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Abstract: Automatic test paper design is critical in education to reduce workloads for educators and
facilitate an efficient teaching process. However, current designs fail to satisfy the realistic teaching
requirements of educators, including the consideration of both test quality and efficiency. This is the
main reason why teachers still manually construct tests in most teaching environments. In this paper,
the quality of tests is quantitatively defined while considering multiple objectives, including a flexible
coverage of knowledge points, cognitive levels, and question difficulty. Then, a model based on the
technique of linear programming is delicately designed to explore the optimal results for this newly
defined problem. However, this technique is not efficient enough, which cannot obtain results in poly-
nomial time. With the consideration of both test quality and generation efficiency, this paper proposes
a genetic algorithm (GA) based method, named dynamic programming guided genetic algorithm with
adaptive selection (DPGA-AS). In this method, a dynamic programming method is proposed in the
population initialization part to improve the efficiency of the genetic algorithm. An adaptive selection
method for the GA is designed to avoid prematurely falling into the local optimal for better test qual-
ity. The question bank used in our experiments is assembled based on college-level calculus questions
from well-known textbooks. The experimental results show that the proposed techniques can construct
test papers with both high effectiveness and efficiency. The computation time of the test assembly
problem is reduced from 3 hours to 2 seconds for a 5000-size question bank as compared to a linear
programming model with similar test quality. The test quality of the proposed method is better than
the other baselines.
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1. Introduction

Test paper design is critical in education because it is the main method for teachers to evaluate the
learning status of students to facilitate an effective teaching process. To reduce the workload of edu-
cators in designing abundant tests during the teaching process, automated test paper design has been
widely studied [1–5], where the core technique is to extract questions from a well-managed question
bank to serve teaching objectives. Two forms of tests, namely unified tests [1, 2, 4, 5] and adaptive
tests [3], are widely applied. As for unified tests, the questions are fixed before testing students and
are used for groups. As for adaptive tests, they recommend different questions in an interactive pro-
cess for students based on historical testing records, which are used for individual students and usually
can only be done online using a computer. When fairness and limited resources are the main con-
siderations in real-world test scenarios, such as university entrance examinations on various subjects,
designing unified tests for group students is the ultimate requirement. Therefore, this paper mainly
focuses on exploring question extraction techniques for unified tests. To design effective tests in re-
ality, multiple factors should be considered at the same time, including question difficulty, cognitive
levels, covered knowledge points, and so on. Thus, automatic test construction is widely considered as
a multiple-objective optimization problem [6–8]. This is a challenging problem and has proven to be a
combinatorial problem of non-deterministic polynomial-time hardness (NP-hardness) [8].

Previously, some kinds of techniques were presented to solve test construction problems. Some
studies use randomization approaches to improve the efficiency of test question selection. For example,
Naik et al. [1] applied a shuffling algorithm to select questions for building an online test system. This
kind of technique is simple and fast, though the effectiveness of the test design cannot be guaranteed
due to the random selection, which means it cannot face a more sophisticated testing scenario. Some
works apply optimization algorithms, especially linear programming (LP), to select a subset from a
question bank that can most satisfy the defined objectives [2, 3]. However, the efficiency of the test
construction cannot be guaranteed. The computation latency of test construction grows exponentially
with the increasing size of the question bank and the definition of the test objectives. To balance
the test quality and generation efficiency, most works explore meta-heuristic algorithms for test paper
construction. The considered techniques include genetic algorithms (GA) [4–7, 9–14], ant colony
optimization (ACO) [15], particle swarm optimization (PSO) [16], and so on, where GAs obtain a
wide interest in the community for solving the problem of test paper construction [9], because it can
be easily applied to quickly optimize combinational problems using the representing of chromosomes
and obtain satisfying results. In the previous works, it should be noted that there was no unified form
of objective definition. In related works, questions regarding difficulty and cognitive levels are widely
considered. However, the coverage of knowledge points is not deeply explored, which is one of the
most important factors when designing tests. Very few works consider the coverage of knowledge
points, and most of them only consider it in a simple way [10, 14], namely that they only consider the
number of covered knowledge points in a test. However, in most real cases, a question would relate
to multiple knowledge points, and different knowledge points would have different importance values
for a course. Thus, a recent work [7] optimized the distribution of knowledge units, called skills in
this work, for test construction to be close to the skill importance of a course, where the skill weights
of a course were fixed and manually labeled. However, in the whole teaching process, the preference
for knowledge points when designing a test would change for different teaching phases. In this case,
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the method mentioned in [7] is not flexible enough. Moreover, this research is still in its infancy.
Although the efficiency and effectiveness of test construction problems have been preliminarily studied,
the definition of multiple objectives still needs to be further explored to satisfy the real requirements of
educators to face some sophisticated teaching scenarios, which determine the quality of the results of
the designed algorithms.

We believe that, considering multi-dimensional teaching requirements, the quantitative definition
of test design objectives is crucial to search for a solution space using GAs. To overcome the above-
mentioned problems, this work further explores multiple objectives, including the coverage of knowl-
edge points, the cognitive levels of questions, and the question difficulty. Especially, this work in-
troduces a more flexible way to consider the coverage of knowledge points for a more sophisticated
scenario, where each question is related to multiple knowledge points and there exists dependency re-
lationships between knowledge points. Different from previous works, some factors of the questions,
such as the question difficulty, are not labeled by experts or by using statistical functions; the question
difficulty is automatically calculated using the attributes of the question, and the changing importance
of knowledge points is automatically gained based on a method of distance calculation, which deter-
mines the emphasis degree of a question (in Section 3.2). This scheme provides a more practical way
to face sophisticated test design scenarios. Then, to explore the optimal results facing this scenario,
a linear programming method is designed that translates multiple non-linear objective functions and
constraints into a linear way. By analyzing the results, especially with a large question bank, this
method is proven to be not efficient enough. Thus, to obtain both high test quality and high generation
efficiency facing this complex test scenario, this work proposes a scheme based on the GA that shows a
new way to improve GA-based methods: (1) initializing the population by optimizing the coverage of
knowledge points based on dynamic programming; and (2) involving an adaptive selection method that
avoids the premature local optimal for GA methods. In-depth discussions and detailed explanations of
algorithm design are provided for various test-design algorithms. Our research work shows that GAs
with careful designs achieve both high-quality solutions and time-efficient computations compared
with various kinds of algorithms. The experimental results show that the proposed methods can obtain
high-quality solutions with significantly improved efficiency. The main contributions in this paper are
as follows:

• Multiple objectives of the test design problem are defined when considering real test require-
ments. A flexible way to involve knowledge coverage while considering the different importance
of knowledge points is designed. Specifically, the emphasis degree is proposed for the require-
ments of teachers for changeable key knowledge points of tests, thus providing more flexibility
for users to determine the importance of questions;
• The design details of linear programming (LP) for a unified test design with multiple objectives

are explained and analyzed to gain optimal results;
• An enhanced GA algorithm for selecting test questions, named dynamic programming guided

genetic algorithm with adaptive selection (DPGA-AS), is proposed to improve the fitness and
efficiency of the genetic algorithm. Specifically, a dynamic programming method is designed to
initialize the population of the GA by solving two, single objective, optimization problems, and
the selection method in the GA is improved using an adaptive selection method, thus improving
both the effectiveness and efficiency of the GA algorithm;
• A real question bank is constructed and labeled based on questions from a well-known, college-
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level, calculus textbook;
• A large number of experiments are conducted. The experimental results are analyzed in deep, and

the results show that the proposed algorithm can be over 4000× faster than the technique of linear
programming with similar test quality.

