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Abstract: Protected Areas (PAs) are widely used to conserve biodiversity by protecting and restoring 

ecosystems while also contributing to socio-economic priorities. An increasing number of studies 

aim to examine the social impacts of PAs on aspects of people‟s well-being, such as, quality of life, 

livelihoods, and connectedness to nature. Despite the increase in literature on this topic, there are still 

few studies that explore possible robust methodological approaches to capturing and assessing the 

spatial distribution of impacts in a PA. This study aims to contribute to this research gap by 

comparing Bayesian spatial regression models that explore links between perceived social impacts 

and the relative location of local residents and communities in a PA. We use primary data collected 

from 227 individuals, via structured questionnaires, living in or near the Peak District National Park, 

United Kingdom. By comparing different models we were able to show that the location of 

respondents influences their perception of social impacts and that neighboring communities within 

the national park can have similar perceptions regarding social impacts. Simulation based on existing 

data using the Bootstrap sub-sampling was also conducted to validate the association between social 

impacts and mutual proximity of residents. Our findings suggest that this type of data is better treated, 

in terms of accounting for potential spatial effects, using models that allow for proximity effects to 

be stronger between people living nearby, e.g. between neighbors in the same community and have 

minimum effects otherwise. Understanding the spatial clustering of perceived social impacts in and 

around PA, is key to understanding their causes and to managing and mitigating them. Our findings 

highlight therefore the need to develop new methodological approaches to assessing and predicting 

accurately the spatial distribution of social impacts when designating PAs. The findings in this paper 
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will assist practitioners in this regard by proposing approaches to the consideration of the distribution 

of social impacts when designing the boundaries of PAs alongside typical ecological and 

socio-economic criteria. 

Keywords: spatial; Bayesian modeling; social impacts; benefits; costs; designation; perception of 

social impacts; clustering; mapping 

 

1. Introduction  

A large number of countries around the world have committed to protect 30% of land and 30% 

of water by 2030 [1]. This ambitious target has been set in order to both halt biodiversity loss and 

improve climate change adaptation via nature-based solution. Protected Areas (PAs) can be defined 

as specific geographical area, recognised, dedicated and managed, through legal or other effective 

means, to achieve the long-term conservation of nature with associated ecosystem services and 

cultural values [2]. This definition reveals two key characteristics of PAs. First, that PAs have 

specific boundaries within which certain regulations are enforced and second, that PAs have 

multidimensional targets focusing both on environmental and socio-economic aspects. Regarding the 

latter point scholars have highlighted the need to integrate local values into decision-making 

processes and put actions in place in order to maintain these values within PAs [3].  

Due to the challenge of meeting these multidimensional targets for PAs, it is often the case that 

socio-economic aspects are not taken into consideration during PA designations or at least not to the 

same extent as ecological criteria. However, a growing body of literature has shown that PAs can 

have significant socio-economic benefits, such as the improvement of wellbeing, involvement in 

recreational activities and increase in personal income through tourism [4–8]. PAs can also have 

diverse negative impacts for local people [9]. This is because the designation of PAs often introduces 

key restrictions on human activity within certain geographical boundaries such as restrictions on 

fishing, logging and recreation [10,11]. Public perception of the social impacts of PAs, both positive 

and negative are important as they have been shown to influence public support for the PA [7,8,12]. 

It is therefore important to be able to identify and measure the type, extent and spatial distribution of 

such impacts in order to maximise PA management effectiveness both for nature and for people.  

Despite the increase in research studies on the social impacts of PAs, there is very limited 

evidence regarding the distribution of social impacts across space within PAs, and relatedly, limited 

guidance on best practice for spatial assessment of impacts. Naidoo et al. [13] was one of the first 

studies that explored spatial aspects of social impacts and found that living near a PA has a positive 

effect on wellbeing levels in countries in the Global South. Jones et al. [9] also found that an 

individual‟s location in the PA is an explanatory parameter for people‟s wellbeing level, whilst 

McGinlay et al. [14] found that perceived impacts in the Eifel National Park, Germany influenced 

public support for the Park, and that impacts varied spatially in relation to settlement patterns and 

road infrastructure. Despite these contributions, our knowledge of how and why social impacts are 

distributed across space in PAs is very limited, with very few studies exploring whether social 

impacts differ between locations within a PA and whether the location of communities influence their 

perceptions. 

The spatial aspect of social impacts is an important area of research, as defining a protected area 
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is a spatial approach to biodiversity and landscape protection and enhancement. The fundamental 

aim is to set a specific boundary within which a new regulatory and governance regime will alter 

biophysical and social processes in a way that will benefit ecosystems, but which will also impact on 

people, potentially both negatively and positively. However, spatial aspects are often ignored when 

examining the factors that contribute to social impacts. Additionally, ignoring spatial autocorrelation, 

which refers to the correlation between nearby observations in space, can invalidate statistical 

modeling results if not accounted for [15]. 

