
MBE, 21(3): 3563–3593.

DOI: 10.3934/mbe.2024157

Received: 01 October 2023

Revised: 17 January 2024

Accepted: 29 January 2024

Published: 05 February 2024

http://www.aimspress.com/journal/MBE

Research article

DyCARS: A dynamic context-aware recommendation system

Zhiwen Hou, Fanliang Bu*, Yuchen Zhou, Lingbin Bu, Qiming Ma, Yifan Wang, Hanming Zhai
and Zhuxuan Han

School of Information Network Security, People’s Public Security University of China, Beijing 100038,
China

* Correspondence: Email: bufanliang@sina.com.

Abstract: Dynamic recommendation systems aim to achieve real-time updates and dynamic
migration of user interests, primarily utilizing user-item interaction sequences with timestamps to
capture the dynamic changes in user interests and item attributes. Recent research has mainly
centered on two aspects. First, it involves modeling the dynamic interaction relationships between
users and items using dynamic graphs. Second, it focuses on mining their long-term and short-term
interaction patterns. This is achieved through the joint learning of static and dynamic embeddings
for both users and items. Although most existing methods have achieved some success in modeling
the historical interaction sequences between users and items, there is still room for improvement,
particularly in terms of modeling the long-term dependency structures of dynamic interaction
histories and extracting the most relevant delayed interaction patterns. To address this issue, we
proposed a Dynamic Context-Aware Recommendation System for dynamic recommendation.
Specifically, our model is built on a dynamic graph and utilizes the static embeddings of recent user-
item interactions as dynamic context. Additionally, we constructed a Gated Multi-Layer Perceptron
encoder to capture the long-term dependency structure in the dynamic interaction history and extract
high-level features. Then, we introduced an Attention Pooling network to learn similarity scores
between high-level features in the user-item dynamic interaction history. By calculating bidirectional
attention weights, we extracted the most relevant delayed interaction patterns from the historical
sequence to predict the dynamic embeddings of users and items. Additionally, we proposed a loss
function called the Pairwise Cosine Similarity loss for dynamic recommendation to jointly optimize
the static and dynamic embeddings of two types of nodes. Finally, extensive experiments on two
real-world datasets, LastFM, and the Global Terrorism Database showed that our model achieves
consistent improvements over state-of-the-art baselines.

3564

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3563–3593.

Keywords: recommendation systems; dynamic graph; context-aware recommendation

1. Introduction

With the rapid development of the Internet and big data technology, recommendation systems
have become an integral part of technical tools and application solutions in multiple industries and
fields, particularly in e-commerce [1], social media [2], and online education [3]. These systems
demonstrate significant application value in these areas. Moreover, they also play an important role in
public safety warning [4–6], environmental monitoring [7], and other domains of social welfare.
Traditional recommendation systems are mostly built on static models, which means they typically
process historical interaction data using one-time or batch updates, making it difficult to capture the
dynamic changes in user interests and item attributes [8–12]. In contrast, dynamic recommendation
systems, as a subset within the context-aware recommendation system domain [13,14], focus on
considering time-related contextual information, such as the interaction history of users and items.
They employ more complex models, like Recurrent Neural Networks (RNNs), to capture the dynamic
interaction patterns between users and items [15,16]. Due to their ability to accurately reflect and adapt
to the dynamic changes in users and items, dynamic recommendation systems are emerging as a
cutting-edge direction in the research and application of recommendation algorithms [17,18].

In this paper, the two types of entities, users and items, can cover a variety of notions, e.g., users could
be customers in an e-commerce system, or accounts on social media; items could be products, posts, or
media produced or consumed by users. To more comprehensively learn the dynamic changes in user
interests and item attributes, and thereby provide precise personalized recommendations, we propose a
novel dynamic recommendation approach. This method captures the dynamic relationships between users
and items by mining the most relevant delayed interaction patterns within the dynamic interaction history,
aiming to predict the items with which users are likely to interact in the future [6,18]. Dynamic graphs
naturally handle graph data structures with timestamps, where each edge represents a user-item interaction
at a specific time point [19]. Therefore, we construct our model based on dynamic graphs, enabling it to
effectively capture the evolving interaction patterns between users and items over time.

Currently, several methods have been proposed to predict which items users are likely to interact
with in the future [16,20–25]. However, these methods often suffer from a common limitation: they
typically generate corresponding embeddings only when users perform specific actions, thereby
overlooking the rich information contained in the historical interaction sequences [8]. Therefore,
RNNs and other models optimized for sequential data [15,26–28] have been employed to model the
historical interaction sequences and capture the long-term dependency relationships among items in
the sequence. Recent studies have demonstrated significant improvements over traditional methods by
jointly modeling users and items using dynamic graphs [16,21]. One key challenge lies in accurately
capturing the evolution of user interests and item attributes over time. This is because users may interact
with different items in a sequential manner, and their interests can change within a certain time frame.
Similarly, item attributes also undergo continuous changes and are heavily influenced by user behavior. In
contrast to previous research, JODIE [16], Dynamic Graph Collaborative Filtering (DGCF) [17], and
several other dynamic evolution models [29–31] employ mutually recursive RNNs to model the
dynamic interaction between users and items. However, these methods heavily rely on the embeddings
at time t-1 to recursively compute the dynamic embeddings at time t. As the network scale increases,

3565

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3563–3593.

this recursive training approach has been shown to be a performance bottleneck. Although recent
studies have attempted to alleviate this burden by introducing a batch processing algorithm called t-
Batch, the computational overhead has not been fundamentally reduced [16]. In contrast, DeePRed
proposes a simple and efficient approach to model short-term interaction behavior, effectively eliminating
the aforementioned recursive dependency issue and achieving a more efficient training process [18].

Although there is great potential in constructing dynamic embeddings by capturing the dynamic
interaction relationships between users and items for dynamic recommendation, there is still room for
further improvement in modeling the long-term dependency structures of dynamic interaction histories and
extracting the most relevant delayed interaction patterns. In dynamic recommendation systems, delayed
interaction patterns refer to the interactions between users and items that occurred during a certain period
in the past. Although these interactions happened at earlier points in time, they still significantly influence
the user’s current interests and preferences. The key to mining delayed interaction patterns lies in
identifying and learning those historical interactions that continue to have a significant impact on current
recommendation decisions. For instance, a user might have frequently watched a certain genre of movies
or purchased specific types of products over a past period. Although such behavior may have decreased
recently, these long-term interests and preferences still influence their current choices. Therefore,
effectively mining and utilizing delayed interaction patterns can help recommendation systems to
understand the evolution of user interests more comprehensively, thereby providing more accurate and
personalized recommendations. To this end, we propose a Dynamic Context-Aware Recommendation
System (DyCARS) for dynamic recommendation. By treating the dynamic interaction history of users and
items as the dynamic context, this method utilizes a Gated Multi-Layer Perceptron (GaMLP) encoder to
learn the long-term dependency structure of user-item interaction sequences. Moreover, it employs an
Attention Pooling (AP) network to extract the most relevant delayed interaction patterns from the dynamic
interaction history. In summary, our main contributions are as follows:

1) We propose a novel non-recursive dynamic recommendation model, DyCARS, which
effectively captures the long-term dependency structure in the dynamic interaction history using the
GaMLP encoder introduced in this paper and further extracts high-level features. Additionally, the AP
network is introduced to learn similarity scores between high-level features of user and item dynamic
interaction histories. By computing bidirectional attention weights, the model is able to identify the
most relevant delayed interaction patterns from the historical interaction sequence. As a result, the
model can effectively predict the dynamic embeddings of users and items.

2) We emphasize the importance of the loss function in dynamic recommendation and accordingly
propose the Pairwise Cosine Similarity (D-PCS) loss function to jointly optimize the static and
dynamic embeddings of two types of nodes. In the 𝐿 term of the D-PCS loss function, we utilize
cosine similarity to calculate the similarity between user-item pairs and allow the model to emphasize
the learning of hard negative samples, which aids in learning more discriminative features and
enhances the model’s ability to extract useful information.

3) Extensive experimental analyses were conducted on two public datasets, LastFM and the
Global Terrorism Database (GTD). Compared to the state-of-the-art baseline models, the experimental
results confirm that our proposed DyCARS achieves the best performance.

The remaining parts of this paper are organized as follows: Section 2 formally describes the
dynamic recommendation problem addressed in this paper. Section 3 provides a brief overview of the
related research in the field of dynamic recommendation systems. Section 4 elaborates on the overall
architecture and individual components of the proposed model. In Section 5, experiments are

3566

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3563–3593.

conducted on two real-world datasets to validate the effectiveness of the proposed model. Finally,
Section 6 concludes the paper and outlines future directions.

2. Problem definition

The purpose of this study is to learn representations of users and items based on their current
interaction behavior and historical records, and use these representations to predict the items that users
may be interested in the future. This “interest” is the relationship between the user and the
recommended item. Dynamic graph structures provide a natural and effective way to depict the
evolving dynamic interaction relationship between users and items over time [17,32]. Therefore, we
utilize dynamic graph structures to model the problem of dynamic recommendation.

Definition 1: Dynamic graph. Essentially, the dynamic graph in this context is a bipartite graph,
where users and items are considered as nodes, and all interaction behaviors occur between user nodes
and item nodes. If at time 𝑡 ∈ ℝ ,∀𝑡 ∈ 0,𝑇 , an interaction occurs between a user and an item, a
dynamic graph 𝐺 𝑈 ∪ 𝑉,𝐸 is formed. Here, U and V represent the sets of users and items,
respectively, and |𝑈| and |𝑉| denote the number of nodes in the user and item sets. 𝑈 ∪ 𝑉
represents a finite set containing all user and item nodes, satisfying 𝑈 ∩ 𝑉 ∅. 𝐸 represents a finite
set of all interactions in 𝐺 , which essentially refers to the collection of all interactions between users
and items up until time t. At the initial time 𝑡 , the dynamic graph 𝐺 𝑈 ∪ 𝑉,𝐸 consists of

isolated nodes or snapshots of the dynamic graph, where the initial embeddings of users and items are
initialized as either initial feature vectors or random vectors.

