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Abstract: A Multiscale-Motion Embedding Pseudo-3D (MME-P3D) gesture recognition algorithm
has been proposed to tackle the issues of excessive parameters and high computational complexity en-
countered by existing gesture recognition algorithms deployed in mobile and embedded devices. The
algorithm initially takes into account the characteristics of gesture motion information, integrating the
channel attention (CE) mechanism into the pseudo-3D (P3D) module, thereby constructing a P3D-C
feature extraction network that can efficiently extract spatio-temporal feature information while reduc-
ing the complexity of the algorithmic model. To further enhance the understanding and learning of the
global gesture movement’s dynamic information, a Multiscale Motion Embedding (MME) mechanism
is subsequently designed. The experimental findings reveal that the MME-P3D model achieves recog-
nition accuracies reaching up to 91.12% and 83.06% on the self-constructed conference gesture dataset
and the publicly available Chalearn 2013 dataset, respectively. In comparison with the conventional
3D convolutional neural network, the MME-P3D model demonstrates a significant advantage in terms
of parameter count and computational requirements, which are reduced by as much as 82% and 83%,
respectively. This effectively addresses the limitations of the original algorithms, making them more
suitable for deployment on embedded and mobile devices and providing a more effective means for the
practical application of hand gesture recognition technology.

Keywords: computer vision; image processing; gesture recognition; P3D convolution; deep learning;
attention mechanism

1. Introduction

With the continuous advancement of computer science, human-computer interaction and communi-
cation with various intelligent devices have become integral aspects of daily life [1]. Gesture language,
as a unique form of communication, has garnered widespread attention due to its natural and intu-
itive characteristics. Although it may not be as convenient as spoken communication, gestures can
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still accurately convey users’ emotional information. As an indispensable key technology for future
human-computer interaction, vision-based gesture recognition technology has emerged as a current
research focus. However, the specificity, diversity, and polysemy of gestures themselves, coupled with
the complexity of the human hand structure and limitations in computer vision technology, have made
vision-based gesture recognition a challenging research domain that has attracted numerous researchers
to dedicate their efforts to it [2].

Gesture recognition techniques can be broadly classified into two primary categories: wearable
sensor-based and computer vision-based. Initially, gesture recognition methods relied on electromag-
netic gloves and other wired devices directly connected to the computer. In this approach, hand in-
formation was transmitted to the computer recognition system for further processing. Xue et al. [3]
employed Cyber Glove data gloves in conjunction with a hybrid method to identify ten distinct types
of gestures. Although this method demonstrated a high degree of accuracy in gesture detection, its
practical applicability is constrained due to factors such as the costly nature of data gloves and the
cumbersome wearing process [4]. In 2020, Zhang et al. [5] developed a flexible wearable data glove for
acquiring human gesture data and employed a radial basis function neural network for gesture capture
and recognition, achieving 88.73% recognition accuracy. In contrast, vision-based gesture recognition
technology has gradually reduced its dependence on hardware devices since its development began in
the 1990s. Dardas et al. [6] addressed the challenge of gesture tracking and recognition in complex
scenarios by extracting hand keypoints using SIFT features and SVM classifiers and training a model
to recognize ten different gestures. However, this method requires keypoint extraction prior to recog-
nition, which is less efficient to execute and often necessitates the design of some effective feature
extraction schemes to enhance gesture recognition performance.

The progression of computer hardware and software has facilitated the extensive application of
deep learning [7], which has also opened up new avenues of exploration in the field of gesture recog-
nition. A prior scholarly investigation by Barros et al. [8] proposed a multi-channel convolutional
neural network model for real-time gesture recognition that enhanced the classification features with
a cubic convolutional kernel. Gnanapriya et al. [9] proposed an enhanced two-stage integrated model
combining U-NET and convolutional neural networks for gesture segmentation and recognition. With
the progression of technological tools, research on gesture recognition methods has also made sub-
stantial strides. Miao et al. [10] employed the ResC3D convolutional neural network in addressing
dynamic gesture recognition, merging the advantages of the residual network and the 3D convolutional
neural network [11]. This approach can extract spatio-temporal features while learning deep infor-
mation. In the ChaLearn LAP of 2017 [12], it achieved favorable results in the multimodal isolated
gesture recognition challenge. Wang et al. [13] employed gesture contour features extracted using
the slope difference distribution (SDD) method for recognition. Initially, the hand contour was ex-
tracted, followed by the calculation of the peaks and valleys of the hand contour through the SDD
algorithm for model matching recognition. Gao et al. [14] improved the 2D hand pose estimation
based on the OpenPose method, developed a fast 3D hand pose estimation approach, and utilized a
weighted fusion method to combine RGB, depth, and 3D skeleton data of the gesture. Finally, they
employed the 3DCNN+ConvLSTM framework to recognize and classify the combined dynamic ges-
ture data, effectively enhancing the recognition performance. However, the algorithmic model of this
method is large and unsuitable for deployment on mobile and embedded devices. Li et al. [15] utilized
millimeter waves for gesture recognition and devised a data enhancement framework to compute the
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correlation between signal and gesture changes. They also segmented the gesture image to enhance
computational efficiency. The method extracts spatio-temporal information from dynamic windows
for gesture recognition, further advancing the development of gesture recognition technology. Cur-
rently, behavior recognition techniques rooted in skeleton data have achieved commendable recogni-
tion outcomes [16–20], as they provide granular details concerning the positioning of human joints
and movement trajectories. This attribute is particularly instrumental for the accurate recognition of
intricate and continuous actions. However, it should be noted that the domain of gesture recognition is
inherently more circumscribed compared to the broader scope of behavior recognition. Consequently,
temporal sequences extracted using information from the skeleton network tend to exhibit a lesser de-
gree of variation. Therefore, directly transplanting these methods onto gesture recognition tasks may
encounter certain inherent limitations.