The remainder of this article is organized as follows: In the next section, we describe the background
of question selection. Section 3 presents model definitions including the problem definition. Section 4
demonstrates our question selection techniques. Section 5 shows the experiments and analysis of the
results. Section 6 concludes this paper.

2. Background and related work

To describe our problems and schemes well, this section demonstrates the background of the ques-
tion selection techniques in detail.

2.1. High quality tests

Tests are widely studied due to their crucial role in education. In the learning process, abundant
tests, including quizzes and examinations, are used to facilitate the teaching process. Developing high-
quality tests is critical for both instructors and students throughout the whole teaching process. On
the one hand, tests can stimulate thinking, redirect reasoning, and test students’ retention level and
application skills [17, 18]; on the other hand, it helps instructors check the progress of reaching their
teaching objectives [19, 20]. To develop high-quality tests, we need to decide the major criteria that
evaluate the quality of a test and are acceptable in various teaching situations.

Characteristics of a high-quality test should be well-aligned with the learning outcomes [18,21]. In
this case, questions should focus on a targeted knowledge set. What’s more, a high-quality test should
cover the different cognitive levels of learning taxonomy to assess a student’s diverse skills [5, 21, 22].
Bloom’s taxonomy is the most well-known learning taxonomy. It was first developed by Bloom in
the 1950s [23], and was revised in 2001 [24]; the revised version is most widely used and studied
in higher education [25]. The revised one is used in this paper. Bloom defines six levels of learning
within the cognitive domain, including remembering, understanding, applying, analyzing, evaluating,
and creating. The mastery of a skill at a higher level can imply a sufficient degree of mastery at the
lower levels [26]. A generally adopted rule is that good tests should cover different difficulty levels [5]
to build a good picture of the learning levels and the skills of students. Additionally, a well-designed
test assists teachers in identifying problems in learning outcomes and in making good decisions on
adjustments.

In reality, educators usually assign appropriate weights to multiple criteria for a test to align with
the teaching objectives. For example, the final examination should have full coverage of a set of to-be-
tested knowledge points. Therefore, a meaningful model for the quality of tests can be a combination
of various weighted factors appropriate for various teaching stages.

2.2. Test paper construction

Traditionally, teachers manually select a set of questions from a question bank based on their knowl-
edge and experience to construct a test. However, there are abundant tests that should be constructed
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into the whole teaching process. In this case, manually selecting questions is time-consuming, tedious,
and easy to make mistakes [1, 4]; even for some experienced instructors, it is hard to know whether
the selected questions are good or not in a specific situation. Therefore, how to automate the process
of question selection needs to be further studied to reduce workloads for instructors and facilitate the
teaching process. Generally, to initiate the automatic process, teachers input some requirements, such
as the target chapters and the number of questions; then, the problem selection program outputs a test.
The question selection algorithms are critical because they determine the quality of tests.

According to the applied techniques for automatic test paper construction, existing works can be
divided into three categories. The first category is randomization-based methods, which randomly se-
lect questions from a well-managed question bank [1, 27–30]. For example, Naik et al. [1] proposed a
shuffling algorithm to build an online question paper generation system. This kind of method is sim-
ple and fast, though the quality of the generated tests cannot be guaranteed [4, 5]. Thus, for a more
sophisticated teaching situation, this method is not practical enough. The second category focuses
on improving the quality of generated tests based on optimization algorithms. For example, linear
programming techniques are designed to address test assembly problems in [2, 3], while considering
question difficulty, the number of questions, the test duration, and so on. They can obtain optimal
results by linearly defining the objective function and the constraints. However, in most cases, com-
plex test assembly problems cannot be solved in polynomial time, thus leading to a reduction in the
efficiency of test generation. However, besides the test quality, the high efficiency of the test assembly
is also favored in real teaching situations.

Considering the trade-offs between the test quality and the efficiency of test generation, most of
the related works, which represent the third category, focus on designing the meta-heuristic algorithms
to construct test papers. Meta-heuristic algorithms are characterized by their ability to efficiently ex-
plore and exploit solution spaces, thus making them widely used to solve sophisticated optimization
problems in the real world. These algorithms are inspired by nature, such as mimicking the biological
processes and swarm movements of living things. For example, GAs [31] mimic human evolution
based on the nature selection theory. Ant colony optimization (ACO) draws inspiration from the for-
aging behavior of ants [32]. Particle swarm optimization (PSO) imitates the behavior of fish and bird
swarms [33]. As the field of meta-heuristic algorithms rapidly develops, a host of algorithms inspired
by nature are explored [34–36], and some hybrid algorithms are also studied [37, 38]. For the field
of automatic test construction, the applied algorithms include GAs [4–7, 9–14], ACO [15], PSO [16],
and so on, where GAs are the most widely studied [9] and can obtain satisfying results in related
works. This paper struggles to explore GAs in deep for test paper construction. With different
purposes, the efficiency of GAs and the quality of tests are different. Related works can be divided
into single-objective optimization and multiple-objective optimization. As for single-objective opti-
mization, Zhang et al. [4] tried to make the difficulty coefficient of the test paper reasonable, where
the test quality was defined based on the difficulty coefficient. Rahim et al. [5] defined the test quality
by how many cognitive levels of Bloom’s taxonomy were covered: the most effective test covered all
six levels, and the quality was the best. In these works, the quality of tests was only measured by
one aspect. However, in reality, the requirements of high-quality tests are various and changing in
the teaching process. Therefore, these works are not suitable for a progressive teaching or learning
process. Multiple objectives are always considered in real teaching scenarios; in this case, single-
objective optimization is not effective enough. Thus, multiple-objective optimization based on GAs is
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widely studied [6, 7, 10–14] for test construction. They improve the GAs for optimizing several objec-
tives, including question difficulty, cognitive levels, time duration, and so on. For example, Yildirim
et al. [11] designed the fitness function with consideration of question difficulty and the frequency of
selection to provide diversity among feasible test papers. Han et al. [13] considered the question type,
difficulty coefficient, and so on, to design the fitness function. Nguyen et al. [6] improved GAs by
generating the initial populations based on a simulated annealing algorithm while considering question
difficulty and time duration. Wu et al. [7] introduced the distribution of skills into exam paper gener-
ation tasks, and considered the question difficulty in the objectives. There are no unified objectives,
and whether selected objectives are suitable for test paper construction is still a question. In the above
works, a weight sum format to face the multiple-objective problem was widely applied. Additionally,
alternative methods to address multiple-objective and many-objective problems based on evolutionary
algorithms were studied, where the main concern was to improve the performance of algorithms while
considering both convergence and diversity [39] [40], which could be applied within the automatic
test design field in the future. Besides automatic test design, we believe the development of the above
techniques could also benefit other application domains, such as mountain railway alignment [41] and
passenger transportation management [42].

In this paper, the question selection technique is designed based on GA. Different from the previous
GA-based works, to meet the various and flexible requirements of instructors, the quality of tests is
defined in multiple aspects from the realistic teaching requirements while considering efficiency.

3. Definitions

A well-represented and labeled question bank is of prime importance for automatic question-
selection problems. In this section, some terms of the question bank used in this paper are defined
and explained.