Definition 2: User-item interaction events. In the context of dynamic recommendation, the
interaction between a user and an item can be represented as a triplet 𝑖 𝑢, 𝑣, 𝑡 , where at a specific
time t, the user node 𝑢 ∈ 𝑈 interacts with the item node 𝑣 ∈ 𝑉, denoted as 𝑢, 𝑣 ∈ 𝐸 . From this
perspective, a dynamic graph can be understood as a sequential arrangement of user-item interaction
events 𝐼 𝑢, 𝑣, 𝑡 :𝑛 1,2,⋯ , |𝐸 | . Let 𝐼 denote the set of all interaction events for user u,
which can be expressed as 𝐼 𝑖 , 𝑖 ,⋯ , 𝑖 . Similarly, 𝐼 represents the set of all interaction
events for item v, written as 𝐼 𝑖 , 𝑖 ,⋯ , 𝑖 . For a specific user u and item v, 𝐼 and 𝐼
respectively capture their complete interaction history.

Definition 3: Static and dynamic embeddings. When predicting future interactions between users and
items, long-term and short-term interaction patterns are often considered [21,33,34]. We adopt this
assumption and model the users and items from both long-term and short-term perspectives. From the
user’s point of view, although it is commonly believed that user interests evolve over time [15], we assume
the existence of a stable long-term interest that remains unchanged. Additionally, the user’s interest may
also exhibit a corresponding short-term trend based on recent behavior changes. For example, in music
recommendation systems, users may have a tendency towards a specific genre of music at any given
moment. However, individuals may also be influenced by emotions or life events, leading to an interest in
different genres during specific time periods. To encode the long-term static attributes and short-term
dynamic attributes of users and items, we allocate static and dynamic embeddings to all users and items.

Static embeddings. We define the static embeddings of user u and item v at time t as 𝑢 ∈ ℝ
and �̅� ∈ ℝ , respectively. These embeddings do not change over time. In other words, we use an
embedding matrix 𝐸 ∈ ℝ | | | | as the static embedding matrix, which is trained when observing
user-item interactions.

Dynamic embeddings. We assign dynamic embeddings to each user u and item v at time t,
represented as 𝑢 𝑡 |𝐼 𝑡 ,𝑛 ∈ ℝ and 𝑣 𝑡 |𝐼 𝑡 ,𝑛 ∈ ℝ , respectively. These embeddings

3567

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3563–3593.

effectively capture the evolving user interests and item attributes over time. 𝐼 𝑡 ,𝑛 and 𝐼 𝑡 ,𝑛
denote the n most recent interaction events for each user u and item v before time t:

 𝐼 𝑡 ,𝑛 𝑣 ,∆ : 𝑢, 𝑣 , 𝑡 ∈ 𝐼 , 𝑡 𝑡, 𝑖 𝑝 𝑛,⋯ , 𝑝 (1)

 𝐼 𝑡 ,𝑛 𝑢 ,∆ : 𝑢 , 𝑣, 𝑡 ∈ 𝐼 , 𝑡 𝑡, 𝑖 𝑝 𝑛,⋯ ,𝑝 (2)

where ∆ 𝑡 𝑡 represents the time interval between the current moment t and the previous interaction
time 𝑡 . It effectively captures the temporal decay effect of recent interaction events on the current
interaction event.

Table 1. Mathematical notation used in this paper.

Symbols Definitions and Descriptions

𝑈 User set

𝑉 Item set

𝐺 The dynamic graph at time t

|𝑈| The number of user nodes

|𝑉| The number of item nodes

𝐸 The finite set of all interactions in 𝐺

𝐼 Sequential arrangement of user-item interaction events over time

𝐼 The set of all interaction events for user u

𝐼 The set of all interaction events for item v

𝑢 The static embedding of user u at time t

�̅� The static embedding of item v at time t

𝐸 Static embedding matrix

𝐼 𝑡 ,𝑛 The n most recent interaction events of user u before time t

𝐼 𝑡 ,𝑛 The n most recent interaction events of item v before time t

𝑢 𝑡 |𝐼 𝑡 ,𝑛 The dynamic embedding of user u at time t

𝑣 𝑡 |𝐼 𝑡 ,𝑛 The dynamic embedding of item v at time t

∆ The time interval between the current moment t and the previous interaction time 𝑡

𝑋 𝑡 The embedding matrix of user u’s n most recent interaction history at time t

𝑋 𝑡 The embedding matrix of item v’s n most recent interaction history at time t

𝑍 𝑡 The high-level feature matrix of user u’s most recent n interaction histories at time t

𝑍 𝑡 The high-level feature matrix of item v’s most recent n interaction histories at time t

𝑆 𝑡
The similarity score matrix of high-level features among the most recent n interaction

histories of users and items

𝐴𝑡𝑡 𝑡 The attention vector of user u at time t

𝐴𝑡𝑡 𝑡 The attention vector of item v at time t

𝑁 𝑢 The set of negatively sampled items for user u based on random probability sampling

We adopt the approach consistent with previous studies [33,35] to capture the short-term dynamic
characteristics of users or items by incorporating the n most recent interaction events. However, unlike the
research in [20,24,26,36], we consider that the n recent interaction events of both users and items have an
impact on the next user-item interaction. In previous studies, the dynamic embeddings of users and items
often recursively depend on their respective previous dynamic embeddings [16,21]. The recursive nature
of these algorithms increases computational costs, necessitating the use of specialized batch processing

3568

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3563–3593.

algorithms to avoid sequential processing. Table 1 summarizes the mathematical notation used in this paper.
Research Problem. The main problem addressed in this study is: Given a known ordered

sequence of user-item interaction events I, can we design an algorithm to effectively predict future
interaction behavior in the dynamic graph?

3. Related work

The main task of dynamic recommendation models is to capture the dynamic changes of users
and items from historical and current interactions, so as to accurately predict the embedding trajectory
of users or items over time to recommend items that users may interact with in the future. In the field
of dynamic recommendation research, conventional methods typically employ standard deep neural
network (DNN) architectures that integrate manually designed features with learned features into the
recommendation model. For instance, Covington et al. [20] divided YouTube’s recommendation
system into two separate stages: candidate generation and ranking. Both stages utilized structurally
similar deep neural networks, resulting in significant improvements in recommendation performance.

To accurately capture the repetitive patterns in user-item interaction sequences, Recurrent Neural
Networks (RNNs) and their variants have been widely applied in dynamic recommendation. Specifically,
Hidasi et al. [26] were the first to apply RNNs to session-based recommendation, particularly in scenarios
that rely on short-term session data for recommendations. Similarly, Wu et al. [15] employed Long Short-
Term Memory (LSTM) networks to model the dynamic changes in users and movies, thereby
predicting future behavioral trajectories. Beutel et al. [33] effectively incorporated various types of
contextual data into a Gated Recurrent Unit (GRU)-based recommendation system by performing
element-wise multiplication on the model’s hidden states.

Activities closer in time to a specific event are often more likely to trigger that event. Therefore,
modeling the time differences in historical behavior sequences has shown significant advantages in
improving recommendation system performance. Although standard RNNs and their variants can
capture repetitive patterns in sequences, they lack the ability to encode the time intervals between
historical events. To address this limitation, extensive research has been conducted to enhance RNNs
and their variants by fully considering the factor of time intervals [34,35]. For instance, Zhu et al. [34]
designed dedicated temporal gates based on LSTM, enabling the model to more effectively capture the
time interval factors in user behavior sequences.

Although the aforementioned methods have successfully simulated the evolution of user interests
through user-item interaction sequences, they fall short in fully consider the changing trends of items
themselves. To alleviate this limitation, several studies have attempted to combine point process
models with RNNs to jointly learn dynamic embeddings of users and items for next-item prediction.
Specifically, Dai et al. [21] employed RNNs to define the intensity function of the point process,
enabling the capture of complex interdependencies and the temporal evolution of features between
users and items. Kumar et al. [16] proposed a coupled recursive neural network recommendation
model that included two steps of embedding update operations and an embedding projection function
to predict the dynamic embeddings of users and items. Li et al. [17] first applied dynamic graphs to
dynamic recommendation by integrating second-order neighborhood information from dynamic
interaction networks to extend JODIE. Hou et al. [6] simultaneously introduced Hawkes processes and
dynamic graphs into dynamic recommendation scenarios to model the dynamic interactions and
evolution between users and items.

3569

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3563–3593.

Table 2. Comparison of DyCARS with other works.

Dynamic recommendation

system methods
Key features Contribution

Comparison of DyCARS with

other works

Traditional DNN Architecture

(e.g., Covington et al. [20])

These methods utilize

deep neural networks to

combine manually

designed features with

learned features.

These methods improve

system performance but may

not fully capture temporal

dynamics.

DyCARS leverages dynamic

interaction history as context to

better capture the temporal

dynamics and evolution of user

behavior.

RNN and its variants (such as

Hidasi et al. [26], Wu et al. [15])

These methods are used

to capture repetitive

patterns in sequences,

especially short-term

session data.

These methods are effective

in session-based

recommendation but are less

capable in modeling long-

term dependencies.

DyCARS learns the sequential

dependency relationships between

elements in historical sequential

data, providing a more effective

modeling of the long-term

dependency structure in the user-

item dynamic interaction history.

Time-aware RNN and its

variants (e.g., Zhu et al. [34])

These models are

capable of effectively

capturing the time

interval factors in user

behavior sequences.

These models can simulate

the evolution of user interests

but do not adequately

consider the trends in items.

DyCARS emphasizes the dual

aspects of dynamic interactions,

namely the dynamic changes in

both users and items.

Recursive dynamic

recommendation models (e.g.,

Dai et al. [21], Kumar et al.

[16], Li et al. [17])

These models combine

point processes with

dynamic graphs to

capture the mutual

influence between users

and items.

These models effectively

capture the dynamic

interactions and evolution

between users and items, but

as the network scales up, they

incur significant

computational costs.

DyCARS employs a non-recursive

approach, reducing computational

costs while effectively modeling

dynamic interactions.

Non-recursive dynamic

recommendation models (such

as Kefato et al. [18])

These models utilize

static embedding

proxies to model

dynamic embeddings.

These models effectively

avoid recursion and high

computational costs, but there

is still room for improvement

in capturing the long-term

dependency structure and

delayed interaction patterns in

dynamic interaction history.

DyCARS combines GaMLP

encoder and AP network, enabling

more effective modeling of long-

term dependency structures and

delayed interaction patterns.

