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Abstract: Incidence of sexually transmitted infections (STIs) is rising sharply in the United States.
Between 2014 and 2019, incidence among men and women has increased by 62.8% and 21.4%, respec-
tively, with an estimated 68 million Americans contracting an STI in 2018.a Some human behaviors
impacting the expanding STI epidemic are unprotected sex and multiple sexual partners.b Increasing
dating app usage has been postulated as a driver for increases in the numbers of people engaging in
these behaviors. Using the proposed model, it is estimated that both STI incidence and prevalence for
females and males have increased annually by 9%–15% between 2015 and 2019 due to dating apps
usage, and that STI incidence and prevalence will continue to increase in the future. The model is also
used to assess the possible benefit of in-app prevention campaigns.

ahttps://www.cdc.gov/nchhstp/newsroom/ fact-sheets/std/STI-Incidence-Prevalence-Cost-Factsheet.htm
bA. N. Sawyer, E. R. Smith, and E. G. Benotsch. Dating application use and sexual risk behavior among young adults. Sexuality

Research and Social Policy, 15:183–191, 2018.
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1. Introduction

Sexually transmitted infections (STIs), also referred to as sexually transmitted diseases (STDs), are
very widespread in the U.S. and cause many short- and long-term health problems, as well as incur
great expenses to treat them. The Centers for Disease Control and Prevention’s (CDC) latest estimates
indicate that 68 million people (20% of the U.S. population or approximately one in five people) had
an STI on any given day in 2018, with 25 million of them newly acquired that year, and these cost the
American healthcare system nearly $16 billion in direct medical costs alone [1].

The eight most common sexually transmitted infections (STIs) are chlamydia, gonorrhea, syphilis,
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trichomoniasis, hepatitis B virus (HBV), herpes simplex virus type 2 (HSV-2), human immunodefi-
ciency virus (HIV), and human papillomavirus (HPV). The first three are caused by bacteria, and the
fourth by protozoa, and they are generally curable with existing single-dose regimens of antibiotics
lasting 1-4 weeks. The last four are viral infections. For the first three of these, the best available treat-
ments are antivirals, while for HPV, there is no direct treatment, but preventive vaccines are available
[2]. Table 1 summarizes their nationwide prevalence and incidence in 2018 [1].

Table 1. Prevalence and incidence of the 8 most common STIs, U.S. 2018.

STI Prevalence (in millions) Incidence (in millions)
Chlamydia 2.4 4
Gonorrhea 0.209 1.6
Syphilis 0.156 0.146
Trichomoniasis 2.6 6.9
HBV 0.103 0.0083
HSV-2 18.6 0.572
HIV 0.984 0.0326
HPV 42.5 13

One recent social change that has been postulated to modify human sexual behavior, and in turn the
incidence and prevalence of STIs, is the advent of dating apps. For context, mobile phone and dating
website applications have seen a global surge in usage since the start of COVID-19. For example,
in the first quarter of 2022, 39% of all single, divorced, or widowed consumers reported use of an
online dating site in the previous month [3]. This trend in human dating behavior is consistent with
the recorded 17 million daily users among the top twenty dating apps in 2020 [4]. This data is further
corroborated by statistics that state 26.6 million Americans used a smartphone dating app in 2020, with
Tinder reporting 957,700 downloads in the month of June 2022 alone [5].

Researchers from The Chicago School of Professional Psychology found a relationship between
sexual discounting, usage of dating applications, and sexual risk. Delay discounting refers to the
devaluation of an objective as a function of increasing time; correspondingly, sexual discounting in-
dicates the devaluation of protected sex in favor of unprotected, immediate sex. The researchers uti-
lized Kendall’s τ-b to calculate the correlation between risky sexual behavior and sexual discounting
for dating app users and non-users. Their results give evidence of a strong correlation among users
(r = −0.357) and no correlation among dating app non-users (r = −0.05). This adds support to the
hypothesis that dating apps may play a significant role in increasing STI rates [6].

The relationship between risky sexual behavior and dating app usage is significant as such behav-
iors have been linked to increased STI infection rates. Several critical risky sexual behaviors have
been associated with dating app use: unprotected sex, multiple sexual partners, sex after too much
to drink, and sex after using drugs. In a 2017-study to evaluate the correlation between these sexual
risk behaviors and dating app usage, the authors surveyed 509 heterosexual, cisgender undergraduate
students (18-25 years old) from a psychology class at a Mid-Atlantic institution. The survey evaluated
the students’ impulsivity, dating app usage and motivations, sexual behavior, and demographics. It was
found that individuals who seek sexual partners through dating websites and apps have higher rates of
unprotected sex, higher rates of STIs, and a greater number of sexual partners; the individuals who
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used dating apps were also found to be more impulsive [7] compared with those who did not use the
apps.

STI incidence is heteregeneous across age and sex. As an example of age heterogeneity, we present
in Figure 1 the age probability density function for newly infected females for chlamydia [8]. It follows
approximately a gamma distribution plotted in blue as f (a) = 5.35 γ(a, 9.2, 1.95). They hit particularly
hard the younger population of 15-to-24-year-olds [9].

Figure 1. Age probability density function for incidence of chlamydia among females.

The extant literature presents a qualitative correlation between dating app usage, sexual risk behav-
ior, and STIs, but fails to provide a quantitative assessment of the impact dating apps have on increasing
STI incidence. As such, this study attempts to use SIS epidemic modeling in order to quantify the in-
crease in STIs that has resulted from the use of dating apps. In order to use our SIS models, several
types of data are needed to estimate model parameters. We found a scarcity or absence of such data.

To combat the rising STI rates, prevention campaigns within dating apps have been proposed as
a possibility. In one study the authors performed in-depth interviews of 25 men who have sex with
men to qualitatively assess the potential to deliver sexual health information and promotion through
dating apps. Results indicate that these interventions are acceptable and have the potential to reduce
STI rates. We will use our models to provide a quantitative assessment of the possible impact that this
study suggests, so as to quantify the reduction of STI incidence that dating apps’ prevention campaigns
may induce [10].

In summary, the four main objectives of the present study are: 1) to introduce a two-sex model
of STIs with same-sex and opposite-sex contacts, analyze it, and validate it with data for chlamydia
and gonorrhea; 2) to assess the percent increase in STI cases resulting from dating app use through a
two-sex model for STIs and dating app use; 3) to appraise the positive impact of dating apps’ pop-up
ads may have in reducing STI incidence; and 4) to provide a tool to estimate the prevalence of STIs
—thus filling in a large gap in available data that is usually difficult to measure directly.
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2. Materials and methods

2.1. Important considerations

Data for STIs that must be reported to the Centers for Disease Control and Prevention (CDC)
(chlamydia, gonorrhea, and syphilis) is quite detailed, mostly in the form of incidence but only oc-
casionally as prevalence. Consequently, whenever we fit our models to data, it is for one or more of
these three bacterial STIs.

We shall use throughout this article the following definitions of disease prevalence and disease
incidence from the CDC [1].

Definition 1: number of cases of a disease (or infection) present at a given time is called disease
(or infection) prevalence at that time.

Definition 2: rate of new cases of a disease (or infection) appearing at a given time (that is, the
number of new cases per unit of time) is called disease (or infection) incidence at that time.

2.2. A simple two-sex SIS model

Generic epidemic models that assume homogeneity in the population are not directly applicable
to sexually transmitted infections because the latter usually display large differences across sexes in
some essential aspects of the transmission of infection, such as average number of sexual partners,
transmissibility from one sex to another, use of protective barriers, etc. STIs may be transmitted by all
types of sexual contact (oral, vaginal, and anal), through both same-sex and opposite-sex interactions.

Some of the oldest mathematical models for STIs correspond to gonorrhea, including an SI patch
model without sex structure that contains nothing specific to STIs but is rather generally applicable
to infectious diseases [11], and a lengthy set of 1984 lecture notes by Hethcote and Yorke that was
published as a book and contains a section on heterosexual models of transmission [12].

A seminal paper in mathematical modeling of STIs because of its focus on pair formation dates back
to 1988 [13]. In this article pairings are heterosexual and monogamous, and the model incorporates
pair formation and dissolution/separation. The authors prove that, for that model, in order for an STI
to be endemic, there needs to be a large enough separation rate to afford availability of enough new
sexual partners. Since that time, some authors have been very prolific modeling different aspects of STI
spread and focusing on some specific ones, for example M. Kretzschmar on chlamydia and gonorrhea.
In [14], Kretzschmar introduced deterministic and stochastic models for the pair formation process in
gonorrhea, setting a foundation for subsequent modeling endeavors. The research was further expanded
in [15] through the use of stochastic network simulations to evaluate prevention strategies against
gonorrhea and chlamydia. A comparative analysis of screening programs for chlamydia trachomatis
was provided in [16], which expanded the scope of modeling to include chlamydia infections. The
work continued in [17], where Kretzschmar delved into the impact of chlamydia screening initiatives,
highlighting the predictive power of these models in the public health domain. This series culminates
with [18], which contains refined models of pair formation for gonorrhea and also helps deepen our
understanding of its transmission dynamics.
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Many published models and studies are focused on the three main bacterial STIs: gonorrhea,
chlamydia, and syphilis. For instance, [19] proposed three models aimed at enhancing syphilis screen-
ing and treatment within high-risk populations, and [20] presented a mathematical model of syphilis
which provided deeper insights into the dynamics of the disease’s transmission and the potential impact
of intervention strategies. Additionally, since the advent of the HIV/AIDS epidemic, other models have
specifically focused on STI transmission among men who have sex with men (MSM). For example,
[21] introduced a new mathematical model of syphilis which shed light on its transmission dynamics
and intervention strategies, [22] discussed behavioral interventions for HIV prevention among homo-
sexual and bisexual men, and [23] developed an SIR epidemic model structured by immunological
variables, enhancing understanding of disease progression and control. Transmission of STIs among
women who have sex with women has been largely ignored, even though there is evidence that it is not
negligible [24].