Overall, given the scarcity of studies on the spatial distribution of social impacts in PAs, 

knowledge gaps are not only theoretical and conceptual, but also methodological, and so there is a 

need to consider what approaches to measuring, mapping and modeling impacts are likely to prove 

most helpful in supporting theory-building.  

In this paper we compare different modeling approaches to explore links between perceived 

social impacts and the relative location of local communities in a PA. We additionally make 

recommendations on which approaches to take that can be used by researchers and practitioners 

when exploring the social impacts of new and existing PAs from a spatial perspective.  

Our framework builds upon previous studies [13], while our approach is more comprehensive as 

we incorporate spatial information through kernel functions that consider proximity effects: i.e., the 

proximity of respondents to each other, as well as less detailed spatial information that only 

considers the neighboring proximity between municipalities of local residents. 

2. Materials and methods 

2.1. Data 

Primary data were collected using structured questionnaires distributed in the Peak District 

National Park (United Kingdom) during the Summer of 2020 as part of the project FIDELIO 

(www.warwick.ac.uk/fidelio). The Peak District national park is located in central England and was 

established in 1951 (See Figure 1). The area is terrestrial (1,438 km
2
) and socio-economic activities 

in the region are mainly tourism and recreation as well as agricultural activities. The specific 

research area was selected based on the following criteria that were suitable for our analysis: a) an 

area that has local communities living inside its boundaries; b) area that is large enough to allow the 

exploration of spatial distribution; c) area that is designated as National Park.  

The National Park is designated as an IUCN category V acknowledging the interaction of local 

communities with the landscape and the contribution of this interaction to a number of aspects 

including the natural environment, cultural values and the local economy.  

The research team sent 3100 postcards to a randomly selected sample of households in and 

immediately around the Peak District area inviting them to participate in the survey (for further 

details about this survey please see full report: [16]. This was estimated to be approximately 10% 

of the total population. The survey was also advertised online via social media and informal 

networks with the help of the Peak District National Park Authority. In total, 438 responses were 

received. Through the questionnaire, respondents were asked to provide information about their 

village of residence in order to capture their location which was essential for the spatial analysis in 

this paper. 227 respondents (51% of the sample) provided this information. The sampling frame 

included those who live inside the PA or within a 10km buffer around the PA boundary. The 

http://www.warwick.ac.uk/fidelio
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specific distance from the borders of the PAs was inspired by previous research [13,17]. A research 

protocol was designed and followed in order to ensure the validity and reliability of our analysis 

and derived results. Specifically, prior to the final collection of data a variety of proactive actions 

was performed, in terms of validity and respondent and non-respondent bias assessment. These 

actions followed include the pilot testing of the questionnaire to a small sample of respondents in 

all areas of the PA, to identify potential issues with question wording, terminology, response 

options etc. Potential selection bias was also considered prior to the data collection, by comparing 

the demographic characteristics of the target population of the PA in order to be aligned with the 

characteristics of survey respondents. Further, our sampling frame was distributed throughout all 

regions inside the PA and within the 10km outside buffer zone, in order to ensure the adequate 

regional representation of respondents.  

Regarding perceptions of social impacts these were captured for 5 different aspects of personal 

well-being: personal income, quality of life, involvement in recreational activities, social relations 

and connectedness to nature (Table 1). Respondents were asked “How has the designation of the PA 

impacted you regarding the following issues in the past years?” and all questions were measured via 

a 5 point Likert Scale (1-Very negative impact, 2- Negative impact, 3-No Impact, 4-Positive Impact, 

5-Very positive impact). These questions were part of a social capital and impact assessment 

questionnaire which was distributed in the area of the Peak District [18]. 

Table 1. Description of dependent variables (social impacts). 

 Dependent variables  

of social impacts 
Question Scale of measurement 

 

Social impacts 

How has the designation 

of the PA impacted you 

regarding the following 

issues in the past years? 

 

Personal Income 

5-point Likert scale: 

1-very negative 

impact, 5- very 

positive impact, 3- 

neutral/no impact 

Your quality of life 

Your involvement in 

recreational activities 

Social relations with 

locals 

Your connectedness to 

Nature 

Furthermore, spatial information was utilized as explanatory variables for the variation in 

perceived social impacts of PAs, aiming to capture the role of location, and of mutual spatial 

proximity between local residents on their views of perceived impacts.  

