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Abstract: We proposed a novel decision-making method, the large-scale group consensus multi-
attribute decision-making method based on probabilistic dual hesitant fuzzy sets, to address the 
challenge of large-scale group multi-attribute decision-making in fuzzy environments. This method 
concurrently accounted for the membership and non-membership degrees of decision-making experts 
in fuzzy environments and the corresponding probabilistic value to quantify expert decision 
information. Furthermore, it applied to complex scenarios involving groups of 20 or more decision-
making experts. We delineated five major steps of the method, elaborating on the specific models and 
algorithms used in each phase. We began by constructing a probabilistic dual hesitant fuzzy 
information evaluation matrix and determining attribute weights. The following steps involved 
classifying large-scale decision-making expert groups and selecting the optimal classification scheme 
based on effectiveness assessment criteria. A global consensus degree threshold was established, 
followed by implementing a consensus-reaching model to synchronize opinions within the same class 
of expert groups. Decision information was integrated within and between classes using an information 
integration model, leading to a comprehensive decision matrix. Decision outcomes for the objects were 
then determined through a ranking method. The method’s effectiveness and superiority were validated 
through a case study on urban emergency capability assessment, and its advantages were further 
emphasized in comparative analyses with other methods. 

Keywords: probabilistic dual hesitant fuzzy sets; large-scale group; multi-attribute decision-making; 
group classification model; consensus-reaching model 
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Decision-making; LSG-MADM: Large-scale group multi-attribute decision-making; LSG: Large-
scale group; LSGC-MADM: Large-scale group consensus multi-attribute decision-making; LSGC: 
Large-scale group consensus; FSs: Fuzzy sets; IFSs: Intuitionistic fuzzy sets; PFSs: Pythagorean fuzzy 
sets; HFSs: Hesitant fuzzy sets; PHFSs: Probabilistic hesitant fuzzy sets; PDHFEs: Probabilistic dual 
hesitant fuzzy elements; PDHFI: Probabilistic dual hesitant fuzzy information; CDM: Consensus 
decision-making; the LSGC-MADM Method based on PDHFSs: the Large-Scale Group Consensus 
Multi-Attribute Decision-Making Method based on Probabilistic Dual Hesitant Fuzzy Sets; EPD: 
Equal probability distance 

1. Introduction 

Multi-attribute decision-making (MADM) is a process in which multiple people make decisions 
and consider multiple attributes. It is widely used in the decision-making (DM) of complex problems, 
such as emergency management [1], watershed management [2], and investment selection [3]. 
Building on decision-making (DM) research, scholars have developed a variety of models and 
algorithms for group decision-making (GDM) [4,5]. With the increase in the number of people 
participating in GDM, the problems related to MADM gradually develop into large-scale group multi-
attribute decision-making (LSG-MADM) problems [6–8]. Large-scale group decision-making, 
frequently encountered in today’s society, is advancing as a prominent subject within decision science. 
Compared with traditional MADM methods, LSG-MADM methods are more applied to scenarios with 
multi-domain intersection and complex problems [9]. A minimum of twenty decision-making experts 
is typically required for LSG-MADM processes [10]. Incorporating a consensus mechanism into LSG-
MADM issues and setting up the large-scale group consensus multi-attribute decision-making (LSGC-
MADM) method can help different viewpoints better fit together [11]. The major areas of study for 
LSGC-MADM are consensus mechanisms [12], group clusters [13], and cooperative behaviors [14]. 

Scholars have achieved some research results, such as Du introduced a decision support approach 
for tackling large-scale decision-making in social networks, merging constrained community detection 
with multi-stage multi-cost consensus models to address clustering and consensus complexities [15]. 
Yu et al. enhanced group decision-making with the Enhanced Minimum Cost Consensus Model 
(EMCC), leveraging explicit adjustment paths and coordination elasticity to prevent over-adjustment 
and enhance consensus efficiency and adaptability [16]. Chen et al. proposed an expertise-structure 
and risk-appetite-integrated two-tiered framework for collective opinion generation in large-scale 
group decision-making [17]. Although scholars have made progress in researching large-scale decision-
making, considering the fuzziness of decision-makers’ thought processes and the complexity of decision-
making events, we address decision information using the form of probabilistic dual hesitant fuzzy sets, 
thereby better capturing the authenticity and completeness of decision information. 

To express the ambiguity and uncertainty of human thinking, since Zadeh proposed the concept of 
fuzzy sets (FSs) [18], the research theory of fuzzy DM has become more and more abundant. In order to 
deal with more complex DM problems, Atanasso and Yager defined intuitionistic fuzzy sets (IFSs) [19] 
and Pythagorean fuzzy sets (PFSs) [20], respectively. Torra proposed hesitant Fuzzy Sets (HFSs) [21], 
which can better characterize decision-making experts’ indecision in evaluating information. Scholars 
are progressively incorporating probabilistic information into decision-making processes. For instance, 
Wang introduced a novel approach utilizing the Probabilistic Language Term Set to address the 
Probabilistic Language Preference Relationship (PLPR) in decision-making scenarios [22]. Liu et al. 
introduced a group decision-making approach based on the incomplete probabilistic language term set 
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(InPLTS), effectively managing uncertain decision information through specialized categorization, a 
mathematical programming model for consistency and consensus, and a reliability-induced operator [23]. 
Xu and Zhou proposed probabilistic hesitant fuzzy sets (PHFSs) [24] based on HFSs, which can 
provide membership degrees and their corresponding probabilities. Scholars such as Hao et al. defined 
probabilistic dual hesitant fuzzy sets (PDHFSs) [25], which can collect membership and non-
membership evaluation information and their corresponding probability information. Consequently, 
PDHFSs offer a more nuanced capability for depicting evaluation information compared to fuzzy sets 
like PFSs and HFSs. 

In recent years, there has been a significant increase in the development of diverse fuzzy sets of DM 
methods [26,27]. However, it is essential to note that existing research has the following issues: 1) Most 
PDHFSs’ DM methods are based on individual or small and medium-sized group DM. There needs to 
be more study or literature that discusses large-scale group decision-making based on PDHFSs. 2) When 
decision-making experts use fuzzy preference relationships to express evaluation information, some 
existing studies ignore individual consensus levels, which may lead to conflicting DM results, resulting 
in low consensus in group preference information aggregation. 

The literature review highlights a significant research gap in using probabilistic dual hesitant 
fuzzy information for decision-making in large groups, especially given the recent development of 
probabilistic dual hesitant fuzzy sets which have not been widely studied worldwide. This study aims 
to fill this gap by applying these fuzzy sets to make consensus decision-making more accurate and 
reliable for large groups, addressing the challenges of ambiguity and uncertainty. To more effectively 
tackle the issues above and the obstacles, this study presents the Large-Scale Group Consensus Multi-
Attribute Decision-Making Method based on Probabilistic Dual Hesitant Fuzzy Sets (the LSGC-
MADM Method based on PDHFSs). This method is important for advancing the theoretical basis of 
fuzzy decision-making and offers a practical, scalable solution for various fields where reaching 
consensus is key. Consequently, this research significantly contributes to the decision-making literature, 
presenting an effective instrument for navigating complex decision-making scenarios. The decision-
making method is specifically designed for use by decision-making experts in complex scenarios 
involving 20 or more participants. Initially, an evaluation matrix with probabilistic dual hesitant fuzzy 
information (PDHFI) is formed, drawing on expert preference information. The entropy method is then 
applied to ascertain the weights of attributes. Following this, group similarity is measured using the 
equal probability distance metric, and the scheme for expert group classification is determined based 
on the net-making classification method and the classified test criteria. Next, the consensus-reaching 
model is adopted to achieve consensus in decision-making opinions within each expert class. 
Ultimately, the decision-making objects are ranked using the ranking method after integrating 
decision-making information within and between classes. In contrast to other methods, this method 
examines experts’ probability information, membership degree, and non-membership degree in group 
decision-making. However, it also looks at the consensus degree of these experts when making large-
scale group decisions. Therefore, the method proposed in this study makes the DM results more 
objective, reasonable and reliable. 

The main contributions of this paper are as follows: 1) A comprehensive large-scale group 
consensus decision-making method, named the Large-Scale Group Consensus Multi-Attribute 
Decision-Making Method based on Probabilistic Dual Hesitant Fuzzy Sets, is proposed, integrating 
multiple approaches. 2) A group similarity measurement method is constructed based on probabilistic 
dual hesitant fuzzy evaluation information, utilizing the equal probability distance method, and a net-
making classification method is proposed to classify decision-making experts. 3) A global consensus 
threshold is established to build the consensus-reaching model, which judges and adjusts the evaluation 
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information of experts within each class, achieving consensus on the decision-making information of 
experts. 4) A comprehensive expert weight, combining class weight and class deviation weight, is used 
to obtain a comprehensive information decision matrix, from which the final evaluation result of the 
decision object is derived. The LSGC-MADM Method based on PDHFSs advances the field of 
decision-making under uncertainty. This method facilitates the coordination of opinions across 
different expert categories and the integration of these insights to inform action, offering an effective, 
scalable solution for large-scale fuzzy decision-making challenges applicable in domains requiring 
sophisticated decision strategies. 