As far as we are able to ascertain, no mathematical models have been published incorporating both
same-sex and opposite-sex transmission of STIs; that is what we do in this section. There are at least
two different approaches to such mathematical models. One way is to divide the population of each sex
into three mutually exclusive groups: individuals who have sexual relations exclusively with members
of the other sex, those who have them exclusively with members of the same sex, and those who have
them with both. Another, simpler approach than the first, involves summarizing the three types of
sexual contact across sexes in averages for all individuals combined. We chose the latter approach
because the former requires the model to have a much larger number of parameters and would pose
very serious parameter identification problems given the scarcity of prevalence data for STIs. The main
novelty of this modeling approach is that it allows us to obtain prevalence estimates without the need
to structure the population by sexual preference into the six subgroups mentioned above.

We divide the sexually active population of size N = N(t) into four compartments, according to
the two essential conceptual axes related to sexually transmitted infections, namely sex and infection
status. Accordingly, our model has the following four compartments: STI-susceptible females, STI-
infected females, STI-susceptible males, and STI-infected males. Later, we shall subdivide these four
compartments into two disjoint compartments each, one of dating app users, and another of non-users.
The sizes of the four compartments will be denoted, respectively, as

S f = S f (t), I f = I f (t), S m = S m(t), Im = Im(t). (2.1)

Because every individual is in exactly one of these compartments, it follows that

N = S f + I f + S m + Im. (2.2)

We shall use the following notation (with g representing sex, g ∈ { f ,m}):

ξg = per capita exit rate from sexually active class of sex g for any reason,
γg = per capita recovery rate for sex g by successful treatment or by spontaneous recovery,
Λ f = number of newly sexually active people who are female per unit time,
Λm = number of newly sexually active people who are male per unit time,
λg = per capita infection rate (force of infection) of sex-g susceptibles.

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3999–4035.
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Figure 2. Flow diagram of the simple two-sex SIS model. Parameters over arrows are per
capita rates, except for Λ f and Λm, which are total rates.

We do not separate individuals of each sex into disjoint compartments according to their sexual-
partner preferences, but we do want to consider same-sex and opposite-sex contacts. We use the
following notation for transmission rates from each sex to the same and the opposite sexes: for g1, g2 ∈

{ f ,m},
Ng = total population size of sex g,

Cg1g2

Ng2

= unit per capita infection transmission rate from sex g2 to sex g1.
(2.3)

If we assume that average contact rates are not density-dependent (i.e., independent of group sizes)
then we are led to the following constitutive form for the forces of infection, usually referred as stan-
dard incidence:

λ f = C f f
I f

N f
+ C f m

Im

Nm
, (2.4)

λm = Cmm
Im

Nm
+ Cm f

I f

N f
. (2.5)

Figure 2 shows the flow diagram for our SIS model, where the parameters over each arrow are per
capita transition rates, with the exception of the inflow parameters into susceptible compartments that
represent total rates. Our SIS model describing the evolution of the four compartment sizes is given as



d
dt

S f = Λ f + γ f I f − λ f S f − ξ f S f ,

d
dt

I f = λ f S f − γ f I f − ξ f I f ,

d
dt

S m = Λm + γmIm − λmS m − ξmS m,

d
dt

Im = λmS m − γmIm − ξmIm,

(2.6)
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where, summing the first two equations and the last two equations, we see that F = N f = S f + I f and
M = Nm = S m + Im satisfy the following “learning curve” ODEs

dF
dt

= Λ f − ξ f F, (2.7)

dM
dt

= Λm − ξmM, (2.8)

with solutions

F(t) = F(0)e−ξ f t +
Λ f

ξ f
(1 − e−ξ f t). (2.9)

M(t) = M(0)e−ξmt +
Λm

ξm
(1 − e−ξmt), (2.10)

2.2.1. Finding the initial conditions: S f , S m, I f , and Im

In order to run simulations using our model, ten parameters and four initial conditions need to be
specified. We use the year 2009 as the initial one (corresponding to t = 0) so that we may compare
model output with data for ten consecutive pre-pandemic years, 2010-2019. The years 2020 and 2021
were anomalous in terms of social and sexual contacts, and data for them should not be expected to fit
well with output of autonomous dynamical systems such as those we use.

It is important to note that Definition 1 tells us the infection prevalence at a given time t is precisely
the value of state variable I(t), frequently reported as the proportion (percent) I(t)/N(t). Similarly,
Definition 2, when examined in view of (2.6), tells us that the infection incidence is precisely the value
of λ(t)S (t) = the acquisition rate of new infections at time t.

The initial conditions used for the number of susceptible and infected individuals of each sex are
based on chlamydia prevalence data derived from the National Health and Nutrition Examination Sur-
vey (NHANES) [25]. The NHANES data is from 2007-2012, and was used as an approximation for
2009 data, which is not available. For each age group, STI prevalence was calculated by multiplying
the prevalence percentage for that age group by the corresponding sexually active population data from
2009. Females and males were separated by multiplying the total population prevalence by the propor-
tion of STI cases corresponding to females, X, and to males, 1 − X, with STI incidence indicative of
combined chlamydia, gonorrhea, and syphilis data. The proportions of prevalence for the sexes are

X = 0.733, 1 − X = 0.267. (2.11)

Computations detailed above are displayed in Table 2. The values obtained for female and male preva-
lence were used as initial values for infected females and males in 2009, while the sizes of the suscep-
tible compartments were estimated subtracting the initial numbers of infected for each sex from the
total sexually active population of that sex.

In addition to the prevalence data collected from NHANES, the CDC provided information regard-
ing the annual number of cases of chlamydia, gonorrhea, and syphilis for the years 2000-2021. Data
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4006

Table 2. Estimated female and male prevalence, 2009.

age % prevalence population (2009) population prevalence female prevalence male prevalence

15-39 1.7 102,700,000 1,745,900 1,279,745 466,155
40+ 0.4 137,000,000 548,000 401,684 146,316

was sub-grouped into total cases, female cases, and male cases. This data is indicative of STI incidence
as there is no information given on the initial conditions for each STI. As such, the CDC data was dis-
carded in favor of the prevalence statistics derived from the NHANES for the purpose of calculating the
susceptible and infected compartments. This was done as prevalence data includes all STI cases that
occur over a specified time period and, resultantly, is more strongly associated with STI transmission.
Therefore, STI prevalence data is more pertinent for the aims of this study.

2.2.2. Estimation of epidemiological parameters: γg and Cg1g2

Of the ten model parameters, four can be obtained from demographic and other published data,
namely:

Λ f = number of newly sexually active people who are female per unit time
Λm = number of newly sexually active people who are male per unit time, and
ξ f and ξm, whose reciprocals are the median durations of the sexual lives for sex g = f ,m.

In [26], these were estimated to be

Λ f = 3, 777, 794, Λm = 3, 872, 800, ξ f = 0.0196, ξm = 0.0238. (2.12)

Note that each of the effective unit contact rates Cg1g2
in (2.3) is a product of a behavioral parameter

and an epidemiological one,

Cg1g2
= ηg1g2

ρg1g2
,

where

ρg1g2
= expected number (median) of sexual contacts per unit time of a person of sex g2

with persons of sex g1,

and

ηg1g2
= probability of an infected person of sex g2 transmitting infection to a susceptible

(uninfected) person of sex g1 during a sexual contact (transmissibility).

The factors ρg1g2
and ηg1g2

making up each of the parameters Cg1g2
do not appear separately in our

model, but rather only as their product; therefore, we do not need to identify them separately. The
effective unit contact rates themselves will be identified by parameter fitting to incidence data.

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3999–4035.
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However, the parameters ρg1g2
can be estimated using data for sexual identity-behavior [27]. Sexual

identity in that study was given as 100% heterosexual, mostly straight/bisexual, or mostly gay/100%
gay, while sexual behavior was defined as opposite sex only or both-sexes sex. The data for females
aged 24-32 is given in Table 3 and for males aged 24-32 in Table 4. This data is compiled from answers
to the questions “Considering all types of sexual activity, with how many male partners have you ever
had sex?” and “Considering all types of sexual activity, with how many female partners have you ever
had sex?”

Table 3. Females (24–32) Sexual Identity-Behavior.

100% Heterosexual Mostly Straight/Bisexual Mostly Gay/100% Gay
total sample op. sex only both sex sex op. sex only both sex sex both sex sex

Respondents (N) 7392 5607 307 716 629 133
STI Rate 46.63 43.62 58.09 51.11 64.19 32

Sexual Partners (N) 10.41 7.7 15.84 11.63 27.7 16.5

Table 4. Males (24-32) Sexual Identity-Behavior.
100% Heterosexual Mostly Straight/Bisexual Mostly Gay/100% Gay

total sample op. sex only both sex sex op. sex only both sex sex same sex only both sex sex
Respondents (N) 6323 5744 151 142 117 94 75

STI Rate 32.67 31.96 41.36 32.04 43.66 39.41 48.85
Sexual Partners (N) 17.64 17.1 20.21 12.09 26.92 37.45 29.47

The mean age for women in the study was 28.7, and 28.9 for men. The median age of sexual debut
is estimated to be 17.2 for females and 16.8 for males [28]. We may estimate the average time since
sexual debut for females in the study as 28.7 − 17.2 = 11.5, and for males as 28.9 − 16.8 = 12.1.

