 3+, FCSNet, FF‑UNet, BCDU-Net, and CE-Net showcased clear 

performance advantages, attributed to their integration of dense connections, which seemed to 

enhance their segmentation capabilities significantly. By introducing multiple side-outputs strategy 

on the basis of UNet++, UNet++-MSOF also achieves good performance improvement. However, 

distinctly standing out from the others, the HIMS-Net employed a unique strategy. Leveraging 

horizontal-vertical interaction mechanisms and feature-fusion units, the HIMS-Net effectively 

merged global semantic information with intricate local details. This fusion led to notably higher 

segmentation accuracy and a reduced missed detection rate in the segmentation of cyst lesions, 

highlighting its superior ability to accurately delineate cystic regions. 

Table 4. Results of our method with other models. 

Method Mcc Dice Jaccard 

U-Net [6] 0.8894 0.8891 0.8031 

UNet++ [22,23] 0.8953 0.8951 0.8128 

UNet 3+ [33] 0.9009 0.8999 0.8221 

FSP2-Net [34] 0.8756 0.8753 0.7795 

SAR-U-Net [35] 0.8490 0.8480 0.7399 

FCSNet [36] 0.9106 0.9108 0.8374 

FF‑UNet [37] 0.8928 0.8930 0.8073 

DUDA‑Net [38] 0.8733 0.8722 0.7758 

BCDU-Net [39] 0.8996 0.8988 0.8204 

UNet++-MSOF [40] 0.9069 0.9055 0.8321 

META-Unet [41] 0.8801 0.8802 0.7876 

MSU-Net [42] 0.8749 0.8744 0.7803 

CE-Net [43] 0.8903 0.8901 0.8036 

HIMS-Net 0.9350 0.9351 0.8786 

Figure 6 presents a visual comparison of the lesion area segmentation outcomes derived from 

the diverse methods discussed earlier. This figure serves as a comprehensive visual benchmarking 

tool, displaying the segmented results generated by fourteen specific algorithms: U-Net, UNet++, 

UNet 3+, FSP2-Net, SAR-U-Net, FCSNet, FF‑UNet, DUDA‑Net, BCDU-Net, UNet++-MSOF, 

META-Unet, MSU-Net, CE-Net, and HIMS-Net. Each of these results is placed side by side with the 

original image and the corresponding labels that represent the ground truth. It can be clearly seen that 

other models seem to lack in capturing and integrating adequate semantic information, resulting in 

numerous instances of missed segmentations and false detections. The discrepancy is quite evident 

when comparing the segmentation results of these models against the original labels. In contrast, the 

HIMS-Net model’s performance stands out due to its ability to incorporate and combine various 
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modules, allowing for the effective modeling of multi-scale context information. This intricate 

integration empowers the network to navigate through and segregate the non-focal area information, 

thereby enhancing the precision and accuracy of segmenting smaller areas within the lesions. 

 

Figure 6. Visual segmentation results of various models. The first and second rows show 

the original images with their corresponding labels. The third to last rows are the results 

of U-Net, UNet++, UNet 3+, FSP2-Net, SAR-U-Net, FCSNet, FF‑UNet, DUDA‑Net, 

BCDU-Net, UNet++-MSOF, META-Unet, MSU-Net, CE-Net, and HIMS-Net. 
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3.6. Computational analysis and efficiency comparison 

In our pursuit of fairness and reasonableness, we removed the multi-side outputs module from 

HIMS-Net network. This was an essential step to ensure a more equitable comparison among the 

models under evaluation. Upon meticulous examination presented in Table 5, it becomes evident that 

SAR-U-Net and U-Net distinctly demand fewer parameters in contrast to the other models. However, 

this reduction in parameters comes at the cost of performance. Notably, the absence of certain 

functionalities in SAR-U-Net and U-Net influences their overall efficacy in complex tasks. On the 

contrary, HIMS-Net distinguishes itself through the incorporation of a horizontal-vertical interaction 

mechanism and a feature-fusion unit. These critical inclusions significantly contribute to the 

network’s prowess in understanding intricate patterns and relationships within the data. However, 

compared to some traditional models such as U-Net, this enhancement in capability necessitates a 

larger investment in both time and parameters during the training process. This is an inherent feature 

of HIMS-Net, attributed to its intricate architecture with the horizontal-vertical interaction 

mechanism and the feature-fusion unit, all of which contribute significantly to the network’s 

capability to capture multi-scale contextual information. Despite the increased requirements, HIMS-

Net manages to strike a balance between detection accuracy and computational efficiency, as 

evidenced by its performance within an acceptable inference time frame. 

Table 5. Comparison of parameter counts and computational time among different models. 