This paper is structured as follows: Section 2 introduces PDHFSs and the related concepts of the 
LSGC-MADM problem. Section 3 proposes the research framework and this study’s specific models 
and methods. Section 4 conducts a case study on applying the LSGC-MADM Method based on 
PDHFSs. This study is summarized and projected in Section 5. 

2. Basic concepts 

2.1. Probabilistic dual hesitant fuzzy sets (PDHFSs) 

Definition 1 [28]: Let X   be the domain, then { , ( ), ( ) | }PD x h x g x x X     is called a 

probabilistic dual hesitant fuzzy set on X  . ( ) ( ) | ( )h x h x p x   and ( ) ( ) | ( )g x g x q x   respectively 

represent the degree of membership and non-membership and the corresponding probability 
distribution information, among which 1 1 2 2 # ( ) # ( )

( ) | ( ) ( | , | ,..., | )
h x h x

h x p x p p p       and 

1 1 2 2 # ( ) # ( )( ) | ( ) ( | , | ,..., | )g x g xg x q x q q q      . # ( )h x   and # ( )g x   respectively represent the number of 

corresponding elements in the membership and non-membership degree, and satisfy 
# ( )

1

1
h x

i
i

p





 , 

# ( )

1

1
g x

j
j

q





 , 0i   , 0i   , * * 1    , *   and *   represent the maximum value of the membership 

degree and non-membership degree, respectively, where 1,2,...,# ( )i h x   and 1,2,...,# ( )j g x  . 

Definition 2 [29]: For a probabilistic dual hesitant fuzzy element (PDHFE) ( ), ( )pd h x g x   , 

abbreviated as , | , |pd h g h p g q   , its complement cpd  is expressed as Eq (1). 

 , | , | , ,

, 1 | , , ,

, ,1 | , ,

c
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  

  
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.      (1)

 

Suppose two PDHFEs are 1pd  and 2pd , respectively. The operation law is defined as follows: 

1 1 2 2 1 1 2 2

1 2 1 2 1 2 1 2 1 2 1 2
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n

h h g g

pd pd p p q q
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   

    ,     (2) 

1 1 2 2 1 1 2 2

1 2 1 2 1 2 1 2 1 2 1 2
, , ,

( ) | , ( ) |
h h g g

pd pd p p q q
   

    
   

    ,     (3) 
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1 1 1 1

1 1 1 1 1
,

1 (1 ) | , |
h g

pd p q 

 

  
 

   ,      (4) 

1 1 1 1

1 1 1 1 1
,

| ,1 (1 ) |
h g

pd p q  

 

 
 
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where 0  . 

Definition 3: Let , | , |pd h g h p g q    be a PDHFE, and the score function of it can be 

expressed as Eq (6). 

# # ## # #
* 2 2

1 1 1 1 1 1

( ) ( ) ( )
g g gh h h

i i i i i i j j j j j j
i i i j j j

S pd p p p q q q     
     

   
              
     
     
     

.  (6) 

Among them, i h    and ip p   represent the membership value and the corresponding 

probability of the membership part. j g   and jq q  represent the non-membership value and the 

corresponding probability of the non-membership part, respectively. 
Definition 4: The comparison between two PDHFEs 1pd  and 2pd  can be expressed as follows: 

(Ⅰ) If * *
1 2( ) ( )S pd S pd  is considered, 1pd  is considered to be better than 2pd , recorded as 

1 2pd pd . 

(Ⅱ) If * *
1 2( ) ( )S pd S pd  , it means that 1pd   and 2pd   are indistinguishable, denoted as 

1 2pd pd . 

Definition 5: Any PDHFE can be normalized. In the normalized PDHFE, the sum of all 
membership and non-membership probability values is 1, respectively. Let a PDHFE be 

, | , |pd h g h p g q   , and then its normalized form is as Eq (7) [30]. 

##1 2 1 2
1 2 1 2 ## # ### # #

1 1 11 1 1

| , | ,..., | , | , | ,..., | gN h
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j j ji i i
j j ji i i
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q q qp p p
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    

  
         

   
      

    
 

       .   (7) 

2.2. Description of the large-scale group consensus multi-attribute decision-making (LSGC-
MADM) problem 

The LSGC-MADM problem is an interactive activity among many individuals in a social 
environment [31]. Scholars widely study group classification and consensus building as effective 
methods to solve LSGC-MADM problems. Consensus and selection are the two fundamental 
processes of the consensus-reaching model [32]. The consensus process includes the measurement of 
group consensus degree, the identification of disagreements, and the regulation of opinions. The 
difficulties of large-scale consensus decision problems include the following points: 1) Effective 
classification of large-scale group members. 2) Identify the individual with a low consensus 
contribution degree. 3) Measure the consensus level of the population. 4) Building an effective 
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consensus guidance mechanism for the group can quickly reach a consensus. A consensus decision-
making (CDM) solution can be obtained by DM members of a large-scale group (LSG) using the 
LSGC-MADM Method based on PDHFSs proposed in this study. 

3. Main methods and models 

This section primarily introduces the process and steps of the Large-Scale Group Consensus 
Multi-Attribute Decision-Making Method based on Probabilistic Dual Hesitant Fuzzy Sets (the LSGC-
MADM Method based on PDHFSs). It also provides a detailed overview of the specific methods and 
models included in this study. The flowchart of the LSGC-MADM Method based on PDHFSs is 
illustrated in Figure 1. 

3.1. The LSGC-MADM method based on PDHFSs 

Suppose that in the LSGC-MADM Method based on PDHFSs process, the set of T  decision-
making experts is { , 1, 2,..., }kE E k T  , the set of decision-making objects is { , 1, 2,..., }iA A i M  , 
and the set of decision-making attributes is {C , 1,2,..., }jC j N  . The specific steps of the LSGC-

MADM Method based on PDHFSs proposed in this study are summarized as follows. 
Step 1: Construct the probabilistic dual hesitant fuzzy information (PDHFI) evaluation matrix 

and calculate the attribute weights. Decision-making experts provide PDHFI for each attribute of the 
decision-making object. This process results in the formation of a comprehensive PDHFI evaluation 
matrix ( )kPD  , encompassing inputs from all experts. The weights j   for each attribute C j   are 

determined using the entropy method. Detailed algorithms and formulas related to Step 1 are presented 
in Section 3.2.1. 

Step 2: Classify decision-making experts into group classes and establish optimal classification. 
Based on the PDHFI evaluation matrix from all experts, we employ a group classification model to 
categorize the decision-making experts. The optimal classification result is determined according to 
the criteria pI , which are used to test the effectiveness of the classification. Detailed steps of this group 

classification model are outlined in Section 3.2.2. 
Step 3: Calculate and adjust expert opinions to achieve internal consensus within each class. By 

constructing the consensus-reaching model, the decision-making evaluation value of each class of 
experts are harmonized to reach internal consensus. For a detailed description of the steps involved in 
the consensus-reaching model, refer to Section 3.2.3. 

Step 4: Utilize the decision-making information integration model to obtain the comprehensive 
decision matrix. Employ the decision-making information integration model to merge both intra-class 
and inter-class expert decision-making information, resulting in a comprehensive decision-making 
information matrix Z

iR . The specific steps of this model are detailed in Section 3.2.4. 

Step 5: Rank decision-making objects to identify the optimal decision. According to the 
comprehensive decision-making information matrix Z

iR  and the sum of squared deviations 2
iSR  of 

the comprehensive decision information, different decision-making objects *

*, ( , 1,2,..., )i i
A A i i M  are 

ranked to determine the optimal decision-making result. The specific steps of the ranking method are 
shown in Section 3.2.5. 
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Ranking of decision-making objects Final decision result

 

Figure 1. The flowchart of the LSGC-MADM Method based on PDHFSs. 