However, these methods primarily rely on recursively calculating the dynamic embeddings at
time t based on the embeddings at time t-1. As the network scale increases, this recursive training
approach has been proven to be a performance bottleneck. Although recent research attempts to
alleviate this issue by introducing a batch processing algorithm called t-Batch, the computational cost
has not been fundamentally reduced. To address this problem, Kefato et al. [18] successfully avoid the
recursion and high computational costs between consecutive dynamic embeddings by using static
embeddings as proxies when modeling dynamic embeddings. Although many existing methods have
achieved success in modeling the dynamic interaction between users and items, they still perform

3570

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3563–3593.

poorly in capturing long-term dependency structures in the historical interaction sequences between
users and items. It is challenging to accurately mine and model the most relevant delayed interaction
patterns from the dynamic interaction history. To address this limitation, we propose a novel non-
recurrent dynamic recommendation model called DyCARS. This model considers the dynamic
interaction history between users and items as a dynamic context and effectively addresses the
aforementioned shortcomings by utilizing the GaMLP encoder and the AP network. Table 2
summarizes the comparison of DyCARS with other dynamic recommendation system methods.

4. Research method

In this section, we will detail the design and implementation of DyCARS. Initially, an overview
of the model architecture is presented, elucidating the overall framework of DyCARS and its core
components. Subsequently, we delve into a key component of DyCARS: the GaMLP encoder. This
part will explain in detail the working mechanism of the GaMLP encoder, including its handling of the
embedding matrix of recent interaction history and the design and functionality of the spatial gating
module. These components collectively capture the long-term dependencies in the dynamic interaction
history and extract high-level features. Following this, the section introduces the design and application
of the AP network. The AP network plays a pivotal role in DyCARS, learning the similarities and
bidirectional attention weights among high-level features in the dynamic interaction history of users
and items. It identifies the most relevant delayed interaction patterns from the historical interaction
sequences, further enhancing the model’s recommendation capabilities. Lastly, we discuss the D-PCS
loss function and model optimization strategies. This part will demonstrate how the specially designed
loss function effectively co-optimizes static and dynamic embeddings, achieving more efficient and
accurate recommendations.

4.1. Model architecture

Figure 1 illustrates the overall architecture of DyCARS. The interactions between users and items
form a dynamic graph over time. The input of DyCARS is determined by the observed user-item
interaction events and the hyper-parameter n of the model. Whenever a new user-item interaction event
is observed, the model parameters are updated accordingly. DyCARS is built on dynamic graphs and
considers the n most recent interaction events of users and items (i.e., 𝐼 𝑡 ,𝑛 and 𝐼 𝑡 ,𝑛) prior
to time t as dynamic contexts. These contexts are captured through static embeddings (𝑢 or �̅� , 𝑖
1,⋯𝑛). Furthermore, we employ the proposed GaMLP encoder to model long-term dependency
structures in the n recent interaction histories and extract high-level features. Subsequently, an AP
network is utilized to compute similarity scores between the high-level features of user-item dynamic
interaction histories. By calculating bidirectional attention weights, we are able to discover the most
relevant delayed interaction patterns from the historical sequences, thus predicting the dynamic
embeddings (𝑢 𝑡 and 𝑣 𝑡) of users and items at time t. Finally, we jointly optimize the static and
dynamic embeddings of users and items using the D-PCS loss function to make more accurate
predictions for the next item recommendation.

3571

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3563–3593.

Figure 1. Overall architecture of DyCARS.

4.2. The GaMLP encoder

To model the long-term dependency structure in the user-item dynamic interaction history, we
propose the GaMLP encoder. In DyCARS, the user encoder and item encoder share the same
architecture. Therefore, we primarily focus on the user side to illustrate the structural design of the
GaMLP encoder.

As illustrated in Figure 2, the GaMLP encoder consists of L modules with the same size and
structure. Let 𝑋 𝑡 denote the embedding matrix of the recent n interaction histories for user u at
time t (see Section 4.2.1 for details). Each module is defined as follows:

 𝑌 𝑡 𝜎 𝑋 𝑡 𝑊 ,𝑌 𝑡 SG 𝑌 𝑡 ,𝑍 𝑡 𝑌 𝑡 𝑉 (3)

where 𝜎 is the activation function, e.g., Gaussian error linear unit (GeLU) [37]. W and V define linear
projections along the channel dimension. For brevity, the above equations omit residual connections,
normalization operations, and bias terms.

Figure 2. Architecture of the GaMLP encoder.

3572

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3563–3593.

One key function in Eq (3) is SG ∙ , which aims to capture the mutual interactions between
dynamic interaction histories (see Section 4.2.2 for details). When SG ∙ behaves as an identity
mapping, the SG ∙ transformation degenerates into a regular Feedforward Neural Network (FFN),
where individual interaction history embeddings are processed independently without any cross
interaction history embeddings communication. Therefore, one of our focuses is to design an SG ∙
that can effectively capture complex interactions between dynamic interaction histories. The overall
architectural inspiration comes from inverted bottlenecks [38], where SG ∙ is defined as spatial
depthwise convolutions.

Finally, the output of the GaMLP encoder, 𝑍 𝑡 ∈ ℝ , represents the high-level feature matrix
of the recent n interaction histories for user u at time t. It captures the interactions between dynamic
interaction histories, effectively modeling the long-term dependency structure in the dynamic
interaction history. Similarly, the encoding process for the recent interaction histories of items is
identical to that of users. The output, 𝑍 𝑡 ∈ ℝ , represents the high-level feature matrix of the
recent n interaction histories for item v at time t. For instance, in a movie recommendation system, the
GaMLP encoder can be used to capture the dynamic changes and long-term dependencies in users’
movie-watching history and the history of movies being watched. Specifically, we take the most recent
n movie-watching records of user u as input. The GaMLP encoder transforms these viewing records
into a high-level feature matrix 𝑍 𝑡 ∈ ℝ , where each column represents a specific viewing event,
encompassing high-level information related to that event. By analyzing these high-level features, the
GaMLP encoder can understand the dynamic changes in user viewing preferences, such as whether a
user is increasingly favoring a certain genre of movies. Similarly, for a specific movie, we can also
employ the GaMLP encoder to analyze its viewing history. In this scenario, the encoder’s output
𝑍 𝑡 ∈ ℝ represents the high-level feature matrix of the most recent n viewings of movie v at
time t. Through this approach, the GaMLP encoder can effectively model the long-term dynamic
interaction history of users and items, providing essential input information for the AP network.

4.2.1. Embedding matrix of recent interaction history

A simple yet expressive technique employed by the GaMLP encoder is to utilize the embedding
matrix 𝑋 𝑡 ∈ ℝ (or 𝑋 𝑡 ∈ ℝ) of the user’s (or item’s) recent n interaction
histories as input to the model, which is defined as follows:

 𝑋 𝑡 𝑔 𝐼 𝑡 ,𝑛 �̅� ;∆ : 𝑣 ,∆ ∈ 𝐼 𝑡 ,𝑛 (4)

 𝑋 𝑡 𝑔 𝐼 𝑡 ,𝑛 𝑢 ;∆ : 𝑢 ,∆ ∈ 𝐼 𝑡 ,𝑛 (5)

In Eq (4), 𝑋 𝑡 is dependent on the static embeddings of the n most recent interacted with items
by user u. Similarly, in Eq (5), the static embeddings of the n users who have recently interacted with
item i are used to compute 𝑋 𝑡 . The key assumption here is that the static embeddings of multiple
recently interacted with items capture strong signals of a user’s recent interests, as each static
embedding �̅� ∈ 𝑋 𝑡 captures the intrinsic attributes or context of item 𝑣 . It is important to note
that the embedding matrix at time t only contains information from the past (i.e., before time t), as our
objective is to predict the current (i.e., at time t) state.

Furthermore, research has also indicated that the time difference between user-item interactions

3573

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3563–3593.

plays a crucial role in predicting future interactions. Therefore, in the embedding matrix of recent
interaction history, each static embedding is concatenated with the time difference ∆ to capture the
temporal decay effect of recent interaction events on the current interaction event. It is important to
note that some studies use decay functions instead of the time difference ∆ , such as 𝑓 ∆
1 log 𝑒 ∆⁄ [33–35]. However, through our experimental testing, we have found no significant
difference in these methods, and thus we opted to directly utilize ∆.

4.2.2. Spatial gating module

As shown in Figure 2, to capture the interactions between the user-item dynamic interaction
history, the Spatial Gating (SG) module incorporates projection operations on the spatial dimension.
Taking the user side as an example, we denote SG ∙ as:

 SG 𝑌 𝑡 𝑌 𝑡 ⊙ ℎ , 𝑌 𝑡 (6)

 ℎ , 𝑌 𝑡 𝑈𝑌 𝑡 𝑏 (7)

where ⊙ denotes the element-wise multiplication operation. 𝑈 ∈ ℝ represents a spatial
projection matrix of the same size as the length n of the recent interaction history, and b represents the
bias term. To ensure training stability, we have found it crucial to initialize U with values close to zero and
initialize b as 1. This implies that, at the beginning of the training process, ℎ , 𝑌 𝑡 is approximately
equal to 1, resulting in SG 𝑌 𝑡 being close to 𝑌 𝑡 . This initialization method ensures that each
GaMLP module behaves similarly to a conventional FFN during the initial stages of training. In this setup,
each interaction history embedding is independently processed, gradually incorporating spatial information
across the interaction history embeddings during the course of learning.

Furthermore, we have also found that introducing a residual mechanism (Eq (8)) or splitting
𝑌 𝑡 into two separate parts along the channel dimension for gating functions and multiplication
bypasses (Eq (9)) is effective:

 SG 𝑌 𝑡 𝑌 𝑡 ℎ , 𝑌 𝑡 (8)

 SG 𝑌 𝑡 𝑌 𝑡 ⊙ ℎ , 𝑌 𝑡 ，𝑌 𝑡 𝑌 𝑡 ‖𝑌 𝑡 (9)

In addition, we also normalized the input of ℎ , ∙ , a strategy that has been proven in practice
to enhance the stability of the model.

Relation to Existing Networks. The overall formulation of the SG module bears resemblance to
Gated Linear Units (GLU) [39] as well as early works such as Highway Networks [40] and LSTM [41].
However, a key distinction lies in the fact that our SG module operates on the spatial dimension for
computations, rather than the channel dimension. In terms of element-wise multiplication operations,
there is a connection between the SG module and SE blocks [42]. However, the SG module does not
include cross-channel projections nor does it enforce permutation invariance. The spatial projection in
the SG module can theoretically learn to express superficial depthwise convolutions; unlike typical
depthwise convolutions with channel-specific filters, the SG module learns a single transformation
shared across channels.