Data collected included the location in the form of geographical coordinates, in particular, the 

spatial data for the analysis involves coordinates that relate to the respondent's location (specifically 

the village of residence of respondents). To collect the coordinates, the names for each location in our 

survey were entered into an Excel worksheet. Once opened in the browser, an extension called 

„Geocode‟ was used. To create the polygons, a layer from ArcGIS Online with UK wards was added to 

the map. Then, the wards were arbitrarily divided between the number of villages in each municipality. 

To ascertain the average distance of each respondent from the remaining respondents we calculated the 

Euclidean distance between each location and all other locations in the Peak District dataset using the 

haversine formula. This calculates the distance between two sets of coordinates. As a summary 
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measure of distance, the average distance was utilized. 

 

Figure 1. Location map of the case study area of Peak District, UK. 

2.2. Statistical analysis  

2.2.1. Bootstrap simulation 

In order to understand the robustness of our analysis that uses a real dataset and validate the 

outcomes, we have simulated our data from Peak District PA using the Bootstrap simulation 

method [19–20]. Bootstrapping simulation approach involves resampling a single data set to create 

a multitude of simulated samples. Those samples are used to calculate standard errors, confidence 

intervals and for hypothesis testing. Bootstrap is also an appropriate way to control and check the 

stability of the results obtained by small datasets. 

Simulating our research data prior to conducting the actual spatial analysis modeling can be an 

important step to help better understand the process, validate our methods, and gain more insights 

into potential outcomes. Specifically, we have simulated the main variables we are interested in for 

this study, such as the spatial proximity of local residents and the social impacts of respondents. We 

apply the non-parametric bootstrap technique for testing using the simulated samples if there are any 

spatial patterns present relating to the various social impacts. The procedure for bootstrapping 

essentially relies on resampling from an initial sample. Specifically, one creates B bootstrap samples 

by sampling with replacement from the original data. 

The method of non-parametric resampling using bootstrap methodology for calculating 

estimates and confidence intervals for the parameter of interest is based on the following general 

scheme: 
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i. Sample n observations randomly with replacement from the initial sample of data, say 

vector yobs.  

ii. Calculate the bootstrap version of the statistic of interest, say ̂ . 

iii. Repeat steps i and ii a large number of times, say B, to obtain an estimate of the bootstrap 

distribution. 

The B samples are called bootstrap samples. In practice, the number of B samples that is chosen 

for our study is 10,000.  

2.2.2. Statistical modeling 

Due to the nature of the response variables for social impacts of PAs, that is, a 1-5 Likert scale, 

we fit suitable spatial regression models, such as ordinal logistic spatio-temporal regression models 

to the data. Within this category, the selection of the appropriate data distribution was investigated by 

comparing the former to the Poisson [21] and the Negative Binomial (NB) [22] distributional 

families. Hence, we test alternative spatial regression models, in terms of distributional specification 

of the responses, for example Poisson distribution and alternatives, such as the negative binomial and 

the generalized Poisson [23], both being suitable for data that are not equi-dispersed (i.e., the value 

of mean is different from the value of variance). Especially the negative binomial model is frequently 

considered as an alternative to the Poisson distribution in cases of over dispersed data. 

Further, in the present paper a comparison is conducted, between candidate spatial approaches, 

in order to examine potential spatial effects of proximity between the local residents of the protected 

areas. Specifically, we compare stochastic spatial models (see, e.g., [24] that utilize precise spatial 

information in terms of exact co-ordinates of local residents to calculate the distances between 

respondents, to spatial regression models that use less precise information of proximity, based upon 

the conditional autoregressive spatial models (CAR) of Besag and Kooperberg [25]. 

This comparison is useful, since it can provide important insights into the spatial patterns of the 

social impacts of PAs and how spatial proximity between local residents can affect their views 

regarding these impacts.  

We take a model comparison approach to assess the relative significance of the proposed spatial 

models, hence we chose to fit a series of four candidate distributional specifications for the response 

variables of the five impacts (Table 1), along with a series of candidate spatial models. For 

comparison reasons, we also fit a simple baseline regression model that includes only an intercept in 

order to assess the overall spatial effects by comparing this model to the spatial ones.  

In the next sub-sections, we describe in detail the various specifications in terms of 

distributional assumptions and spatial approaches of the fitted regression models. 

2.2.2.1. Kernel-based spatial regression model(s) 

As a measure of spatial proximity between the local residents, kernel-based spatial regression 

models utilized for our analysis use the average distance (in km) of each resident from all other local 

residents in the PA. The former measure of spatial proximity between local residents aims to capture 

patterns of spatial similarity (or dissimilarity) between local residents relative to one another 

regarding their views on perceived impacts as a result of their proximity to the PA. 
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The analytical expression of the Bayesian kernel-based statistical models used for the current 

study is mathematically formulated as follows: 

Ordinal Logit model: 
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where iy  denotes the ith response value of 1-5 Likert scale  227,...,2,1i , taking the values 

of 1,2,3,4,5, and in the ordinal logistic model, 
*Y  denotes a continuous, unmeasured latent variable 

which is assumed to give rise to the observed categories 1,2,3,4,5 [26].  Also, 0  is the intercept. 