3.2. Implementation steps of models and methods 

3.2.1. The PDHFI evaluation matrix and the attribute weights 

(Ⅰ) The PDHFI evaluation matrix 
( )k
ijpd  represents the evaluation value of the thk  expert kE  on the decision-making attribute 

jC  of the object iA . ( )kPD  refers to the PDHFI evaluation matrix provided by the thk  expert, as 

shown in Eq (8). ( ) , | , |k
ij ij ij ij ij ij ijpd h g h p g q    , where 1,2,...i M , 1,2,...,j N . 
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11 1
( )

1 ( )

k k
j

k

k k
i ij i j

pd pd

PD

pd pd


 
   
  


  


.       (8) 

(Ⅱ) The attribute weight 
In this study, we calculate the attribute weight j  using the entropy method [33]. The entropy 

value of the decision-making attribute jC , denoted as je , is used in the calculation of j , which is 

detailed in Eq (9). 

1

1

(1 )

j
j N

j
j

e

e







 .        (9)  

3.2.2. The group classification model 

An expert group classification model is constructed to classify experts into groups according to 
their decision-making evaluation values. Experts within the same class possess relatively consistent 
decision-making evaluation value. Therefore, the weights of experts in the same class can be 
considered as equal values [34]. 
(Ⅰ) Group similarity measurement 

This section designs a similarity measurement between experts based on the equal probability 
distance (EPD) to measure the consistency of experts. 

(ⅰ) Calculation of the equal probability distance (EPD). Assume that two PDHFEs are 1pd  and 

2pd , then the EPD between 1pd  and 2pd  is denoted as 1 2( , )EPD pd pd , where 1 20 ( , ) 1EPD pd pd  . 
The calculation process of 1 2( , )EPD pd pd  is as follows: 

1) 1pd  and 2pd  are denoted as 
1
Npd  and 

2
Npd  after normalization, and the normalized PDHFI 

evaluation matrix is denoted as ( )k NPD . 

1 11 1
1 11 11 12 12 11 11 12 12 1# 1#1# 1#

( | , | ,..., | ), ( | , | ,..., | )N N N N N N N
g gh h

pd p p p q q q          ,   (10) 

2 21 2
2 21 21 22 22 21 21 22 22 2# 2#2 # 2#

( | , | ,..., | ), ( | , | ,..., | )N N N N N N N
g gh h

pd p p p q q q          .   (11) 

2) Let 
1 1

1 11 11 12 12 1# 1#
( | , | , ..., | )N N N

h h
NH p p p      , 

1 2
2 21 21 22 22 2 # 2 #

( | , | ,..., | )N N N

h h
NH p p p       and 0YH   . 

Then, compare the probability values of two elements in the first position in 1NH  and 2NH . 
a) If 

11 21
N Np p  , let 

11 21 11| | NYH YH p     . Then after deleting the two elements in the first 
position in 1NH  and 2NH , let 

1 1
1 12 12 1# 1#

( | ,..., | )N N

h h
NH p p     and 

1 2
2 22 22 2 # 2 #

( | ,..., | )N N

h h
NH p p    . 

b) If 
11 21
N Np p , let 

11 21 21| | NYH YH p    . Then after deleting the element in the first position in 

2NH , let 
2 2

2 22 22 2 # 2 #
( | ,..., | )N N

h h
NH p p    . After replacing the element in the first position in 1NH  with 

11 11 21| ( )N Np p  , let 
1 1

1 11 11 21 12 12 1# 1#
( | ( ), | , ..., | )N N N N

h h
NH p p p p       

1 1
12 12 1# 1#

... | ,..., | )N N

h h
p p    . 

c) If 11 21
N Np p , then let 11 21 11| | NYH YH p    , then delete the element at the first position in 

1NH  , let 
1 1

1 12 12 1# 1#
( | , ..., | )N N

h h
NH p p     , replace the element at the first position in 2NH   with 
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21 21 11| ( )N Np p   Let 
2 2

2 21 21 11 22 22 2 # 2 #
( | ( ), | , ..., | )N N N N

h h
NH p p p p      . 

The probability values continue to be compared according to the above method until 1NH  and 

2NH  are empty sets, and finally, the value of YH  is obtained. 
3) The non-membership part of 1pd  and 2pd  is processed according to the above method. YG  

is used to replace YH , and YG  value can be obtained, and 1 2( , ) ( ) / 2EPD pd pd YH YG  . 

Example 1: Suppose the two probabilistic dual hesitant fuzzy elements are 
 1 0.6 | 0.3,0.7 | 0.4,0.8 | 0.3 , (0.2 | 0.2, 0.3 | 0.8)pd    and  2 0.7 | 0.2, 0.8 | 0.3,0.9 | 0.5 ,pd 

(0.1 | 0.5, 0.2 | 0.3,0.3 | 0.2) . After the above calculation steps, we can get 0.13YH   and 0.11YG  , 

so the equal probability distance (EPD) measure of 1pd   and 2pd   is 

1 2( , ) ( ) / 2 0.12EPD pd pd YH YG   . 

(ⅱ) Calculation of the group similarity. ( )k
ijpd  and ( )l

ijpd  represent the evaluation values of the 

thk  and thl  experts on the decision-making attribute C j  of the object iA , where 0 k l T   . 

The similarity ,
,
k l
i jSM  between ( )k

ijpd  and ( )l
ijpd  is defined as Eq (12). 

, ( ) ( )
, 1 ( , ) 1 ( ) / 2k l k l

i j ij ijSM EPD pd pd YH YG     .    (12) 

,k lSM  represents the similarity between decision-making experts kE  and lE , the calculation 

formula is shown in Eq (13). 

, ,
,

1 1

1 M N
k l k l

j i j
i j

SM SM
M


 

  .       (13) 

(Ⅱ) Classification of expert groups 
(ⅰ) The net-making classification method based on the similarity matrix. The similarity between 

decision-making experts constitutes the expert similarity matrix SSM  . Since SSM   is a symmetric 

matrix, only the upper triangular needs to be calculated, as Eq (14). 

1,2 1,

2,

1

1

1

T

T

S

SM SM

SM
SM

 
 
 
 
 
  




   
.      (14) 

This section uses the similarity matrix-based net-making classification method to classify experts [35]. 
The specific steps are as follows: 

1) Set the cut level, that is, the similarity threshold as (0 1)e e   . 
2) Construct an upper triangular matrix rP  , and the rules for the values of matrix rP   are as 

follows:  
a) If , ( )k l

eSM k l  , let , 1
r

k lP  . 

b) If , ( )k l
eSM k l  , let , 0

r

k lP  . 

3) In the upper triangular matrix rP  , substitute the elements on the main diagonal with the 

corresponding numbers of the experts. Convert all "1"   to "*"   in the elements above the main 
diagonal within rP , and remove any elements that possess a value of "0" . Utilize "*"  as the nodal 
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point for constructing warp and weft lines, thereby weaving the network. Experts kE  linked through 

this network are deemed to be in the same class. This approach effectively generates a preliminary 
classification scheme ( 1,2,... )c c C   for the expert groups, with C  representing the total number 

of identified classes. 
(ⅱ) Set the classification effect test criteria pI . 

In order to choose the best similarity threshold e , it is necessary to set the criteria for checking 

the classification effect. The larger the proportion of the sum of squares of the inter-class decision 
information, the better the classification effect of experts [36]. According to Eq (6), the score function 

* ( )( )k
ijS pd  of the expert kE  on the jC  of the iA  can be obtained. The average information of all 

experts in the c   on the jC   of the iA   is 
| |

* ( )

1

1
( )( )

| |

c

c

ij

k
ij c

kc

o S pd k






 
   , and the average 

information value is * ( )

1

1
( )

T
k

ij ij
k

o S pd
T 

   . The definition of the criteria pI   to test the expert 

classification effect is as Eq (15). 

2

1 1 1

* ( ) 2

1 1 1

| |( ( ) )

( ( ( ) ) )

c

ij

c

C M N

c ij
c i j

p C M N
k

ij ij
c k i j

o o

I
S pd o



  

   

 




 

 
.      (15) 

Among them, 2

1 1 1

| |( ( ) )c

ij

C M N

c ij
c i j

o o

  

     represents the squared deviation of the inter-class 

decision information, | |c   represents the number of experts in class c  , and the total squared 

deviation of all expert information is * ( ) 2

1 1 1

( ( ( ) ) )
c

C M N
k

ij ij
c k i j

S pd o
   

  . When the number of decision 

expert classes is 1 or each expert constitutes their own class, the classification becomes meaningless. 
This section calculates the criteria pI  for testing the classification effect by continuously adjusting 

the similarity threshold (0 1)e e   . The optimal expert group classification scheme can be obtained 
when the pI  value is maximized. 

3.2.3. The consensus-reaching model 

In order to obtain a decision-making scheme that is satisfied by the experts in the same class, it is 
necessary to consider whether the decision-making opinions of the experts in the same class reach a 
certain level of consensus. The five steps that comprise the consensus-reaching model that is built in 
this section are as follows. 