3574

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3563–3593.

4.3. The AP network

Static embeddings of users and items are both located in the same space, from which the derived
high-level features 𝑍 𝑡 and 𝑍 𝑡 are based. The AP network enables the direct influence of
information from these two high-level features on each other’s computations. The main idea behind
the AP network is to calculate similarity scores between high-level features based on the dynamic
interaction history of users and items, and determine bidirectional attention weights according to these
similarity scores of interaction histories [43].

Figure 1 illustrates how the AP network is applied to the output of the GaMLP encoder to predict
the dynamic embeddings of users and items (𝑢 𝑡 and 𝑣 𝑡) at time t. Considering the input pair
𝑍 𝑡 ,𝑍 𝑡 , the similarity score matrix 𝑆 𝑡 ∈ ℝ between high-level features in the most

recent n interaction histories of users and items is represented as:

 𝑆 𝑡 tanh 𝑍 𝑡 𝛾𝑍 𝑡 (10)

where 𝛾 is the parameter matrix. However, based on our empirical observations, setting 𝛾 as the
identity matrix yields superior results. Therefore, in DyCARS, the only parameters that need to be
determined are the static embedding matrix E and the parameters associated with the GaMLP encoder,
including W, V, U, and bias terms.

Next, we apply max pooling (or average pooling) along the columns and rows of matrix 𝑆 𝑡 ,
resulting in the generation of vectors 𝑢 𝑡 ∈ ℝ and 𝑣 𝑡 ∈ ℝ , respectively. Formally, the computation
of the i-th element of vectors 𝑢 𝑡 and 𝑣 𝑡 is as follows (using max pooling as an example):

 𝑢 𝑡 𝑚𝑎𝑥 𝑆 𝑡 , (11)

 𝑣 𝑡 𝑚𝑎𝑥 𝑆 𝑡 , (12)

The i-th element of vector 𝑢 𝑡 can be interpreted as the importance score of the i-th interaction
history of user u relative to the most recent n interaction histories of item v. Similarly, the i-th element
of vector 𝑣 𝑡 can be interpreted as the importance score of the i-th interaction history of item v
relative to the most recent n interaction histories of user u.

Next, we apply the Softmax function to vectors 𝑢 𝑡 and 𝑣 𝑡 to construct attention vectors
𝐴𝑡𝑡 𝑡 and 𝐴𝑡𝑡 𝑡 . Taking the i-th element of 𝐴𝑡𝑡 𝑡 as an example, its calculation formula
is as follows:

 𝐴𝑡𝑡 𝑡
∑

 (13)

Finally, the dynamic embeddings of the user and item at time t (𝑢 𝑡 and 𝑣 𝑡) are calculated
as follows:

 𝑢 𝑡 𝑍 𝑡 𝐴𝑡𝑡 𝑡 (14)

 𝑣 𝑡 𝑍 𝑡 𝐴𝑡𝑡 𝑡 (15)

Both of the above equations can be seen as feature selectors based on bidirectional attention
mechanisms. Specifically, the Softmax function provides a weight distribution for different events in
the dynamic interaction history of user u and item i, allowing the recent interaction events with larger
attention weights to dominate the projection operation. Therefore, DyCARS, by learning the allocation

3575

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3563–3593.

of attention weights, is able to extract more accurately the most relevant delayed interaction patterns
from the historical sequence, thus predicting the dynamic embeddings of users and items.

4.4. D-PCS loss and model optimization

Learning the parameters of DyCARS requires defining an objective function for model
optimization. In this study, we propose a novel loss function, D-PCS, suitable for dynamic
recommendation tasks. The D-PCS loss function is defined as:

 𝐿 𝑚𝑖𝑛 ∑ ‖𝑢 𝑡 𝑣 𝑡 ‖, , ∈ 𝐿 𝐿 𝑢, 𝑣 (16)

where B represents batch size, and 𝐼 represents the observed interaction events in the training set. In
the D-PCS loss function, the objective of the first term of the loss is to jointly train dynamic embeddings
and static embeddings to make the projections of frequently interacted items as close as possible. Therefore,
we minimize the 𝐿 distance between the dynamic embeddings of users and items.

To avoid the trivial solution of the D-PCS loss function, we introduce a regularization loss, 𝐿 .
This strategy is inspired by Laplacian eigenmaps, which avoids collapse by adding the constraint
𝑢 𝑡 𝑣 𝑡 1. Therefore, we define 𝐿 as:

 𝐿 𝛼 𝑢 𝑡 ; 𝑣 𝑡 𝑢 𝑡 ; 𝑣 𝑡 𝐼 (17)

where 𝛼 represents the regularization coefficient, and 𝐼 denotes the identity matrix.
For the third term in the D-PCS loss function, given a positive user-item pair 𝑢, 𝑣 and a set of

negative sample items 𝑁 𝑢 randomly sampled for user u, 𝐿 is defined as:

 𝐿 𝑢, 𝑣 1 𝑟
| |

∑ 𝑅𝑒𝑙𝑢 𝑟 𝑀∈ (18)

 𝑟 𝐶𝑜𝑠𝑖𝑛𝑒 𝑢, �̅� (19)

where |𝑁 𝑢 | represents the number of negative samples; M is the threshold for filtering negative samples,
typically ranging from 0.4 to 0.6 and may vary depending on the specific experiment; 𝜏 is used to control
the relative weight of positive and negative sample losses, typically taking values of 1, 2, or 4; 𝑟
represents the preference matching score between user u and item v; and 𝐶𝑜𝑠𝑖𝑛𝑒 ⋅ denotes the cosine
similarity between the static embeddings of users and items, defined as follows:

 𝐶𝑜𝑠𝑖𝑛𝑒 𝐴,𝐵 ⋅

‖ ‖‖ ‖

∑

∑ ∑
 (20)

The objective of 𝐿 is to maximize the preference matching score between positives and
minimize the preference matching score between negatives. In random probability sampling, we
sample based on the occurrence frequency of each item among all negative samples. The mathematical
expression of this can be formulated as:

3576

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3563–3593.

 𝑃 𝑣
∑ ∈

 (21)

where 𝑓 𝑣 represents the frequency of item v appearing in all negative samples, and 𝑃 𝑣 denotes
the sampling probability of item v. This frequency-based sampling method balances the occurrence
probabilities of different items during the sampling process by utilizing probability weights.
Consequently, it increases the chances of selecting low-frequency items while reducing the sampling
probability of high-frequency items. This strategy effectively alleviates biases caused by significant
frequency differences, thereby enhancing the effectiveness and diversity of the sampling process.

The design inspiration of 𝐿 originates from the widely used contrastive loss in computer
vision tasks [44,45]. In contrast to common loss functions in the field of recommendation systems, we
made several choices in the design of 𝐿 to facilitate model training and achieve better performance.

First, we chose to use cosine similarity to compute the similarity (or preference matching
degree) between user-item pairs, as opposed to using the dot product (e.g., LightGCN [46]),
Euclidean distance (e.g., Collaborative metric learning [47]), or multi-layer perceptron (e.g., Dual
sIde deepContext-awarEmodulation for socialRecommendation [48]). The reason for this choice is
that, similar to the calculation of word similarity in word2vecv [49], cosine similarity effectively
measures the similarity between vectors and avoids the issue of large value ranges that may arise with
the dot product or other methods. Additionally, cosine similarity can handle cases where the vector
lengths of users and items differ, making it more suitable for feature vectors of users and items in
recommendation systems. For example, in recommendation tasks, the embedding size of users or items
may be influenced by their popularity, thus making the advantages of cosine similarity particularly
relevant in such scenarios.

Second, we consider the issues caused by the increase in the number of negative samples.
Typically, the increased negative samples contain a large amount of redundant and ineffective data, which
may interfere with the model’s training process, leading to decreased model performance and slower
training speed. To address this problem, 𝐿 introduces a threshold M to filter out these useless negative
samples. When the cosine similarity of a negative sample is too small and falls below M, they will be
assigned a loss of zero. Therefore, 𝐿 can automatically identify the hard negative samples with cosine
similarity greater than M and optimize the model training based on them. This strategy is similar to the
widely used hard example mining technique in the field of computer vision [50].

Finally, for dynamic recommendation systems, there is often a severe imbalance between positive
and negative samples. Summing or averaging the loss of all negative samples directly may have
adverse effects on the model’s performance. Therefore, we introduce a weight factor 𝜏 to adjust the
balance between the loss of positive and negative samples. This helps improve the model’s
performance, especially when there is a large number of negative samples. Moreover, this is a common
approach to addressing class imbalance issues.

To optimize the objective function, we choose to use the Adaptive Moment Estimation (Adam)
as the optimizer. Adam is a gradient-based optimization algorithm that automatically adjusts the
learning rate during the training phase and performs well in handling sparse gradients and non-
stationary objective functions. Additionally, to mitigate the overfitting issue, we employ the Dropout
strategy [51]. Dropout is a widely accepted regularization technique that randomly sets a portion of
the neuron outputs to zero during the training phase, thereby preventing the model from overfitting to
the training data excessively. By combining the Dropout optimization strategies, our model can

3577

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3563–3593.

effectively handle the training data and enhance recommendation performance.

5. Experiment

A series of experiments were conducted for a comprehensive evaluation of DyCARS, aiming to
address the following research questions:

Q1: How does DyCARS perform compared to state-of-the-art dynamic recommendation methods?
Q2: Are the core components of the GaMLP encoder, gating mechanism, bidirectional attention

mechanism, and 𝐿 loss essential for improving the recommendation performance of DyCARS?
Q3: What is the operational efficiency of DyCARS?
Q4: How diverse are the recommendations provided by DyCARS?
Q5: How do the hyper-parameters in DyCARS affect the recommendation performance?

5.1. Experiment setup

In this section, we will provide a detailed introduction to the experimental setup, including the
selection and preprocessing of datasets, the determination of baseline methods and evaluation metrics, as
well as the configuration of experimental parameters and the description of the experimental environment.

5.1.1. Datasets and preprocessing

In order to comprehensively evaluate the performance of the model, a series of experiments were
conducted on two real-world datasets. The details of the datasets are shown in Table 3.

Table 3. The details of the datasets.