Since convolutional neural networks (CNNs) have demonstrated remarkable accuracy in the domain
of image classification tasks, a growing number of researchers have ventured into investigating their
application to video understanding, particularly within the realm of gesture recognition. Although both
motion recognition and image classification are fundamentally classification problems, they present nu-
merous challenges and intricacies when dealing with sequential video frames due to the distinct natures
of video data and the differing types of feature information that must be extracted. In action recognition
contexts, it is imperative not only to consider spatial feature details within each video frame—such as
hand position, hand morphology, and environmental features—but also temporal dynamics between
frames, including the kinematic trend of the hand movement. This necessitates a holistic approach that
captures both spatial and temporal aspects effectively.

In this study, we propose the MME-P3D algorithm. Firstly, a P3D-C network is designed for end-
to-end gesture recognition. This network combines the channel attention mechanism CE with the
P3D network to model the channel relationship of input features, obtaining the channel information
weight distribution of the features. By strengthening useful channel features and suppressing irrel-
evant ones, it enhances the feature extraction capability of the P3D-C network. Subsequently, the
Multiscale-Motion Excitation (MME) mechanism for pooling motion attention is integrated into the
P3D-C network. Explicit motion features are constructed by computing the feature differences between
two adjacent frames, focusing on and extracting the temporal feature information throughout the en-
tire gesture movement process. This enables the algorithmic model to better understand and learn the
dynamic information during gesture movement, significantly improving the accuracy and efficiency of
gesture recognition. The primary contributions of the MME-P3D-based gesture recognition algorithm
are briefly summarized as follows:

1) We designed a feature extraction network, P3D-C, tailored to the characteristics of gesture motion
information. The network employs a pseudo-3D convolution structure to simulate 3*3*3 convolution
for spatio-temporal feature extraction, effectively reducing the number of parameters. Concurrently,
we integrated the channel attention (CE) mechanism into the P3D convolution to further enhance the
feature extraction capability of the P3D convolution block.

2) We developed a multi-scale motion attention mechanism, MME, that constructs explicit mo-
tion features by computing feature differences between adjacent frames. This significantly reduces
the number of parameters and computation required by the model while substantially improving the
performance and efficiency of gesture recognition.

The remaining sections of the article are organized as follows: The first part presents a review
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of the state-of-the-art research related to gesture recognition. The second part briefly introduces the
lightweight technology of convolutional neural network. The third part provides a detailed description
of the MME-P3D gesture recognition algorithm. The fourth part showcases and analyzes the results of
comparative experiments. Lastly, the fifth part summarizes the algorithm.

2. Related works

Gesture recognition is essentially a form of image classification that necessitates two pivotal stages:
feature extraction and subsequent classification. In the initial phase, the extraction process entails dis-
cerning critical attributes that distinctly characterize a gesture, such as contours, textures, and colors,
from the input visual data. The derived features are then subjected to classification in order to differen-
tiate between various types of gestures. The CNNs have emerged as a pivotal technology for achieving
both efficient and accurate gesture recognition in this domain.

With the pervasive use of mobile and embedded devices, deploying CNNs on edge devices holds
substantial practical significance and relevance. However, the relentless pursuit of heightened recog-
nition precision and performance has led to an increasing depth in network model layers, escalating
complexity, surging numbers of parameters, and computational demands. Consequently, there’s a de-
crease in the inference speed of these models, along with a substantial occupation of memory and
computational resources. Given the inherently constrained computational and storage capacities typ-
ical of mobile and embedded systems, deploying these resource-intensive models proves challeng-
ing, limiting their applicability and impeding widespread adoption. Thus, striking an optimal balance
among accuracy, inference speed, and model size becomes imperative. This has rendered the adapta-
tion of convolutional neural network structures a pressing research topic in the academic community.
In recent years, numerous research endeavors have focused on reducing the number of parameters and
operations in models by optimizing 3D convolutional structures. Xu et al. [21] proposed an online
lightweight two-stage framework for accurate detection and classification of dynamic gestures for a
single RGB camera on raw video streams in real scenarios, which solves the challenge of fast and
accurate recognition of gestures in real systems. Qiu et al. [22] introduced a pseudo-3D convolutional
network that employs a pseudo-3D convolutional structure to simulate 3D convolutional operations, ef-
fectively addressing the issue of oversized network models caused by traditional 3D convolution. This
improvement enhances the efficiency and performance of classification and recognition tasks, with a
multitude of experimental results verifying the validity and feasibility of the pseudo-3D convolutional
structure. Moreover, deep learning models such as R (2+1) D [23] and S3D [24] have also been exten-
sively analyzed in numerous experiments. These studies demonstrate that it is feasible to decompose
the 3D convolution operation into a 2D convolution in the spatial dimension and a 1D convolution in
the temporal dimension, thereby combining spatial feature information with temporal feature infor-
mation. This approach significantly reduces the number of parameters and computational complexity,
improving the algorithmic model’s efficiency and enhancing the network’s robustness. However, while
converting the convolution operation can effectively reduce the number of parameters and improve
computational efficiency, due to the limitations of kernel size, this optimized neural network can only
extract encoded short-term motion feature information within a small and fixed-length time-domain
window. As a result, it is difficult to obtain the complete time-series motion feature information for the
entire action process, which may decrease gesture recognition accuracy to some extent.
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3. MME-P3D gesture recognition algorithm