In addition, i  and 
*

i  are the parameters of the Poisson and generalized Poisson distribution, 

respectively and iqr  ,  are the parameters of the negative binomial distribution. Finally,   is the 

error term. 

The generalized Poisson regression model is a generalization of the standard Poisson regression 

model. When the dispersion parameter ω = 0, the probability function in Eq (3) reduces to the 

Poisson model (1). When ω>0, the generalized Poisson model represents count data with 
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overdispersion and when ω<0, the generalized Poisson model represents count data with 

underdispersion. 

The information collected on the perceived impacts of protected areas (PAs) on local residents 

is spatial in nature and varies across different locations. To address this, we have incorporated a set 

of distance measures in Eqs (1)–(4) as additional factors that account for the spatial differences in the 

prediction of perceived impacts of PAs on local residents. These distance measures will be used as 

covariates in the four distributional specifications, denoted as id . The average distances, id , were 

included in the regression models via a typical decaying function of distance. 

A commonly used distance kernel function is the inverse distance power function, with: 

 
a

i

i
d

df 











1
 (5) 

for positive integer  , with   often taken to be 1 [27,28]. Another typical function used is the 

negative exponential, given by: 

   ii ddf  exp  (6) 

with 0 , the parameter controlling for the rate of decay with distance [27,29]. 

In the current paper we utilize both kernel functions and compare their performance. In this way, 

we seek to capture the spatial pattern of density decay with average distance, id , of each local 

resident respondent from the remaining respondents of the Peak District protected area. The inverse 

distance power function has a fatter tail over long distances [30]. This is also true when compared to 

the negative exponential function.  

2.2.2.2. CAR spatial panel model(s) 

Conditional autoregressive (CAR) models are regularly used to analyze data in a large range of 

disciplines, such as in demography, economy, epidemiology and geography [31]. A conditional 

autoregressive modeling approach following the Bayesian paradigm is employed in order to examine 

the potential spatial effects on the response variables of social impacts. 

Let 
isy  denote the ith response for the s

th
 municipality of Peak District region, UK. Hence, the 

CAR Bayesian regression model is subsequently written in its general form as: 

 isis DISTy ~  

sis   0  

(7) 

for the CAR model with mean 
is , which is suitably adjusted for the various distributional 

specifications of ordinal logistic, Poisson and generalizations of the latter, as presented already in 

Eqs (1)–(4). In the model formulation of Eq (7), 0  is the intercept.  

CAR is a spatial regression method that incorporates spatial dependency into the data analysis 

through the inclusion of a spatial component, say, 
s  that is utilized for the modelling of the space 

random effects, and is represented as: 
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In the previous equation, s\  denotes all municipalities excluding s , 
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denotes the means of the neighbouring random effects for municipality s , and 
2
n  is the 

corresponding variance. 

A weight matrix (also called a spatial proximity matrix) is then utilized with its elements ijw
 

being some type of measure of the spatial relationship between the ith and jth municipalities. A 

common definition for distance-based weights is the weights given by: 










otherwise 0,

neighbours are j and i areas if ,1
ijw  (9) 

The assumption of “neighbours” typically refers to areas that share a common boundary [32,33]. 

We must also note that the property of symmetric matrices of weights W , W  must hold for 

deriving valid results. 

2.2.3. Prior Specification and inference for the Bayesian regression models 

Model implementation and inference in this paper is based upon a fully Bayesian approach. For 

inference by following the Bayesian paradigm, suitably vague priors for the parameters of the 

non-spatial, CAR and kernel-based spatial regression models are specified. In particular, the prior 

distributions for the intercept ( 0 ) and the spatial parameters are specified through a Gaussian 

distribution, with zero-mean vector and a non-informative variance, i.e.  1000,0N . Accordingly, the 

variance parameters 2 , were assigned weakly informative half-normal prior distributions. Finally, 

in function specifications 5 & 6, we do not assign a specific value on parameter α, instead allowing α 

to vary by assigning a weakly informative prior distribution.   

