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Abstract: This paper was concerned with the trajectory tracking control of wheeled mobile robots
using aperiodic intermittent control. By establishing the corresponding motion model of the wheeled
mobile robot, a tracking control strategy was proposed based on the intermittent control approach
and backstepping method. Compared to the controllers using continuous state feedback, the proposed
control strategy was activated only on separate time intervals, which combined the features of closed-
and open-loop control. An example was given to illustrate the effectiveness of the obtained result.
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1. Introduction

Mobile robots are highly intelligent systems combining the techniques of information perception,
dynamic decision-making and, control planning [1–4]. Among the various types of mobile robots,
wheeled mobile robots owe their unique advantages to simple structure, high flexibility of movement,
and strong operational performance, which have a wide range of applications in many scenarios. For
instance, there are the small automatic guided vehicles in logistics warehouses and production
areas [5, 6], inspection robots used for intelligent inspection of unmanned substations [7, 8], etc. All
of the above-mentioned robots fall into the category of wheeled mobile robots. Recently, increasing
attention has been paid to the motion control of wheeled mobile robots [9–12], of which the study can
be roughly divided into point stabilization, trajectory tracking, and path planning. In the task of point
stabilization, the objective is to stabilize the vehicle at a given position, of which the difficulty lies in
the lack of smooth state-feedback control. In the trajectory tracking problem, controllers are designed
to regulate the position and the orientation of the wheeled mobile robot to the trajectory of an ideal
“virtual” reference robot. Compared to the problem of path planning, which does not require the
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tracking time, trajectory tracking can achieve the real-time tracking of the time-varying reference
trajectory. In [4], a class of global trajectory tracking controllers was obtained by using Lyapunov
methods. In [13], the backstepping method was used to design both local and global controllers for a
class of nonholonomic systems with simple dynamics. In [14], the method of backstepping was
further introduced to nonholonomic systems with a general chain structure, where the semi-global
trajectory tracking controllers were established. Note that the existing results of tracking control of
wheeled mobile robots generally use continuous state-feedback control to regulate the tracking errors
online, which requires a lot of information communication and may bring unnecessary waste of
control resources.

Recent studies on hybrid control have been extensively used in many electrical and biological
systems; see [15–17] for example. As a blend of discrete and continuous dynamics, hybrid control
systems have shown a set of advantages in modeling and system synthesis [18, 19]. By constructing
energy functions of nonlinear systems, some Lyapunov-based sufficient conditions have been
presented to guarantee the stability of the system, where various hybrid control schemes, such as
switching control, impulsive control, and intermittent control, have been introduced and used in the
literature [20–22]. Among several typical hybrid control schemes, intermittent control works only on
some separated intervals instead of the whole control period, which can be regarded as a special case
of switching control involving a zero-input mode. In this regard, intermittent control can address the
energy and bandwidth constraints and weaken the negative effects of packet dropping, transmission
delays, and input noise, thus enhancing the robustness of the control system to some extent.

Inspired by the advantages of intermittent control, to overcome the drawbacks of continuous
feedback control for wheeled mobile robots, this paper studies the tracking control of wheeled mobile
robots using the intermittent control approach, where the corresponding Lyapunov stability result for
the error systems is established. Compared to the existing results in [4, 10, 11], the main contribution
of this paper is to extend the intermittent control approach to the tracking control of wheeled mobile
robots, where the stability analysis on the discontinuous control system is conducted for the controller
design. The rest of this paper is organized as follows. For preliminaries, we shall start with the
problem formulation of tracking control in Section 2.1, then state transformation is introduced in
Section 2.2 to establish the model of the wheeled mobile robot. Section 3 proposes the intermittent
control strategy for tracking control. Simulation results and conclusions are given in Sections 4 and 5,
respectively.

Notations. Throughout this paper, symbols N,R, and Rn denote the set of all nonnegative integers, the
set of all real numbers, and the n dimensional Euclidean space equipped with the Euclidean norm | · |,
respectively. a ∨ b denotes the maximum of a, b ∈ R.
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Figure 1. Kinematic model of the wheeled mobile robot.