Dataset users items Interactions Action Repetition
LastFM 1000 1000 1293,103 8.6%
GTD 566 744 99,043 22.7%

1) LastFM: This dataset is widely adopted and consists of music play records within a month [52].
We selected a total of 1000 users and the top 1000 most played songs for our study, resulting in
1,293,103 interactions. Note that users only listened to the same song continuously in 8.6% of the
interactions. For the experiments, we divided the data into training, validation, and testing sets in
proportions of 80, 10, and 10%, respectively.

2) GTD: The GTD is widely recognized as the most comprehensive database covering global
terrorist incidents, encompassing over 200,000 terrorist activities carried out by nearly 3000 terrorist
organizations worldwide since 1970. This study aims to achieve early warning of terrorist attacks by
using DyCARS to predict the next province or state where a terrorist organization is likely to strike at
a specific time. During the experiment, we excluded events with unclear dates, unknown perpetrating
organizations and attack locations, as well as events involving terrorist organizations and attack
locations with fewer than 10 occurrences. Finally, a total of 99,043 events were screened, of which a
terrorist organization interacts with the same location of attack consecutively in 22.7% interactions.
The data was partitioned based on time, with 70% of the interactions used for model training, 10% for
validation, and the remaining interactions for testing purposes.

3578

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3563–3593.

5.1.2. Baselines and evaluation metrics

To evaluate the performance of DyCARS, we compare it with the following seven baselines:
1) LSTM [41]: This model is a special type of RNN that can capture long-term dependencies.
2) Time-LSTM [34]: This model extends the standard LSTM by adding two time gates to model

the influence of time intervals on both the user’s current and long-term behaviors.
3) RRN [15]: This model is based on the concept of matrix factorization and utilizes an RNN to

learn dynamic embeddings of users and items.
4) DeepCovolve [21]: It is based on co-evolutionary point process algorithms. According to [16],

10 negative samples are used in each interaction.
5) JODIE [16]: This model is a coupled RNN model used to learn dynamic feature representations

of users and items.
6) DGCF [17]: This model is a novel framework that captures both the collaborative relationships

and historical sequence relationships between users and items using dynamic graphs.
7) DeePRED [18]: This model employs a non-recurrent approach to model the short-term

preferences of users and items based on their recent interaction history, which represents the state-of-
the-art model in dynamic recommendation problems.

We use the following two evaluation metrics for experiments:
1) Mean Reciprocal Rank (MRR) is the average of the reciprocal rank of the first positive example

in all user recommendation lists. The performance of a model on the item ranking list can be evaluated
using this metric, where a higher score indicates that the ground truth items are ranked higher in the
recommendation list. In certain cases, such as search result ranking for specific users, improving MRR
can significantly enhance user experience, especially for items with higher importance in the ranking
results. The calculation formula is as follows:

 𝑀𝑅𝑅
| |
∑ ∈ (22)

where 𝑖 ∈ 𝐼 represents traversing all interactions and 𝑟𝑎𝑛𝑘 represents the position of the first
ground truth item in the recommendation list for the i-th interaction.

2) Recall@k is the fraction of interactions in which the ground truth item is ranked in the top k. This
metric focuses on evaluating the comprehensiveness and diversity of recommendation results, making it
highly applicable in recommendation systems. This metric is used because the recommendation system
aims to cover a wide range of items within the user’s interests, ultimately enhancing user satisfaction and
participation. In certain application environments, such as e-commerce and video recommendations,
improving Recall@k can significantly optimize the practical effectiveness of recommendation systems,
thereby increasing sales or user stickiness. Formally, Recall@k is defined as:

 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 ℎ

| |
 (23)

where 𝑛ℎ is the number of ground truth items that are among the top-k recommendation list, and |𝐼|
denotes the total number of interactions.

3579

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3563–3593.

5.1.3. Experiments details

The proposed DyCARS in this paper is implemented based on Pytorch and employs Xavier
initialization [53] to initialize the model parameters. For all algorithms, we adopt 128-dimensional
dynamic embeddings and randomly initialize the embeddings of users and items from a Gaussian
distribution with mean 0 and variance 1. During the training process, we utilize the validation set to
tune the hyper-parameters of DyCARS through Bayesian optimization.

For the LastFM dataset, we set the learning rate of the Adam optimizer to 1 10 , dropout rate
to 0.8, and the length n of the user-item recent interaction history to 200. The number of layers L for
the GaMLP encoder is set to 3, and we select max pooling as the pooling strategy for the AP network.
The regularization coefficient 𝛼 in the D-PCS loss function is set to 0.7, the number of negative
samples is set to 10, the threshold M for filtering negative samples is set to 0.4, and the hyper-parameter
𝜏 is set to 1 to control the relative weight between positive and negative sample losses. For the GTD
dataset, we set the dropout rate to 0.7 and the number of layers L for the GaMLP encoder to 1.
Additionally, we choose average pooling as the pooling strategy for the AP network, and set the
regularization coefficient 𝛼 in the D-PCS loss function to 0.5. It is worth noting that, except for the
adjustments mentioned above, the settings of the remaining hyper-parameters are consistent with those
for the LastFM dataset.

During the testing phase, for a given real user-item interaction 𝑢, 𝑣, 𝑡 , DyCARS predicts the
top-k items that user u will interact with at time t based on the dynamic interaction history of the user
and item, denoted as 𝐼 𝑡 ,𝑛 and 𝐼 𝑡 ,𝑛 , respectively. It should be emphasized that the
prediction target of DyCARS is dynamic embedding rather than interaction probability, allowing us to
predict the top-k items in the recommendation list through an effective nearest neighbor search strategy.

We carefully tune the parameters to ensure that all baseline models achieve optimal performance.
All experiments are run independently in the same experimental environment with an Intel(R) Xeon(R)
Platinum 8358P host and NVIDIA Tesla A40-48GB GPU.

5.2. Next item prediction experiment (Q1)

For next item prediction, we compared DyCARS with seven baselines on two datasets, and the
results are presented in Table 4. The best and second-best results are highlighted in bold and underlined,
respectively. “Improvement” denotes the performance improvement of DyCARS over the best baseline.
Based on the experimental findings, we can draw the following conclusions:

1) On both datasets, DyCARS, DeePRED, and DGCF demonstrate superior performance
compared to other baselines, indicating the crucial importance of modeling topological structure
information for learning dynamic graphs.

2) DyCARS outperforms all baselines in terms of all metrics on both datasets. Particularly on the
LastFM dataset, compared with the best baseline, the improvement of DyCARS on MRR is 39.95%
and the improvement on Recall@10 is 28.88%. Furthermore, the performance of DyCARS gradually
improves compared to state-of-the-art baselines on both the GTD and LastFM datasets, which aligns
with the repetitive patterns observed in user behavior within the datasets. These substantial
improvements can be attributed to two key factors. First, DyCARS leverages the recent interaction
history of users and items as dynamic context, and models long-term dependency structures in the
dynamic interaction history through the GaMLP encoder. Second, we introduce the AP network to

3580

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3563–3593.

learn similarity scores between high-level features of user and item dynamic interaction histories,
extracting the most relevant delayed interaction patterns from the historical sequences by calculating
bidirectional attention weights. As a result, DyCARS is capable of effectively handling scenarios with
low action repetition.

3) In DyCARS, there is a significant reduction in the gap between the MRR and Recall@10
metrics compared to other baselines. This indicates that DyCARS exhibits higher precision in ranking
ground truth items, whereas other baseline models often only achieve high rankings within the top ten
predicted items.

Table 4. Performance comparison of different methods on two datasets.

Method
LastFM GTD

MRR Recall@10 MRR Recall@10
LSTM 0.062 0.119 0.124 0.211
Time-LSTM 0.068 0.137 0.267 0.452
RRN 0.089 0.182 0.402 0.643
DeepCovolve 0.019 0.039 0.051 0.085
JODIE 0.195 0.307 0.496 0.764
DGCF 0.321 0.456 0.509 0.785
DeePRED 0.393 0.416 0.740 0.756
DyCARS 0.550 0.588 0.810 0.822
Improvement 39.95% 28.88% 9.46% 4.71%

5.3. Detailed model analysis (Q2)

In this section, we will conduct a detailed analysis of the model to gain a deeper understanding
of the impact of each core component of DyCARS on its overall performance. This analysis will focus
on four key aspects: the influence of different encoders, the role of the gating mechanism, the
contribution of the bidirectional attention mechanism, and the effectiveness of the 𝐿 loss function.
Through these analyses, our aim is to uncover the internal workings of DyCARS and how each
component collaboratively enhances the performance of the recommendation system.

5.3.1. Impact of different encoders

Several variants of DyCARS were implemented, and comparative experiments on two datasets
were conducted to demonstrate the effectiveness of the GaMLP encoder. The specific settings for these
variants are as follows:

1) DyCARS-GRU: In this variant, the GaMLP encoder is replaced with a GRU [54]. GRU is a
commonly used RNN variant for sequence modeling. It employs gate mechanisms that allow the
network to selectively retain and update information when processing sequential data, enabling better
capture of long-term dependencies.

2) DyCARS-Trm: In this variant, the GaMLP encoder is replaced with a Transformer model [55].
The Transformer model is a deep learning architecture based on self-attention mechanisms, specifically
designed for handling sequential data. The self-attention mechanism allows the model to attend to
different positions within the input sequence, capturing richer contextual information without relying

3581

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3563–3593.

on complex recursive or convolutional structures. Additionally, the Transformer model supports
parallel computation, greatly improving the efficiency of processing long sequential data.

According to the experimental results in Table 5, the following can be observed:
1) The performance of DyCARS-GRU is superior to DyCARS-Trm. This result may be due to

several factors. First, models based on RNNs (such as GRU) often perform better on smaller datasets.
Conversely, Transformer models typically require large-scale datasets to achieve optimal performance.
Second, when dealing with dynamic recommendation problems, certain characteristics of GRUs may
contribute to its more prominent performance. For instance, the adoption of gate mechanisms in GRUs
allows for explicit storage and retrieval of user-item interaction history. Additionally, due to its
recursive nature, GRUs can maintain the sequential order of input sequences. These two characteristics
are crucial for addressing dynamic recommendation problems.