(ⅰ) Determine the global consensus degree threshold cC . Set the initial value of the adjustment 
times t   to " 0 "  , and the initial decision information score matrix to be 

* ( ) * ( )
0 ,0( ) ( )k k k

ij M N ij M NR S pd S pd   , where ck . 

(ⅱ) Calculate the global consensus degree cCL  of the expert group in class c . 

1) Calculate the evaluation score of the individual expert. According to the weighted summation 
of the expert kE   in the class c   in the dimension of the attribute C j  , the individual evaluation 

score ( 1, ..., ; )k
i ci M k    of the expert kE  to the object iA  can be obtained, as Eq (16). 
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* ( )

1
( )

Nk k
i j ijj

S pd 


 .        (16)

 

2) Calculate the evaluation score value of the expert group. Since the weights of experts in the 
same class are treated as equal values, the group evaluation score c

i
  of the object iA  by the expert 

group in class c  can be obtained by calculating the mean value, as Eq (17). 

| |
cc

k
ik

i
c


  




.        (17) 

3) Calculate the consensus level of the expert class except the expert lE . According to k
i  and 

c
i
 , l

iCL  is the consensus level of other experts except the expert lE  on the object iA  in the expert 

group of class c , as Eq (18). ( \ )c lI E  represents the set of other experts except the expert lE  in 

the expert group of class c . 

( \ )
(1 | |)

| \ |

c

c l

k
i ik I El

i
c l

CL
E

 
 

 





.      (18) 

4) Calculate the consensus level of individual experts. iCL is the consensus level of individual 

experts in class c  on the object iA , as Eq (19). 

( )
(1 | |)

| |

c

c

k
i ik I

i
c

CL
  

 
 





.       (19) 

5) Calculate the global consensus degree of the expert group. cCL is the global consensus degree 
of the expert group in class c , as Eq (20). 

( )

1

(1 | |)1 1

| |

c

cc

k
M i ik I

i
i c

CL CL
M M

 
 



 
 




 .     (20) 

If the value of cCL  is greater than the value of cC , proceed to step 5. Otherwise, proceed to 
Step 3. 

(ⅲ) Determine which experts’ opinions require modification and in which locations those 
opinions need to be modified. 

1) Calculate the cumulative consensus degree lCD  of expert lE , as Eq (21). lCD  reflects the 

contribution degree of expert lE  to the consensus of the group in the consensus-reaching process. If 

0lCD  , it means that the expert lE  plays a positive role in the process of group consensus-reaching. 

1

( )i i

M
l l

i

CD CL CL


  .       (21) 

2) Adjust the decision-making information that experts need to modify. Find the expert with the 
smallest value of lCD  and denote it as lsE . Calculate the consensus contribution degree ls

ijCD  of 
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lsE  to iA  on the jC . Denote the smallest value of ls
ijCD  as min( )ls

ijCD . At this time, ( , )i j  is the 

position where the decision information needs to be adjusted, let ( , )p q  equal ( , )i j . 
(ⅳ) Adjust the decision information of the element in the position ( , )p q  to form a new decision-

making information matrix. 
1) Calculate the consensus contribution degree of individual experts. The consensus level ijCL  

of all experts in class c  to the iA  on the jC  is calculated as Eq (22). The consensus level of all 

experts in class c   except the expert lE   to iA   on C j   is l
ijCL  , as Eq (23). The consensus 

contribution degree of lE  in c  to iA  on C j  is l
ijCD , as Eq (24). 

* ( )

* ( )

( )

( )1
(1 ( ) )

| | | |
c

c

k
ijkk

ij ijk I
c c

S pd
CL S pd 

 
  

 


 ,    (22) 

'

* ( ')

* ( ')
( \ ) '

(1 ( )
1

( )
| \ | )

| \ |
c l c

k
ij

l k
ij ijk I E k

c l

c l

S pd

CL S pd
E

E

  

 
 

  
    

  ,     (23) 

ij ij

l l
ijCD CL CL  .        (24) 

Calculate the consensus contribution degree ( )k
pq cCD k   of all experts in c  to pA  on the 

qC , and set the decision-making expert with the highest consensus contribution degree value as lhE . 

2) Adjust the decision-making information of the expert lsE  at the ( , )p q  position [37]. Let   

represent the tuning parameter, satisfying 0 1  . Modify the decision information of the ( , )p q  

position while maintaining the information of the other position elements intact, resulting in a new 
decision-making information score matrix denoted as * ( )

, 1( )k
ij tS pd  , as Eq (25). 

* ( ) * ( )
* ( )

, 1 * ( )
,

( ) (1 ) ( ), ,
( )

( ), ,

ls lh
pq pqk

ij t k
ij t

S pd S pd i p j q
S pd

S pd i p j q

 


       
.    (25) 

Then, let 1t t  , go to Step 2. 
(ⅴ) After the iterative steps, the final consensus decision-making information matrix ( ) ( )k

ij cR   

is obtained. Let ( ) * ( )
,( ) ( )k k

ij c ij tR S pd   and k cE  . At this juncture, a consensus has been reached 

by all experts. 

3.2.4. The decision-making information integration model 

(Ⅰ) Intra-class decision-making information integration 
Integrate the information of ( ) ( )k

ij cR   on the attribute dimension j , and obtain the decision-

making information matrix ( )' ( )k
i cR   of each expert for the object iA , as Eq (26), where ck . 
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( )' ( ) * ( )
,

1 1

( ) ( ) ( )
N N

k k k
i c j ij c j ij t

j j

R R S pd 
 

     .      (26)

 

Since the weights of experts within the same class are equal, the decision-making information 
matrix c

iR


 of the class c  expert group for iA  is calculated as shown in Eq (27). 

| |
( )'

1

( )/ | |
c

c k
i i c c

k

R R






   .        (27) 

(Ⅱ) Inter-class decision-making information integration 
In this section, the class weight and class deviation weight are comprehensively considered to 

obtain the comprehensive decision-making information matrix. 
(ⅰ) Calculate the class weight c

n , as Eq (28). The class weight is determined by the ratio of the 

number of experts in this class to the total number of experts. 

1

| |

| |

c c
n C

cc







 .        (28) 

(ⅱ) Calculate the class deviation weight c
p . This section further determines the class deviation 

weight c
p  according to the deviation value between classes. 

1) Calculate the distance cD  between the mean value of each class’s decision information and 

all decision information, as Eq (29). The calculation of c

ij
o  and ijo  is shown in Section 3.2.2. 

2

1 1

( )c

ij

M N

c ij
i j

D o o

 

  .       (29) 

2) Calculate the class deviation weight c
p  according to cD , as Eq (30). 

1

c c
p C

c
c

D

D






 .        (30) 

(ⅲ) Calculate the final comprehensive expert class weight c
z , as Eq (31). Set the preference 

coefficient ( [0,1])    . The class weight c
n   and the class deviation weight c

p   are 

comprehensively integrated, and the final comprehensive class weight is c
z . 

(1 )c c c
z n p      .        (31) 

Generally, when the decision-making result is focused on the opinions of the majority of experts, 
take 0.5  . Unless otherwise specified, take 0.5  . 

(ⅳ) Calculate the comprehensive decision-making information matrix Z
iR , as Eq (32). 



3957 

Mathematical Biosciences and Engineering  Volume 21, Issue 3, 3944–3966. 

1

c

C
Z c
i z i

c

R R 



 .       (32) 

3.2.5. The ranking method 

By comparing the value of the Z
iR   value, different decision-making objects *,i i

A A   can be 

compared and ranked, which can be expressed as follows: 
(ⅰ) If *

Z Z
i i

R R  , the ranking result of the object iA   is better than *i
A  , denoted as 

*

*( , 1,2,..., )i i
A A i i M . 

(ⅱ) If *

Z Z
i i

R R , the squared deviation 2
iSR of decision-making information needs to be further 

compared, as Eq (33). 

2 21

1

( ) ,( 1,2,..., )

M
Z
iM

Z i
i i

i

R
SR R i M

M




  


 .     (33) 

1) If *

2 2
i i

SR SR , the ranking result of the object iA  is considered to be better than *i
A , denoted 

as *i i
A A . 

2) If *

2 2
i i

SR SR , the ranking result of the object iA  and *i
A  are considered equal, denoted as 

*~i i
A A . 