2. Preliminary

2.1. Problem formulation

Consider the tracking control problem of a wheeled mobile robot with two degrees of freedom; see
Figure 1. The dynamics of the robot are described by the following equation.

ẋM = v cos θ,
ẏM = v sin θ,
θ̇ = ω,

(2.1)

where v is the forward velocity and ω is the angular velocity of the mobile robot, (xM, yM) is the
Cartesian coordination of the center of mass in the inertial frame F , and θ is the orientation angle with
respect to F . Assume that the wheels of the robot do not slip with respect to the ground, and the center
of mass is located in the middle of the axis connecting the real wheels.

Let N be a point linked to the wheeled robot with Cartesian coordination (xN , yN) in F and
coordination (d, 0) in the body frame FM for some d , 0. The tracking problem under consideration is
to find suitable intermittent control laws for v and ω so that N follows the trajectory of the reference
point P, with coordinations (xP, yP) and (x̃P, ỹP) in F and FM, respectively. Moreover, it is assumed
that

|ẋP| ≤ vmax, |ẏP| ≤ vmax

for some vmax > 0, so the variation speed of the reference trajectory cannot be too fast. In the following,
an intermittent control law is proposed for the trajectory tracking of wheeled mobile robots, and the
above assumptions are crucial for the controller design.
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2.2. State transformation

Denote by (ẽx, ẽy) the coordinate of error vector rNP in F , then it can be derived that the velocity
vector of P in FM is

ṽP = ˙̃ex · iM + ˙̃ey · jM. (2.2)

Moreover, let vP and vM be the velocity vectors of P and M in F , respectively. It then follows from the
kinematics of the robot that

ṽP + wM × rMP = vP − vM, (2.3)

where wM = ω · k0 is the instantaneous rotational speed of FM w.r.t F , and k0 represents the direction
vector of the rotation axis. rMP is the vector from M to P, which satisfies

rMP = rMN + rNP = (d + ẽx) · iM + ẽy · jM.

In view that vM = v · iM and

vP = ẋP · i + ẏP · j = ˙̃xP · iM + ˙̃yP · jM

= (ẋP cos θ + ẏP sin θ) · iM + (−ẋP sin θ + ẏP cos θ) · jM,

it then follows from (2.1), (2.2), and (2.3) that ˙̃ex = −v + ωẽy + ẋP cos θ + ẏP sin θ,
˙̃ey = −(d + ẽx)ω − ẋP sin θ + ẏP cos θ.

(2.4)

3. Tracking control strategy

For any given ρ > 0, denote by

Ωρ =
{
[ẽx, ẽy]T ∈ R2 : ρ|ẽx| ≤ 1, ρ|ẽy| ≤ 1

}
.

The following control law is utilized for tracking control. For [ẽx, ẽy]T ∈ Ωρ,{
v = k1ẽx + h1,

ω = k2ẽysign(d) + h2
d .

(3.1)

Otherwise, for [ẽx, ẽy]T < Ωρ,{
v = k′1kẽx + h1,

ω = k′2kẽysign(d) + h2
d ,

t ∈ [kT, kT + ∆k),{
v = 0,
ω = 0,

t ∈ [kT + ∆k, (k + 1)T ), k ∈ N,

(3.2)

where h1 = ẋP cos θ+ẏP sin θ, h2 = −ẋP sin θ+ẏP cos θ, k1, k2 > 0 are the control gains of the continuous
controller, k′1k = k1/∆k, k′2k = k2/∆k are the control gains of the intermittent controller, T > 0 is the
length of the intermittent control period, and ∆k ∈ (0,T ) denotes the width of the kth control interval.
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Theorem 1. Given reference trajectory (xP, yP), the tracking error (ẽx, ẽy) converges to zero with
intermittent control (3.1),(3.2), if there exist k1, k2,T, ρ > 0 such that

2ρvmaxT < k1 ∨ |d|k2. (3.3)