We compute now the median numbers of sexual partners of each sex that sexually active women had
had, of the opposite sex, a f —as the weighted average of the numbers of partners reported in columns
3 and 5 of Table 3— and of the same sex, b f —as the weighted average of the numbers of partners
reported in columns 4, 6, and 7 of Table 3:

a f =

(
5607

5607 + 716

)
· (7.7) +

(
716

5607 + 716

)
· (11.63) ≈ 8.15.

b f =

(
307

307 + 629 + 133

)
· (15.84) +

(
629

307 + 629 + 133

)
· (27.7) +

(
133

307 + 629 + 133

)
· (16.5) ≈ 22.9.

Finally, we compute the annual numbers as the ratios of these to the median time-span of their sexually
active life:

ρ f m =
8.15
11.5

≈ 0.709, ρ f f =
22.9
11.5

≈ 1.99. (2.13)

Similarly, we compute the median numbers of sexual partners that sexually active men had had, of
the opposite sex, am —as the weighted average of the numbers of partners reported in columns 3 and 5
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of Table 4— and of the same sex, bm —as the weighted average of the numbers of partners reported in
columns 4, 6, 7, and 8 of Table 4:

am =

(
5744

5744 + 142

)
· (17.1) +

(
142

5744 + 142

)
· (12.09) ≈ 17.0

bm =
1

437
[
(151) · (20.21) + (117) · (26.92) + (94) · (37.45) + (75) · (29.47)

]
≈ 27.3.

Now, we may compute the annual numbers for men as ratios of these to the median time-span of
their sexually active life:

ρm f =
17.0
12.1

≈ 1.40, ρmm =
27.3
12.1

≈ 2.26. (2.14)

The sexual preference parameters, νg, are the fractions of all sexual contacts of persons of sex g that
are with persons of the opposite sex (they can separate same-sex contacts from opposite-sex contacts):

ν f =
a f · 6323

a f · 6323 + b f · 1069
≈ 67.8%, νm =

am · 5886
am · 5886 + bm · 437

≈ 89.3%. (2.15)

Concerning the parameters ηg1g2
, there is some scattered information for the three STIs of our study,

for example, [29] reports chlamydial ηg1g2
= 0.022 − 0.044 for the four types of sexual partnerships

combined. On the other hand, [30] reports some probabilities of transmission per type of sex act for
gonorrhea that can be combined as: η f m = 0.5 − 0.84, ηm f = 0.02 − 0.2, and ηmm = 0.63 − 0.84. We
see that wide ranges of values and disparate orders of magnitude for different STIs have been reported.
Therefore, we decided to identify the transmissibilities for our model (together with the per capita
recovery rates) by fitting them to incidence data. Still, for reference purposes, we compute them from
the values of ρ and η given above:

C f f ≈ 1.99(0.033) = 0.00657, C f m ≈ 0.709(0.6) = 0.0395, (2.16)
Cm f ≈ 1.40(0.05) = 0.07, Cmm ≈ 2.26(0.7) = 1.58. (2.17)

In the end, the parameters representing unit effective contact rates and per capita recovery rates of
our model (2.6) were fitted to available annual data of incidence of gonorrhea by sex. We fitted those 6
parameters to five years of incidence data (2014-2019, with 10 data points in total). The fitting of the
model to incidence data was performed using the routine “lsqcurvefit” in the software MATLAB, which
determined the parameter values (γ f , γm,C f f ,C f m,Cmm,Cm f ) that minimize the sum of the relative
squared deviations between incidence data for each year for each sex and the corresponding model-
estimated incidence. The results of the parameter fitting are shown in Figures 6 and 7, and the estimated
parameter values, together with the initial conditions and the four fixed parameter values obtained in
(2.12), are presented in Table 5.

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3999–4035.
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2.2.3. Other important epidemiological parameters

Note that the parameters ξg can be expressed as sums of the per capita mortality rates for each sex,
µg, and an additional exit rate from the sexually active population for reasons other than death, κg,

ξg = µg + κg.

The reciprocals of the parameters µg represent the median (expected value) of the remaining life of
people of sex g in the sexually active population (i.e. life expectancy at age 15). These can be obtained
from life tables [31], 1/µ f = 66.8 and 1/µg = 62.1. Thus,

µ f = 0.0150, µm = 0.0161. (2.18)

The reciprocals of the parameters ξg represent the median (expected value) of the permanence of
people of sex g in the sexually active population (length of sexual life). They have been estimated
from sexually active population data (see (2.12)), giving us 1/0.0196 ≈ 51.0 years for women and
1/0.0238 ≈ 42.0 for men. From them, we may obtain estimates for κg = ξg − µg (that are not really
needed):

κ f = 0.0196 − 0.0150 ≈ 0.0046, κm = 0.0238 − 0.0161 ≈ 0.0077. (2.19)

The reciprocals of the parameters γg represent the median (expected value) of the duration of in-
fection for infected people of sex g. The duration of infection may differ significantly among those
infected because of the different courses that infection may follow for different individuals. Infected
people may be symptomatic or asymptomatic. The former may or may not seek treatment, while the
latter may or may not recover spontaneously. The asymptomatic who do not recover spontaneously
may discover their infection through screening.

2.3. An STI SIS model for dating app users

We now assign the individuals of each sex to compartments based on the two factors that are at the
center of this study, namely dating application status (user vs. non-user) and infection status (suscep-
tible vs. infected) for the two most common, curable, bacterial STIs (chlamydia and gonorrhea). Thus
our model has the following eight compartments: susceptible female users of dating apps, infected
female users of dating apps, susceptible male users of dating apps, infected male users of dating apps,
susceptible female non-users of dating apps, infected female non-users of dating apps, susceptible male
non-users of dating apps, infected male non-users of dating apps. The sizes of these compartments will
be denoted, respectively, as

S u
f = S u

f (t), Iu
f = Iu

f (t), S u
m = S u

m(t), Iu
m = Iu

m(t), (2.20)

S nu
f = S nu

f (t), Inu
f = Inu

f (t), S nu
m = S nu

m (t), Inu
m = Inu

m (t), (2.21)

with the total populations by sex and dating app status denoted by

Nn
f = S n

f + In
f , Nu

f = S u
f + Iu

f , Nn
m = S n

m + In
m, Nu

m = S u
m + Iu

f m. (2.22)
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Because every individual is in exactly one of these compartments, it follows that

N = S u
f + Iu

f + S u
m + Iu

m + S nu
f + Inu

f + S nu
m + Inu

m . (2.23)

We shall keep the meaning of the parameters Λg and ξg (because they are demographic, independent
of app use and infection) and introduce the notation, for s = n, u,

Λs
g = number of newly sexually active people entering compartment of sex g and app user status s,

γs
g = per capita recovery rate in compartment of sex g and app user status s,

λs
g = per capita infection rate (force of infection) in compartment of sex g and app user status s.

In this setting, unlike in our simple SIS model (2.6), we formally model opposite-sex contacts only.
Same-sex contacts are not considered separately due to a lack of data of sexual partners by dating
app usage, and also to avoid the need for an additional 8 constants (the effective same-sex contact
rates by infection and dating-app-use status. This may not affect our conclusions too much because,
for individuals of each sex, the proportion of same-sex contacts is fairly small within all their sexual
contacts.

Consequently, the constitutive form of the forces of infection are given by

λn
f = Cnn

f m
In
m

Nn
m

+ Cnu
f m

Iu
m

Nu
m
,

λn
m = Cnn

m f

In
f

Nn
f

+ Cnu
m f

Iu
f

Nu
f

,

λu
f = Cun

f m
In
m

Nn
m

+ Cuu
f m

Iu
m

Nu
m
,

λu
m = Cun

m f

In
f

Nn
f

+ Cuu
m f

Iu
f

Nu
f

,

(2.24)

where, for g1, g2 ∈ { f ,m}, s1, s2 ∈ {u, n},

0 < C
s1s2
g1g2

= unit per capita infectivity from sex g2 and status s2 to sex g1 and status s1. (2.25)

Furthermore, we shall assume that the initial, non-negative compartment sizes satisfy the following
condition: ∑

g,s

I s
g(0) > 0 (2.26)

so that there is STI transmission.

Figure 3 shows the flow diagram for our dating app model, where the parameters over each arrow are
per capita transition rates, with the exception of the inflow parameters into susceptible compartments
that represent total rates. Our dynamical system model describing the evolution of the compartment
sizes is as follows:

d
dt

S n
f = Λn

f + γn
f I

n
f − λ

n
f S

n
f − ξ f S n

f , (2.27)
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Female

Female

Male

Male

Female

Female

Male

Male

Figure 3. Flow diagram of our dating app STI model. The parameters over the arrows are
per capita rates, except for inflow parameters into susceptible compartments that represent
total rates.

d
dt

In
f = λn

f S
n
f − ξ f In

f − γ
n
f I

n
f , (2.28)

d
dt

S n
m = Λn

m + γn
mIn

m − λ
n
mS n

m − ξmS n
m, (2.29)

d
dt

In
m = λn

mS n
m − ξmIn

m − γ
n
mIn

m, (2.30)

d
dt

S u
f = Λu

f + γu
f I

u
f − λ

u
f S

u
f − ξ f S u

f , (2.31)

d
dt

Iu
f = λu

f S
u
f − ξ f Iu

f − γ
u
f I

u
f , (2.32)

d
dt

S u
m = Λu

m + γu
mIu

m − λ
u
mS u

m − ξmS u
m, (2.33)

d
dt

Iu
m = λu

mS u
m − ξmIu

m − γ
u
mIu

m. (2.34)
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2.3.1. Parameter estimation

Note that our 8-compartment STI SIS model for dating app users, (2.27)–(2.34), involves 6 demo-
graphic parameters and 8 initial conditions that were identified or are easily derived from the simple
two-sex SIS model, namely Λn

f ,Λ
n
m,Λ

u
f ,Λ

u
m, ξ f , and ξm, and S n

f (0), S u
f (0), S n

m(0), S u
m(0), In

f (0), Iu
f (0),

In
m(0), and Iu

m(0). For that model we actually identified Λ f = Λn
f + Λu

f and Λm = Λn
m + Λu

m, which we
now separated into app-user and non-user based on the percentages of each of these statuses derived
from data contained in [5]. The 8 initial conditions were chosen as those from the simple SIS model
(see section 2.2.1), S f (0), S m(0), I f (0), and Im(0), separated now into app-user and non-user based on
the percentages of each of these statuses derived from data contained in [5].