2) The performance of DyCARS surpasses that of variants using GRUs or Transformers, and
several key factors can account for this. First, the GaMLP encoder utilizes an embedding matrix of the
user’s (or item’s) recent n interaction histories as input. This embedding matrix concatenates the static
embeddings of the most recent interacting items (or users) with the temporal differences between user-
item interactions, thereby capturing user behavior patterns and variations in intrinsic item properties
more comprehensively. It also effectively considers the time decay effect of recent interaction events
on the current event. Second, the GaMLP encoder employs the SG module to capture the interactions
between user-item dynamic interaction histories, enabling more effective exploration of correlations
and patterns among interaction events, thus achieving modeling of long-term dependency structures in
dynamic interaction histories. In contrast, the modeling capabilities of DyCARS-GRU and DyCARS-
Trm may be constrained by their respective architectures, potentially limiting their ability to fully
capture the complexity of dynamic interactions.

Table 5. Impact of different encoders.

Variants
LastFM GTD

MRR Recall@10 MRR Recall@10
DyCARS-GRU 0.546 0.575 0.801 0.808
DyCARS-Trm 0.545 0.569 0.800 0.806
DyCARS 0.550 0.588 0.803 0.816

5.3.2. Impact of gating mechanisms

One notable feature of the GaMLP encoder is its adoption of the SG module to capture the
interactions between user-item dynamic interaction history, enabling the modeling of long-term
dependency structures within the dynamic interaction history. Table 6 demonstrates the impact of
different gating mechanisms on model performance on two datasets. Taking the user side as an example,
the mathematical representations of various gating mechanisms are as follows:

1) Variant a (Linear GaMLP): SG 𝑌 𝑡 ℎ , 𝑌 𝑡
2) Variant b (Additive GaMLP): SG 𝑌 𝑡 𝑌 𝑡 ℎ , 𝑌 𝑡
3) Variant c (Multiplicative GaMLP): SG 𝑌 𝑡 𝑌 𝑡 ⊙ ℎ , 𝑌 𝑡
4) Variant d (Multiplicative, Split GaMLP): SG 𝑌 𝑡 𝑌 𝑡 ⊙ ℎ , 𝑌 𝑡 ,𝑌 𝑡

𝑌 𝑡 ‖𝑌 𝑡

3582

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3563–3593.

The model architectures of the four variants are illustrated in Figure 3.

Figure 3. The model architectures of the four variants of SG modules.

Except for the variant b used on the GTD dataset in Section 5.2, variant d is employed throughout
the rest of this paper. From Table 6, it can be observed that the impact of different gating mechanisms
on model performance varies depending on the dataset. For the LastFM dataset, its low user action
repetition and higher number of interaction events indicate that the dataset exhibits stronger dynamism
and is more challenging to predict. In this scenario, variant d performs the best. This approach may
have increased the complexity and flexibility of the model by splitting the input embeddings into two
parts and processing them separately, enabling the model to better capture complex user behavior
patterns and long-term dependencies. In contrast, for the GTD dataset, its higher user action repetition
suggests a weaker level of dynamism, making the prediction relatively simpler. In this scenario, variant
b performed the best, possibly due to the provision of moderate complexity offered by variant b.

Table 6. Impact of gating mechanisms.

Variants
LastFM GTD

MRR Recall@10 MRR Recall@10
Linear GaMLP 0.546 0.575 0.803 0.817
Additive GaMLP 0.548 0.582 0.810 0.822
Multiplicative GaMLP 0.548 0.583 0.803 0.813
Multiplicative, Split GaMLP 0.550 0.588 0.803 0.816

5.3.3. Impact of bidirectional attention mechanism

DyCARS leverages the AP network to learn bidirectional attention weights for extracting the most
relevant delayed interaction patterns from user-item interaction history, enabling the prediction of
dynamic embeddings for users and items. To investigate the impact of the bidirectional attention
mechanism on model performance, we conducted comparative experiments on two datasets.
Specifically, “DyCARS w/o Att” means that we pool the high-level feature matrices of the recent
interaction history of users and items by rows and columns, respectively, to directly generate dynamic

3583

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3563–3593.

embeddings of users and items.
The results in Table 7 clearly demonstrate a significant decline in the performance of DyCARS across

both metrics when lacking a bidirectional attention mechanism. This observation underscores the
inadequacy of solely relying on pooling operations for extracting high-level feature matrices of users and
items. Such a method fails to capture the complexity and dynamics in the user-item interaction history,
potentially overlooking crucial delayed interaction patterns that have decisive impacts. Moreover, this
finding underscores the critical role of bidirectional attention mechanisms in DyCARS.

Table 7. Impact of bidirectional attention mechanism.

Variants
LastFM GTD

MRR Recall@10 MRR Recall@10
DyCARS w/o Att 0.545 0.570 0.796 0.808
DyCARS 0.550 0.588 0.803 0.816

5.3.4. Impact of 𝐿 loss

Currently, most research on dynamic recommendation focuses primarily on constructing
recommendation models, often overlooking the crucial role of the loss function in model learning. To
investigate the impact of the 𝐿 loss on model performance, we conducted comparative
experiments on two datasets. Specifically, “DyCARS w/o 𝐿 ” denotes training DyCARS without
the 𝐿 loss by removing it from the D-PCS loss function.

Table 8 presents the experimental results. It should be noted that each model has been trained for
sufficient iterations to achieve convergence, and the best results have been reported. The results
demonstrate a significant improvement in both evaluation metrics when the 𝐿 loss is included in
the D-PCS loss function. This finding underscores the crucial role of the 𝐿 loss in model parameter
optimization and performance enhancement. By utilizing cosine similarity to compute the similarity
between user-item pairs, the 𝐿 loss avoids the issue of large value ranges that may arise in dot
product or other methods. Additionally, the 𝐿 loss allows the model to emphasize learning from
hard negative samples, resulting in more discriminative features and enhancing the model’s ability to
extract useful information.

Table 8. Impact of 𝑳𝑷𝑪𝑺 loss.

Variants
LastFM GTD

MRR Recall@10 MRR Recall@10
DyCARS w/o 𝐿 0.549 0.582 0.800 0.812

DyCARS 0.550 0.588 0.803 0.816

5.4. Runtime experiment (Q3)

To empirically evaluate the efficiency of DyCARS, we conducted measurements to assess its
runtime. In Figure 4, we present a comparison of the computational time (in seconds) required to
complete an epoch using the GTD dataset. The following figure clearly demonstrates that DyCARS
exhibits a significant advantage in terms of the computational time compared to recursive baseline models

3584

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3563–3593.

such as JODIE and DGCF. Moreover, the computational time of DyCARS is comparable to that of the
non-recursive baseline model, DeePRed. Recursive models typically incur additional computational costs
as they rely on their previous states to predict dynamic embeddings. However, DyCARS circumvents this
additional overhead by leveraging its non-recursive architecture that relies on interaction history rather than
previous dynamic embeddings. Notably, DyCARS achieves both high efficiency and excellent predictive
accuracy. This is primarily attributed to the powerful expressive capabilities of the GaMLP encoder, the
AP network, and the optimized design of the D-PCS loss function.

Figure 4. The computational time (in seconds) required to complete an epoch using the
GTD dataset.

5.5. Diversity analysis in recommendations (Q4)

In practical applications, an enhancement in diversity within recommendation systems often
accompanies a reduction in prediction accuracy. This phenomenon partially stems from the inherent
uncertainty in user interests and the influence of certain unobservable factors in recommendation
systems, which limit the real-time prediction capabilities for users’ next actions. Moreover, most
existing experimental simulations do not fully reflect the impact of real-time recommendation systems
on user behavior. However, this does not imply an irreconcilable contradiction between diversity and
accuracy. In fact, a key goal of recommendation systems is to guide user choices, rather than merely
matching users’ historical data. Increasing the exposure of different items in the recommendation list
aims to provide users with a broader range of information, assisting them in discovering new items
that may be of interest. Considering this, our study has adopted the widely used diversity metric in the
field of recommendation systems, Diversity [56], to measure the degree of variation among items in
the recommendation list. The formula for calculating this metric is as follows:

 𝐷𝑖𝑣 ∑ 1 𝑠𝑖𝑚 𝑖, 𝑗 (24)

In this formula, K represents the length of the recommendation list, and 𝑠𝑖𝑚 𝑖, 𝑗 denotes the
cosine similarity between item i and item j.

Figure 5 displays the results of the diversity analysis of DyCARS on the GTD dataset. The
experimental data indicate that, compared to the state-of-the-art baseline model DeePRED, DyCARS

3585

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3563–3593.

not only maintains personalized recommendations in line with user interest patterns but also effectively
enhances the diversity of the recommendations.

Figure 5. Analysis results of recommendation diversity on the GTD Dataset.

5.6. Parameter analysis (Q5)

In this section, we analyzed the impact of various hyper-parameters of DyCARS on the next item
prediction. Throughout the subsequent experimental process, unless otherwise stated, we employ
average pooling as the pooling strategy for the AP network on the LastFM dataset.

5.6.1. Impact of embedding size

Table 9 illustrates the impact of embedding size on model performance on two datasets. From the
experimental results, it can be observed that for the LastFM dataset, increasing the embedding size
yields improved performance. In contrast, for the GTD dataset, the model achieves optimal
performance when the embedding size is set to 128. However, increasing the size of embeddings also
results in increased computational complexity. Therefore, we need to choose a suitable embedding size
to balance the model performance and efficiency.

Table 9. Impact of embedding size.

Embedding size
LastFM GTD

MRR Recall@10 MRR Recall@10
32 0.544 0.569 0.800 0.813
64 0.544 0.570 0.803 0.814
128 0.546 0.572 0.803 0.816
256 0.548 0.577 0.799 0.816

5.6.2. Impact of the number of layers L in the GaMLP encoder

The experimental results in Figure 6 demonstrate the impact of the number of layers L in the
GaMLP encoder on model performance, indicating that this effect is dependent on dataset
characteristics. For the LastFM dataset, the model exhibits improved performance with an increase in

3586

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3563–3593.

the number of layers L. This could be attributed to the fact that the LastFM dataset possesses more
complex interaction dynamics and structures, requiring multiple layers of GaMLP encoders to capture
deep-level interaction patterns and long-term dependencies. Each layer of the GaMLP encoder can
extract different levels of information from the user-item interaction history, and the stacking of
multiple layers aids the model in learning higher-order representations.

However, on the GTD dataset, the model achieves optimal performance when the number of
layers is set to 1. This could be due to the lower complexity or smaller sample size of the GTD dataset.
Therefore, increasing the model’s complexity, such as adding more layers, may result in overfitting on
the training data and a decrease in the generalization performance on the test data. Additionally, if the
dataset has low dynamics, multiple layers of GaMLP may not bring additional performance
improvement but instead increase computational costs and model complexity.