3.1. Knowledge dependency model

A hierarchical cognitive relationship between knowledge elements is generally adopted in various
knowledge areas [43–45]. For example, in logic, multiplication occurs after addition. The hierarchy
defines the logical or psychological sequence between knowledge elements. In this work, we use a
knowledge dependency graph (KDG) to model the to-be-tested knowledge elements and their inter-
relationships in a given question bank.

v9

v8

v7

v6v5

v4v3v2

v1

(a)KDG

v1 v2 v3 v4 v5 v6 v7 v8 v9
v1 0 1 1 1 0 0 0 0 0

v2 0 0 0 0 0 0 0 0 0
v3 0 0 0 0 1 1 0 0 0

v4 0 0 0 0 0 0 0 0 0
v5 0 0 0 0 0 0 1 0 0
v6 0 0 0 0 0 0 1 0 0
v7 0 0 0 0 0 0 0 0 0
v8 0 0 0 1 0 0 0 0 0
v9 0 0 0 0 0 0 0 0 0

(b)Adjacent Matrix

Figure 1. An example of a KDG and its adjacent matrix.
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Definition 1. A knowledge dependency graph (KDG) G =< V, E > is a directed acyclic graph (DAG),
where V =< v1, v2, ..., vn > is the set of knowledge elements to be tested, and E ⊆ V × V is the set of
edges that represent the dependencies between knowledge elements.

Figure 1(a) represents an example KDG that involves 9 knowledge elements, where the directed
edge e(v1, v2) means that element v1 is a prerequisite for v2. Usually, a DAG is represented as an
adjacent matrix, where the row titles represent outsets and the column titles represent the terminals
of the directed edges, as shown in Figure 1(b). For instance, a directed edge from node v1 to v2 is
represented by a binary value “1” in the cross-section of row v1 and column v2 in the adjacent matrix.

3.2. Question attributes

In this section, several attributes are defined for the computation of multiple attributes.

Definition 2. A question bank I =< Q,C,T, S , L, Ed > is a set that includes the questions and their
attributes, where Q =< q1, q2, ..., qn > is the set of the index of questions, C =< S c1, S c2, ..., S cn >

is the set of knowledge subset covered in questions, T =< tb1, tb2, ..., tbn > is the set of the cognitive
taxonomy of questions, S =< ns1, ns2, ..., nsn > is the set of the number of solving steps in a default
answer for questions in Q, L =< vl1, vl2, ..., vln > is the set of the load of questions, which represents
the question difficulty, and Ed =< ve1, ve2, ..., ven > is the set of the emphasis degree of questions.

Table 1 shows the attributes of questions and the corresponding explanations. In this table, S c, tb,
and ns are the basic attributes. vl and ve are automatically computed based on the basic attributes.

Table 1. The terms and related definitions of Question Attributes.

Notation Description
S c The subset of knowledge elements for each question qi ∈ Q. Based on a given KDG, there is an assumption

that if a question covers a knowledge element vi, then this question covers all prerequisites of vi.
tb The cognitive taxonomy of each question, where the cognitive taxonomy is based on Bloom’s taxonomy

[24]. The range of tb is < 1, 2, 3, 4, 5, 6 >where 1 denotes remembering, 2 denotes understanding, 3 denotes
applying, 4 denotes analyzing, 5 denotes evaluating, and 6 denotes creating.

ns The number of steps in a general solution for each question.
vl Question load is the objective difficulty/hardness of each question qi ∈ Q. The computation is with consid-

eration of |S c|, tb, and ns as shown in Equation 3.1.
ve The emphasis degree of a question is the relative distance between the knowledge subset of a question and

the key knowledge set, where the key knowledge elements are given by instructors. The computation is
shown in Equation 3.2.

The question load vl is defined as the question difficulty. Three factors, namely |S c|, tb, and ns, are
considered for computation. |S c| is the number of knowledge elements in a S c. A question with high
|S c|, tb, and ns is more intuitively challenging. Thus, vl is computed as the normalized weighted sum
of the above three factors, as shown in Equation 3.1:

vli = α1
|S ci|

max(|S c|)
+ α2

tbi

max(tb)
+ α3

nsi

max(ns)
, vli ∈ L,

3∑
j

α j = 1, (3.1)
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where max(|S c|), max(tb), and max(ns) are the maximum values of these factors among all questions.
α1 to α3 are the weights for three factors, and the sum of them is 1.

The question emphasis degree ve is defined as the emphasis degree for a question based on a key
knowledge set given by educators. The emphasis degree is computed by the distance D(qi) from
the knowledge state of a question qi ∈ Q to that of the standard question, as shown in Equation
3.2. The knowledge state of a question, also named the Q-matrix in other works [46, 47], is a binary
vector. The length of this vector is the total number of knowledge elements |V |. Each element in
this vector represents whether a question covers the corresponding knowledge point. When the value
of an element is “1”, then the knowledge point is in the related knowledge subset S c. The standard
question only covers the key knowledge elements and their prerequisites. For example, if the key
knowledge set is < v4, v6 >, as shown in Figure 1, then the knowledge state of the standard question is
[1, 0, 1, 1, 0, 1, 0, 1, 0].

D(qi) =

|V |∑
j=1

β j|y j − x j|,

vei = 1 − D(qi), qi ∈ Q,
|V |∑
j=1

β j = 1, vei ∈ Ed,

(3.2)

D(qi) is designed as the weighted Manhattan distance. The weights for all knowledge elements,
β1 to β|V |, are automatically computed based on the structure of the given KDG. β j is the normalized

value of vβ j and is calculated by β j =
vβ j∑|V |
j vβ j

. Given a key knowledge set, vβ j is used to evaluate

the distance from the ith knowledge point to the key knowledge element in a KDG, the value of vβ j

is the lower, the ith knowledge point is further. Specifically, the vβ of the key knowledge elements is
1. Beginning from them, once passing an edge regardless of the direction in the KDG, the vβ of the
corresponding knowledge element is decreased by σ times. If there are no edges between a knowledge
point and the key elements, then its vβ is 0. For example, when the key knowledge element is v6, then
vβ6 = 1, vβ3 = σ, vβ1 = σ2, and vβ9 = 0. In this paper, σ = 1/2 is set by default. For a question qi, the
smaller D(qi) is, the closer the distance is, and the emphasis degree of this question is higher. Thus,
the ve of each question is computed by the difference between 1 and D(qi).

As a result, all attributes are gained. Here is an example, for a question q1: if S c1 =< v1, v2, v3, v8 >,
tb1 = 1, ns1 = 1, and the key knowledge set is < v4, v6 >, then vl1 = 1/3×4/6+1/3×1/3+1/3×1/4 =

0.42 and ve1 = 0.57.

3.3. Problem definition

The question selection problem is defined as a multi-objective optimization problem under the given
constraints. This problem format can be found in most engineering fields, such as maximizing the
performance and minimizing the cost. Usually, one best solution cannot ensure that all objectives can
get the optimal value. Thus, there are always trade-offs between different solutions. In this work, four
objectives are considered and formulated. For the selected test Is =< Qs,Cs,Ts, S s, Ls, Eds >, it is
expected to have (1) a high emphasis degree of the key knowledge set, (2) a high coverage of to-be-
tested knowledge elements, (3) a high matching degree of different cognitive levels of questions, and
(4) a high closeness to the expected difficulty.
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The emphasis degree of a test ED is the average emphasis degree of the selected questions in this
test. The calculation is shown in Equation 3.3, where vei is the emphasis degree of the ith question in
Qs. m = |Qs| is the number of questions in the test. The range of ED is [0, 1], the higher the value is,
the better.