The 12 epidemiological parameters were fitted to (STI —chlamydia/gonorrhea) incidence data by
sex using MATLAB, specifically the routine “fminsearch” to minimize the maximum of the relative
deviations between incidence data and the corresponding model output values.

2.3.2. Sensitivity analyses and other simulations

Local and global sensitivity analyses were conducted utilizing MATLAB and its integrated pack-
ages. The local sensitivity analysis involved increasing the value of a single parameter by 1%, with
all other parameters remaining constant at their values derived from data, followed by the computa-
tion of the percentage change in both incidence and prevalence relative to the baseline values. This
process was repeated for various values of the selected parameter to construct sensitivity curves. The
data-derived parameter value was then highlighted as a red point on these curves (refer to Figures 12
and 13, for examples). Conversely, global sensitivity analyses were performed via Partial Rank Cor-
relation Analysis (PRCA). This entailed sampling one million sets of parameter values utilizing Latin
Hypercube Sampling (LHS), which were subsequently employed to simulate the model over a decade.
The sets of parameters, alongside the incidence and prevalence derived from the simulations, served
as inputs to the MATLAB function “partialcorr”. This step facilitated the acquisition of correlation
coefficients for each parameter, assessing their impact on the incidence and prevalence of sexually
transmitted infections (see Figure 16 for an example). The same approach was utilized to assess the
impact of dating app users on the incidence and prevalence of STIs.

Scenario analyses were conducted to evaluate the potential effects of integrating advertising cam-
paigns into dating apps aimed at mitigating risky sexual behaviors, such as decreased condom use or an
increase in the number of sexual partners. These scenarios were based on diminishing either the aver-
age duration of stay in the infectious class, denoted as 1

γ
, or the per capita rate of STI transmission from

sex g2 and status s2 to sex g1 and status s1, represented by C
s1s2
g1g2

. The parameters Cuu
g1g2

were reduced
by 10% to 40%, starting in 2019, to examine their influence on the prevalence and incidence among
males and females from 2019 to 2021. This assessment was carried out for each possible pairing of
sexes g1, g2 (refer to Figure 18 for an example).
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3. Results and discussion

3.1. Simple SIS model results

We present several analytical findings in conjunction with the outcomes of parameter estimation for
this simplified model, achieved by fitting the model to five years of incidence data.

3.1.1. Invariance of a positive cone

We prove that solutions that begin non-negative, stay non-negative and are bounded for all time.

We know that the functions F = number of sexually active females and M = number of sexually ac-
tive males, have graphs shaped like learning curves, i.e. concave (convex if F(0) > Λ f /ξ f , respectively
M(0) > Λm/ξm) functions that increase (decrease if convex) monotonically from their initial values
F(0) and M(0) to their asymptotic values F∞ = Λ f /ξ f and M∞ = Λm/ξm, respectively.

Moreover, (2.9) and (2.10) imply that F is bounded by max
{
F(0), Λ f

ξ f

}
and M is bounded by

max
{
M(0), Λm

ξm

}
. Similarly, we have a learning curve model for the total population N by letting

Λ = Λ f + Λm, ξ =
Λ f + Λm
Λ f

ξ f
+ Λm

ξm

,

where its asymptotic value is given by

N∞ = F∞ + M∞ =
Λ f

ξ f
+

Λm

ξm
=

Λ

ξ
. (3.1)

Thus we see that N is defined for all t ≥ 0, is bounded above, and bounded away from 0. Therefore,
the existence and uniqueness theorem for systems of ODEs guarantees the existence of a global unique
solution to system (2.6) for any initial conditions.

Theorem 3.1. The cone
{

(S f , I f , S m, Im) ∈ R4 : S f , I f , S m, Im ≥ 0, S f + I f + S m + Im ≤
Λ f

ξ f
+

Λm

ξm

}
is

invariant and attractive under the flow of system (2.6).

Proof : We first discard the trivial cases that have no infected individuals initially (i.e. I f (0) = Im(0) =

0). In that case, by uniqueness of solutions, the susceptible class of each sex evolves demographically
according to the learning curve equations (2.9) and (2.10), while the infected classes are empty at all
times (i.e., I f ≡ 0 and Im ≡ 0).

We then assume that at least one the infected classes is initially non-empty. Without loss of gener-
ality let,

I f (0) > 0. (3.2)

It follows from (2.4) that λ f (0), λm(0) > 0, and, by continuity, there is t̃ > 0 such that

λ f (t), λm(t) > 0, for all t ∈ [0.t̃). (3.3)
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Note that the equations for susceptibles in (2.6) imply that, for t ∈ (0, t̃) and g = f ,m,

d
dt

(
S g eξgt+

∫ t
0 λg(τ)dτ

)
=

[
Λg + γgIg(t)

]
eξgt+

∫ t
0 λg(τ)dτ > 0, (3.4)

whereby

S g(t) eξgt+
∫ t

0 λg(τ)dτ − S g(0) = Λg

∫ t

0
eξgv+

∫ v
0 λg(τ)dτdv + γg

∫ t

0
Ig(v) eξgv+

∫ v
0 λg(τ)dτdv > 0.

Hence, for all t ∈ (0, t̃) and g = f ,m,

S g(t) = S g(0) e−ξgt−
∫ t

0 λg(τ)dτ +

∫ t

0

[
Λg + γgIg(v)

]
e−ξg(t−v)−

∫ t
v λg(τ)dτdv > 0. (3.5)

Similarly, starting from the equations for infected persons in (2.6) and writing the analogue of (3.4)
for them, we can see that for all t ∈ (0, t̃) and g = f ,m,

Ig(t) = Ig(0) e−(ξg+γg)t +

∫ t

0
e−(ξg+γg)(t−τ)λg(τ)S g(τ)dτ > 0. (3.6)

Then, collecting (3.3), (3.5), and (3.6), for t ∈ (0, t̃) we have

S f (t), I f (t), S m(t), Im(t), λ f , λm > 0. (3.7)

We need to prove that the four compartments of N stay non-negative for all time. Suppose they do
not, and let t∗ be the first positive time at which one of the four becomes empty (t∗ ≥ t̃ by (3.7)):

t∗ = inf{t > 0 : S f (t) · S m(t) · I f (t) · Im(t) = 0}. (3.8)

Note that (3.8) implies that

S f (t), I f (t), S m(t), Im(t), λ f (t), λm(t) > 0 for all t ∈ (0, t∗). (3.9)

Combining (3.5), (3.6), and (3.9), we see that

S f (t∗), I f (t∗), S m(t∗), Im(t∗), λ f (t∗), λm(t∗) > 0

This contradicts the assumption (3.8) on t∗, establishing that the solutions cannot vanish at any positive
time. The upper bound now follows from (2.2) and (3.1), thus concluding the proof. �

3.1.2. Steady states and their stability

We will now focus on equilibrium solutions of the system and their stability. We see from (2.6) that
any equilibrium E∗ =

(
S ∗f , I

∗
f , S

∗
m, I

∗
m
)

must satisfy

S ∗f + I∗f = F∞ =
Λ f

ξ f
, S ∗m + I∗m = M∞ =

Λm

ξm
. (3.10)
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For the systems representing each of the sexes in the absence of the other -the first two equations
of (2.6) for females, and the last two equations of (2.6) for males- we have the basic reproduction
numbers

R
f
0 =

C f f

ξ f + γ f
and Rm

0 =
Cmm

ξm + γm
. (3.11)

The basic reproduction number of an epidemic generalizes the more general concept of basic repro-
duction number of a population [32], and it is “the number of secondary cases produced, in a totally
susceptible population, by a single infective individual during the time span of the infection”. [32]

When we consider only transmission within the same sex, the resulting single-sex systems of fe-
males and males each have a disease-free equilibrium

(S ∗g, I∗g) =

(
Λg

ξg
, 0

)
, g = f ,m, (3.12)

and a unique endemic one that lies in the positive quadrant if, and only if, Rg
0 =

Cgg

γg + ξg
> 1,

(S̄ g, Īg) =

(
(ξg + γg)Λg

Cggξg
,
Λg

ξg

(
1 −

ξg + γg

Cgg

))
=

(
Λg

ξ g
1
R

g
0

,
Λg

ξg

(
1 −

1
R

g
0

))
.

We have the following known stability results.

Theorem 3.2. [33] The disease-free equilibrium (S ∗g, I
∗
g) of the single-sex model is globally asymptot-

ically stable if Rg
0 ≤ 1 and unstable if Rg

0 > 1. In the latter case, the endemic equilibrium (S̄ g, Īg) is
globally asymptotically stable.