4. Case study 

4.1. Case background 

To conduct an in-depth evaluation of the emergency management capabilities of three Chinese 
cities ( 1,2,3)iA i   in response to sudden incidents, the government decision-making department has 

initiated a comprehensive assessment project. This evaluation focuses on three core decision-making 
attributes ( 1, 2,3)jC j   : emergency support capability 1( )C  , emergency early warning capability 

2( )C  , and post-disaster recovery capability 3( )C  , aiming to fully understand the comprehensive 

strength of each city in crisis response. To ensure the scientific accuracy of the assessment, the 
government management department has taken into account the geographic location of the cities, 
historical disaster records, and existing emergency management facilities and resources, while setting 
preference coefficients to reflect the importance of different attributes. The government department 
carefully selected 20 decision-making experts ( 1,2,..., 20)kE k    with extensive experience and 

expertise in various fields of emergency management, including but not limited to natural disaster 
response, public safety, urban planning, health, and sanitation. These experts were asked to provide 
personalized assessment information based on their professional knowledge and practical experience. 
In this way, the evaluation aims to capture the unique insights of each expert, with the goal of 
developing a comprehensive and in-depth understanding of the cities’ emergency management 
capabilities [38]. 

This case study not only promises to provide valuable insights into the cities’ emergency 
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preparedness and response capabilities for the government but also, through comparative analysis, can 
reveal the strengths and weaknesses of each city in terms of emergency management. This, in turn, can 
guide future policy making and resource allocation, enhancing the resilience of cities and their ability 
to respond to sudden public health emergencies. 

4.2. Decision-making process 

In this section, the LSGC-MADM Method based on PDHFSs is applied to evaluate the emergency 
management capabilities of three cities. The specific steps are as follows. 

Step 1: PDHFI for each attribute of three cities is provided by decision-making experts. The 
resulting PDHFI evaluation matrix is presented in Table 1 (showing partial information). The weights 
of each attribute are calculated using the entropy method, as detailed in Table 2. 

Step 2: The group classification model in Section 3.2.2 is used to classify all experts and generate 
classification results. The expert similarity ,

, ( )k l
i jSM k l   is calculated according to Eq (12). The 

decision-making experts are classified according to the net-making classification method. It can be 
calculated that the minimum similarity between the twenty decision-making experts is 0.8247, and the 
maximum similarity is 0.9155. Classification becomes meaningful when the similarity threshold e  

falls within the interval of [0.8247, 0.9155). The relationship between the classification effect test 
criteria pI  and e  value is shown in Figure 2. The experts’ classification is optimal when the pI  

value peaks at 8.8599. At this point, the experts are divided into four classes, as shown in Table 3. 
Step 3: Set the global consensus degree threshold 0.85cC  . As an example, the experts in class 

1  reached a consensus using the consensus-reaching model in Section 3.2.3. The consensus decision-
making information matrix is obtained after class 1  reaches consensus, as shown in Table 4. 

Step 4: Using the decision-making information integration model in Section 3.2.4, the decision-
making information matrix c

iR  of the four expert groups for iA  can be obtained, as shown in Table 5. 

The calculation results of the weights for each class are shown in Table 6. The Eq (32) is used to get the 
comprehensive decision-making information matrix Z

iR  for the three evaluation cities, shown in Table 7. 
Step 5: According to the decision-making score of iA , the evaluation cities are ranked to obtain 

the optimal decision scheme. Since 1 3 2
Z Z ZR R R  , the emergency management capability of the three 

cities is ranked as 1 3 2A A A  . 

 

Figure 2. The relationship between Ip and αe value. 
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Table 1. The PDHFI evaluation matrix of 20 decision-making experts. 