Figure 6. Impact of the number of layers L in the GaMLP encoder.

5.6.3. Impact of the length n of user-item recent interaction history

We conducted comparative experiments on two datasets to assess the effect of different lengths
of recent user-item interaction history on model performance. As depicted in Figure 7, it can be
observed that, as the length n of recent interaction history increases, the model’s performance gradually
improves on both datasets. This can be attributed to several potential reasons: First, appropriately
increasing the length of recent interaction history allows the model to acquire richer contextual
information. This helps the model better understand user behavior patterns and changes in interests,
thereby making more accurate recommendations. Second, as the length n of recent interaction history
increases, the model can encompass a wider time span, enabling it to effectively capture long-term
dependency structures and better model the long-term trends in user behavior. Finally, in the short-
term, user behavior may be influenced by certain transient factors such as emotions or seasonal
activities, which can introduce noise. By increasing the history length, the model can consider user
behavior across multiple time periods, reducing the impact of these transient factors and improving
recommendation stability.

However, it is important to note that an excessively long length of recent interaction history may
lead to decreased computational efficiency and introduce an abundance of irrelevant information,
which can have a negative impact on the model’s performance. Therefore, it is necessary to carefully
select an appropriate length to strike a balance between model performance and efficiency.

3587

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3563–3593.

Figure 7. Impact of the length n of user-item recent interaction history.

5.6.4. Impact of different pooling strategies in the AP network

Comparative experiments were conducted on two datasets to assess the impact of various pooling
strategies on model performance. As observed from Table 10, the max pooling strategy exhibits
superior performance for the LastFM dataset. However, for the GTD dataset, the average pooling
strategy demonstrates better performance. This indicates that the choice of pooling strategy directly
influences the model’s ability to capture and extract features. The effects of max pooling and average
pooling may vary when dealing with datasets of different types.

Max pooling is a strategy that emphasizes the most salient features. The LastFM dataset features
complex and diverse user-item interactions. Within this dataset, certain key features closely related to
the prediction outcome play a significant role in predicting user behavior. Therefore, by selecting the
maximum value, max pooling can capture these crucial features, thereby enhancing the performance
of the model.

In contrast, average pooling takes into account the average effect of all features, enabling it to
smooth the data and reduce the influence of noise and outliers. On the GTD dataset, there may not be
significant key features, and the overall behavioral patterns are more crucial for prediction. In such
cases, average pooling can capture the global behavioral patterns, leading to superior performance.

Table 10. Impact of different pooling strategies in the AP network.

Pooling strategy
LastFM GTD

MRR Recall@10 MRR Recall@10
Max 0.550 0.588 0.797 0.810
Mean 0.546 0.572 0.803 0.816

6. Discussion

In this section, we first explore the potential impact of Session-Based Recommendation
Systems (SBRSs) and the Dynamic Recommendation Systems (DRSs) used in this study on
personalized recommendations, as well as their differences. Then, we discuss the prospects of
applying recent large-scale time series language models in the field of DRSs. Additionally, we
address the limitations of this study.

3588

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3563–3593.

6.1. Session-based recommendation systems and dynamic recommendation systems

The potential impact and differences between SBRSs and DRSs on personalized
recommendations are primarily evident in data processing and recommendation strategies. 1) Data
processing: SBRSs typically handle session data, which consists of a series of interactions with clear
start and end boundaries, focusing on intra-session interactions. DRSs, on the other hand, process
continuous sequences of user behavior, emphasizing long-term user preferences and behavioral
patterns. 2) Recommendation strategy: SBRSs concentrate on short-term user behavior and interests
within the current session, which may lead to more immediate and current activity-related
recommendations. DRSs, however, provide deeper levels of personalized recommendations by
analyzing long-term data to understand a user’s overall interests. Therefore, SBRSs focus more on
short-term, immediate personalization, while DRSs emphasize the analysis of long-term user behavior
and the depth of personalized recommendations.

In DyCARS, the following characteristics of the model design determine its potential impact on
personalized recommendations: 1) Capturing dynamic interests: Through the dynamic graph and the
GaMLP encoder, DyCARS can more accurately capture the evolving interests of users over time, thereby
offering more tailored personalized recommendations that fit current needs. 2) Long-term dependency
modeling: The model considers users’ long-term interaction history, which aids in understanding and
predicting their interests and preferences. 3) Real-time updates: As the model emphasizes dynamic
interaction history, it can respond more swiftly to the latest user behaviors, providing real-time updated
personalized recommendations. These features make DyCARS more precise and timely in delivering
personalized recommendations, catering to the ever-changing needs of users.

6.2. Time series large language models and dynamic recommendation systems

Recent time series large language models, such as those based on the Transformer architecture,
have provided significant insights for the field of DRSs. These models excel in processing long
sequence data, particularly in capturing temporal dependencies and understanding complex contexts.
In DRSs, these capabilities can be leveraged to analyze and predict users’ behaviors and interests as
they evolve over time more accurately.

Furthermore, the natural language processing capabilities of these models can also: 1) Analyze
user-generated content, such as reviews or social media posts, to enrich user profiles and
recommendation logic. 2) By analyzing the emotional tendencies in users’ statements and interactions,
DRSs can more accurately capture changes in user mood, thereby offering recommendations that better
align with the user’s current emotional state. 3) Language models can assist in identifying and
analyzing trending topics in social media and online content, enabling recommendation systems to
respond promptly to current hot topics and user interests. Therefore, combining research on time series
large language models with DRSs could lead to new breakthroughs in personalized recommendations.

6.3. Limitations of this study

Despite the excellent performance of DyCARS in multiple aspects, we also recognize its
limitations. 1) Dataset scale and complexity: The current DyCARS model has primarily been tested
on datasets of limited scale. Its performance and efficiency may be challenged on larger and more

3589

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3563–3593.

complex datasets. 2) Limited utilization of contextual information: Although the DyCARS model
considers the dynamic interaction history of users and items, it does not fully utilize other potential
contextual information, such as users’ social networks, browsing behavior, and emotional states. 3)
Challenges in real-time recommendations: In handling real-time data streams and rapidly changing
user preferences, the model may require further optimization to improve response speed and accuracy.

7. Conclusions

This study proposes a novel non-recursive dynamic recommender model, called DyCARS, and
successfully applies it to dynamic recommendation. DyCARS considers the dynamic interaction
history of users and items as dynamic context. This approach utilizes the GaMLP encoder to capture
long-term dependency structures in user-item interaction sequences. Additionally, we introduce the AP
network to extract the most relevant delayed interaction patterns from the dynamic interaction history.
Specifically, our model is built on dynamic graphs and leverages the static embeddings of recent user-
item interactions as dynamic context. Additionally, we construct a GaMLP encoder to capture the long-
term dependencies in the dynamic interaction history and extract high-level features. Furthermore, by
applying the AP network, we learn similarity scores between the high-level features of users and items
in the dynamic interaction history. By computing the similarity score matrix of high-level features, we
obtain bidirectional attention weights and uncover the most relevant delayed interaction patterns from
the historical sequence to predict the dynamic embeddings of users and items. Finally, we propose a
D-PCS loss function suitable for dynamic recommendation, aiming to jointly optimize the static and
dynamic embeddings of both types of nodes. We conducted extensive experiments on two real-world
datasets, and the results demonstrate that DyCARS achieves state-of-the-art performance. In future
research, we plan to integrate more fine-grained contextual factors into DyCARS, such as considering
users’ social network information, browsing behavior, and emotional states. The inclusion of these
pieces of information may further enhance the accuracy and diversity of recommendations. Next, we
aim to test and optimize the DyCARS model on larger and more diverse datasets to validate its
performance and applicability in different scenarios. Moreover, in response to real-time data streams
and rapidly changing user demands, we will explore new lightweight model architectures and real-
time data preprocessing techniques to improve the response speed and accuracy of DyCARS.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this
article.

Acknowledgments

This work was supported by the Double First-Class Innovation Research Project for People’s
Public Security University of China (No.2023SYL08).

Conflict of interest

The authors declare there is no conflict of interest.

3590

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3563–3593.

References

1. Z. Lin, An empirical investigation of user and system recommendations in e-commerce, Decis.
Support Syst., 68 (2014), 111–124. https://doi.org/10.1016/j.dss.2014.10.003

2. T. Iba, K. Nemoto, B. Peters, P. A. Gloor, Analyzing the creative editing behavior of wikipedia
editors: Through dynamic social network analysis, Proc.-Soc. Behav. Sci., 2 (2010), 6441–6456.
https://doi.org/10.1016/j.sbspro.2010.04.054

3. T. R. Liyanagunawardena, A. A. Adams, S. A. Williams, MOOCs: A systematic study of the
published literature 2008–2012, Int. Rev. Res. Open Distrib. Learn., 14 (2013), 202–227.
https://doi.org/10.19173/irrodl.v14i3.1455

4. Q. Liu, S. Wu, L. Wang, T. Tan, Predicting the next location: A recurrent model with spatial and
temporal contexts, in Thirtieth AAAI Conference on Artificial Intelligence, 30 (2016).
https://doi.org/10.1609/aaai.v30i1.9971

5. S. Wu, Q. Liu, P. Bai, L. Wang, T. Tan, SAPE: A system for situation-aware public security
evaluation, in Thirtieth AAAI Conference on Artificial Intelligence, 30 (2016).
https://doi.org/10.1609/aaai.v30i1.9828

6. Z. Hou, X. Lv, Y. Zhou, L. Bu, Q. Ma, Y. Wang, A dynamic graph Hawkes process based on
linear complexity self-attention for dynamic recommender systems, PeerJ. Comput. Sci., 9 (2023),
1368. https://doi.org/10.7717/peerj-cs.1368

7. Y. Zheng, X. Yi, M. Li, R. Li, Z. Shan, E. Chang, et al., Forecasting fine-grained air quality based
on big data, in 21th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, (2015), 2267–2276. https://doi.org/10.1145/2783258.2788573

8. X. Wang, X. He, M. Wang, F. Feng, T. Chua, Neural graph collaborative filtering, in 42nd
International ACM SIGIR Conference on Research and Development in Information Retrieval,
(2019), 165–174. https://doi.org/10.1145/3331184.3331267

9. X. He, K. Deng, X. Wang, Yan Li, Y. Zhang, M. Wang, LightGCN: Simplifying and powering
graph convolution network for recommendation, in 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval, (2020), 639–648.
https://doi.org/10.1145/3397271.3401063

10. Y. Koren, R. Bell, C. Volinsky, Matrix factorization techniques for recommender systems,
Computer, 42 (2009), 30–37. https://doi.org/10.1109/MC.2009.263

11. D. Lee, H. S. Seung, Algorithms for non-negative matrix factorization, in 13th International
Conference on Neural Information Processing Systems, (2000), 535–541.