ED =

∑m
i=1 vei

m
, vei ∈ Eds. (3.3)

The coverage ratio of to-be-tested knowledge elements in a test CR is the ratio of the number of
knowledge elements included in this test to the total number of the to-be-tested knowledge points.
Equation 3.4 shows the calculation, where |V | is the total number of knowledge elements in a given
KDG, m is the number of selected questions |Qs|. The range of CR is [0, 1], and the higher the value,
the better.

CR =
| ∩m

i=1 S ci|

|V |
, S ci ∈ Cs. (3.4)

The matching degree (MD) is the degree of similarity between the given ratios for the question
taxonomies and that in the selected test. Equation 3.5 shows the calculation, where li is the number of
questions of the ith question taxonomy. The MD is calculated based on the average absolute error of nt
kinds of questions, where nt is the number of question taxonomies. The range is [0, 1], and the higher
the value is, the better.

MD = 1 −

∑nt
i=1

∣∣∣ li
m − ri

∣∣∣
nt

. (3.5)

The closeness degree (CD) is defined as the closeness degree between the expected average diffi-
culty lidx and the average question difficulty of selected questions. The calculation is shown in Equation
3.6, where m = |Qs| is the number of selected questions. The range of the CD is [0, 1], and the higher
the value is, the better.

CD = 1 −

∣∣∣∣∣∣
∑m

i vli

m
− lidx

∣∣∣∣∣∣ , vli ∈ Ls, (3.6)

The quality of a selected test is measured while considering the aforementioned objectives. The
objective function is designed as shown in Equation 3.7, where ω1, ω2, ω3, and ω4 are the weights for
the ED, CR, MD, and CD, respectively. The sum of the weights is 1. Different weights can be set for
different test situations. The range of the objective function is [0, 1], and the higher the value is, the
better the quality of the selected test is.

F = ω1ED + ω2CR + ω3 MD + ω4CD,
4∑

i=1

ωi = 1. (3.7)

Overall, the problem in this paper can be defined as follows:

Definition 3. Problem statement: Given a KDG G, a question bank I, a load index lidx, a key knowl-
edge set PC, a set of the ratios of different cognitive taxonomies R =< r1, r2, ..., rnt >, and the constraint
of the number of questions clen, find a subset of I, Is =< Qs,Cs,Ts, S s, Ls, Eds >, such that maximizing
the objective function under the constraint of clen.

The load index lidx ∈ (0, 1] is the expected average difficulty of questions in a test; the size of R
depends on a specific cognitive taxonomy. For Bloom’s taxonomy, nt = 6, r1, ..., r6 are for memorizing,
understanding, applying, analyzing, evaluating, and creating, respectively, and the sum of them is 1.
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4. Design

In this section, a model based on linear programming (LP) is designed and implemented. This
method can get the optimal value; however, it is costly. Thus, the dynamic programming guided GA
method is designed to make the technique of the test design effective and efficient.

4.1. Linear programming based question selection

The design of linear programming for this problem is explored to gain optimal results. Two kinds
of variables are defined. xi is a binary variable that represents whether the ith question is selected. y j

is a binary variable that represents whether the jth knowledge element is covered or not. Based on the
problem definition in Section 3.3, this problem is described in Equation 4.1:

Maximize ω1

∑
i∈Q(xivei)∑

i∈Q xi
+ ω2

∑
j∈V y j

|V |
+ ω3(1 −

∑nt
t=1|

∑
i∈Qt xi∑
i∈Q xi

− rt |

nt
) + ω4(1 − |

∑
i∈Q(xivli)∑

i∈Q xi
− lidx|)

S.t.

0 <
∑
i∈Q

xi ≤ clen,∑
i∈Q

xi ∗G(i, j) ≥ y j, f or j ∈ V.

(4.1)

where Q is the question set in the question bank, Qp is the question set for the pth taxonomy, and G(i, j)
is a binary number that represents whether the jth knowledge element is covered in the ith question.
As to the constraints, the first is the constraint for the number of selected questions, and the second is
for the objective of the CR. However, this representation is not linear and cannot be solved by linear
programming. In this case, a series of transformations are made.

Theorem 1. Given n binary variables, < x1, x2, ..., xn >, and n positive real numbers <

pr1, pr2, ..., prn >, a =
∑n

i=1 xi, b =
∑n

i=1(xi ∗ pri), a ∈ N∗, b ∈ R+. The description “F =
b
a

” ⇐⇒
“a ∗ F = b”.

F
∑
i∈Q

xi = ω1

∑
i∈Q

(xivei) + ω2

∑
i∈Q

∑
j∈V xiy j

|V |
+ ω3(

∑
i∈Q

xi −

∑nt
t=1|

∑
i∈Qt xi − rt ∗

∑
i∈Q xi|

nt
) + ω4(

∑
i∈Q

xi − |
∑
i∈Q

(xivli) − lidx

∑
i∈Q

xi|) (4.2)

Based on Theorem 4.1, the objective function F can be converted to Equation 4.2. Then, by finding
the maximal value of F

∑
i∈Q xi under different constraints of the number of selected questions, F can

be gained by dividing
∑

i∈Q xi. However, the xi ∗ y j and the absolute value are not linear. To make them
in a linear mode, two theorems are presented as follows:

Theorem 2. Given two binary variables, a, b ∈ [0, 1], the description “a ∗ b” can be linearly modeled
as c, subject to a + b ≥ 2c, and a + b ≤ 1 + c, where c is a binary number.

Proof. There are four cases of (a, b): when (a, b) is in < (0, 0), (1, 0), (0, 1) >, c = a ∗ b = 0, in this
case, a + b ≥ 0 and a + b ≤ 1; and when (a, b) is (1, 1), c = 1, in this case, a + b ≥ 2 and a + b ≤ 2.
Above all, Theorem 2 is proved to satisfy all cases of (a, b). �
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Theorem 3. Given two variables, a, b ∈ R+, the description “|a − b|” can be linearly modeled as c,
subject to c ≥ a − b, and c ≥ b − a, where c ∈ R+ is a positive real number.

Proof. There are two cases of |a − b|: when a ≥ b, c = |a − b| = a − b ≥ 0, b − a ≤ 0, and when a < b,
c = |a − b| = b − a > 0, a − b < 0. Thus, for two cases, Theorem 3 holds. �

To linearly describe this problem, three kinds of variables are added: zp = xi ∗ y j, Rt = |
∑

i∈Qt
xi −

rt ∗
∑

i∈Q xi|, and Load = |
∑

i∈Q(xi ∗ vli) − lidx ∗
∑

i∈Q xi|. The transformation result of Equation 4.1 is
shown in Equation 4.3:

Maximize ω1

∑
i∈Q

(xi ∗ vei) + ω2

∑|V |∗|Q|
p=1 zp

|V |
+ ω3(

∑
i∈Q

xi −

∑nt
t=1 Rt

nt
) + ω4(

∑
i∈Q

xi − Load)

S.t.