 A1 A2 A3 
 C1 C2 C3 C1 C2 C3 C1 C2 C3 
E1 <(0.5|0.6,0.6|0.3,0

.7|0.1),(0.2|0.3,0.3
|0.3,0.4|0.4)> 

<(0.6|0.5,0.7|0.2
,0.8|0.3),(0.3|0.3
,0.4|0.3,0.5|0.4)
> 

<(0.5|0.5,0.6|0.
2,0.7|0.3),(0.3|
0.3,0.4|0.3,0.5|
0.4)> 

<(0.5|0.3,0.6|0.3,0
.7|0.3),(0.3|0.1,0.4
|0.4,0.5|0.5)> 

<(0.7|0.2,0.2|0.3,0
.9|0.6),(0.1|0.3,0.2
|0.3,0.3|0.4)> 

<(0.2|0.5,0.3|0.2,0
.4|0.3),(0.6|0.1,0.7
|0.3,0.8|0.6)> 

<(0.4|0.2,0.5|0.3,0
.6|0.5),(0.4|0.3,0.5
|0.3,0.6|0.4)> 

<(0.3|0.5,0.4|0.2
,0.5|0.3),(0.5|0.3
,0.6|0.3,0.7|0.4)
> 

<(0.3|0.5,0.4|0.2,
0.5|0.3),(0.5|0.1,
0.4|0.3,0.7|0.6)> 

E2 <(0.6|0.4,0.8|0.6),
(0.2|0.1,0.3|0.4,0.
4|0.5)> 

<(0.6|0.7,0.7|0.3
),(0.3|0.6,0.4|0.4
)> 

<(0.3|0.6,0.4|0.
3,0.5|0.1),(0.6|
0.3,0.7|0.7)> 

<(0.4|0.2,0.5|0.3,0
.6|0.5),(0.4|0.3,0.5
|0.3,0.6|0.4)> 

<(0.1|0.1,0.8|0.4,0
.3|0.6),(0.7|0.6,0.8
|0.4)> 

<(0.3|0.6,0.4|0.3,0
.5|0.1),(0.5|0.3,0.6
|0.4,0.7|0.3)> 

<(0.5|0.3,0.6|0.3,0
.7|0.3),(0.3|0.1,0.4
|0.4,0.5|0.5)> 

<(0.5|0.6,0.6|0.3
,0.7|0.1),(0.3|0.6
,0.4|0.4)> 

<(0.2|0.6,0.3|0.3,
0.4|0.1),(0.6|0.3,
0.7|0.4,0.8|0.3)> 

E3 <(0.1|0.4,0.2|0.5,0
.3|0.1),(0.7|0.1,0.8
|0.7,0.9|0.2)> 

<(0.1|0.3,0.2|0.4
,0.3|0.3),(0.7|0.1
,0.8|0.7,0.9|0.2)
> 

<(0.7|0.3,0.8|0.
4,0.9|0.3),(0.2|
0.5,0.3|0.4,0.4|
0.1)> 

<(0.3|0.4,0.4|0.3,0
.5|0.1),(0.5|0.2,0.6
|0.3,0.7|0.5)> 

<(0.7|0.4,0.2|0.7,0
.9|0.2),(0.1|0.1,0.2
|0.7,0.3|0.2)> 

<(0.1|0.3,0.2|0.4,0
.3|0.3),(0.7|0.2,0.8
|0.4,0.9|0.4)> 

<(0.1|0.4,0.2|0.3,0
.3|0.1),(0.8|0.3,0.9
|0.7)> 

<(0.3|0.1,0.4|0.4
,0.5|0.5),(0.5|0.1
,0.6|0.7,0.7|0.2)
> 

<(0.1|0.3,0.2|0.4,
0.3|0.3),(0.7|0.2,
0.3|0.4,0.9|0.4)> 

E4 <(0.6|0.3,0.7|0.4,0
.8|0.3),(0.2|0.2,0.3
|0.8)> 

<(0.5|0.2,0.6|0.3
,0.8|0.5),(0.2|0.2
,0.3|0.8)> 

<(0.3|0.2,0.4|0.
3,0.5|0.5),(0.6|
0.2,0.7|0.8)> 

<(0.4|0.3,0.5|0.3,0
.6|0.3),(0.4|0.5,0.5
|0.2,0.6|0.3)> 

<(0.3|0.2,0.6|0.8,0
.5|0.5),(0.5|0.2,0.6
|0.8)> 

<(0.4|0.2,0.5|0.3,0
.6|0.5),(0.4|0.4,0.5
|0.625)> 

<(0.5|0.3,0.6|0.3,0
.7|0.3),(0.3|0.2,0.4
|0.8)> 

<(0.4|0.3,0.5|0.3
,0.6|0.4),(0.4|0.2
,0.5|0.8)> 

<(0.1|0.2,0.2|0.3,
0.3|0.5),(0.7|0.37
5,0.7|0.6)> 

E5 <(0.5|0.4,0.6|0.6),
(0.3|0.1,0.4|0.7,0.
5|0.2)> 

<(0.3|0.4,0.5|0.6
),(0.5|0.1,0.6|0.5
,0.7|0.4)> 

<(0.7|0.3,0.8|0.
4,0.9|0.3),(0.2|
0.3,0.3|0.5,0.4|
0.2)> 

<(0.6|0.4,0.7|0.3,0
.8|0.1),(0.2|0.4,0.3
|0.1,0.4|0.5)> 

<(0.2|0.3,0.7|0.5,0
.4|0.3),(0.6|0.1,0.7
|0.5,0.8|0.4)> 

<(0.3|0.3,0.4|0.1,0
.5|0.6),(0.5|0.2,0.6
|0.5,0.7|0.3)> 

<(0.4|0.4,0.5|0.3,0
.6|0.1),(0.4|0.2,0.5
|0.7,0.6|0.1)> 

<(0.7|0.2,0.8|0.4
,0.9|0.4),(0.1|0.1
,0.2|0.5,0.3|0.4)
> 

<(0.1|0.3,0.2|0.1,
0.3|0.6),(0.7|0.2,
0.3|0.5,0.9|0.3)> 

E6 <(0.7|0.2,0.8|0.3,0
.9|0.5),(0.1|0.5,0.2
|0.3,0.3|0.2)> 

<(0.6|0.1,0.7|0.2
,0.9|0.7),(0.3|0.5
,0.4|0.5)> 

<(0.3|0.1,0.4|0.
2,0.5|0.7),(0.6|
0.4,0.7|0.6)> 

<(0.7|0.2,0.8|0.3,0
.9|0.5),(0.1|0.1,0.2
|0.3,0.3|0.6)> 

<(0.1|0.2,0.8|0.5,0
.3|0.6),(0.7|0.5,0.8
|0.5)> 

<(0.4|0.1,0.5|0.3,0
.6|0.6),(0.4|0.4,0.5
|0.5,0.6|0.1)> 

<(0.6|0.2,0.7|0.3,0
.8|0.5),(0.2|0.5,0.3
|0.3,0.4|0.2)> 

<(0.8|0.3,0.9|0.2
,1|0.5),(0.1|0.5,0
.2|0.5)> 

<(0.1|0.1,0.2|0.3,
0.3|0.6),(0.7|0.4,
0.7|0.5,0.9|0.1)> 

E7 <(0.2|0.3,0.4|0.7),
(0.5|0.4,0.6|0.2,0.
7|0.4)> 

<(0.2|0.4,0.3|0.6
),(0.7|0.4,0.8|0.2
,0.9|0.4)> 

<(0.3|0.4,0.4|0.
5,0.5|0.1),(0.6|
0.2,0.7|0.2,0.8|
0.6)> 

<(0.2|0.5,0.3|0.3,0
.4|0.4),(0.6|0.3,0.7
|0.2,0.8|0.5)> 

<(0.5|0.5,0.4|0.2),
(0.3|0.4,0.4|0.2,0.
5|0.4)> 

<(0.2|0.4,0.3|0.2,0
.4|0.4),(0.6|0.2,0.7
|0.2,0.8|0.6)> 

<(0.1|0.4,0.2|0.2),
(0.7|0.4,0.8|0.2,0.
9|0.4)> 

<(0.5|0.2,0.6|0.5
,0.7|0.3),(0.3|0.4
,0.4|0.2,0.5|0.4)
> 

<(0.3|0.4,0.4|0.2,
0.5|0.4),(0.5|0.2,
0.7|0.2,0.7|0.6)> 

E8 <(0.5|0.4,0.6|0.6),
(0.3|0.7,0.4|0.3)> 

<(0.3|0.2,0.5|0.8
),(0.3|0.7,0.4|0.3
)> 

<(0.6|0.2,0.7|0.
7,0.8|0.1),(0.3|
0.5,0.4|0.5)> 

<(0.3|0.3,0.4|0.3,0
.5|0.3),(0.5|0.5,0.6
|0.3,0.7|0.2)> 

<(0.4|0.2,0.5|0.3,0
.6|0.1),(0.4|0.7,0.5
|0.3)> 

<(0.3|0.2,0.4|0.3,0
.5|0.5),(0.5|0.3,0.6
|0.3,0.7|0.4)> 

<(0.4|0.3,0.5|0.3,0
.6|0.3),(0.4|0.7,0.5
|0.3)> 

<(0.8|0.4,0.9|0.6
),(0.2|0.7,0.3|0.3
)> 

<(0.7|0.2,0.8|0.3,
0.9|0.5),(0.1|0.3,
0.4|0.3,0.3|0.4)> 

E9 <(0.4|0.4,0.5|0.3,0
.6|0.3),(0.3|0.8,0.4
|0.2)> 

<(0.2|0.3,0.3|0.2
,0.4|0.5),(0.7|0.8
,0.8|0.2)> 

<(0.4|0.3,0.5|0.
2,0.6|0.5),(0.2|
0.8,0.3|0.2)> 

<(0.4|0.2,0.5|0.3,0
.6|0.5),(0.4|0.3,0.5
|0.2,0.6|0.5)> 

<(0.2|0.3,0.7|0.2,0
.4|0.5),(0.6|0.8,0.7
|0.2)> 

<(0.2|0.3,0.3|0.2,0
.4|0.5),(0.6|0.8,0.7
|0.25)> 

<(0.3|0.2,0.4|0.3,0
.5|0.5),(0.5|0.8,0.6
|0.2)> 

<(0.8|0.5,0.9|0.5
),(0.3|0.8,0.4|0.2
)> 

<(0.3|0.3,0.4|0.2,
0.5|0.5),(0.5|0.75
,0.3|0.3)> 

E10 <(0.7|0.4,0.8|0.6),
(0.1|0.4,0.2|0.1,0.
3|0.5)> 

<(0.5|0.3,0.7|0.7
),(0.3|0.4,0.4|0.1
,0.5|0.5)> 

<(0.8|0.3,0.9|0.
7),(0.1|0.4,0.2|
0.1,0.3|0.5)> 

<(0.7|0.4,0.8|0.3,0
.9|0.1),(0.1|0.5,0.2
|0.1,0.3|0.4)> 

<(0.3|0.4,0.6|0.1,0
.5|0.2),(0.5|0.4,0.6
|0.1,0.7|0.5)> 

<(0.5|0.2,0.6|0.4,0
.7|0.4),(0.3|0.4,0.4
|0.1,0.5|0.5)> 

<(0.6|0.4,0.7|0.3,0
.8|0.1),(0.2|0.4,0.3
|0.1,0.4|0.5)> 

<(0.8|0.4,0.9|0.6
),(0.2|0.4,0.3|0.1
,0.4|0.5)> 

<(0.8|0.2,0.9|0.4.
4),(0.3|0.4,0.2|0.
1,0.5|0.5)> 

E11 <(0.6|0.2,0.7|0.5,0
.8|0.3),(0.2|0.2,0.3
|0.3,0.4|0.5)> 

<(0.6|0.1,0.7|0.4
,0.8|0.5),(0.2|0.2
,0.3|0.3,0.4|0.5)
> 

<(0.4|0.1,0.5|0.
4,0.6|0.5),(0.1|
0.2,0.2|0.3,0.3|
0.5)> 

<(0.4|0.4,0.5|0.3,0
.6|0.3),(0.4|0.2,0.5
|0.3,0.6|0.5)> 

<(0.2|0.3,0.7|0.4,0
.4|0.3),(0.6|0.2,0.7
|0.4,0.8|0.4)> 

<(0.6|0.1,0.7|0.4,0
.8|0.5),(0.2|0.2,0.3
|0.3,0.4|0.5)> 

<(0.5|0.4,0.6|0.3,0
.7|0.1),(0.3|0.2,0.4
|0.3,0.5|0.5)> 

<(0.3|0.4,0.4|0.4
,0.5|0.2),(0.5|0.2
,0.6|0.4,0.7|0.4)
> 

<(0.4|0.1,0.5|0.4,
0.6|0.5),(0.4|0.2,
0.2|0.3,0.6|0.5)> 

Continued on next page 
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 A1 A2 A3 