Method Parameter (M) Time (ms/step) 

U-Net [6] 2.06 12 

UNet++ [22,23] 8.62 28 

UNet 3+ [33] 21.57 25 

FSP2-Net [34] 74.47 96 

SAR-U-Net [35] 0.51 10 

FCSNet [36] 27.76 57 

FF‑UNet [37] 3.76 25 

DUDA‑Net [38] 31.10 68 

BCDU-Net [39] 19.70 52 

UNet++-MSOF [40] 8.62 73 

META-Unet [41] 21.69 27 

MSU-Net [42] 47.08 82 

CE-Net [43] 29.00 61 

HIMS-Net 18.24 48 

3.7. Experiment on data augmentation dataset 

To address the challenges posed by a limited number of samples and an imbalanced distribution 

within jaw cyst dataset, we adopted a range of data augmentation techniques to expand the training 

set and validation set. These methods included random rotation, scaling shifts, translation and 

clipping to ensure that our method could effectively recognize jaw cysts from different angles. After 

data augmentation, a total of 3991 images have been acquired. The new dataset includes 306 for 

testing (only containing the original jaw cyst images), 2765 for training and 920 for validation. In the 

experimentation phase, we conducted extensive tests using U-Net, UNet++, UNet 3+, FSP2-Net, 



4050 

Mathematical Biosciences and Engineering  Volume 21, Issue 3, 4036-4055. 

SAR-U-Net, FCSNet, FF‑UNet, DUDA‑Net, BCDU-Net, UNet++-MSOF, META-Unet, MSU-Net, 

and CE-Net. These models were trained and evaluated on our enhanced dataset, and the results were 

meticulously documented in Table 6. It can be seen from the results that the Mcc, Dice, and Jaccard 

values obtained by the above models are all improved after the database enhancement. Of particular 

interest, attributed to its architecture with the horizontal-vertical interaction mechanism, the feature-

fusion unit, and multiple side-outputs, the HIMS-Net still achieves the best segmentation results 

among the various architectures. For a visual representation of the segmentation outcomes produced 

by each model are shown in Figure 7. These illustrations provide a qualitative assessment of the 

lesion segmentation results, further highlighting the superiority of HIMS-Net in delivering precise 

and visually compelling segmentations. 

 

Figure 7. Visual segmentation results of various models on data augmentation dataset. 

The first and second rows show the original images with their corresponding labels. The 

third to last rows are the results of U-Net, UNet++, Unet 3+, FSP2-Net, SAR-U-Net, 

FCSNet, FF‑Unet, DUDA‑Net, BCDU-Net, Unet++-MSOF, META-Unet, MSU-Net, 

CE-Net, and HIMS-Net. 
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Table 6. Results of our method with other models on the dataset after data augmentation. 

Method Mcc Dice Jaccard 

U-Net [6] 0.9225 0.9226 0.8576 

UNet++ [22,23] 0.9073 0.9065 0.8328 

UNet 3+ [33] 0.9180 0.9177 0.8502 

FSP2-Net [34] 0.8970 0.8963 0.8148 

SAR-U-Net [35] 0.8976 0.8971 0.8161 

FCSNet [36] 0.9268 0.9272 0.8648 

FF‑UNet [37] 0.9184 0.9184 0.8505 

DUDA‑Net [38] 0.9245 0.9250 0.8613 

BCDU-Net [39] 0.9186 0.9187 0.8512 

UNet++-MSOF [40] 0.9159 0.9154 0.8469 

META-Unet [41] 0.8975 0.8980 0.8169 

MSU-Net [42] 0.8835 0.8831 0.7936 

CE-Net [43] 0.9030 0.9029 0.8238 

HIMS-Net 0.9361 0.9366 0.8810 

4. Conclusions 

This research is dedicated to the examination of jaw cysts, presenting an innovative deep-

learning network that operates on a foundation of a novel horizontal-vertical interaction mechanism 

and multiple side-outputs. The relevant conclusions are as follows: First, the horizontal-vertical 

interaction mechanism is introduced to reduce the loss of spatial information and make the network 

have stronger feature reuse capability without increasing parameters. Second, a feature-fusion unit 

that combines extended convolution and standard convolution to obtain different receptive fields, 

which can have richer context information. Moreover, the multi-side outputs strategy is utilized to 

fuse the feature information of different semantic levels. The results show that our method achieves 

93.61% of Mcc, 93.66% of Dice and 88.10% of Jaccard, which is superior to other traditional 

detection models. In the future, our research aims to expand the application of this innovative 

technology to a broader spectrum of medical image analysis tasks. With a vision to create an 

advanced automated diagnostic system, it is to not only differentiate but accurately predict between 

benign and malignant lesions. 
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