In order to adopt the Bayesian paradigm for parameter estimation, the WinBUGS software has 

been utilized [34]. The model‟s parameters were estimated via Markov chain Monte Carlo (McMC) 

simulation. The convergence of the McMC chains was assessed through visual inspection of the 

posterior distributions. For selecting the optimal model among the candidate models fitted, suitable 

goodness-of-fit criteria are utilized, both from the Bayesian and frequentist perspective. The 

comparison of the models is done through the DIC criterion (Deviance Information Criterion, which 

is a generalization of the criterion AIC (Akaike Information Criterion) and which was proposed by 
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Spiegenhalter et al. [35] and measures the variability of likelihood. Thus, the deviance information 

criterion (DIC) values reported, with smaller values of these measures indicating towards selection of 

the corresponding model. The DIC is based on the posterior mean deviance and the effective number 

of parameters, Dp , expressed as: DpDIC D  ( D  denotes the posterior mean deviance). The 

smaller the DIC value we have, the better fit the model makes to the data. The WinBUGS code of all 

spatial and non-spatial fitted models is available upon request by the corresponding author. 

3. Results 

3.1. Descriptive statistics 

The following table (Table 2) shows descriptive statistics for the five variables of perceived 

social impacts reported in the survey at Peak District National Park. On average, local residents of 

the PA evaluate highly positively the effects of the national park on their lives, with the least positive 

effects observed on their personal income (average score 3.665 on the 5 point Likert scale). This is 

also the variable with the highest diversity in the responses of local residents (standard deviation: 

1.052) and so the greatest variation from household to household across the Park. 

Table 2. Descriptive statistics for the variables of social impacts. 

Impact Min Mean Max 
Standard 

deviation 

Personal 

income 
1 3.665 5 1.052 

Quality of life 2 4.731 5 0.619 

Recreational 

activities 
1 4.661 5 0.725 

Social 

relations 
1 4.788 5 0.571 

Connectedness 

to nature 
2 4.493 5 0.766 

The spatial distribution of the results depended on who responded to the survey out of the 

residents invited to participate, and who also gave their geographical location. Of greater interest is 

whether the magnitude of the reported impact scores of a household were related to, or independent 

of the geographical location in or around the Park, and in particular whether the score given by one 

household at one location was related to or independent of the scores given by other households 

nearby. In other words, firstly, did scores vary across the landscape and was location in the Park a 

significant factor affecting scores given, and secondly, might one household‟s perception influence 

that of others nearby. To address these questions, a range of models were used to predict how 

responses might vary across the Park, and to assess which modelling approach was most informative 

and useful.  

Overall, the modeling results indicate that impact scores from a household were related to 

where they were in the Park and were not independent of the scores of other nearby households. For 
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the 5 impacts studied, it appears that the impact of the PA on the social relations of local residents is 

the least affected by the proximity of other residents, and also varied least across the landscape (had 

the lowest standard deviation) (Table 2). 

3.2. Results of Bootstrap simulation  

The Bootstrap subsampling simulation has been performed prior to the statistical spatial 

regression modeling by the utilization of a total sample of 10,000 iterations to collect the Bootstrap 

sub-samples from the five samples of social impacts and the variable of average distances of each 

resident from all other local residents in the PA.  

In Figure A1 in the Supplementary, the histograms and normal probability plots for the overall 

bootstrap samples, based upon the 10,000 bootstrap sub-samples, are presented. As we observe, the 

bootstrap samples follow the normal distribution.  

Upon the generation of the bootstrap samples, subsequently we examine potential spatial 

patterns in the data by calculating the Pearson‟s correlation coefficients between the five social 

impacts bootstrap samples and the average distance of respondents (Table A1).   

As is seen by the correlations, the simulated values of the average distance between local 

residents are significantly correlated with all five simulated social impacts variables. This result is an 

indication that spatial dependence exists regarding the perceived social impacts, and subsequently 

that these variables are not randomly distributed but instead exhibit patterns or relationships based on 

their physical locations. Hence, these findings suggest that the spatial dependencies can be examined 

through techniques like spatial regression, which help uncover how the proximity or spatial 

arrangement influences social outcomes or impacts in the particular region.  

3.3. Results of spatial regression modelling and comparisons 

In this sub-section, the results in terms of the deviance information criterion for all fitted 

regression-type Bayesian models are reported. Hence, Tables 3–6 show the DIC values for the simple 

baseline regression model, the CAR panel spatial model and the two alternative spatial regression 

kernel function models, for each one of the four alternative distributional specifications for the 

response variables of social impacts (ordinal logistic, Poisson, generalized Poisson and negative 

binomial).  

The results clearly show that the fit of all models based on the ordinal logistic distribution 

(Table 3) outperformed all other distributional assumptions for the specific dataset, since the 

deviance information criterion values for the spatial ordinal logistic regression model are the lowest 

in comparison to all other modeling specifications.  