0 <
∑
i∈Q

xi ≤ clen,∑
i∈Q

xi ∗G(i, j) ≥ y j, f or j ∈ V,

xi + y j ≥ 2zp, p = i ∗ |V | + j f or i ∈ Q, j ∈ V,

xi + y j ≤ 1 + zp, p = i ∗ |V | + j f or i ∈ Q, j ∈ V,

Rt ≥
∑
i∈Qt

xi − rt ∗
∑
i∈Q

xi, f or t ∈< 1, ..., nt >,

Rt ≥ rt ∗
∑
i∈Q

xi −
∑
i∈Qt

xi, f or t ∈< 1, ..., nt >,

Load ≥
∑
i∈Q

(xi ∗ vli) − lidx ∗
∑
i∈Q

xi,

Load ≥ lidx ∗
∑
i∈Q

xi −
∑
i∈Q

(xi ∗ vli).

(4.3)

Then, after gaining the maximum value of the above equation, the optimal objective value for F is
gained. This process may be repeated several times with different constraints on the number of selected
questions. However, this process would be costly, as proven in Section 5, in which the computation
latency can be rapidly increased with the size of the question bank. Thus, efficient algorithms for this
problem are explored in the following section.

4.2. DPGA-AS based question selection

In this section, the genetic algorithm is deeply explored to efficiently find effective solutions for the
presented problem. Figure 2 shows the overview of the proposed method. The question bank contains
the given contents. In the question selection part, the proposed algorithm takes the ED, CR, MD, and
CD into consideration to optimize the quality of question selection. Different from the traditional GA,
a GA with adaptive selection (GA-AS) is presented, which improves the flexibility of the GA and gets
better results. Then, to improve the efficiency of the question selection method, dynamic programming
(DP) methods are designed and implemented for ED and CR optimization, and an efficiency optimizer
is proposed and combined with GA-AS. The combination is named DPGA-AS.

The purpose is to optimize the objective function F with the constraint of the number of selected
questions clen. This objective function can be directly used for the fitness function in the GA. To
implement the GA-based method, the meaning of a chromosome is important and should be defined.
In this paper, a chromosome is one result of the question selection and is represented as a binary vector.

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3668–3694.



3679

Question Bank Question Selection

index Sc tb ns ...
1 v1,v2,v3 1 2 ...
... ... ... ... ...
n v1,v3,v5 3 3 ...

Questions

DPGA-AS

Start

Crossover Mutation Loose Selection

New
Population

No
Satisfy Condition?

Strict SelectionResults(Qs)End

Adaptive Selection
Enphasis
Degree

Optimization

Coverage
Ratio

Optimization

Population
Initialization

Efficiency
Optimizer

Get Fitness

Multiple
Objectives

ED
CR
MD
CD

KDG
v1

v3
v4v2

v5 v6

v7

Yes

Figure 2. The overview and flow chart of the proposed scheme.

The length of a chromosome is equal to the total number of questions |Q| in the question bank, and the
value of each element is 0 or 1.

0 1 2 3 4 5 6 7 8 9Index

Chromosome 0 1 0 0 1 1 1 0 1 0

Figure 3. An example of a chromosome (result).

If the value is 1, then the related question is selected in this result. An example is displayed in
Figure 3. When there are 10 questions in the question bank, then the length of a chromosome is 10. In
this figure, the values corresponding to the 1st, 4th, 5th, 6th, and 8th questions are 1; therefore, they
are selected.

Figure 2 shows the flow chart of the proposed design. There are mainly 5 steps: population initial-
ization, fitness computation, crossover, mutation, and selection. In this design, population initialization
and selection are further explored.

4.2.1. DP based population initialization

In this section, an optimizer is designed in the population initialization to improve the efficiency of
the GA-based method. Traditionally, the population is randomly initialized. Inspired by the idea of
crossbreeding that the offspring of a hybrid can inherit the advantages of two populations, the initial-
ization method is improved by crossing over the results in single objective optimizations. The details
of single objective optimizations are described as follows:

(1) Emphasis Degree Optimization. The problem is to select a Qs which is the most correlated
with the focused knowledge subset PC under the given constraints. This problem is defined as finding
a Qs which has the highest value of ED × |Qs| under the constraint of clen × lidx. This problem can be
solved by DP, which is important and useful in the optimization area [48].

DPik =

DPi−1k, vli > k,

max(DPi−1k,DPi−1k−vli + vci), vli ≤ k.
(4.4)

Equation 4.4 shows the derivation design of the DP method, where DPik is the maximum sum of
the emphasis degree among i questions when cbur is k. In this case, when the question load of the
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ith question vli is higher than k, then the maximum sum is equal to the value for the previous i − 1
questions. When vli is lower than k, then the maximum sum is either the case without the ith question
or the case with the ith question.

Algorithm 1 DP based Emphasis Degree Optimization.
Input:

Constraints, cbur = clen × lidx;
G =< V, E >, I =< Q,C,T, S , L,Cr >.

Output:
A set of selected questions Qs.

1: Let DP[1..n, 1..cbur] be an new table; n = |Q|;
2: Let Qs is a null array;
3: for i = 1→ n do
4: for k = 1→ cbur do
5: if vli > k then
6: DP[i, k]← DP[i − 1, k];
7: end if
8: if vli ≤ k then
9: if DP[i − 1, k] ≤ DP[i − 1, k − vli] + vci then

10: DP[i, k]← DP[i − 1, k − vli] + vci;
11: end if
12: end if
13: end for
14: end for
15: Trace the DP array and get the selected questions Qs;
16: return Qs.

Algorithm 1 shows the process of this method. Lines 3-12 get the optimal sum of the ED within the
given constraints. After traversing, the optimal sum would be stored in the final element DPik, where
i = |Q|, k = cbur. The selected questions are gained by backtracking the questions which constitute the
optimal result. Then, Qs would be gained and returned.

(2) Coverage Ratio Optimization. The purpose of this section is to optimize the CR value under
the given constraints. This problem is to find a Qs that has the highest CR value under the given
constraints. This problem can be proven to be an NP-hard problem. Therefore, there are no efficient
algorithms that can be designed for this problem to get optimal results.

To handle this problem, a greedy method is proposed. The basic idea is to select the most worthy
questions. Here, the worth of a question is defined as a cost value, vli

|S ci∩U | , where U is a set of uncov-
ered knowledge elements. The size of U would decrease with the execution of the question selection
process. This value reflects the cost of a question when this question is selected to increase the CR
value. When selecting a question that does not reduce any knowledge element in U, then the cost of
this question is infinite. In this case, the question with the low question difficulty vl and a high coverage
of uncovered knowledge would have a low cost, and it tends to be selected. Thus, the lower the cost
is, the worthier the related question is. As shown in Algorithm 2, lines 1-3 are the initialization, lines
4-12 select questions in order under the constraints, and the selected question is always the one with
the smallest cost value (Line 9).
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Algorithm 2 Greedy based Coverage Optimization
Input:

Constraints, clen, cbur = clen × lidx;
G =< V, E >, I =< Q,C,T, S , L,Cr >.

Output:
A set of selected questions Qs.

1: Let U is the set of the uncovered knowledge elements and initialized by U = C;
2: Let Qs is a null array, Q∗ = Q;
3: j← 0; k ← 0;
4: while j ≤ clen and k ≤ cbur do
5: Remove the questions from Q∗ whose vl is higher than cbur − k;
6: if No questions left in Q∗ or U is null then
7: break;
8: end if
9: i← The question index which has smallest vli

|S ci∩U | ;
10: Add ith question to Qs; U ← U − S ci ∩ U;
11: j← j + 1; k ← k + vli; i← i + 1;
12: end while
13: return Qs.

The results of the above two methods are used to crossover. The crossover method is the single
point method which would be deeply described in Section 4.2.3. It randomly selects the position and
performs the crossover. This process would repeat multiple times until the population size reaches the
expectation np. As a result, the initial population is optimized in an efficient way. Fewer epochs are
needed, thus leading to a reduction of computation latency.