The MME-P3D gesture recognition algorithm is mainly composed of CE-P3D convolution and
ME attention mechanisms, combined with classification tasks for training and optimization. To re-
duce the number of parameters and computation in the algorithm model, we employ a P3D convo-
lution kernel to simulate 3D convolution for extracting spatio-temporal features of gesture actions.
Subsequently, global spatio-temporal information is modeled through multi-scale channel attention
to strengthen valid information while suppressing invalid information, thereby enhancing the feature
extraction capability of the algorithmic network. Furthermore, we integrate the MME as an adjunct,
which constructs explicit motion features by calculating feature differences between adjacent frames.
This aids the algorithmic model in better understanding and learning dynamic information during ges-
ture movement. The overall architecture of this network model is depicted in Figure 1.

Figure 1. Overall framework diagram of MME-P3D gesture action recognition network.

3.1. P3D-C network

In this paper, a feature extraction network (P3D-C network) is constructed using P3D convolution.
The structure of the network is schematically depicted in Figure 2 and comprises four P3D convolution
blocks.
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Figure 2. P3D-C Network structure diagram.

Firstly, spatio-temporal features are extracted from the input feature based on the P3D convolutional
layer, where H, W, T , and C denote the height, width, temporal depth, and the number of channels
of the feature map, respectively. In the P3D convolutional block, the spatio-temporal features are
extracted by a pseudo-3D convolutional structure (consisting of a 1 ∗ 1 ∗ 3 convolutional layer and a
3 ∗ 3 ∗ 1 convolutional layer) to simulate 3 ∗ 3 ∗ 3 convolution to achieve the purpose of reducing the
number of parameters. The formula for the number of 3D convolutional layer parameters is (kh ∗ kw ∗

kt*nic + 1) ∗ noc , where kh,kw,kt are the sizes of 3D convolutional kernels in the three dimensions of
height, width, and time, nic is the number of channels of the input feature map, and noc is the number
of 3D convolutional kernels. Secondly, the channel attention (CE) mechanism is incorporated into
the P3D convolutional block, which models the channel relationship of the input features, and is able
to obtain the channel information weight distribution of the features, strengthen the useful channel
features, and suppress the irrelevant channel features, so as to enhance the feature extraction capability
of the P3D convolutional block. Finally, the output features of the P3D convolution block are obtained
by fusing the output features of the 1 × 1 × 1 convolution layer and the output features of the CE
module using a feature fusion layer. The structure of the channel attention is schematically depicted in
Figure 3.

Figure 3. Channel attention (CE) structure diagram.
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In the P3D-C network, N, T , C, H, W represent the batch size, the number of segments, the number
of channels, and the height and width of the input image respectively. Firstly, the spatial average
pooling is performed on the given input x ∈ R[N,T,C,H,W] to obtain the spatial information of the input
features, and the tensor F ∈ R[N,T,C,1,1] is obtained. Secondly, the 1 × 1 convolution kernel is used
to compress the number of channels to 1/16 times of the original, and the tensor Fr is obtained. Fr

has the receptive field of global spatio-temporal features to improve the extraction and learning ability

of feature information. Then, Fr is reconstructed to F∗r ∈ R[N,C/r,T,1,1], and F∗r is processed by 1 × 1
convolution k2 with kernel size 3 to obtain F∗temp. In this way, temporal reasoning is performed on
the information of the same channel at different times to perceive the temporal information of the

channel range, and F∗R ∈ R[NC
/r,T1,1] is obtained by restoring the shape of Tensor using reshape. A 1× 1

convolution kernel k3 and the activation function Sigmoid are used to obtain the channel excitation
matrix M ∈ RN∗T∗C*1*1. Finally, the two vectors are added to obtain the output result. The calculation
process can be expressed in Eqs (3.1)–(3.6):

F =
1

H ×W

H∑
i=1

W∑
j=1

X[:, :, . . . , i, j] (3.1)

where x denotes a four-dimensional tensor, which in CNN represents the input feature map with di-
mensions (Batch Size, Channels, Height, Width). H and W denote the height and width of the feature
map respectively. F is the output value after global average pooling.