Concerning the coupled two-sex SIS system, the relation (3.10) together with (2.6) readily lead to
trivial (‘infection-free’) and two boundary (‘only-one-sex-infected’) equilibria. Setting ξ =

ξ f ξmΛ

Λ f ξm+Λmξ f

and the total population N̄ = F∞ + M∞ =
Λ f

ξ f
+ Λm

ξm
= Λ

ξ
,

E0 =

(
Λ f

ξ f
, 0,

Λm

ξm
, 0

)
= (F∞, 0, M∞, 0) , (3.13)

E∗f =

F∞
R

f
0

, F∞

1 − 1

R
f
0

 ,M∞, 0 , E∗m =

(
F∞, 0,

M∞
Rm

0
,M∞

(
1 −

1
Rm

0

))
, (3.14)

the latter two being meaningful (i.e. non-negative and different from E0) if, and only if, respectively,

R
f
0 > 1, or Rm

0 > 1. (3.15)

When only one sex is present (i.e. either F∞ = 0 or M∞ = 0), (3.15) is exactly (3.11).

We will prove next a classical threshold condition for the stability of the disease-free equilibrium,
see for example [34]. We begin by computing the basic reproduction number R0 = spectral radius of
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the next generation matrix [34],

G =


R

f
0

C f m

Cmm

F∞
M∞
Rm

0

Cm f

C f f

M∞
F∞
R

f
0 Rm

0

 =

(
a b
c d

)
.

Because the off-diagonal coefficients of G have the same sign (they are both non-negative), G has two
real non-negative eigenvalues,

0 ≤
a + d

2
−

√
(a + d)2 − 4(ad − bc)

2
≤

a + d
2

+

√
(a + d)2 − 4(ad − bc)

2
.

Indeed, this follows because the discriminant (tr(G))2
− 4 det(G) = (a − d)2 + 4bc ≥ 0. Therefore,

R0 =
tr(G)

2
+

√
tr2(G)

4
− det(G) =

1
2

R f
0 + Rm

0 +

√(
R

f
0 − R

m
0

)2
+ 4R f

0R
m
0

C f mCm f

C f f Cmm

 . (3.16)

In general, the next generation matrix is computed as the product of the transmission matrix con-
taining the unit transmission rates across infectious classes, and the inverse of the transition matrix
containing the unit transition rates to non-infectious classes. This matrix product generalizes the sim-
plest expression for R0 in the case of an unstructured population as the product of the unit transmission
rate and the reciprocal of the unit recovery rate that represents the mean infectious period. The next
generation matrix being positive, its spectral radius is its largest eigenvalue.

Theorem 3.3. (see [34]) The equilibrium E0 is locally asymptotically stable if R0 < 1 and unstable if
R0 > 1.

Proof : First, note that the threshold condition R0 < 1 is equivalent to

tr2(G) − 4 det(G) < (2 − tr(G))2 ,

that is,
R0 < 1 ⇐⇒ 1 − tr(G) + det(G) > 0 . (3.17)

The Jacobian matrix of system (2.6) is

J(S f , I f , S m, Im) =



−ξ f − λ f γ f −
C f f

F∞
S f 0 −

C f m

M∞
S f

λ f
C f f

F∞
S f − ξ f − γ f 0

C f m

M∞
S f

0 −
Cm f

F∞
S m −ξm − λm γm −

Cmm

M∞
S m

0
Cm f

F∞
S m λm

Cmm

M∞
S m − ξm − γm



. (3.18)

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3999–4035.



4017

Evaluating (3.18) at E0,

J(E0) =



−ξ f γ f −C f f 0 −C f m
F∞
M∞

0 C f f − ξ f − γ f 0 C f m
F∞
M∞

0 −Cm f
M∞
F∞

−ξm γm −Cmm

0 Cm f
M∞
F∞

0 Cmm − ξm − γm



.

The eigenvalues of J(E0) are the two negative real numbers,

−ξ f , −ξm,

and the two eigenvalues of the matrix

A =


C f f − ξ f − γ f C f m

F∞
M∞

Cm f
M∞
F∞

Cmm − ξm − γm

 =


(ξ f + γ f )

(
R

f
0 − 1

) C f m

C f f
(ξ f + γ f )R

f
0

Cm f

Cmm
(ξm + γm)Rm

0 (ξm + γm)
(
Rm

0 − 1
)
 ,

which have negative real part if, and only if,

tr(A) < 0 and det(A) > 0. (3.19)

The second condition in (3.19) is equivalent to

(a − 1)(d − 1) − bc = det(G) − tr(G) + 1 > 0,

which, by (3.17), is equivalent to R0 < 1. Then, a fortiori (a − 1)(d − 1) > bc ≥ 0, and a − 1 and d − 1
have the same sign. Also note that, in view of (3.16), the condition R0 < 1 implies that

a + d
2

< 1,

whereby (a − 1) + (d − 1) < 0, and then a − 1 < 0 or d − 1 < 0. Because they have the same sign, it
follows that

a − 1 < 0 and d − 1 < 0. (3.20)

The first condition in (3.19) is

(a − 1)(ξ f + γ f ) + (d − 1)(ξm + γm) < 0,

which follows immediately from (3.20).
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This proves the stability part of the theorem. The instability follows immediately from

R0 > 1 ⇐⇒ 1 − tr(G) + det(G) < 0 ⇐⇒ det(A) < 0 . (3.21)

�

We note that (3.20) can be restated as

R0 < 1 =⇒ R
f
0 < 1 and Rm

0 < 1. (3.22)

Now we turn our attention to the ‘only-one-sex-infected’ equilibria. We prove here the classical
threshold stability result for E∗f and omit it for E∗m, because its proof is essentially identical to the one
for E∗f .

Theorem 3.4. The equilibrium E∗f is locally asymptotically stable if R f
0 > 1 and Rm

0 < 1. It is unstable
if R f

0 < 1 or Rm
0 > 1.

Proof : First, recall that for E∗f to be distinct from E0, we need to assume Cm f = 0, i.e. λm = 0.
Therefore, the Jacobian matrix at E∗f , (3.18), is

J

F∞
R

f
0

, F∞

1 − 1

R
f
0

 ,M∞, 0 =



−ξ f − λ f −ξ f 0 −
C f m

R
f
0

F∞
M∞

(γ f + ξ f ) (R f
0 − 1) 0 0

C f m

R
f
0

F∞
M∞

0 0 −ξm γm −Cmm

0 0 0 (γm + ξm)(Rm
0 − 1)


. (3.23)

The structure of (3.23) tells us that the eigenvalues of this Jacobian for R f
0 > 1 and Rm

0 < 1 are

−ξm, (γm + ξm)(Rm
0 − 1),

both of which are real and negative, and the two eigenvalues of

M1 =


−ξ f − λ f −ξ f

(γ f + ξ f ) (R f
0 − 1) 0

 , (3.24)

both have a negative real part because tr(M1) < 0 and det(M1) > 0. The instability result follows by
noting that Rm

0 > 1 is equivalent to (γm + ξm)(Rm
0 − 1) > 0, while R f

0 < 1 is equivalent to det(M1) < 0
[34]. �

Note that Theorem 3.4 together with (3.22) say that a necessary condition for the stability of E∗f is
R0 > 1. However, this condition is not sufficient.
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As we indicated earlier, because of (3.10), all steady states of system (2.6) are determined by solving
for the infected-equilibrium conditions(C f f I∗f

F∞
+

C f mI∗m
M∞

)
(F∞ − I∗f ) − γ f I∗f − ξ f I∗f =

(Cm f I∗f
F∞

+
CmmI∗m

M∞

)
(M∞ − I∗m) − γmI∗m − ξmI∗m = 0. (3.25)

We see from (3.25) that
I∗m = 0 ⇐⇒ I∗f = 0 or Cm f = 0,

which correspond, respectively, to the disease-free equilibrium E0 and to the ‘only-females-infected’
equilibrium E∗f in (3.14), while

I∗f = 0 ⇐⇒ I∗m = 0 or C f m = 0,

which correspond, respectively, to the disease-free equilibrium E0 and to the ‘only-males-infected’
equilibrium E∗m in (3.14).

We are now ready to find the positive equilibria, with both sexes infected. Solving the first equation
of (3.25) for I∗m,

I∗m =

(
(γ f + ξ f ) −

C f f

F∞
(F∞ − I∗f )

)
I∗f

C f m

M∞
(F∞ − I∗f )

=

(
(γ f + ξ f )F∞ −C f f (F∞ − I∗f )

)
I∗f M∞

C f m(F∞ − I∗f )F∞
, (3.26)

and substituting this expression for I∗m into the second equation of (3.25), we obtain the following
equilibrium equation for I∗f :M∞ −

(
(γ f + ξ f )F∞ −C f f (F∞ − I∗f )

)
I∗f M∞

C f m(F∞ − I∗f )F∞

 · Cm f

F∞
I∗f +

(
(γ f + ξ f )F∞ −C f f (F∞ − I∗f )

)
Cmm I∗f

C f m(F∞ − I∗f )F∞


= (γm + ξm)

(
(γ f + ξ f )F∞ −C f f (F∞ − I∗f )

)
I∗f M∞

C f m(F∞ − I∗f )F∞
,

that is,F∞ − (
(γ f + ξ f )F∞ −C f f (F∞ − I∗f )

)
I∗f

C f m(F∞ − I∗f )

 · Cm f I∗f +

(
(γ f + ξ f )F∞ −C f f (F∞ − I∗f )

)
Cmm I∗f

C f m(F∞ − I∗f )


= (γm + ξm)

(
(γ f + ξ f )F∞ −C f f (F∞ − I∗f )

)
I∗f F∞

C f m(F∞ − I∗f )
,

which is equivalent to[
F∞C f m (F∞ − I∗f ) −

(
(γ f + ξ f )F∞ −C f f F∞ + C f f I∗f )

)
I∗f
]