4.2.2. Get Fitness

As shown in Equation 3.7, the fitness calculation is the same as the objective function.

4.2.3. Crossover

Chromosomes are randomly selected to crossover for evolution. The possibility of the crossover
pc is defined as the possibility for a chromosome to be selected for crossover. In this paper, the pc
is set to 0.9 by default. The method of crossover is a single point crossover. In this process, a cross
position is randomly selected, after which two chromosomes crossover based on this position. Figure
4 shows an example, where position 4 is selected for crossover and two offspring are generated. The
first offspring is the combination of the first 5 elements in the last original chromosome and the last
5 elements in the first original chromosome. After this step, two chromosomes would generate two
offspring. If the fitness values of the new offspring are not the lowest among all chromosomes, then
another two chromosomes in the original population will be replaced.

4.2.4. Mutation

Mutations can improve the diversity of the population, and increase fitness. A possibility of the
mutation pm is defined as the possibility for a chromosome to mutate, and it controls whether a chro-
mosome can mutate. In this paper, the pm is set as 0.4 by default. In the mutation process, if a
chromosome can mutate, then a mutation position is randomly selected, and the value in that position
would be changed from 0 to 1 or 1 to 0.
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0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Pos

Original

Offspring
0 1 0 0 1 0 1 1 0 1

0 0 1 1 0 1 1 0 1 0

0 0 1 1 0 0 1 1 0 1

0 1 0 0 1 1 1 0 1 0

Figure 4. An example of crossover.

4.2.5. Adaptive Selection

Selection is a critical part of the GA. It is used to select chromosomes that will be left for the
next population. Generally, chromosomes that do not fit the conditions (cannot satisfy the constraints)
would be evicted in the selection phase. However, some good genes may be removed too early in
this process, and the result may be not good enough. Different from the traditional GA design, which
uses the same selection method for the whole process, this paper designs the selection method in two
phases, as shown in Figure 2, loose selection and strict selection, which are adaptively applied in the
process of the GA to better get ideal results. When the optimization process is not near the termination,
the process executes the loose selection. In this case, it only eliminates the ones whose length is 0 or
higher than a loose threshold of clen. The threshold is clen +1/3clen in this paper. When the process nears
the termination condition, it would use strict selection. The chromosomes with the number of selected
questions exceeding clen would be removed. In this case, the loose selection is to prevent valuable
questions from being removed, and the strict selection is to satisfy the constraint of the number of
selected questions. After that, a new population forms.

The termination condition is used to end this process. In this paper, the condition is defined as the
number of iterations or epoch thresholds. It is manually given which is analyzed in Section 5. When
the number of epochs reaches the given threshold, then a result with the highest fitness value will be
selected. If the iteration is not enough, then, the process will proceed to the fitness calculation step.

5. Evaluation

In this section, a series of experiments are conducted to evaluate the quality and efficiency of the
proposed schemes. Compared with baseline methods, the quality of the selected questions and the
computation latency are evaluated.

5.1. Setup

The experiments are implemented on a commercial computer, which is equipped with 3.6GHz
processors and 16 GB memory. All models are implemented in Python 3.8. The Gurobi optimizer [49]
is used for the implementation of linear programming. The question bank data are collected and labeled
based on calculus problems in a textbook [50], which is widely used for college calculus teaching. The
labels include S c, tb and ns. vl and ve are computed automatically based on S c, tb, and ns. They are
illustrated in Table 1 in Section 3.2.
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Figure 5. The knowledge dependency graph (KDG) of the real question bank.
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Figure 6. The knowledge dependency graph (KDG) of the large question bank.

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3668–3694.



3684

The experimental question bank consists of two sets, namely a small question bank, and a large
question bank, which are named SmallSize and LargeSize in the following descriptions. To implement
this work, the KDG and all attributes of the question bank are extracted and analyzed by a group of
graduate students within two months. For the small question bank, 18 knowledge elements are ex-
tracted and modeled as a KDG, as shown in Figure 5. Based on this KDG, 206 real questions are
labeled. The cognitive taxonomy tb is labeled using Bloom’s taxonomy based on the rules in [51]. The
large question bank is set up based on 33 knowledge elements extracted from the chapters about deriva-
tion, including the definitions of derivation and continuity. The KDG for the large question bank is
shown in Figure 6. An edge in the KDG represents the dependency between two knowledge elements.
For example, the function continuity is established upon the definition of the function derivability. The
dependency is represented by an edge from node 19, which represents the function derivability, to node
20, which represents the function continuity in the KDG, as shown in Figure 6. Then, 5000 questions
are simulated based on this KDG. For simplicity, the number of steps ns is set as 1 for all simulated
questions. The question load distribution of the large question bank is similar to the small one.

In the experiments, we evaluate the effectiveness of multiple algorithms of question selection by
comparing the fitness value to the quality of the selected test similar to other works [6]. In the follow-
ing, Fitness represents the fitness value and is calculated by Equation 3.7. This value is combined by
the ED, CR, MD, and CD as defined by Equation 3.4, 3.3, 3.5 and 3.6, respectively. The efficiency is
evaluated by the total computation latency.

The compared solutions and the proposed schemes to be evaluated in our experiments are listed in
the following:

- RSF is the baseline method that randomly selects questions to form the test paper, as used in [1].
The best version of the RSF is used for comparison.

- GA is the question selection method based on the genetic algorithm, which initializes the popu-
lation using the randomization method; the selection method is the same in the whole process as
used in other works [4, 5, 7, 9].

- ACO is the question selection method based on ant colony optimization, which is applied in [15].
- PSO is the question selection method based on particle swarm optimization, which is applied

in [16].
- LP is the method based on the designed techniques of linear programming, which can obtain

optimal results under the given constraints.
- GA-AS is the proposed method that uses loose selection and strict selection.
- DPGA-AS is the optimized method that updates both population initialization and selection as

presented in Section 4.2.

Table 2. The Settings of ω for Four Cases.

ωED ωCR ωMD ωCD

Case 1 0.25 0.25 0.25 0.25
Case 2 0.4 0.2 0.2 0.2
Case 3 0.4 0.1 0.1 0.4
Case 4 0.1 0.4 0.25 0.25

The computation model for the quality of the question selection can be tuned by some weights (α,
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β, ω). The weights reflect the preference for the considered factors in the models. In this work, β is
automatically gained based on σ = 1/2 in Section 3.2. Other weights are averagely distributed among
all the related factors by default. α1 = α2 = α3 = 1/3, ω1 = ω2 = ω3 = ω4 = 1/4. We leave the deep
exploration of the design space constructed by different weight settings to future work. In this paper,
to evaluate the influence of the setting of ω, four cases of the test are evaluated. The detailed settings
are shown in Table 2. Case 1 is the default setting. Cases 2 and 3 are for the situations of classroom
quizzes that focus on some emphasized knowledge elements. Case 4 is for the conclusion tests, which
focus on the coverage of all learned knowledge elements.

The input data of the experiments include the key or emphasized knowledge set KS et for a test, the
load index lidx representing the expected average degree of the hardness of questions, and the constraint
of the total number of questions in a test clen by the instructors. The parameters used by the small and
large question banks are shown in Table 3.

Table 3. An example of input.