The next best fit is observed for the generalized Poisson specification, as revealed by the DIC 

estimates in Table 5. 
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Table 3. Posterior mean deviance for the baseline and spatial logistic regression models. 

Impact Baseline model 
CAR spatial 

model 

Kernel-distance 

spatial model 

(inverse distance 

power) 

Kernel-distance spatial 

model (negative 

exponential) 

Personal 

income 
598.6 593.6 596 595.93 

Quality of life 299.3 292.6 296.9 296.77 

Recreational 

activities 
343.9 336.7 341.2 341.22 

Social 

relations 
250.1 243.05 245.7 243.97 

Connectedness 

to nature 
429.4 426.4 427.8 427.41 

Table 4. Posterior mean deviance for the baseline and spatial Poisson regression models. 

Impact Baseline model 
CAR spatial 

model 

Kernel-distance 

spatial model 

(inverse distance 

power) 

Kernel-distance spatial 

model (negative 

exponential) 

Personal 

income 
796.94 789.58 788.42 788.33 

Quality of life 808.63 803.13 799.99 800.03 

Recreational 

activities 
812.41 807.49 804.84 804.82 

Social 

relations 
809.68 803.48 800.08 800.09 

Connectedness 

to nature 
808.36 801.89 798.75 798.75 

On the other hand, the worst model fit is seen for the negative binomial regression models 

(Table 6), with similar results observed for the Poisson models (Table 4). 

After the selection of the best distributional specification (ordinal logistic, Table 3), we 

subsequently compare the various alternative spatial model formulations in comparison to the 

baseline regression model. When considering the alternative spatial specifications and their 

comparison to the non-spatial baseline regression model, it is observed that the best fit is achieved 

for the conditional autoregressive panel spatial model under an ordinal logistic distribution for the 

response variables (Table 3). CAR model outperforms the baseline regression model and the two 

alternative distance kernel function specifications in terms of model fit according to the DIC 

estimations (smallest DIC values in Table 3). On the other hand, the kernel-based spatial models 

have slightly better fit compared to CAR in the case of the Poisson and negative binomial 

specifications. 
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Table 5. Posterior mean deviance for the baseline and spatial generalized Poisson 

regression models. 

Impact Baseline model 
CAR spatial 

model 

Kernel-distance 

spatial model 

(inverse distance 

power) 

Kernel-distance spatial 

model (negative 

exponential) 

Personal 

income 
718.55 713.36 714.95 714.97 

Quality of life 781.56 776.55 777.94 777.78 

Recreational 

activities 
778.97 771.91 773.33 773.35 

Social 

relations 
783.31 779.44 780.82 780.73 

Connectedness 

to nature 
769.06 764.01 765.51 765.33 

Table 6. Posterior mean deviance for the baseline and spatial Negative Binomial 

regression models. 

Impact Baseline model 
CAR spatial 

model 

Kernel-distance 

spatial model 

(inverse distance 

power) 

Kernel-distance spatial 

model (negative 

exponential) 

Personal 

income 
796.25 791.18 790.46 790.66 

Quality of life 808.27 804.87 802.67 802.50 

Recreational 

activities 
813.02 809.40 807.38 807.44 

Social 

relations 
809.85 805.49 802.83 802.76 

Connectedness 

to nature 
808.93 803.55 801.38 801.35 

Overall, social impacts are best predicted by a spatial CAR regression model that takes into 

consideration the similarity of responses of residents in neighboring areas, and by considering an 

ordinal logistic distribution to link the responses to the spatial information. 

As a final assessment of the best model performance, Figure 2 compares observed with 

predicted values of the best fitted spatial regression model (CAR spatial ordinal logistic model). 

Specifically, blue dots in the five impact graphs indicate a good predictive performance (observed 

social impact value falls within the 95% credible intervals of prediction), whereas red dots indicate 

poor performance (observed value falls outside the 95% credible intervals). Results indicate a good 

fit in most impacts, but with poorer fit observed for the impact on “Social relations” (Figure 2d). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 2. Predictive spatial maps for the Peak District PA for a. impact on “Income”, b. 

impact on “Quality of life”, c. impact on “Recreational activities”, d. impact on “Social 

relations” and e. impact on “Connectedness to Nature”. 
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4. Discussion 

Describing, mapping and explaining the spatial clustering of social impacts in and around PA, and 

of how they are perceived, is key to understanding their causes and to managing and mitigating them. 

In this paper we have examined the spatial variation in perceived social impacts and associated 

clustering effects in a large European Protected Area using survey data from local households. In 

particular, we have implemented generic Bayesian methodology, which offers flexibility in the 

ability to fit various distributional specifications, both typical and more complex as well as a variety 

of spatial regression models that are able to capture effectively the potential effects of spatial 

proximity between local residents of a protected area on their impacts assessment.    