Fr = K1 ∗ F (3.2)

F∗temp = k2 ∗ F∗r (3.3)

F0 = K3 ∗ Ftemp (3.4)

where K1, K2, K3 denote the transformation kernels, Fr denotes the feature vector after the transfor-
mation of K1. K3 is used to perform a weighting operation on Ftemp, and F0 denotes the final feature
vector generated after processing by K3.

M = σ(F0) (3.5)

out = F + F0 ⊙ F (3.6)

where out is the feature output from the CE module, σ denotes the sigmoid function operation, and ⊙
denotes the feature fusion operation.

3.2. Multiscale motor attention

In the 3D convolution process, target features in output features are derived from input features and
the convolution kernel through a local inner product operation within the receptive field. Consequently,
3D convolution only considers local information in input features during feature extraction. However,
when processing video frame sequences, target features may depend not only on local feature informa-
tion in input features but also on other spatio-temporal feature information, such as motion features. To
address this, we designed a multi-scale motion attention (MME) mechanism. Explicit motion features
are constructed by calculating feature differences between adjacent frames. This approach significantly
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reduces the number of parameters and computational effort of the model compared to the optical flow
method [25], which calculates luminance differences between neighboring pixels in a two-frame im-
age.

The schematic structure of the motion attention mechanism is shown in Figure 4. By incorporating
the multi-scale motion attention mechanism, our method can better capture and utilize spatio-temporal
feature information in video frame sequences without adding excessive computational burdens, thereby
enhancing the accuracy and efficiency of gesture recognition.

Figure 4. Multiscale motor attention (MME) structure diagram.

Firstly, the feature x ∈ RN∗T∗C∗H∗W is subjected to a 1 × 1 2D convolution for dimensionality reduc-
tion, resulting in P(t)P(t + 1)P(t + 2) ∈ R[N,C/16,H,W]. Subsequently, the difference map is computed by
grouping two adjacent frames of the image. The computation process is shown in Eq (3.7):

dT = Conv3*3(XT+1) − XT (3.7)

where XT denotes the input feature map at time step T , and XT+1 denotes the input feature map at
time step T + 1, i.e., the next frame of features immediately following XT . Conv3 ∗ 3 denotes a 3 × 3
convolution operation.

Then, the t−1 difference maps are stacked according to the time dimension. Due to the influence of
shooting conditions, moving objects may have positional offsets between two adjacent frames. If the
spatial sensing field is small, direct phase subtraction of the corresponding positions of the feature maps
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can result in feature semantic mismatches and produce misclassification issues. To address this, a 3×3
spatial convolution is used to fuse neighborhood features before phase subtraction. Subsequently, the
difference map is spliced into the time dimension. Since t frames of motion images can only generate an
output of t-1 frames after the difference, to ensure data integrity, the t-th frame is complemented with 0
to obtain a complete Dr. Next, the DT is inputted into the multiscale pooling (MP) layer. The structure
of the multiscale pooling layer is schematically shown in Figure 5. The downsampling operation is

performed through the multiscale pooling layer to obtain DmT ∈ R[N,T,C/16,1,1]. Motor attention weight
coefficients XmT ∈ R[N,T,C,1,1] are generated through the Softmax activation function. After obtaining
the motor attention weight coefficients, they are element-wise multiplied with residual linking to the
input feature x ∈ RN∗T∗C∗H∗W , ultimately yielding the output feature F ∈ R[N,T,C,1,1] of the MME.

Figure 5. Multiscale Pooling (MP) layer structure diagram.

The multi-scale pooling layer structure consists of the largest pooling layers with pooling kernel
sizes of 2, 4, and 6, respectively. The multi-scale pooling layer structure enables the features to be
compressed from multi-dimensions and the pooled features of different scales to be extracted, which
makes the network able to learn the feature information under different scales. The MME mechanism
efficiently captures key information about action changes by comparing feature differences between
consecutive video frames. Firstly, feature dimensionality reduction is performed, and then the dif-
ference maps between neighboring frames are computed and spliced in the time dimension to ensure
data integrity. To obtain comprehensive time-series motion features, MME not only targets a single
pair of adjacent frames but also applies a multi-scale pooling operation across the entire video se-
quence to analyze multiple pairs of consecutive frames so as to extract action information at different
granularities. Finally, the local temporal features are integrated to construct a complete time-series
motion feature representation so that the model can focus on the continuity and coherence of the sig-
nificant action change points and the overall action process at the same time and effectively analyze
and understand the motion pattern of the whole time-series. Meanwhile, the multi-scale pooling layer
structure reduces the size of the feature maps in the MME, which reduces the amount of computation
and parameter counts in the model.

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3594–3617.



3603

4. Experiments

To validate the effectiveness and feasibility of the MME-P3D model in dynamic gesture recognition
tasks and to further assess its complexity, we conducted experiments on both a self-constructed dataset
(S-MGD) and a public dataset (ChaLearn 2013). The hardware environment for this experiment in-
cludes an NVIDIA Tesla V100 16 G graphics card, an Intel (R) Xeon (R) Gold 5218R 10-core CPU,
and 29 GB of DDR4 RAM. The software platform consists of the Ubuntu 20.02-LTS operating system,
Python version 3.7.10, Tensorflow version 2.27.0-GPU, CUDA version 10.1.105, and cuDNN version
7.6.4.