KS et lidx clen

SmallSize 5,13 0.5 10
LargeSize 19,21 0.8 10

For the GA-based models, the setting of the following parameters impacts the quality of the models:
the size of population np, the possibility of crossover pc, the possibility of mutation pm, and the
number of epochs. In this paper, the default setting of the np, pc, and pm is np = 200, pc = 0.9,
pm = 0.4, which are set based on many experiments. For the number of epochs or iterations, enough
iterations can produce high-quality results, while reducing epochs would improve the efficiency of the
selection algorithm because more epochs always lead to a higher latency. To select the proper number
of epochs, the change of Fitness with the increasing number of epochs is analyzed to find the turning
point of the curves in Figure 7. As shown in Figure 7, the curves of Fitness vs. the number of epochs
are drawn for two question banks. In Figure 7(a), the Fitness of GA-AS tends to be stable after 15
epochs and that of DPGA-AS becomes stable after 30. Thus, for the small question bank, 15 and 30
are selected for GA-AS and DPGA-AS, respectively. With the same logic, for the large question bank,
12 is chosen for both GA-AS and DPGA-AS, as shown in Figure 7(b).
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Figure 7. The selection of the number of epochs.
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5.2. Test quality

Table 5 shows the results in terms of the ED, CR, MD, CD, and Fitness of the algorithms for all
evaluated methods of two question banks in different cases. From the results, several conclusions can
be drawn. First, the quality of the RSF is not stable. There is one instance that shows a relatively high
fitness value. However, the performance of the instance is inferior in almost all evaluation metrics.
This indicates that the RSF is not practical to achieve multiple optimization goals.

Table 4. Test quality for evaluated schemes in the small dataset.
Case 1 Case 2 Case 3 Case 4

ED CR MD CD Fitness ED CR MD CD Fitness ED CR MD CD Fitness ED CR MD CD Fitness
RSF 0.37 0.67 0.76 0.97 0.69 0.37 0.67 0.76 0.97 0.63 0.37 0.67 0.76 0.97 0.67 0.37 0.67 0.76 0.97 0.73
GA 0.47 0.83 0.93 0.98 0.80 0.52 0.78 0.93 0.98 0.75 0.46 0.56 0.81 0.99 0.73 0.37 0.89 0.93 0.94 0.86

ACO 0.50 0.72 1 0.98 0.80 0.59 0.78 0.89 0.98 0.77 0.69 0.61 0.78 0.98 0.81 0.31 0.89 1 0.91 0.86
PSO 0.52 0.78 1 0.99 0.82 0.57 0.78 1 0.99 0.78 0.64 0.67 1 0.98 0.82 0.42 0.94 0.93 0.97 0.89
LP 0.52 1 1 0.97 0.87 0.67 0.89 1 0.91 0.83 0.74 0.67 0.65 0.99 0.86 0.47 1 1 1 0.95

GA-AS 0.52 0.94 1 0.98 0.86 0.67 0.89 1 0.86 0.82 0.74 0.67 0.66 0.97 0.85 0.42 1 0.93 0.99 0.92
DPGA-AS 0.52 0.94 1 0.99 0.87 0.64 0.83 1 0.95 0.82 0.74 0.67 0.66 0.98 0.86 0.47 1 1 1 0.95

Table 5. Test quality for evaluated schemes in the large dataset.
Case 1 Case 2 Case 3 Case 4

ED CR MD CD Fitness ED CR MD CD Fitness ED CR MD CD Fitness ED CR MD CD Fitness
RSF 0.18 0.67 0.68 0.92 0.61 0.18 0.67 0.68 0.92 0.53 0.18 0.67 0.68 0.92 0.55 0.18 0.67 0.68 0.92 0.69
GA 0.44 0.82 1 0.93 0.79 0.43 0.82 1 0.93 0.72 0.54 0.81 1 0.97 0.75 0.44 0.82 1 0.93 0.86

ACO 0.75 0.82 0.89 0.96 0.85 0.83 0.70 0.93 0.97 0.85 0.89 0.70 0.86 0.94 0.89 0.61 0.85 0.95 0.99 0.89
PSO 0.54 0.82 1 0.98 0.83 0.63 0.82 1 0.99 0.82 0.87 0.67 0.94 0.94 0.88 0.54 0.85 1 0.98 0.88
LP 0.81 0.82 1 0.93 0.89 0.92 0.70 1 0.91 0.89 0.92 0.70 0.70 0.99 0.95 0.41 0.94 1 0.99 0.91

GA-AS 0.71 0.82 1 0.97 0.87 0.85 0.70 1 0.98 0.87 0.85 0.70 0.78 0.99 0.92 0.50 0.88 1 0.99 0.90
DPGA-AS 0.71 0.81 1 0.96 0.87 0.92 0.70 0.78 0.98 0.86 0.92 0.70 0.78 0.98 0.95 0.51 0.91 1 1 0.91

The LP can always achieve the highest fitness values in all cases. However, the computation ef-
ficiency of this method is much lower than other methods, as shown in Section 5.3. Compared with
other methods, the performance of the proposed algorithms, GA-AS and DPGA-AS, are near the best
in all cases; in some cases, the DPGA-AS can achieve the best performance. For example, in Case
1, the Fitness of GA-AS and DPGA-AS are 24% and 27% higher compared with RSF in two question
banks. The Fitness values of GA-AS and DPGA-AS in two question banks are only 0.5%-2% lower
than that of the LP. In Case 3, the Fitness of DPGA-AS is the highest, which is 73%, 27%, 7%, and
8% higher than Random, GA, ACO, and PSO, respectively, in the large question bank. Similar results
can be gained in Case 4. In other cases, the DPGA-AS algorithm achieves satisfying Fitness values,
which are close to the Fitness value of GA-AS with a little improvement. Thus, the proposed methods
can obtain satisfying results for different settings of ω, which show that they are suitable for different
teaching situations. These results reflect the high effectiveness of the proposed algorithms.

5.3. Computation performance

To evaluate the efficiency of the proposed algorithms, the computation latency is recorded for all
experiments. Table 6 shows the results of the LP, GA-AS, and DPGA-AS in all cases for two question
banks. Additionally, to show the efficiency of the proposed method DPGA-AS, the relative speed-up
ratio is presented in this table.
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Table 6. Computation latency.
Case 1 Case 2 Case 3 Case 4

SmallSize LargeSize SmallSize LargeSize SmallSize LargeSize SmallSize LargeSize
Lat.(s) Spd.up Lat.(s) Spd.up Lat.(s) Spd.up Lat.(s) Spd.up Lat.(s) Spd.up Lat.(s) Spd.up Lat.(s) Spd.up Lat.(s) Spd.up

LP 0.6 1x 9596.1 4171x 0.7 1x 9660.8 4024x 0.6 1x 9284.3 4420x 0.5 2x 9432.2 4491x
GA-AS 1.1 3x 7.4 2x 1.1 3x 7.7 3x 1.2 3x 6.8 2x 1 4x 7.0 2x

DPGA-AS 0.3 2.3 0.3 2.4 0.2 2.1 0.2 2.1

Spd.up is the speed up by DPGA-AS compared with LP and GA-AS, respectively.

2000 2500 3000 3500 4000 5000
LP 154.1 263.0 365.9 1424.7 5840.9 9596.1
GA-AS 3.1 3.4 4.1 4.9 5.5 7.4
DPGA-AS 1.3 1.6 1.8 2.6 2.2 2.3

1.0

2000.0

La
te

nc
y 

(lo
g(

10
))

The size of question bank

LP GA-AS DPGA-AS

Figure 8. The change of latency with the increasing of the size of question bank (The data
are from simulated 5000-size question bank).