·
[
Cm f C f m (F∞ − I∗f ) + Cmm

(
(γ f + ξ f )F∞ −C f f (F∞ − I∗f )

)]
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= (γm + ξm)
[
(γ f + ξ f −C f f )F∞ + C f f I∗f )

]
C f m (F∞ − I∗f ) F∞,

or [
−C f f (I∗f )

2 + F∞
[
C f f −C f m − (γ f + ξ f )

]
I∗f + C f m (F∞)2

]
·

[(
C f mCm f −C f f Cmm

)
I∗f

+
(
C f f Cmm −C f mCm f

)
F∞ −Cmm (γ f + ξ f ) F∞

]
= C f f C f mF∞(γm + ξm)(I∗f )

2

+ C f m(γ f + ξ f − 2C f f )(F∞)2(γm + ξm) I∗f + C f m(F∞)3(γm + ξm)
(
C f f − γ f − ξ f

)
,

We see that the equilibrium values of I∗f are the roots of the cubic polynomial

Ux3 + V x2 + Wx + Z, (3.27)

where,

U = C f f
C f f Cmm −C f mCm f

N̄
,

V = C f f
[
Cmm(γ f + ξ f ) −C f m(γm + ξm)

]
+

C f f Cmm −C f mCm f

N̄
[
C f mM∞ + (γ f + ξ f )N̄ − 2 C f f F∞

]
,

W = 2 C f mF∞M∞
C f mCm f −C f f Cmm

N̄
+ C f mCmmM∞ (γ f + ξ f ) −C f m

(
(γ f + ξ f )N̄ − 2C f f F∞

)
× (γm + ξm) +

[
C f f F∞ − (γ f + ξ f )N̄

][C f f Cmm −C f mCm f

N̄
F∞ −Cmm (γ f + ξ f )

]
,

Z = C f m F∞ M∞
[C f f Cmm −C f mCm f

N̄
F∞ −Cmm (γ f + ξ f )

]
+ C f mF∞(γm + ξm)

[
(γ f + ξ f )N̄ −C f f F∞

]
= C f m F∞ N̄

[
R

f
0(γ f + ξ f )Rm

0 (γm + ξm) −
C f mCm f

N̄2
F∞M∞ − Rm

0 (γm + ξm)(γ f + ξ f )

+ (γm + ξm)(γ f + ξ f )
(
1 − R f

0
)]

= C f m F∞ N̄ (γ f + ξ f ) (γm + ξm)
[
(1 − R f

0)(1 − Rm
0 ) −

C f mCm f

N̄2(γ f + ξ f ) (γm + ξm)
F∞M∞

]
. (3.28)

We can establish now sufficient conditions for a positive (endemic) equilibrium to exist.

Theorem 3.5. Suppose that C f f Cmm > C f mCm f . Then, if either R0 > 1 or R f
0 > 1 and Rm

0 > 1, there
exists (at least) one endemic equilibrium of (2.6).

Proof. Being of odd degree, the polynomial (3.27) has (at least) one real root and the intermediate
value theorem implies that UZ < 0 is a sufficient condition for it to have a positive root. We might
then expect that the condition UZ < 0 should follow from (or, perhaps, be equivalent to) the threshold
condition for the basic reproduction number, R0 > 1. However, in view of (3.21), R0 > 1 is equivalent
to

C f mCm f > C f f Cmm

1 − 1

R
f
0

 (1 − 1
Rm

0

)
. (3.29)
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For R0 > 1 (or R f
0 > 1 and Rm

0 > 1), we see that (3.28) and (3.29) imply that

Z < C f m F∞ N̄ (γ f + ξ f ) (γm + ξm)

(1 − R f
0)(1 − Rm

0 ) −
C f f CmmF∞M∞

N̄2(γ f + ξ f ) (γm + ξm)

1 − 1

R
f
0

 (1 − 1
Rm

0

)
= C f m F∞ N̄ (γ f + ξ f ) (γm + ξm)

(1 − R f
0)(1 − Rm

0 ) − R f
0R

m
0

(
1 −

1

R
f
0

) (
1 −

1
Rm

0

) = 0. (3.30)

�

Note that, if we rewrite the first hypothesis, C f f Cmm > C f mCm f , as

C f f

C f m
·

Cmm

Cm f
> 1,

we see that it could be interpreted as a condition on how same-sex transmission probabilities compare
with opposite-sex transmission probabilities. For example, if we knew that transmission of infection
from female to female is less likely than from female to male, the first ratio would actually be less
than one, implying that the second ratio —which corresponds to males transmitting infection— would
need to be sufficiently larger than one to compensate and make their product larger than one. This may
well be the case for many STIs, but we can have scenarios where the opposite is true. For example,
a population where same-sex partners are more risk adverse (i.e., use protection more frequently)
than opposite-sex ones. This scenario is incompatible with the assumption above, suggesting that the
first hypothesis in Theorem 3.5 may not be necessary for the existence and stability of an endemic
equilibrium.

Sufficient conditions for uniqueness of the endemic equilibrium are UZ < 0 together with a condi-
tion for the other two roots of (3.27) to be complex conjugates, such as (see, e.g., [35])

∆ = 18 UVWZ − 4V3Z + V2W2 − 4UW3 − 27U2Z2 < 0. (3.31)

If ∆ = 0, then (3.27) has two distinct real roots (one simple and one double) and, if ∆ > 0, then
(3.27) has three distinct real roots, but their signs could be any.

The condition U > 0 may be assumed without loss of generality because either the polynomial
(3.27) or its opposite satisfy it (unless we have the singular case C f f Cmm = C f mCm f ) and ∆ does not
change if the polynomial is replaced by its additive inverse. However, if C f f Cmm < C f mCm f , we would
need to prove that Z > 0, which is incompatible with R0 > 1.

We were unable to prove the negativity of the discriminant ∆ in (3.31) or the local asymptotic
stability of endemic equilibria. Therefore, to have some numerical evidence for the former (which
implies the existence of a unique endemic equilibrium) and for the latter (its local asymptotic stability)
we used Latin Hypercube sampling to select one million random 6-tuples (C f f ,C f f ,C f f ,C f f , γ f , γm) in
the 6-dimensional hypercube H defined as the cross product of the allowable intervals of the positive
real line for each of the six parameters

H = [0.001, 10] × [0.001, 10] × [0.001, 10] × [0.001, 10] × [0.001, 5] × [0.001, 5].
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We kept Λ f , Λm, ξ f , and ξm fixed, as those were calculated directly from the data. Their values are
estimated in [26]. For each of those 6-parameter combinations, we checked whether the conditions
(3.31), U > 0, and Z < 0 were met. From those one million combinations, 296,646 met the conditions.
We show in Figure 4 the curve R0 = 1 on the γ-plane together with color-coded dots in red and blue
corresponding to the cases where the solutions approached the endemic or the disease-free equilibrium.

Figure 4. Equilibrium approached for many parameter combinations, showing just the values
of γ f and γm.

The numerical evidence above suggests that when a unique endemic equilibrium exists, it is globally
asymptotically stable.

In Figure 5 below we show the example of parameter values (Λ f ,Λm, ξ f , ξm, γ f , γm,C f f ,

C f m,Cmm,Cm f ) = (3777794, 3872800, 0.196, 0.0238, 0.6868, 2.5807, 0.7249, 2.1900, 8.7674, 1.7700),
which meet the conditions U > 0, Z < 0, and (3.31). These parameter values result in a cubic
polynomial for I∗f that has one real positive root (93, 888, 455) and two complex conjugate roots,
P(x) = 5.06 × 10−9x3 + 2.64x2 + 1.95 × 10−9x − 2.10 × 1017. Very different initial conditions were
used for (a) and (b) to show that the model stabilizes at the equilibrium point (S ∗f , S

∗
m, I

∗
f , I
∗
m) =

(98856112, 84911300, 93888455, 77811405) when the initial conditions are positive.

3.1.3. Parameter fitting

Figures 6 and 7 show the results of fitting model (2.6) to five years (2015-2019) of gonorrhea
incidence data for females and males, respectively. The estimated parameter values, in conjunction
with the initial conditions and the four fixed parameter values obtained in (2.12), are presented in
Table 5. These results demonstrate that our model can capture the observed upward trend in gonorrhea
incidence over the five-year period with rational and justifiable parameter values.

3.2. STI SIS model for dating app user results

We present analytical findings alongside parameter estimation results, which were obtained by fit-
ting the model to ten years of incidence data. Additionally, we showcase the outcomes of both local
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Figure 5. Example of time-series of the sizes of the four model compartments when there is
a unique endemic equilibrium, corresponding to two different initial conditions.
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Figure 6. Fitting of simple SIS model to
female gonorrhea incidence data.
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Figure 7. Fitting of simple SIS model to
male gonorrhea incidence data.

Table 5. Initial values, fixed parameters, and fitted parameters of the simple SIS model to
incidence data of gonorrhea.

Parameter Fitted Value Parameter Fitted Value
S f (0) 123,173,000 S m(0) 116,460,000
I f (0) 250,000 Im(0) 261,000
Λ f 3,777,793 Λm 3,872,800
ξ f 0.020 ξm 0.024
γ f 0.379 γm 0.817

C f f 0.050 Cmm 0.729
C f m 1.254 Cm f 0.947

and global sensitivity analyses, as well as various scenario analyses.
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3.2.1. The invariant cone in the positive orthant

We show that the non-negative orthant of R8 is invariant under the flow of system (2.27)–(2.34).
This is done in an entirely analogous way as done for the simple model, Theorem 3.1.