4.1. Dataset

4.1.1. Chalearn 2013 dataset

The Chalearn 2013 dataset is a large-scale, multimodal dynamic gesture dataset consisting of 20
Italian Sign Language gestures performed by 27 participants. The specific types of gestures can be
observed in Figure 6. To facilitate analysis and evaluation, the dataset is divided into three subsets: the
training set, the validation set, and the test set, with a distribution ratio of 7:2:1. Each gesture sample
in the dataset includes color data, depth data, mask data, and skeletal joint point data. For our study,
which focuses on vision-based gesture recognition, we exclusively utilized the color (RGB) data from
the Chalearn 2013 dataset. In this particular experiment, we randomly selected six categories of sign
language gesture movements from the training set’s color data, extracting 200 movements for each
gesture as experimental samples. These samples are then compiled and utilized for subsequent model
training and performance evaluation.

Figure 6. Chalearn partial gesture samples in the dataset.
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4.1.2. Self-constructed dataset

Addressing the challenges in the field of dynamic gesture recognition and the limitations of exist-
ing publicly available datasets, we constructed a small-scale meeting gesture dataset, S-MGD (Self-
established Meeting Gesture Dataset), from practical application scenarios. The dataset simulates real
meeting scenarios for filming and encompasses five common gestures for controlling presentation soft-
ware: capture, clicking, rotate, translation, and zoom.

1) Data collection and labelling
The S-MGD dataset employs a monocular RGB camera to record gesture instances, with the ges-

tures of ten distinct demonstrators being captured across five action categories under varying back-
ground conditions, distances, and angles. Prior to capturing each demonstrator’s gestures, the film-
maker meticulously examined the recording environment, shooting angle, and quality of sample ac-
quisition. Following this thorough inspection, the acquisition of gesture data samples commenced.
To streamline the process, enhance efficiency, and facilitate operator handling, demonstrators were
instructed to perform the designated gesture actions continuously and uniformly for 90 seconds in
accordance with the acquisition personnel’s guidelines. They were required to pause for 5 seconds be-
fore transitioning to different gesture types, thereby easing annotation and cleaning tasks in subsequent
stages. Each demonstrator was tasked with recording gestures across six scenes, encompassing three
diverse light intensity levels and two alternative background environments.

Post the collection of gesture movement samples, the annotation process ensued. The essential step
involved identifying the complete action clips of each gesture from every recorded video and cate-
gorically labeling them with their corresponding gesture class. Any gestures that did not align with
the predefined set of five controlling presentation categories were systematically labeled as ‘no back-
ground’ gesture category. The comprehensive data specification for the S-MGD dataset is presented in
Table 1.

Table 1. Overview of S-MGD data sets.

Item Data specification
Modalitites RGB
Total number of videos 2071
Total number of freams 64,317
Number of classes 5
Number of actors 10
Avg.duration of videos 18
Avg.number of videos per class 364

To maintain consistency with the Chalearn 2013 dataset, we have standardized the image dimen-
sions to 112 × 112 pixels. When the original image scale is smaller than the cropping scale, a bilinear
interpolation up-sampling technique is employed for enhancement, thereby improving image clarity
and ensuring effective gesture recognition classification. A selection of gesture samples is depicted in
Figure 7.

Furthermore, the data length distribution of S-MGD predominantly concentrates within the range
of 5–40 frames, accounting for 80.8% of the entire gesture dataset, manifesting a distinct concentra-
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tion pattern. Unlike publicly available gesture datasets that typically encompass a limited number of
samples with extensive variability in sample lengths, S-MGD uniquely focuses on the variability and
diversity of gesture presentation speeds through the lens of sample lengths—a dimension that has been
underappreciated and underemphasized in other public gesture datasets. Not only does S-MGD ex-
hibit an overall high degree of sample length variability, but it also showcases rich variability across
different gesture categories. For instance, rotation gestures primarily span between 16 and 32 frames
in length, constituting 70.9% of the total samples, with only a sparse number exceeding 32 frames.
Conversely, zoom gestures mostly fall within the range of 32–48 frames, representing 61.4% of the
aggregate samples, with very few instances surpassing 48 frames in duration. The temporal dura-
tion of gestures varies significantly among categories, and correspondingly, so does the sample length
variability within the dataset, which aligns more closely with real-world scenarios.

(a) Clicking

(b) Translation

(c) Zoom

(d) Rotate

(e) Capture

Figure 7. Some gesture samples in the conference gesture dataset S-MGD.

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3594–3617.



3606

4.2. Data preprocessing

During the experiment, we processed the Chalearn 2013 dataset to maintain consistent row and
column scales with the 20bn-Jester dataset (normalized to 112*112px). When the image scale was
smaller than the cropping scale, we utilized bilinear interpolation up-sampling to enhance image clarity
and ensure effective gesture recognition classification. To evaluate model performance, we randomly
shuffled all samples and divided the training and test sets of the Chalearn 2013 and S-MGD datasets
in a 4:1 ratio. This data partitioning strategy ensures independence between the training and test sets,
rendering our experimental results more reliable.