For all cases, DPGA-AS is much faster than the other two methods. In Case 1, the latency of
DPGA-AS is reduced by 78.2% and 68.9% in two question banks, respectively, as compared with GA-
AS. Moreover, similar results can be gained in other cases. The reasons why DPGA-AS can speedup
are as follows: as to small question bank, DPGA-AS can help the GA converge faster. Thus, with fewer
epochs, the latency can be significantly decreased. As to the large question bank, the number of epochs
for two question banks is the same; however, the number of epochs can be set as fewer for DPGA-AS,
where the latency is also noticeably decreased. This is because the size of population np reduces more
rapidly with the increasing iteration in DPGA-AS. Therefore, with a smaller population, the latency
can also be reduced.

In Case 1, DPGA-AS is 1x and 4171x faster in the two question banks, respectively, as compared
with LP. Moreover, similar results can be gained in other cases. While the LP can always get the
optimal Fitness value, the cost is exponentially increased with the increase in the size of the question
bank, as shown in Figure 8. The Fitness values of GA-AS and DPGA-AS are close to that of the LP
with 1-2% reduction; however, the latency is much slower than the LP, especially with a large question
bank. It shows that questions can be selected with both high quality and high efficiency using the
proposed DPGA-AS algorithm with good scalability.

5.4. Parameter analysis

In this section, some critical parameters and their impacts on the fitness value and computation
latency are analyzed and discussed. As to the GA-based methods, the size of population np, the
possibility of crossover pc, the possibility of mutation pm, and the number of epochs would impact the
quality of models.
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Figure 9. The change of Fitness of two proposed schemes for the small question bank in the
case one with the increasing of np when pc = 0.9, pm = 0.4.
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Figure 10. The normalized latency of two proposed schemes for the small question bank
with the increasing of np when pc = 0.9, pm = 0.4.

Figure 9 presents the change of the Fitness with the increase in the size of the population np. Here,
we only show the result when pc = 0.9 and pm = 0.4, the trends are similar in most situations. In
this figure, the overview trend is that the quality grows as the size of the population np increases.
The quality of tests generated by the GA-AS algorithm is worse than DPGA-AS until np = 150; after
np = 150, its quality value turns out to be stable. As to DPGA-AS, the trend is unstable before
np = 100, but the quality is always better than GA-AS; after that, the trend tends to be stable. The
Fitness is almost unchanged after np = 180 for both GA-AS and DPGA-AS algorithms. Therefore,
np = 200 is set as a reasonable population size in the experiments. Figure 10 shows the normalized
latency along an increase of the np: the latency of GA-AS grows significantly as np increases, while
the computation latency of DPGA-AS grows slowly. When the population grows, the gap of latency
between GA-AS and DPGA-AS expands significantly. It concludes that the quality of the question
selection model improves with an increasing population with a cost of computation latency. Therefore,
the population parameter np needs to be carefully selected to balance the requirements of effectiveness
and efficiency.

The change of the Fitness of two schemes with various settings of the possibility of crossover pc
and the possibility of mutation pm is shown in Figure 11(a) and Figure 11(b), respectively. The red
line represents the Fitness value across various pc with pm set as 0.4. Several observations can be
gained from Figure 11(a) and Figure 11(b). First, in most cases, the quality of generated tests improves
when the pc increases. The Fitness value of the GA-AS algorithm tends to be stable after pc = 0.7 for
pm ≤ 0.8; the Fitness value of the DPGA-GA algorithm tends to be stable after pc = 0.8 for pm ≤ 0.6.
Second, when the pm is too large, the quality drops. In Figure 11(a), the quality value drops when
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Figure 11. The change of Fitness with the increasing of pc and pm when np = 200.(a)
GA-AS; (b) DPGA-AS.

pm ≥ 0.8. And similarly in Figure 11(b), the quality drops when pm ≥ 0.7. Therefore, we choose the
default setting as pc = 0.9, pm = 0.4, which is in a reasonable range.

The settings of the pc and pm parameters also have impacts on the computation latency. Figure
12(a) shows the change of latency with the increasing of pc when pm = 0.4 and np = 200. The
experimental data show that the latency of the GA-AS algorithm is sensitive to the value of pc. The
latency rises faster for the GA-AS algorithm as compared to DPGA-AS. In other words, the parameter
pc has to be carefully chosen for the GA-AS algorithm, while it is not a major factor that impacts the
efficiency of the DPGA-AS algorithm.
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Figure 12. The normalized latency of two proposed schemes for the small question bank (a)
with the increasing of pc when pm = 0.4, np = 200; (b) with the increasing of pm when
pc = 0.4, np = 200.

As a result, we can mainly focus on the quality improvement when choosing the pc for the DPGA-
AS method. Figure 12(b) shows the change of latency with an increase in the pm when pc = 0.9 and
np = 200. The overall trend for both GA-AS and DPGA-AS algorithms is that the latency drops as
the pm grows. The decline of latency for the DPGA-AS method is slower than that of GA-AS. For
the GA-AS algorithm, the latency rapidly drops for the pm > 0.6. As to the DPGA-AS algorithm, the
latency gradually decreases. As a result, the impact of the pm on efficiency is much smaller than that
on the effectiveness of the DPGA-AS algorithm. The experimental results indicate that the DPGA-AS
is stable and easy to tune when both the effectiveness and the efficiency are considered.
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6. Conclusion and future work

This paper has addressed several problems, including quantifying the quality of tests with multiple
objectives, designing the technique of linear programming to gain the optimal results of this problem,
improving the test quality based on GA-based question selection, and enhancing the efficiency of the
GA-based question selection technique. First, by analyzing real requirements from educators, the qual-
ity of tests is quantified based on four aspects: the emphasis degree on key knowledge elements, the
coverage of the to-be-tested knowledge set, the matching degree to the expected question taxonomies,
and the closeness to the expected difficulty of generated tests. Then, the technique of linear program-
ming is designed for this objective function to get the optimal test quality. However, this method is
not efficient enough. Thus, we propose a dynamic programming guided GA method, DPGA-AS, to
optimize the quality of tests with high efficiency. Some single-objective optimization problems are ex-
plored and analyzed based on a dynamic programming method to improve the population initialization
of GA, and an adaptive selection method is designed to improve the performance of the GA. In our ex-
periments, a real question bank is analyzed and used for the evaluation. Compared with other methods,
the proposed methods can get the tests with high quality, high efficiency, and good scalability. The
quality is near optimal compared with the technique of linear programming. The proposed method,
DPGA-AS, is over 4000× faster than the technique of linear programming for a 5000-size question
bank.

This work exhibits certain limitations that can be addressed in the future. The application of a
weight sum format to transform multiple objective problems into a single objective format introduces
certain constraints. The manual setting of weights for each objective imposes a burden on practical
applications. Consequently, our future work will explore approaches for automatically adjusting the
weights of fitness functions, thereby taking multiple objectives into consideration. Moreover, this
format may compromise optimal results when the result space is non-convex. Therefore, alternative
methods for solving multiple objective problems will be thoroughly investigated. Additionally, this
paper tries to explore the effective computation models and methods that capture the real requirements
of educators to generate high-quality tests automatically. We believe that the computation model and
methods are open to new ideas and improvements when we acquire new understandings of the teaching
and learning process.
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