Theorem 3.6. The cone{(
S n

f , S
u
f , S

n
m, S

u
m, I

n
f , I

u
f , I

n
m, I

u
m

)
∈ R8 : S n

f + S u
f + S n

m + S u
m + In

f + Iu
f ,+In

m + Iu
m ≤

Λ

µ

}
is invariant under the flow of system (2.27)–(2.34).

Proof. Starting with the equations for the four compartments of susceptible individuals, equations
(2.27), (2.29), (2.31), and (2.33), we write equivalent ones (which are just (3.4) with the parameters
now distinguishing app-user status)

d
dt

(
S s

geξgt+
∫ t

0 λ
s
g(τ)dτ

)
=

[
Λs

g + γs
gI s

g(t)
]

eξgt+
∫ t

0 λ
s
g(τ)dτ > 0, g ∈ { f ,m}, s ∈ {n, u},

whereby

S s
g(t)eξgt+

∫ t
0 λ

s
g(τ)dτ − S s

g(0) = Λs
g

∫ t

0
eξgv+

∫ v
0 λs

g(τ)dτdv + γs
g

∫ t

0
I s
g(v) eξgv+

∫ v
0 λs

g(τ)dτdv.

Hence, for g ∈ { f ,m}, s ∈ {n, u}, and as long as the infected class sizes stay positive,

S s
g(t) = S s

g(0) e−ξgt−
∫ t

0 λ
s
g(τ)dτ +

∫ t

0

[
Λs

g + γs
gI s

g(v)
]

e−ξg(t−v)−
∫ t

v λ
s
g(τ)dτdv > 0. (3.32)

Concerning the four compartments of infected individuals, we note that (2.24)–(2.26) imply that
at least one of the four compartments of infected is non-empty, say IN

f ; this makes the two forces of
infection λn

f > 0 and λu
f > 0, whereby, by continuity of solutions, for t > 0 small enough, necessarily

In
f (t) > 0, In

m(t) > 0, and Iu
M(t) > 0. Hence, λu

f (t) > 0 for t > 0 small enough and, even if λu
f (0) = 0,

(2.32) leads to Iu
f (t) > 0 for t > 0 small enough.

Also, equations (2.28), (2.30), (2.32), and (2.34) imply that, as long as the sizes of the susceptible
classes are positive,

I s
g(t) = I s

g(0) e−ξgt−
∫ t

0 λ
s
g(τ)dτ +

∫ t

0
λs

g(v) S s
g(v) e−ξg(t−v)−

∫ t
v λ

s
g(τ)dτdv > 0. (3.33)

In summary, for t > 0 small enough, S s
g(t) > 0 and I s

g(t) > 0 for all four combinations of sex and
dating-app-user status. We want to show that the positivity stays true for all time t > 0.

Suppose that this is not the case, and consider the smallest positive time t̄ at which one of these
eight compartments of susceptible or infected individuals is empty,

t̄ = min{t > 0 : S n
f (t) · S

u
f (t) · S

n
m(t) · S u

m(t) · In
f (t) · I

u
f (t) · I

n
m(t) · Iu

m(t) = 0}. (3.34)
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It follows that, for t ∈ (0, t̄), S n
f (t), S

u
f (t), S

n
m(t), S u

m(t) > 0, In
f (t), I

u
f (t), I

n
m(t), Iu

m(t) > 0 and a fortiori,
because of (2.24), we have all four forces of infection positive on that interval: λn

f (t), λ
u
f (t), λ

n
m(t),

λu
m(t) > 0 for t ∈ (0, t̄). Consequently, because of (3.32) and (3.33), we have

S n
f (t̄), S

u
f (t̄), S

n
m(t̄), S u

m(t̄) > 0, In
f (t̄), I

u
f (t̄), I

n
m(t̄), Iu

m(t̄) > 0,

contradicting (3.34). Hence, such time does not exist. The upper bound now follows from the solutions
to the equations for F s = S s

f + I s
f and MsS s

m + I s
m, s = f ,m derived exactly as (2.9) and (2.10) are from

(2.7) and (2.8). �

3.2.2. Simulations: STI incidence on the rise

Figures 8 and 9 show the estimated percent increase during the previous 12 months in female and
male STI incidence and prevalence, respectively, attributable to dating apps use that occurred between
2015 and 2019. We estimated the percentages attributable to dating apps use by comparing model
output corresponding to the per capita contact rates differentiated for dating apps users and non-users
with output corresponding to the rates for users being set at the (lower) values of non-users. We see
that, for prevalence, those percentages are between 10%–20%, suggesting that more research designed
to better understand the relationship between STIs and dating apps is a worthwhile endeavor.

Regarding female prevalence, for example, Figure 9 shows that from 2018 to 2019 there was an
8.7% increase attributable to dating apps. In a similar fashion, this figure shows a 9.2% increase in
male prevalence due to dating apps between 2018 and 2019, with the annual percentage of change
stabilizing at around 8-9% with increasing time.

Consistent with the trends discussed above, Figure 8 referring to the annual percentage of change in
female and male incidence over time display their trend-lines stabilizing at 9.9% and 6%, respectively.
As all figures indicate the stabilization of the annual percentage of change in STIs is a positive value,
it is suggested that both the incidence and prevalence of STIs are continuing to rise over time. This
information provides additional motivation for the inquiry into the quantifiable effects of dating app
usage on the proliferation of STIs.

The parameter names and their fitted values are shown in Table 6, while the graphs of the model
output together with the incidence data appear in Figures 10 and 11. The fitting in Figure 10 is not
very good because the female incidence data for chlamydia and gonorrhea for 2009 is unusually high
and our model uses it as the initial value for the following years’ predictions.

3.2.3. Sensitivity Analysis

We performed sensitivity analyses of incidence and prevalence by sex for four γs
g parameters and

eight C s1s2
g1g2 parameters. We found that γu

m and γu
f have the greatest impact on the prevalence and in-

cidence of the STIs in our study (for chlamydia and gonorrhea). This finding is consistent with the
literature, as users of dating apps are shown to engage in more risky behaviors that are linked to STI
transmission. The corresponding sensitivity curves are shown below, where the baseline values corre-
spond to the fitted ones shown in Table 6.

The sensitivity curve for γu
f , Figure 12, shows that a 1% increase in γu

f results in a 2.65% decrease
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Figure 8. Annual increase in incidence
due to dating apps.
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Figure 9. Annual increase in prevalence
due to dating apps.

Table 6. Parameters estimated by fitting the model to incidence data.

Parameter Fitted Value
γn

f 1.868
γu

f 0.779
γn

m 0.615
γu

m 1.132
Cnn

m f 0.709
Cun

m f 0.942
Cnu

m f 0.100
Cuu

m f 5.770
Cnn

f m 5.722
Cun

f m 0.346
Cnu

f m 1.586
Cuu

f m 7.777

in female prevalence and a 2.45% decrease in male prevalence. In contrast, based on Figure 13, a 1%
increase in γu

m results in a 3.4% decrease in male prevalence and a 3.1% decrease in female prevalence.

In addition, a comparison of the sensitivity curves at the baseline values for γu
f and γu

m, indicates
that the population of male users presents the most obvious gender/behavior group to target for preven-
tion measures from the perspective of cost-benefit of such public health interventions. A 1% change
in the parameter value in either direction would have a significant impact on the corresponding STI
prevalence.

Similarly, the sensitivity curves of C s1,s2
g1g2 suggest that Cuu

m f and Cuu
f m have the greatest impact on

the prevalence and incidence of STIs. This finding is consistent with our intuition because increased
sexual risk behavior is associated with dating app users and, as such, Cuu

m f and Cuu
f m are expected to

have a larger impact on the prevalence and incidence of STIs. The corresponding sensitivity curves are
shown in Figures 14 and 15. These figures indicate that a 1% increase (respectively, decrease) in Cuu

m f
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Figure 10. Female incidence chlamydia
and gonorrhea.
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Figure 11. Male incidence chlamydia
and gonorrhea
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Figure 12. Sensitivity of γu
f on female

prevalence.
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Figure 13. Sensitivity of γu
m on male

prevalence

from its baseline value would results in a 2.6% increase (respectively, decrease) in male prevalence,
whereas a 1% increase in Cuu

f m results in a 2.7% increase in female prevalence. Also, the companion
curves not shown here suggest that a 1% increase in Cuu

m f would result in a 2.2% increase in female
prevalence while a 1% increase in Cuu

f m would lead to a 2.5% increase in male prevalence.

Careful examination of the sensitivity curves of prevalence and incidence for γs
g and C s1 s2

g1g2
reveals

that perturbations among the male dating app users results in consistently greater percent changes in
the incidence and prevalence of STIs, in comparison to the other sex/behavior classes. From a public
health standpoint, this presents male dating apps users as the most impactful sex/behavior population
for an intervention.

3.2.4. Global Sensitivity: Partial Rank Correlation Analysis (PRCA)

We performed Partial Rank Correlation Analysis (PRCA) for the 12 fitted model parameters, γs
g

and C
s1s2
g1g2

, and for the four pertinent sex/behavior populations. The resulting Partial Rank Correlation
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Figure 14. Sensitivity of Cuu
f m on female

prevalence.
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Figure 15. Sensitivity of Cuu
m f on male

prevalence.

Coefficients (PRCC) for the former are shown in Figure 16.
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Figure 16. PCRA of Fitted Parameters.

The signs of the correlation coefficients for γs
g differ for incidence and prevalence, with the ones

for prevalence being negative. These negative correlations agree with the intuition that larger γs
g cor-

responds to a smaller duration of infection and, consequently, to reduced prevalence. In contrast, the
PRCCs for γs

g and incidence are positive, both for females and males. This is likely due to the fact that
larger values of γs

g correspond to a larger susceptible class, and incidence is represented in the model
by λ

(
I(t)

)
S (t), where, despite λ being smaller for larger γs

g, its product with S can still become larger.