4.3. Parallelism analysis

This section first assesses the parallel computing capability of the MME-P3D algorithmic model
and compares it with the RNN-Model network [26] and the C3D [27] network in a comparative ex-
periment. Among these, the RNN-Model is a neural network with a recurrent structure that updates
its parameters by minimizing the difference between predicted and true results. The C3D network
employs 3D convolutional kernels for convolution operations, effectively capturing spatio-temporal in-
formation in videos. The network structure of MME-P3D will not be discussed further in this context.
In our experiments, we set the batch size to 8 and measured the parallel computing performance of
each model using the inference time per batch.

Figure 8. Model running speed comparison.

The results of comparing the running speeds of the three algorithmic models in the same exper-
imental environment are presented in Figure 8. Due to the serialized computation of the recurrent
neural network model RNN-Model, i.e., each moment’s computation requires waiting for the result of
the previous moment’s computation, its parallel computing capability is poor, necessitating 372 ms to
complete training per batch. In contrast, the C3D network model requires a training time of 409 ms,
which is even less efficient due to the fact that the C3D network uses three-dimensional convolution,
resulting in a larger number of parameters in the model. The MME-P3D algorithm model proposed in
this paper only requires 169 ms to complete the operation, with a time cost of approximately 42% of the
C3D network and 45% of the RNN model, representing a significant advantage in terms of operational
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speed. This improvement is mainly attributed to MME-P3D’s adoption of P3D convolution to simulate
3D convolution for spatio-temporal feature extraction and learning, significantly reducing the model’s
complexity. Experimental results demonstrate that the MME-P3D network framework possesses good
parallel computing ability, which is crucial for enhancing the real-time performance and practicality of
gesture recognition tasks.

4.4. Ablation studies

To investigate the effect of the number of P3D blocks (N) on the number of parameters, the number
of computations (FLOPs), and the gesture recognition accuracy of the MME-P3D model, we con-
ducted ablation experiments using the conference gesture dataset S-MGD. In these experiments, we
set different numbers of blocks N (N = 2, 4, 6, and 8) to explore the relationship between model size
and accuracy.

Table 2 and Figure 9 depict the relationship between the number of blocks and the number of model
parameters and computations. For all experiments, we initialized weights using the He normal distribu-
tion method and trained them using the stochastic gradient descent (SGD) optimization algorithm [22]
with a momentum parameter of 0.9. We set the initial learning rate parameter to 0.001 and performed
a total of 30 training epochs.

Table 2. The effect of the number of blocks on model size.

Model Number of blocks Parameter quantity/M FLOPs/G
N = 2 28.67 61.05

MME-P3D N = 4 33.93 73.67
N = 6 39.19 86.29
N = 8 44.45 98.91

From the data in Table 1, it can be observed that both the number of parameters and computational
requirements of the MME-P3D model increase as the number of blocks increases. Specifically, when
the block count is raised from N = 2 to N = 4, the parameter count in the MME-P3D model grows from
28.67 to 33.93 M, a rise of approximately 5.26 M, while the computational load (FLOPs) escalates from
61.05 to 73.76 G, an increment of about 12.71 G. It is worth noting that despite variations in the number
of block modules, the changes in the parameter count and computational demand of the MME-P3D
model remain relatively modest. The P3D model exhibits a smaller alteration in these aspects due to
its use of a pseudo-3D convolutional kernel instead of a conventional 3D convolutional kernel, which
leads to fewer parameters per block. Therefore, even if the number of blocks expands, it does not have
a disproportionately large effect on the overall size of the MME-P3D network.

The experimental results demonstrate that by adjusting the quantity of P3D blocks, one can effec-
tively manage the parameter count and computational requirements of the MME-P3D model, thereby
optimizing its complexity and efficiency while maintaining recognition performance.
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Figure 9. Change of test loss value based on S-MGD dataset.

The relationship between the number of P3D blocks and the recognition accuracy of the MME-P3D
model in the S-MGD dataset is depicted in Figure 9. As the number of blocks increases, the accuracy
of the model initially rises and then falls, exhibiting an inverted V-shaped trend. When N = 4, the
accuracy of the model reaches its maximum value of 85.25%. Consequently, in this paper’s design, we
set the number of P3D blocks for the MME-P3D network model to 4.

To further validate the role of the motion attention module ME in the algorithmic model, we con-
ducted performance analyses on both networks: MME-P3D and P3D-only (i.e., without the multiscale
attention mechanism MME). The variation in test accuracy and loss values of these two models on the
S-MGD dataset is shown in Figures 10 and 11.

In the early stages of training, both models exhibit faster optimization, with a significant increase in
accuracy and a substantial decrease in loss values. After approximately 12 epochs, the convergence of
the models begins to slow down, and changes in accuracy and loss values level off. At this stage, the
test accuracy of the P3D network essentially saturates and no longer changes significantly, while the
test accuracy of the MME-P3D network still experiences a small increase, reaching a steady state after
about 25 epochs, which is notably better than that of the P3D network. These results suggest that the
multi-scale motion attention MME can more effectively extract relevant features of gesture movement,
thus positively impacting the overall recognition performance.