12. R. Salakhutdinov, A. Mnih, Probabilistic matrix factorization, in 20th International Conference
on Neural Information Processing Systems, (2007), 1257–1264.

13. S. Raza, C. Ding, Progress in context-aware recommender systems-An overview, Comput. Sci.
Rev., 31 (2019), 84–97. https://doi.org/10.1016/j.cosrev.2019.01.001

14. G. Adomavicius, K. Bauman, A. Tuzhilin, M. Unger, Context-aware recommender systems: From
foundations to recent developments, in Recommender Systems Handbook, (2022), 211–250.
https://doi.org/10.1007/978-1-0716-2197-4_6

15. C. Wu, A. Ahmed, A. Beutel, A. J. Smola, H. Jing, Recurrent recommender networks, in Tenth
ACM International Conference on Web Search and Data Mining, (2017), 495–503.
https://doi.org/10.1145/3018661.3018689

3591

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3563–3593.

16. S. Kumar, X. Zhang, J. Leskovec, Predicting dynamic embedding trajectory in temporal
interaction networks, in 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, (2019), 1269–1278. https://doi.org/10.1145/3292500.3330895

17. X. Li, M. Zhang, S. Wu, Z. Liu, L. Wang, P. S. Yu, Dynamic graph collaborative filtering, in 2020
IEEE International Conference on Data Mining, (2020), 322–331.
https://doi.org/10.1109/ICDM50108.2020.00041

18. Z. Kefato, S. Girdzijauskas, N. Sheikh, A. Montresor, Dynamic embeddings for interaction
prediction, in Web Conference 2021, (2021), 1609–1618.
https://doi.org/10.1145/3442381.3450020

19. S. Wu, F. Sun, W. Zhang, X. Xie, B. Cui, Graph neural networks in recommender systems: A
survey, ACM Comput. Surv., 55 (2022), 1–37. https://doi.org/10.1145/3535101

20. P. Covington, J. Adams, E. Sargin, Deep neural networks for YouTube recommendations, in 10th
ACM Conference on Recommender Systems, (2016), 191–198.
https://doi.org/10.1145/2959100.2959190

21. H. Dai, Y. Wang, R. Trivedi, L. Song, Recurrent coevolutionary latent feature processes for
continuous-time recommendation, in 1st Workshop on Deep Learning for Recommender Systems,
(2016), 29–34. https://doi.org/10.1145/2988450.2988451

22. Y. K. Tan, X. Xu, Y. Liu, Improved recurrent neural networks for session-based recommendations,
in 1st Workshop on Deep Learning for Recommender Systems, (2016), 17–22.
https://doi.org/10.1145/2988450.2988452

23. Z. Wang, W. Wei, G. Cong, X. Li, X. Mao, M. Qiu, Global context enhanced graph neural
networks for session-based recommendation, in 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval, (2020), 169–178.
https://doi.org/10.1145/3397271.3401142

24. S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, T. Tan, Session-based recommendation with graph
neural networks, in AAAI Technical Track: AI and the Web, 33 (2019), 346–353.
https://doi.org/10.1609/aaai.v33i01.3301346

25. C. Xu, P. Zhao, Y. Liu, V. S. Sheng, J. Xu, F. Zhuang, Graph contextualized self-attention network
for session-based recommendation, in Twenty-Eighth International Joint Conference on Artificial
Intelligence, (2019), 3940–3946. https://doi.org/10.24963/ijcai.2019/547

26. B. Hidasi, A. Karatzoglou, L. Baltrunas, D. Tikk, Session-based recommendations with recurrent
neural networks, preprint, arXiv:1511.06939.

27. J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, J. Ma, Neural attentive session-based recommendation, in
2017 ACM on Conference on Information and Knowledge Management, (2017), 1419–1428.
https://doi.org/10.1145/3132847.3132926

28. Q. Liu, S. Wu, D. Wang, Z. Li, L. Wang, Context-aware sequential recommendation, in 2016
IEEE 16th International Conference on Data Mining (ICDM), (2016), 1053–1058.
https://doi.org/10.1109/ICDM.2016.0135

29. J. You, Y. Wang, A. Pal, P. Eksombatchai, C. Rosenburg, Hierarchical temporal convolutional
networks for dynamic recommender systems, in The World Wide Web Conference, (2019), 2236–
2246. https://doi.org/10.1145/3308558.3313747

30. Y. Wang, N. Du, R. Trivedi, L. Song, Coevolutionary latent feature processes for continuous-time
user-item interactions, in 30th Conference on Neural Information Processing Systems, (2016), 1–9.

3592

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3563–3593.

31. Q. Wu, Y. Gao, X. Gao, P. Weng, G. Chen, Dual sequential prediction models linking sequential
recommendation and information dissemination, in 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, (2019), 447–457.
https://doi.org/10.1145/3292500.3330959

32. R. Trivedi, M. Farajtabar, P. Biswal, H. Zha, DyRep: Learning representations over dynamic
graphs, in International Conference on Learning Representations 2019 Conference, (2019).

33. A. Beutel, P. Covington, S. Jain, C. Xu, J. Li, V. Gatto, et al., Latent cross: Making use of context
in recurrent recommender systems, in Eleventh ACM International Conference on Web Search
and Data Mining, (2018), 46–54. https://doi.org/10.1145/3159652.3159727

34. Y. Zhu, H. Li, Y. Liao, B. Wang, Z. Guan, H. Liu, et al., What to do next: Modeling user behaviors
by time-LSTM, in 26th International Joint Conference on Artificial Intelligence, (2017), 3602–
3608.

35. Y. Zhang, X. Yang, J. Ivy, M. Chi, ATTAIN: Attention-based time-aware LSTM networks for
disease progression modeling, in Twenty-Eighth International Joint Conference on Artificial
Intelligence, (2019), 4369–4375. https://doi.org/10.24963/ijcai.2019/607

36. W. Kang, J. McAuley, Self-attentive sequential recommendation, in 2018 IEEE International
Conference on Data Mining, (2018), 197–206. https://doi.org/10.1109/ICDM.2018.00035

37. D. Hendrycks, K. Gimpel, Gaussian error linear units (GeLUs), preprint, arXiv:1606.08415.
38. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L. Chen, MobileNetV2: Inverted residuals and

linear bottlenecks, in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
(2018), 4510–4520. https://doi.org/10.1109/CVPR.2018.00474

39. Y. N. Dauphin, A. Fan, M. Auli, D. Grangier, Language modeling with gated convolutional
networks, in 34th International Conference on Machine Learning, 70 (2017), 933–941.

40. R. K. Srivastava, K. Greff, J. Schmidhuber, Highway networks, preprint, arXiv:1505.00387.
41. S. Hochreiter, J. Schmidhuber, Long Short-Term Memory, Neural Comput., 9 (1997), 1735–1780.

https://doi.org/10.1162/neco.1997.9.8.1735
42. J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in 2018 IEEE/CVF Conference on

Computer Vision and Pattern Recognition, (2018), 7132–7141.
https://doi.org/10.1109/CVPR.2018.00745

43. C. Santos, M. Tan, B. Xiang, B. Zhou, Attentive pooling networks, preprint, arXiv:1602.03609.
44. R. Hadsell, S. Chopra, Y. LeCun, Dimensionality reduction by learning an invariant mapping, in

2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’06), (2006), 1735–1742. https://doi.org/10.1109/CVPR.2006.100

45. S. Yang, W. Yu, Y. Zheng, H. Yao, T. Mei, Adaptive semantic-visual tree for hierarchical
embeddings, in 27th ACM International Conference on Multimedia, (2019), 2097–2105.
https://doi.org/10.1145/3343031.3350995

46. X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, M. Wang, Lightgcn: Simplifying and powering graph
convolution network for recommendation, in 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval, (2020), 639–648.
https://doi.org/10.1145/3397271.3401063

47. C. Hsieh, L. Yang, Y. Cui, T. Lin, S. Belongie, D. Estrin, Collaborative metric learning, in 26th
International Conference on World Wide Web, (2017), 193–201.
https://doi.org/10.1145/3038912.3052639

3593

Mathematical Biosciences and Engineering Volume 21, Issue 3, 3563–3593.

48. B. Fu, W. Zhang, G. Hu, X. Dai, S. Huang, J. Chen, Dual side deep context-aware modulation for
social recommendation, in Web Conference 2021, (2021), 2524–2534.
https://doi.org/10.1145/3442381.3449940

49. T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, Distributed representations of words and
phrases and their compositionality, in 26th International Conference on Neural Information
Processing Systems, 2 (2013), 3111–3119.

50. R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection
and semantic segmentation, in 2014 IEEE Conference on Computer Vision and Pattern
Recognition, (2014), 580–587. https://doi.org/10.1109/CVPR.2014.81

51. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: A simple way
to prevent neural networks from overfitting, J. Mach. Learn. Res., 15 (2014), 1929–1958.

52. B. Hidasi, D. Tikk, Fast ALS-based tensor factorization for context-aware recommendation from
implicit feedback, in 2012th European Conference on Machine Learning and Knowledge
Discovery in Databases, (2012), 67–82.

53. X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks,
in 13th International Conference on Artificial Intelligence and Statistics (AISTATS) 2010, (2010),
249–256.

54. J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical evaluation of gated recurrent neural
networks on sequence modeling, preprint, arXiv:1412.3555.

55. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, et al., Attention is all
you need, in 31st International Conference on Neural Information Processing Systems, (2017),
6000–6010.

56. T. Silveira, M. Zhang, X. Lin, Y. Liu, S. Ma, How good your recommender system is? A survey
on evaluations in recommendation, Int. J. Mach. Learn. Cybern., 10 (2019), 813–831.
https://doi.org/10.1007/s13042-017-0762-9

©2024 the Author(s), licensee AIMS Press. This is an open access
article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0)