Proof. Denote by ẽx(t) = ẽx(t, ẽx(0), ẽy(0)) and ẽy(t) = ẽy(t, ẽx(0), ẽy(0)) the close-loop trajectories of
(2.4)–(3.2) with initial tracking errors [ẽx(0), ẽy(0)] ∈ R2. Let V(t) = 1

2 (ẽ2
x(t) + ẽ2

y(t)). Without loss of
generality, assume that [ẽx(0), ẽy(0)]T < Ωρ. In this case, it can be derived from (2.4) and (3.2) that

V̇ = ẽx ˙̃ex + ẽy ˙̃ey

= ẽx

[
−v + ωẽy + ẋp cos θ + ẏp sin θ

]
+ ẽy

[
−(d + ẽx)ω − ẋp sin θ + ẏp cos θ

]
= ẽx

[
−

(
k′1kẽx + h1

)
+

(
k′2kẽysign(d) +

h2

d

)
ẽy + ẋp cos θ + ẏp sin θ

]
+ ẽy

[
− (d + ẽx)

(
k′2kẽysign(d) +

h2

d

)
− ẋp sin θ + ẏp cos θ

]
= −k′1kẽ

2
x − |d|k

′
2kẽ

2
y

≤ −2 (k1 ∨ |d|k2)
V
∆k
, t ∈ [kT, kT + ∆k). (3.4)

Moreover, for t ∈ [kT + ∆k, (k + 1)T ), it holds that

V̇ = ẽx ˙̃ex + ẽy ˙̃ey

= ẽx (ẋP cos θ + ẏP sin θ) + ẽy (−ẋP sin θ + ẏP cos θ)

≤ 2vmax

(
|ẽx| + |ẽy|

)
.

It then follows from the definition of Ωρ that

V̇ ≤ 4ρvmaxV, t ∈ [kT + ∆k, (k + 1)T ). (3.5)

Hence, it can be deduced from (3.4) and (3.5) that

V((k + 1)T ) ≤ e4ρvmax(T−∆k)V(kT + ∆k)

≤ e−2(k1∨|d|k2)+4ρvmax(T−∆k)V(kT )

≤ e−2(k1∨|d|k2)+4ρvmaxT V(kT ).

Note that 2ρvmaxT < k1 ∨ |d|k2. There exists σ > 0, such that 2 (k1 ∨ |d|k2) − 4ρvmaxT ≥ σ, and

V((k + 1)T ) ≤ e−σV(kT ) < V(kT ).

There exists K = K(ẽx(0), ẽy(0), ρ) > 0, V(KT ) ≤ 1/(2ρ2), which implies that

ρ|ẽx(KT )| ≤ 1, ρ|ẽy(KT )| ≤ 1.
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That is, [ẽx(KT ), ẽy(KT )]T ∈ Ωρ. Applying (3.1) then deduces that

V̇ = ẽx ˙̃ex + ẽy ˙̃ey

= ẽx

[
− (k1ẽx + h1) +

(
k2ẽysign(d) +

h2

d

)
ẽy + ẋp cos θ + ẏp sin θ

]
+ ẽy

[
− (d + ẽx)

(
k2ẽysign(d) +

h2

d

)
− ẋp sin θ + ẏp cos θ

]
= −k1ẽ2

x + ẽxẽy

(
k2ẽysign(d) +

h2

d

)
− (d + ẽx)ẽy

(
k2ẽysign(d) +

h2

d

)
+ ẽyh2

= −k1ẽ2
x − dẽy

(
k2ẽysign(d) +

h2

d

)
+ ẽyh2

= −k1ẽ2
x − |d|k2ẽ2

y

≤ −2 (k1 ∨ |d|k2) V,

which yields that (ẽx, ẽy)→ (0, 0) as t → ∞. This completes the proof of Theorem 1. 2