Figure 10. Changes in test accuracy based on the S-MGD dataset.
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Figure 11. Changes in test loss values based on the S-MGD dataset.

From the above experimental analysis, it is evident that the multi-scale motion attention MME ef-
fectively captures and models motion feature information of hand gestures throughout, significantly
improving the model’s attention to effective motion information features. This enhancement further
boosts the neural network’s overall ability to identify the dynamics of hand gestures. By employing
the P3D-C network instead of a traditional 3D convolutional network, training parameters and the
number of operations can be reduced, thereby increasing the model’s running speed. During the design
process of the MME-P3D framework, the multi-scale motion attention MME and the P3D convolu-
tion complement each other, jointly achieving network parameter compression and improved gesture
recognition performance.

4.5. Comparative experimental analysis

To validate the proposed MME-P3D algorithm model, we conducted comparative experiments on
the self-built dataset S-MGD and the open dataset Chalearn 2013. We compare our model with tra-
ditional C3D networks, representative Moblienet [29] of separable convolutional networks, represen-
tative I3D [30] of short-duration 3D networks, representative 3DResnet [31] of residual networks, an
online lightweight framework from the literature [21], and the MME-P3D network model proposed in
this paper. During the experiment, we initialize weights using the He normal distribution method and
adopt the stochastic gradient descent optimization algorithm with a momentum parameter of 0.9. We
set the initial learning rate parameter to 0.001 and updated it through the cosine decay function. We
employ the cross-entropy loss function, conducting the experiment for a total of 30 iteration cycles.
Relevant training parameters such as batch size, learning rate, number of iterations, and weight decay
are maintained consistently across different experimental methods.

The C3D network is an optimized 3D neural network that employs the concept of transfer learning
to introduce VGG network parameters into a 3D convolutional network, enabling simultaneous learn-
ing of temporal and spatial features. The Moblienet network utilizes separable convolution to construct
a lightweight deep neural network, achieving a balance between accuracy and network scale for excel-
lent recognition performance. The I3D network, as a representative of long-short-term 3D networks,
enhances the algorithm model’s ability to extract spatio-temporal features by expanding convolution
kernels. Meanwhile, the 3DResnet network leverages 3D convolutional kernels and residual struc-
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tures to model and recognize hand action information. Literature [21] introduces a motion detection
network, MotionNet, to determine the current presence or absence of gestures in the original video
stream. MotionNet serves as a representative of the spatio-temporal network architecture that utilizes
spatio-temporal convolution to capture information about the movement changes in the video with the
aim of improving the performance of the action recognition task.

During testing, we segment a video clip into sequence frames and input them into the trained net-
work model. Through forward propagation, the probability score of the gesture action category is
output, and the highest probability score is selected as the prediction result, as demonstrated in Eq
(4.1):

q =
ts

ts + f s
(4.1)

where ts represents the number of gesture action samples correctly recognised by the model in this
paper, and f s represents the number of gesture action samples incorrectly recognised by the MME-
P3D model, and q represents the probability of successful gesture recognition, i.e., the accuracy rate of
the model.

In this study, we employ the LOSO (Leave-One-Subject-Out) cross-validation method for our ex-
periments. In this process, we compare the proposed MME-P3D gesture recognition algorithm with
existing mainstream gesture recognition algorithms, encompassing both manual feature description-
based methods and deep learning approaches. Figures 12–15 respectively display the comparison
curves of loss value and accuracy of various gesture recognition algorithms during training on S-MGD
and Chalearn datasets, providing an intuitive evaluation of different algorithms’ performance in dy-
namic gesture recognition tasks.

Figure 12. Loss value map on S-MGD dataset.

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3594–3617.



3611

Figure 13. Accuracy variation map on S-MGD dataset.

Figure 14. Loss value map on Chalearn dataset.

Figure 15. Accuracy variation map on Chalearn dataset.

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3594–3617.



3612

From Figures 12–15, it is evident that the curves of the proposed MME-P3D algorithm exhibit
similarities with existing mainstream gesture recognition algorithms during the first few rounds of
training. However, due to the use of the P3D module in MME-P3D, the number of parameters to be
learned is relatively small, which reduces computation and parameter count. Consequently, the MME-
P3D model demonstrates a significant improvement in accuracy from round 5, while other models do
not show substantial improvements until round 9. Additionally, the ME motion attention module in the
MME-P3D model extracts motion features at multiple scales in gesture actions, causing the loss value
to decrease rapidly after 5 epochs. The MME-P3D model also exhibits a smaller loss value during
training compared to other gesture recognition algorithms, indicating its stronger feature extraction
capability for motion information during training. In Figure 16, we can see 2 sets of results for the
MME-P3D algorithm for predictive gesture recognition on video images captured in real time from the
test set samples in the S-MGD dataset, for zoom and translation.

(a) Zoom

(b) Translation

Figure 16. Selected results of predictive gesture recognition on video images captured in
real time from the test set samples in the S-MGD dataset.