 C1 C2 C3 C1 C2 C3 C1 C2 C3 
E12 <(0.5|0.4,0.7|0.5,0

.8|0.1),(0.3|0.3,0.4
|0.2,0.5|0.5)> 

<(0.5|0.3,0.6|0.4
,0.8|0.3),(0.4|0.3
,0.5|0.2,0.6|0.5)
> 

<(0.8|0.4,0.9|0.
6),(0.1|0.3,0.2|
0.2,0.4|0.5)> 

<(0.3|0.4,0.4|0.3,0
.5|0.1),(0.5|0.3,0.6
|0.2,0.7|0.5)> 

<(0.6|0.5,0.3|0.2,0
.8|0.1),(0.2|0.3,0.3
|0.2,0.4|0.5)> 

<(0.3|0.3,0.4|0.4,0
.5|0.3),(0.5|0.3,0.6
|0.2,0.7|0.5)> 

<(0.4|0.4,0.5|0.3,0
.6|0.1),(0.4|0.3,0.5
|0.2,0.6|0.5)> 

<(0.2|0.2,0.3|0.4
,0.4|0.4),(0.6|0.3
,0.7|0.2,0.8|0.5)
> 

<(0.1|0.3,0.2|0.4,
0.3|0.3),(0.7|0.3,
0.2|0.2,0.9|0.5)> 

E13 <(0.7|0.3,0.9|0.7),
(0.1|0.5,0.2|0.3,0.
3|0.2)> 

<(0.5|0.2,0.8|0.8
),(0.2|0.5,0.3|0.3
,0.4|0.2)> 

<(0.4|0.1,0.5|0.
5,0.6|0.4),(0.1|
0.6,0.3|0.4)> 

<(0.5|0.5,0.6|0.3,0
.7|0.3),(0.3|0.5,0.4
|0.3,0.5|0.2)> 

<(0.7|0.3,0.2|0.3,0
.9|0.2),(0.1|0.5,0.2
|0.3,0.3|0.2)> 

<(0.2|0.2,0.3|0.5,0
.4|0.3),(0.6|0.5,0.7
|0.3,0.8|0.2)> 

<(0.6|0.5,0.7|0.3),
(0.2|0.5,0.3|0.3,0.
4|0.2)> 

<(0.4|0.3,0.5|0.5
,0.6|0.2),(0.4|0.5
,0.5|0.3,0.6|0.2)
> 

<(0.7|0.2,0.8|0.5,
0.9|0.3),(0.1|0.5,
0.3|0.3,0.3|0.2)> 

E14 <(0.6|0.4,0.8|0.5,0
.9|0.1),(0.2|0.3,0.3
|0.2,0.4|0.5)> 

<(0.6|0.3,0.7|0.4
,0.9|0.3),(0.3|0.3
,0.4|0.2,0.5|0.5)
> 

<(0.6|0.3,0.7|0.
4,0.8|0.3),(0.3|
0.3,0.4|0.2,0.5|
0.5)> 

<(0.3|0.4,0.4|0.3,0
.5|0.1),(0.5|0.3,0.6
|0.2,0.7|0.5)> 

<(0.5|0.4,0.4|0.2,0
.7|0.2),(0.3|0.3,0.4
|0.2,0.5|0.5)> 

<(0.6|0.3,0.7|0.4,0
.8|0.3),(0.2|0.3,0.3
|0.2,0.4|0.5)> 

<(0.5|0.4,0.6|0.3,0
.7|0.1),(0.3|0.3,0.4
|0.2,0.5|0.5)> 

<(0.2|0.3,0.3|0.4
,0.4|0.3),(0.6|0.3
,0.7|0.2,0.8|0.5)
> 

<(0.6|0.3,0.7|0.4,
0.8|0.3),(0.2|0.3,
0.4|0.2,0.4|0.5)> 

E15 <(0.2|0.3,0.3|0.4,0
.4|0.3),(0.6|0.4,0.7
|0.5,0.8|0.1)> 

<(0.2|0.2,0.3|0.3
,0.4|0.5),(0.6|0.4
,0.7|0.5,0.8|0.1)
> 

<(0.4|0.2,0.5|0.
3,0.6|0.5),(0.7|
0.4,0.8|0.6)> 

<(0.4|0.3,0.5|0.3,0
.6|0.3),(0.4|0.4,0.5
|0.5,0.6|0.1)> 

<(0.4|0.7,0.8|0.5),
(0.7|0.4,0.8|0.5,0.
9|0.1)> 

<(0.7|0.5,0.8|0.3,0
.9|0.2),(0.1|0.4,0.2
|0.5,0.3|0.1)> 

<(0.1|0.3,0.2|0.3,0
.3|0.3),(0.7|0.4,0.8
|0.5,0.9|0.1)> 

<(0.3|0.2,0.4|0.3
,0.5|0.5),(0.5|0.4
,0.6|0.5,0.7|0.1)
> 

<(0.4|0.5,0.5|0.3,
0.6|0.2),(0.4|0.4,
0.8|0.5,0.6|0.1)> 

E16 <(0.3|0.2,0.4|0.6,0
.5|0.2),(0.6|0.8,0.7
|0.2)> 

<(0.1|0.1,0.3|0.5
,0.4|0.4),(0.7|0.8
,0.8|0.2)> 

<(0.6|0.1,0.7|0.
5,0.8|0.4),(0.3|
0.8,0.4|0.2)> 

<(0.2|0.5,0.3|0.3,0
.4|0.4),(0.6|0.8,0.7
|0.2)> 

<(0.2|0.3,0.7|0.2,0
.4|0.3),(0.6|0.8,0.7
|0.2)> 

<(0.2|0.3,0.3|0.5,0
.4|0.2),(0.6|0.8,0.7
|0.2)> 

<(0.2|0.5,0.3|0.2),
(0.6|0.8,0.7|0.2)> 

<(0.6|0.1,0.7|0.5
,0.8|0.4),(0.2|0.8
,0.3|0.2)> 

<(0.6|0.3,0.7|0.5,
0.8|0.2),(0.2|0.8,
0.4|0.2)> 

E17 <(0.6|0.3,0.7|0.7),
(0.1|0.3,0.2|0.3,0.
3|0.4)> 

<(0.4|0.2,0.6|0.8
),(0.4|0.3,0.5|0.3
,0.6|0.4)> 

<(0.4|0.1,0.5|0.
5,0.6|0.4),(0.8|
0.5,0.9|0.5)> 

<(0.7|0.5,0.8|0.3,0
.9|0.2),(0.1|0.3,0.2
|0.3,0.3|0.4)> 

<(0.3|0.1,0.6|0.3,0
.5|0.4),(0.5|0.3,0.6
|0.3,0.7|0.4)> 

<(0.7|0.4,0.8|0.5,0
.9|0.1),(0.1|0.3,0.2
|0.3,0.3|0.4)> 

<(0.5|0.5,0.6|0.2),
(0.1|0.3,0.2|0.3,0.
3|0.4)> 

<(0.7|0.1,0.8|0.5
,0.9|0.4),(0.1|0.3
,0.2|0.3,0.3|0.4)
> 

<(0.3|0.4,0.4|0.5,
0.5|0.1),(0.5|0.3,
0.9|0.3,0.7|0.4)> 

E18 <(0.2|0.4,0.4|0.5,0
.5|0.1),(0.6|0.1,0.7
|0.4,0.8|0.5)> 

<(0.2|0.3,0.3|0.4
,0.5|0.3),(0.7|0.1
,0.8|0.4,0.9|0.5)
> 

<(0.5|0.3,0.6|0.
4,0.7|0.3),(0.4|
0.2,0.5|0.8)> 

<(0.4|0.4,0.5|0.3,0
.6|0.1),(0.4|0.1,0.5
|0.4,0.6|0.5)> 

<(0.6|0.7,0.3|0.4),
(0.2|0.1,0.3|0.4,0.
4|0.5)> 

<(0.6|0.6,0.7|0.4),(
0.2|0.1,0.3|0.4,0.4|
0.5)> 

<(0.1|0.4,0.2|0.3,0
.3|0.1),(0.7|0.1,0.8
|0.4,0.9|0.5)> 

<(0.4|0.3,0.5|0.4
,0.6|0.3),(0.4|0.1
,0.5|0.4,0.6|0.5)
> 

<(0.6|0.6,0.7|0.4)
,(0.2|0.1,0.5|0.4,0
.4|0.5)> 

E19 <(0.2|0.2,0.3|0.3,0
.4|0.5),(0.6|0.8,0.7
|0.2)> 

<(0.2|0.1,0.3|0.2
,0.4|0.7),(0.7|0.8
,0.8|0.2)> 

<(0.8|0.8,0.9|0.
2),(0.1|0.8,0.2|
0.2)> 

<(0.5|0.2,0.6|0.3,0
.7|0.5),(0.3|0.8,0.4
|0.2)> 

<(0.3|0.2,0.6|0.2,0
.5|0.6),(0.5|0.8,0.6
|0.2)> 

<(0.1|0.3,0.2|0.2,0
.3|0.5),(0.7|0.8,0.8
|0.2)> 

<(0.1|0.2,0.2|0.3,0
.3|0.5),(0.7|0.8,0.8
|0.2)> 

<(0.7|0.1,0.8|0.2
,0.9|0.7),(0.1|0.8
,0.2|0.2)> 

<(0.2|0.3,0.3|0.2,
0.4|0.5),(0.6|0.8,
0.2|0.2)> 

E20 <(0.3|0.4,0.4|0.6),
(0.5|0.2,0.6|0.3,0.
7|0.5)> 

<(0.1|0.4,0.3|0.6
),(0.7|0.2,0.8|0.3
,0.9|0.5)> 

<(0.1|0.3,0.2|0.
4,0.3|0.3),(0.7|
0.4,0.8|0.6)> 

<(0.2|0.4,0.3|0.3,0
.4|0.1),(0.6|0.2,0.7
|0.3,0.8|0.5)> 

<(0.3|0.3,0.6|0.3,0
.5|0.3),(0.5|0.2,0.6
|0.3,0.7|0.5)> 

<(0.4|0.1,0.5|0.4,0
.6|0.5),(0.4|0.2,0.5
|0.3,0.6|0.5)> 

<(0.2|0.4,0.3|0.3,0
.4|0.1),(0.6|0.2,0.7
|0.3,0.8|0.5)> 

<(0.7|0.3,0.8|0.4
,0.9|0.3),(0.1|0.2
,0.2|0.3,0.3|0.5)
> 

<(0.6|0.1,0.7|0.4,
0.8|0.5),(0.2|0.2,
0.8|0.3,0.4|0.5)> 

Table 2. The weight of each attribute. 