Our findings suggest that spatial proximity of local residents to each other in the Peak District 

National Park plays an important role in how people perceive social impacts, since all spatial 

Bayesian regression models showed a relatively improved fit compared to the baseline regression 

model that did not include any type of spatial information in the form of covariate. 

Among the spatial regression models tested, the conditional autoregressive model that assigns a 

weight for adjacent municipalities and ignores spatial effects of non-adjacent areas gave the best fit. 

There are a few possible reasons why the conditional autoregressive (CAR) spatial model with 

binary weights outperformed the more detailed spatial regression model that uses exact coordinates 

to measure distance when analyzing data on local residents of a protected area. 

Firstly, the CAR model is designed specifically to account for spatial dependence in the data [36]. 

This type of model assumes that the correlation between observations decreases as distance increases, 

but does not explicitly model the distance between observations. This can be appropriate when the 

spatial resolution of the data is low or when the research question is focused on identifying spatial 

patterns rather than estimating the magnitude of spatial effects. In the case of local residents of a 

protected area, the binary weights in the CAR model may have been able to capture the underlying 

spatial structure of the data, resulting in a better fit to the data compared to the more detailed spatial 

regression model. 

Another reason why the CAR model may have outperformed the more detailed spatial 

regression model is that the latter may have suffered from overfitting [37]. When the spatial 

resolution of the data is high and the spatial regression model includes a large number of covariates 

or a complex functional form, it can be prone to overfitting. This means that the model fits the noise 

in the data rather than the true underlying patterns, which can result in poor out-of-sample 

performance. The binary weights in the CAR model may have provided a more parsimonious and 

robust approach for modelling the spatial dependence in the data, leading to better out-of-sample 

predictive performance. 

It is worth noting that the choice of spatial model may also depend on the level of spatial 

resolution of the data [38]. If the data is highly aggregated (e.g., at the level of counties or 

postcodes/zip codes), then a CAR model with binary weights may be sufficient. However, if the data 

is more finely resolved (e.g., at the level of individual addresses), then a more detailed spatial 

regression model may be necessary to accurately capture the spatial variation in the data. 

Overall, the choice of model will depend on the specific research question, the nature of the data 

being analyzed, and the level of spatial resolution of the data. Both types of models have their own 

strengths and weaknesses, and the choice between them should be based on careful consideration of 

these factors. 
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The key contribution of this paper lies in the implementation and intercomparison of different 

modeling strategies concerning the distributional specification of the dependent variable, as well as 

the focused implementation of spatial modeling in terms of accounting for spatial proximity effects 

in the estimation of social impacts in PAs. 

In doing this, various alternative distributions have been utilized for the most accurate modeling 

of social impacts in terms of spatial effects assessment. The results of an ordinal logistic regression 

based on assigning a logistic distribution on the dependent variable have been compared with other 

suitable distributions for positive count data, such as the Poisson and the negative binomial, as well 

as to the generalized Poisson regression model, proposed as an alternative to the typical Poisson 

model when the response data suffers from underdispersion. 

The Poisson regression model is typically used for count data, where the response variable 

represents the number of occurrences of an event in a fixed period of time or space. However, the 

Poisson distribution assumes that the mean and variance of the response variable are equal, which 

may not always be the case in real-world data. When the variance is greater than the mean, a 

negative binomial regression model may be more appropriate [39]. The generalized Poisson 

regression model, on the other hand, allows for the variance to be greater than or less than the mean, 

making it a more flexible option for count data. It achieves this by including an additional parameter, 

called the dispersion parameter, which allows for more flexibility in modeling the variance of the 

response variable [40]. 

The results indicated that the most suitable distribution for such type of response data, being a 

5-point Likert scale, is the ordinal logistic regression modeling approach. A useful alternative has 

been shown to be the Generalized Poisson spatial regression model, which can be attributed to the 

fact that the specific dataset is an example of under-dispersed data. On the contrary, the negative 

binomial regression model did not performed well when compared to all other distributional 

specifications. The finding that the generalized Poisson regression model outperformed the typical 

Poisson and negative binomial regression models suggests that this particular model may be the most 

appropriate choice for analyzing the data at hand. 

The modelling analysis of our survey findings suggests that the perceived social impacts 

reported by residents of a protected area are not independent of those reported by people living 

nearby. That is, their perceptions of impacts are influenced by the perceptions of others living in 

proximity, the effect diminishing with distance between neighbours. This may be due to a number of 

factors related to physical distance and social interactions. 