According to the findings presented in Table 3, a comparison of accuracy was conducted between
the MME-P3D network and other gesture recognition networks using the S-MGD dataset. In order
to ensure the validity and accuracy of the experimental results, we compared each method under its
optimal parameter settings with the aim of demonstrating the performance of each method under its op-
timal operating conditions. Among them, the C3D network, because it needs to capture action changes
and motion features through a large spatio-temporal receptive field, was set to 32 input frames in the
experiment to achieve the best performance. In contrast to 3D convolutional networks such as I3D and
3DResnet, the MME-P3D algorithm model, which employs pseudo-3D convolution as its framework,
demonstrates evident advantages in computational efficiency and parameter reduction. Specifically, the
MME-P3D algorithm model achieves up to an 82% and 83% reduction in calculations and parameters,
respectively, significantly enhancing operational efficiency. Furthermore, with regard to recognition
accuracy, the MME-P3D algorithm, incorporating multi-scale motion attention (MME), effectively ex-
tracts action features from gesture motions at various scales, facilitating improved identification and
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extraction of feature information in gestures. Consequently, the MME-P3D algorithm attains an ac-
curacy improvement of 2.91% and 5.8% compared to the lightweight two-stage framework of litera-
ture [21] and the lightweight MobileNet network. It is noteworthy that the lower accuracy observed
in the 3DResnet network can be attributed to its large number of model parameters, coupled with the
relatively small size of the S-MGD dataset, leading to model underfitting.

Table 3. Accuracy comparison results on S-MGD dataset.
Methods Input frame number Resolution Accuracy (%) Parameter quantity/M FLOPs/G
C3D 32 112*112 93.37 189.11 237.68
MoblieNet 16 112*112 85.24 53.72 88.04
I3D 16 112*112 90.65 110.52 132.55
3DResnet50 16 112*112 82.27 123.87 455.23
Method of Ref. [21] 16 112*112 88.21 42.33 79.56
MME-P3D 16 112*112 91.12 33.93 76.37
Note: Bold font is the best value for each column.

Table 4. Accuracy comparison results on Chalearn 2013 dataset.
Methods Input frame number Resolution Accuracy (%) Parameter quantity/M FLOPs/G
C3D 32 112*112 85.99 189.11 237.68
MoblieNet 16 112*112 74.23 53.72 88.04
I3D 16 112*112 81.16 110.52 132.55
3DResnet50 16 112*112 84.92 123.87 455.23
Method of Ref. [21] 16 112*112 79.48 42.33 79.56
MME-P3D 16 112*112 83.06 33.93 76.37
Note:Bold font is the best value for each column.

To further validate the effectiveness of the proposed algorithm, a series of comparative experiments
were conducted on the publicly available Chalearn dataset. The results of these experiments are pre-
sented in Table 4. On the Chalearn dataset, the 3DResnet algorithm exhibits a recognition accuracy that
is 2.65% higher than that of the S-MGD dataset. Notably, the MME-P3D network model introduced in
this paper achieves an impressive recognition accuracy of 83.06%, which is 3.58% and 8.83% higher
than the lightweight two-stage framework of literature [21] and the lightweight Mobilenet model, re-
spectively. Furthermore, compared to the 3D convolutional network (I3D), the MME-P3D network
structure demonstrates an improvement in recognition accuracy of 1.9%. This improvement can be
attributed to the fact that the I3D model only utilizes information from two dimensions of space and
time, whereas the MME-P3D network not only incorporates this information but also integrates the
motion features of the gesture. Consequently, the MME-P3D network exhibits a higher utilization of
information, resulting in superior recognition performance. Although C3D outperforms MME-P3D in
terms of accuracy, considering the demands of mobile and embedded devices for limited resources,
high real-time performance, and low energy consumption, MME-P3D, with its significantly reduced
number of parameters and computational requirements, as well as the innovative design of the attention
mechanism, achieves higher efficiency and lower resource consumption while guaranteeing a certain
recognition accuracy, which makes it highly practical and valuable for research in specific application
scenarios.
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5. Conclusions

This paper introduces the MME-P3D gesture recognition algorithm as a solution to address the chal-
lenges posed by complex dynamic gesture recognition network models, extensive parameter counts,
and computational requirements. The paper proposes an enhancement to the network’s feature extrac-
tion capability by incorporating channel attention CE with the P3D network. Additionally, to overcome
the limitation of P3D convolution in capturing motion information within a limited time window, the
authors introduce MME as a supplementary component to facilitate better understanding and learning
of dynamic information during gesture motion. Experimental findings indicate that the MME-P3D
model achieves a recognition accuracy of 91.12% on the S-MGD dataset of conference gestures, while
the recognition accuracy on the Chalearn 2013 gesture dataset is 83.06%. Furthermore, the proposed
model exhibits noticeable advantages in terms of parameter count and computational requirements,
with reductions of up to 82% and 83%, respectively, when compared to the 3D convolutional neural
network. Despite these reductions, the accuracy of our algorithm remains consistent with other dy-
namic gesture recognition methods and does not significantly lag behind. The research demonstrates
that the proposed algorithm not only reduces the parameter count and computational burden of the
model but also ensures accurate gesture recognition. This characteristic addresses the limitations of
the original algorithm and renders MME-P3D more suitable for deployment on embedded and mobile
devices.
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