 C1 C2 C3 

Weights 0.3578 0.4103 0.2319 
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Table 3. The classification results of the decision-making experts. 

Expert classes Experts 

Ω1 E1, E2, E4, E5, E6, E7, E8 

Ω2 E3, E9, E10, E11, E12, E14 

Ω3 E13, E15, E18 

Ω4 E16, E17, E19, E20 

Table 4. The consensus decision-making information matrix. 

Ω1's experts  A1 A2 A3 

C1 C2 C3 C1 C2 C3 C1 C2 C3 

E1 0.2560 0.2659 0.1659 0.2250 0.6331 -0.4901 0.0250 -0.2341 -0.2901 

E2 0.3484 0.2952 -0.3366 0.1502 -0.5081 -0.2396 0.0702 0.1919 -0.4396 

E4 0.3825 0.3151 -0.2881 -0.0337 -0.1881 0.0378 0.1039 -0.0131 -0.5622 

E5 0.1268 -0.2507 0.5025 0.1805 -0.4434 -0.2000 -0.1697 0.5792 -0.6000 

E6 0.6600 0.4200 -0.2122 0.5690 -0.5400 0.0769 0.4600 0.8328 -0.5231 

E7 -0.2622 -0.5047 -0.3540 -0.3968 0.1894 -0.4494 -0.6628 0.2294 -0.2494 

E8 0.2268 0.0882 0.3361 -0.2182 0.0520 -0.1750 -0.0250 0.6249 0.6250 

Table 5. The decision-making information matrix. 
 

A1 A2 A3 

Ω1 0.1196 -0.0705 0.0897 

Ω2 0.2133 -0.0389 -0.0825 

Ω3 -0.1514 0.1263 -0.0935 

Ω4 -0.1628 -0.1093 0.1397 

Table 6. The class weight, the class deviation weight, and the comprehensive class weight. 
 

Ω1 Ω2 Ω3 Ω4 
c
n  0.3500 0.3000 0.1500 0.2000 
c
p  0.1766 0.2370 0.3052 0.2812 
c
z  0.2807 0.2748 0.2121 0.2325 

Table 7. The comprehensive decision-making information matrix. 
 

A1 A2 A3 

Score 0.0222 -0.0291 0.0152 

4.3. Comparison of different methods 

This section presents a comparative analysis between the method proposed in this study and other 
existing decision-making methods, demonstrating the efficacy and superiority of the proposed method. 
Table 8 presents a comprehensive comparison of the pertinent attributes associated with the four 
distinct decision-making methods. Zhang et al. [39] suggested a hesitant fuzzy language adaptive 
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consensus model based on individual cumulative consensus contributions in the previous study as a 
way to find emergency medical facilities. This is called “Method 1”. “Method 2” was proposed by 
Garg and Kaur [40], who proposed a PDHFSs method based on the MSM operator to quantify the 
gesture information of patients with cerebral hemorrhage. Wu and Xu [41] developed a large-scale 
consensus decision-making model with hesitant fuzzy information and variable clusters, which is 
documented as “Method 3”. The LSGC-MADM Method based on PDHFSs is proposed in this study 
called “Method 4”. The case problem presented in Section 4.1 is then solved using four different 
decision-making methods, and the final decision-making results are displayed in Table 9. 

The ranking of decision-making methods varies slightly as a result of the distinct characteristics 
and focal points inherent in each method. According to the findings presented in Table 9, it is evident 
that Methods 1, 3 and 4 collectively assert that city A1 possesses the most effective emergency 
management capability. Conversely, Methods 2–4 collectively contend that city A2 exhibits the 
weakest emergency management capability. This observation highlights the reliability and validity of 
Method 4, which is the decision-making method proposed in this study. The adaptive consensus model 
in Method 1 requires that experts’ weights and decision-making information be changed all the time. 
This could mean that the final decisions are different from what was known at the start. The absence 
of a consensus-building mechanism in Method 2 may lead to errors in resolving complex group 
decision-making problems. While Method 3 and Method 4 yield identical decision-making outcomes, 
Method 3 fails to incorporate the non-membership and probability information of decision-making 
experts, thereby limiting its ability to comprehensively depict decision-making information. The 
LSGC-MADM Method based on PDHFSs effectively addresses the issue of incomplete decision-
making information collection and exhibits a wider range of applicability. 

Table 8. Comparison of different decision-making methods. 

Table 9. Decision-making results of four decision-making methods. 

Decision 

methods 

Utility value The ranked 

scheme A1 A2 A3 

Method 1 0.6716 0.6486 0.5054 A1 > A2 > A3 

Method 2 0.5127 0.4495 0.7937 A3 > A1 > A2 

Method 3 0.7479 0.5753 0.6381 A1 > A3 > A2 

Method 4* 0.0222 -0.0291 0.0152 A1 > A3 > A2 

* “Method 4” is the decision-making method proposed in this study. 

Decision 

methods 

Whether to 

consider 

large scale 

groups 

Whether to consider 

probability 

information 

Whether to 

consider group 

clustering 

Whether to 

consider 

consensus-

reaching 

Whether to 

consider non-

membership 

Method 1 [39] × × × √ × 

Method 2 [40] × √ × × √ 

Method 3 [41] √ × √ √ × 

Method 4* √ √ √ √ √ 

* “Method 4” is the decision-making method proposed in this study. 
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5. Conclusions 

In this study, we present a proposed solution to achieve consensus in decision-making processes 
involving large-scale groups in uncertain, fuzzy environments. The proposed method is called the 
Large-Scale Group Consensus Multi-Attribute Decision-Making Method based on Probabilistic Dual 
Hesitant Fuzzy Sets (the LSGC-MADM Method based on PDHFSs). The probabilistic dual hesitant 
fuzzy information evaluation matrix and attribute weights are initially obtained. Furthermore, the 
expert group is classified, and the effectiveness of the classification is assessed. Next, the consensus-
reaching model is used for each class of experts. This model is designed to identify and modify the 
evaluation information for experts within the same class, aiming to achieve a consensus among them. 
Subsequently, the integration of information within and between classes is conducted by considering 
the decision-making evaluation value of all experts. Determining the prioritization of decision-making 
objects is achieved by utilizing the ranking method. Finally, the case study provides proof of the 
feasibility and effectiveness of the proposed decision-making method. 

The LSGC-MADM Method based on PDHFSs presents a well-defined set of calculation 
procedures that effectively mitigate the potential bias introduced by subjective artificial weighting. 
This method successfully addresses the issues of a cumbersome computation procedure, poor 
dependability, and disorganized classification in an ambiguous, fuzzy environment. Moreover, it 
provides an innovative research perspective for improving decision-making methodologies in this field. 
This methodology can be employed in various domains, such as scheme evaluation, emergency 
management, big data analytics, and numerous other disciplines. The forthcoming research phase will 
concentrate on advancing and visualizing decision-making software systems designed to facilitate 
large-scale group decision-making in fuzzy and uncertain conditions. 

While the method presented in this paper has made significant progress, there remains room for 
improvement in its application to large-scale group decision-making problems, especially in 
optimizing expert classification algorithms and consensus feedback mechanisms. Future research 
should focus on incorporating a wider range of real-world issues to refine these algorithms, thereby 
enhancing the efficiency and accuracy of the decision-making process. Additionally, the development 
of a large-scale group consensus decision-making software system, coupled with its visualization 
application through information technology, represents another critical research direction. This will 
not only improve the operability and user experience of the decision-making process but also facilitate 
the broader application of the method presented in this study, offering a more effective tool for solving 
complex decision-making problems. 
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