Remark 1. In view of Theorem 1, the tracking problem of the wheeled mobile robot with the reference
point P is solved via controllers (3.1) and (3.2), where a setΩρ is designed to determine when to switch
the controllers. Note that Ωρ denotes a neighborhood of [ẽx, ẽy]T = [0, 0]T . It implies that intermittent
control (3.2) is exploited on the robot to drive the errors intoΩρ when the tracking error between points
N and P is large. While in Ωρ, continuous control (3.1) is utilized to achieve the convergence of the
tracking error. The relationship of the control parameters k1, k2 and the scale of the region Ωρ, i.e., the
value of ρ, is established in (3.3). One may notice that the values of the control gains of intermittent
controller (3.2) can go to infinity as the control width approaches zero, which is exactly the idea of
impulsive control. Thus, the proposed result also indicates that the concerned intermittent control can
be converted to impulsive control with a sufficiently small control width, and tracking of the trajectory
can be realized by directly driving the state variables of the wheeled mobile robot at some discrete
instants.

Remark 2. Compared to the existing results in [10,11,13], a control scheme consisting of a continuous
controller and an intermittent controller is developed in this paper. To achieve the tracking control of
wheeled mobile robots, the intermittent controller is used to drive the errors into the region Ωρ first,
and the the continuous controller is used to stabilize the errors asymptotically. It should be noted that,
in this paper, the tracking control of N and P is achieved by stabilizing the errors (ẽx, ẽy), where d , 0
is crucial for the design of intermittent control (3.2). In fact, if d = 0, i.e., the point N is exactly the
point M, it then follows from (3.4) that the term “−ẋP sin θ + ẏP cos θ” in the channel of ẽy is difficult
to eliminate due to the lack of control parameter ω.

4. Simulation results

In this section, a simulation example is given to illustrate the effectiveness of the obtained result in
Section 3.

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3774–3783.



3780

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Figure 2. Trajectories of the points M, N, and P.
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Figure 3. States of the points N and P.

Consider the wheeled mobile robot with dynamics (2.1). The reference trajectory of point P starting
from the original point is predesigned as [0.1−0.1 cos t, 0.1 sin t]T , so vmax=0.1. Set the distance d = 0.2
between N and M. Applying Theorem 1, the corresponding intermittent control law (3.1), (3.2) is
obtained if there exist k1, k2,T, ρ > 0 satisfying (3.3). In simulations, we set the initial position of the
robot as [xM, yM]T = [−0.1, 0]T , parameters of the intermittent control (3.1),(3.2) as k1 = 0.2, k2 = 1,
ρ = 9.8, and the width of the control interval as T = 0.1, then it can be verified that condition (3.3)
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holds. Applying Theorem 1, it is concluded that the wheeled mobile robot can track the reference
trajectory (xP, yP) with tracking error (ẽx, ẽy) converging to zero. In simulations, take ∆k = ∆ = 0.07,
k ∈ N, and the trajectories of M,N, P are depicted in Figure 2. The states of N and M in the directions
of iM and jM are depicted in Figure 3. To achieve the tracking control of wheeled mobile robots,
intermittent control law (3.2) is proposed to drive the tracking errors of N and P in the directions of
(ẽx, ẽy) to the region Ωρ, whereas the error between θ and the direction of the reference trajectory is not
considered. Thus, as shown in Figure 2, when there is no control input, i.e., (v, ω) = (0, 0), the error
between the points M and P may increase. See the yellow and red lines in Figure 2. In contrast, with
the help of continuous control (3.1), the tracking error between the points N and P can converge to
zero asymptotically, which verifies the effectiveness of the proposed control strategy.

5. Conclusions

This paper extends the intermittent control approach to the tracking control of wheeled mobile
robots. Different from the existing continuous state-feedback control approaches, the control input
is only activated intermittently. By using the backstepping method, the proposed intermittent control
strategy is given, of which the control width can be regulated according to the control needs. Note
that this paper mainly focuses on the aperiodic intermittent control. In the future, more efforts will be
devoted to the aperiodic intermittent tracking control of wheeled mobile robots based on the kinematic
model involving uncertain disturbances [23] and even multiple robots [24, 25].
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