Firstly, perceptions of impacts may be clustered because the causes of impacts themselves are 

clustered spatially, for example, in relation to settlements, infrastructure and processes (e.g., at traffic 

corridors, hotspots etc.). In the Eifel National Park, Germany, McGinlay et al. [14] found that many 

reported negative impacts were related to noise and disturbance from visitor traffic in the Park. Such 

disturbance (noise, air pollution, severance, traffic congestion) was spatially concentrated along road 

access corridors and around local honeypot sites with tourist attractions, local services and parking 

facilities. So positive perceptions are likely to cluster around sources of benefits, such as attractive 

areas for recreation and negative impacts around sources of disturbance.  

Further to this, however, people‟s perceptions of the impacts may be amplified or dampened by 

social relational influences such as the norms, attitudes, opinions and experiences of their friends and 

neighbours [41,42]. People living closer together may have more frequent interactions with each 

other, leading to a greater sense of community and shared experiences related to living in the 
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protected area. They may also have more opportunities to discuss and share their opinions about the 

social impacts of residing in the area, which could contribute to more nuanced and informed attitudes, 

modulating their individual impressions with a further relational aspect. 

In contrast, residents living further apart from each other may have fewer opportunities to 

interact with their neighbours, and may be or feel more isolated and disconnected from the 

community in general. They may therefore be less likely to discuss and share their opinions about the 

social impacts of living in the protected area, which could contribute to more individualised 

perceptions and attitudes. Alternatively a given household may simply be more remote from the 

communities and locations most affected by a particular social impact, which will therefore have less 

relevance for them.  

5. Conclusions 

We mapped the perceptions of a range of social impacts as reported by local people living in 

and around the Peak District National Park in an online survey, in order to investigate the spatial 

patterns of distribution of impacts. The resultant spatial patterns were modeled using a range of 

statistical modeling techniques in order to assess which approaches may prove most useful in 

assessing the spatial distribution of impacts. 

Our statistical modeling and mapping work indicates that local people‟s perceptions of the 

social impacts of the Park tend to be clustered, that is to say, the reported impacts at one location are 

not independent of impacts at another location.  

Among the tested spatial modeling techniques to capture clustering effects, the conditional 

autoregressive model (CAR) that assigns a weight for adjacent municipalities and ignores spatial 

effects of non-adjacent areas gave the best fit for the specific data. This could be attributed to 

technical reasons such as low spatial resolution or overfitting. This finding is also a strong indication 

that the effect of spatial dependence in this particular PA diminishes in a very rapid way, or in other 

words, the proximity effect is much stronger between residents living near to each other (e.g., 

between friends and close neighbors in same community) and has minimum effects between 

non-adjacent municipalities. The current analysis has generally shown that the choice of best 

modelling approach for assessing the spatial effects on social impacts may depend on the specific 

dataset, research question, and the level of spatial resolution of the data. The alternative types of 

models presented have their own strengths and weaknesses, and the choice between them should be 

based on careful consideration of the above factors. The findings of this study and the proposed 

modeling approach may assist in identifying localities inside or close to protected areas with similar 

social impacts on local residents. 

Understanding the spatial distribution of perceived social impacts is key to understanding their 

causes, and to finding solutions to manage and mitigate them. Indeed, perceptions of social impacts 

may be clustered because impacts themselves are clustered in relation to settlements, infrastructure 

and processes (e.g., at traffic corridors, hotspots etc.), but perceptions may also be clustered because 

of social factors reinforcing perceptions. 

Finally, in order to predict in advance the likely future impacts of a new PA, modeling and 

prediction tools will be needed to assist practitioners in designing PAs. This work should be of utility 

to policy makers and practitioners in understanding which modeling and prediction tools will be of 

most use in this regard. 
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Appendix  

 

    (a)                      (b)                     (c) 

 

(d)                      (e)                     (f) 

Figure A1. Histograms and normal probability plots for the bootstrap samples based 

upon the 10,000 iterations (a. Personal income; b. Quality of life; c. Recreational 

activities; d. Connectedness to Nature; e. Social relations; f. Average distance (km)). 
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Table A1. Pearson‟s correlation coefficients for the bootstrap samples. 

 

Personal 

income 

Quality 

of life 

Recreational 

activities 

Connectedness 

to Nature 

Social 

relations 

Average 

distance d 

(km) 

Personal 

income 

1      

Quality of life 0.450
*
 1     

Recreational 

activities 

0.338
*
 0.716

*
 1    

Connectedness 

to nature 

0.363
*
 0.749

*
 0.725

*
 1   

Social 

relations 

0.381
*
 0.545

*
 0.465

*
 0.523

*
 1  

Average 

distance (km) 

0.229
*
 0.430

*
 0.329

*
 0.377

*
 0.494

*
 1 

*. Correlation is significant at the 0.01 level.  
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