Contrasting with what we observe for γs
g, the PRCCs for all combinations of C

s1s2
g1g2

and incidence and
prevalence are positive. This suggests that, as the unit per capita transmission rate from sex g2 to sex
g1 assumes larger values, there will be both greater incidence and prevalence of STIs. This conclusion
is aligned with our intuitive expectation.

Figure 17 displays the partial rank correlation coefficients for the eight combinations between the
four pertinent sex/behavior populations and the incidence and prevalence of STIs. Looking at the
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PRCCs for STI incidence, we see that the ones corresponding to both female and male dating app
users are positive, while those for non-users are negative. This observation strongly suggests that
dating app users have a greater responsibility than non-users for the increased incidence of STIs. This
is supported by further analysis of the correlation coefficients for male dating app users and non-users.
For instance, for STI incidence, male users (r = 0.9) maintain a strong positive correlation, and male
nonusers a strong negative correlation (r = -0.9). Moreover, sex comparisons among dating app users
and non-users show males as having a greater relationship with STI incidence than females from either
population. From a public health standpoint, this argues for male dating apps users being the best target
population for intervention strategies.
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Figure 17. PCRA of Sex/Behavior Categories.

Figure 17 also provides assessments for STI prevalence and incidence as they relate to the four pre-
viously mentioned sex/behavior categories. For female dating app users and non-users, the moderately
strong correlation coefficients (r = 0.6 and -0.6, respectively) are quite intuitive: STI prevalence and
incidence increase as the number of female users increases, and decreases as the number of female
non-users increases. In contrast, the partial rank correlation coefficients for STI prevalence among
male dating app users and non-users are very different from those for females, as they are both very
close to zero and, thus, indicate no apparent significant correlation between dating app use by males
and STI prevalence.

3.2.5. Scenario Analysis

Various scenario analyses were conducted to assess the potential impact of ad campaigns being
implemented into dating apps to reduce risky sexual behaviors, such as reduced condom usage or
increased numbers of sexual partners. The results obtained indicate that a reduction in the per capita
infectivity from male to female dating app users has a significant impact on reducing prevalence and
incidence for both sexes. The greatest reduction is in female incidence, where the percentage reduction
is approximately twice the reduction in male prevalence (see Table 7). The results for that scenario for
male incidence are presented as an example in Figure 18.

Table 7 presents the summary of the large potential impact after two years resulting from the sce-
nario analysis described above, as the percentage change in STI incidence and prevalence due to 10%,
20%, 30%, and 40% reductions in Cuu

fm.
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Figure 18. Cuu
f m Scenario Analysis: Potential Impact of Pop-Up Ads on Male Incidence.

Table 7. Cuu
fm scenario analysis results.

% Reduction in Cuu
fm Male Prevalence Male Incidence Female Prevalence Female Incidence

10 4.2 7.3 4.9 7.6
20 7.3 10.9 11.3 15.9
30 11.2 18.2 18.7 23.5
40 14.6 23.6 21.7 29.4

The corresponding scenario analysis results for reductions of 10%–40% in per capita transmissibil-
ity rates from female to male sexual partners, both being dating app users, Cuu

mf , are displayed in the
Table 8 below.

Table 8. Cuu
mf scenario analysis results.

% Reduction in Cuu
mf Male Prevalence Male Incidence Female Prevalence Female Incidence

10 4.5 13.6 7.1 7.6
20 12.6 22.7 9.5 14.7
30 22.9 34.5 15.7 22.4
40 28.7 40.9 19.0 29.4

We can see in Table 8 that a 40% reduction in Cuu
mf would result in a 40.9% decrease in male inci-

dence and a 29.4% decrease in female incidence. This projected reduction in male incidence is almost
twice that corresponding to a 40% reduction in Cuu

fm (Table 7), as is the projected reduction in male
prevalence (14.6% in Table 7 compared with 28.7% in Table 8). Perhaps more importantly, for a small
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reduction of 10% in Cuu
mf , we see a much larger projected impact on male incidence from reducing

female-to-male transmission than from male-to-female (7.3% in Table 7 compared with 13.6% in Ta-
ble 8), with a similar advantage concerning female prevalence (4.9% in Table 7 compared with 7.1%
in Table 8).

The analogous scenario analyses for 10%–40% increases in γu
f and γu

m show quite smaller impact
on STI prevalence and incidence than the same percentage increase in Cuu

mf or Cuu
fm. They also show

that reductions of γu
m result in a much greater decrease in female incidence and male prevalence than

analogous reductions in γu
f . This suggests that campaigns targeted at reducing the mean infectious time

of male dating apps users (e.g., by getting tested and seeking treatment as soon as possible) have good
potential for reducing STI incidence and prevalence.

These findings suggest that pop-up ads or other related public health campaigns targeting dating
apps users, particularly males, may potentially be very helpful in reducing STI incidence and preva-
lence.

4. Conclusions

This study utilized mathematical modeling and statistical analysis to first create a model of the age
and sex structure of the sexually active population of the U.S. in order to pursue the main goal of
investigating the relationship between dating app usage and STI incidence and prevalence. A four-
compartment SIS STI model and an eight-compartment SIS STI model were created based on data
collected from various sources, most prominently the CDC and WHO. In conjunction, these models
were used to quantify the impact of dating apps on STI incidence rates. An equation decomposing
the mean duration of infection was used to estimate the percentage of people who seek treatment after
being diagnosed with an STI. Additionally, a modified version of the eight-compartment model allowed
us to assess the potential impact of in-app prevention campaigns.

The four-compartment two-sex SIS STI model was constructed primarily to guide the choice of
the parameters used in the eight-compartment two-sex dating-app SIS STI model. The model was also
used to study the variability of fit with respect to simulation period and particular STIs or combinations
of them, as well as to assess the correspondence between the model output and the incidence data. This
is the first model that explicitly incorporates infection spread through the four combinations of sexes
(FF, FM, MF, and MM).

For the four-compartment model, we first provided a method to estimate the sexually active popu-
lation by sex and age, and then fitted the model (demographic) parameters to data, thus estimating the
recruitment rates by sex, Λg, and the per capita exit rates by sex, ξg. Those values were then used in
the model to estimate the remaining 6 (epidemiological) parameters, γ f , γm, C fm, Cmm, Cmf , and C f f ,
by fitting model predictions to available data for STI incidence by sex. For the parameter fitting we
utilized a MATLAB routine based on a descent method.

For our eight-compartment two-sex dating-app STI SIS model, we only considered opposite-sex
sexual contacts for two main reasons. First, there are important gaps in available data regarding same-
sex sexual partners by dating app usage. Second, considering transmission across all combinations of
sexes and dating app usage status would require the use of an additional 8 constants in the forces of
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infection λg, leading to a significant loss of validity in the parameter identification. Also, the extant
literature suggests that the proportion of same-sex sexual contacts among all sexual contacts is small.
Hence, we are assuming that disregarding same-sex sexual contacts will only have a small effect on the
study’s findings concerning overall incidence and prevalence.

The eight-compartment model was used to conduct a series of simulations designed to address our
research goals: to quantify the percentage change in STI incidence and prevalence that results from
dating app usage, to assess the potential impact of pop-up ads on the incidence and prevalence of
STIs, and to identify the most important sex/behavior group to target for public-health interventions.
From our simulations we concluded that both STI incidence and prevalence for females and males
have increased annually by 9%–15% between 2015 and 2019 due to dating app usage, and that STI
incidence and prevalence will continue to increase in the future.

Sensitivity analysis for γg and C
s1s2
g1g2

provided some useful information regarding the most influential
sex/behavior population to target for public health interventions. We found that Cuu

fm
and Cuu

m f
correspond

with the largest percentage changes in the prevalence and incidence of STIs. As such, users of dating
apps are likely to have more impact on the rising STI rates in the United States than non-users. This
claim is further supported by the sensitivity analysis for γg as incidence and prevalence of STIs are
more sensitive to γu

f and γu
m than to γn

f and γn
m, with γu

m having the greatest impact on male and female
prevalence. In summary, it can be stated with reasonable confidence that male dating app users are
likely the optimal sex/behavior group to target for a public health intervention.

Global sensitivity analysis using the PRCC for γs
g and C

s1s2
g1g2

and for the four pertinent sex/behavior
populations, confirms male users as the optimal target group for in-app prevention campaigns. We
found that the PRCC for male dating app users and STI incidence has the largest positive magnitude,
while the PRCC for male dating app non-users and STI incidence has the largest negative magnitude.
These statistics further indicate male users as the sex/behavior group of interest with regard to a public
health intervention campaign.

Concerning public health interventions, our scenario analyses for γs
g and C

s1s2
g1g2

indicate that reduc-
tions in Cuu

m f and/or in Cuu
f m may lead to important reductions of STI incidence and prevalence. This

suggests that in-app prevention campaigns may provide a valuable strategy to control the rise in preva-
lence and incidence of STIs. More specifically, our results from scenario analyses, sensitivity analyses,
and a PRCC study suggest that male dating app users are likely the most impactful group to target for
prevention campaigns.

Some important limitations in this study were the lack of compatible data the models require, par-
ticularly for STI prevalence necessary to define initial conditions for the models. Sources contain
abundant data on incidence, but are very scant on prevalence of STIs. In fact, a bonus of these models
is that they provide estimates for prevalence that may be useful when real-life data is unavailable or
non-existent. Similarly, we had to combine data from different points in time and/or different STIs,
because the data needed for our models was usually not available with the necessary detail or com-
pleteness.
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