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Abstract: Convex and preinvex functions are two different concepts. Specifically, preinvex functions
are generalizations of convex functions. We created some intriguing examples to demonstrate how
these classes differ from one another. We showed that Godunova-Levin invex sets are always convex
but the converse is not always true. In this note, we present a new class of preinvex functions called
(h1, hy)-Godunova-Levin preinvex functions, which is extensions of h-Godunova-Levin preinvex func-
tions defined by Adem Kilicman. By using these notions, we initially developed Hermite-Hadamard
and Fejér type results. Next, we used trapezoid type results to connect our inequality to the well-known
numerical quadrature trapezoidal type formula for finding error bounds by limiting to standard order
relations. Additionally, we use the probability density function to relate trapezoid type results for ran-
dom variable error bounds. In addition to these developed results, several non-trivial examples have
been provided as proofs.

Keywords: Hermite—Hadamard; Fejer; Trapezoidal formula; Godunova-Levin preinvex;
mathematical operators; random variable



https://www.aimspress.com/journal/mbe
https://dx.doi.org/10.3934/mbe.2024151

3423

1. Introduction

Mathematical sciences rely heavily on convexity and it contributes to many fields such as optimiza-
tion theory, economics, engineering, variational inequalities, management science and Riemannian
manifolds. Convex sets and functions simplify complex problems, making them amenable to efficient
computational solutions. A wide spectrum of scientific and engineering disciplines continues to benefit
from concepts derived from convex analysis. Convexity is a powerful mathematical concept that can be
used to simplify complicated mathematical problems and offer a theoretical framework for the creation
of effective algorithms in a variety of domains. Complex systems behaviour can be deeply understood
through integral inequalities that are derived from convexity concepts. These inequalities give math-
ematics rigour. Their ability to model, comprehend, and forecast a wide range of natural phenomena
makes them indispensable instruments for engineers and physicists. Our understanding of the physical
world will likely be further enhanced by the discovery of new applications and connections made pos-
sible by this field of study. To sum up, Jensen’s work and later advancements in convex analysis have
clarified the utility of convex functions, which is essential to understanding optimisation problems. It
offers both useful techniques and theoretical underpinnings for identifying the best answers in a variety
of applications. Convexity is still a major topic in mathematics, with research and applications being
done in many different areas.

Approximation theory and probability distributions use generalised convexity concepts to approx-
imate non-convex functions with convex functions. Numerous computational and numerical methods
can benefit from this approximation. To summarise, integral inequalities and generalised convexity
are closely related fields of study that share a mathematical framework for establishing and analysing
these inequalities. The significance of comprehending the interaction between generalised convexity
and integral inequalities in theoretical and practical contexts is emphasised by the applications of these
ideas in a variety of fields, such as physics, functional analysis, and optimisation. Literature contains
a variety of inequality types. The most crucial factor in optimization problems is Hermite-Hadamard
or often called double inequality. In this context, we consider the well-known inequality owing to
Hadamard and Hermite independently for convex functions; see Ref [1].

fy
ﬂs(gg +fg) < ! f B(v) dv < w. 1.1)
2 fg — 9y 9y 2

In addition to its mathematical relevance and its widespread application in a variety of domains
involving different classes of generalized convexity, researchers are also investigating how to extend
it to function spaces; see Refs. [2-5]. In mathematical optimization and related areas, invex functions
have become important extensions of convex functions. Initially, in [6], authors introduced invex
functions, that generalized classical convex mappings and discuss some of its interesting properties. In
[7], Ben and Mond combined work and introduced modified form of invex sets and preinvex functions,
an extension and generalization of classical convex mappings. The differentiable preinvex mappings
in this class of invexity are invex, which is one of its distinguish features, but not the converse. Even
though preinvex functions aren’t convex, they have some lovely properties that convex functions don’t.;
see Ref [8]. Based on Almutairi’s [9] formulation, a function B is called to be h-Godunova-Levin (GL)
preinvex on interval [g,, g, + ¢(f,, 8,)] iff it satisfies the following double inequality
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(1) (20, +6Gpa)\ 1 (sl 'y
g2 5N T f B(o) do < [B B f flo_. 1.2
> ( > )<g(fg,gg) y (0) do < [B(g,) + B(i,)] ) (1.2)

Based on this result, several authors extend this result in various ways, many of them using various
types of preinvex functions; see Refs [10—12].

Interval-valued analysis allows one to deal with uncertainties and errors in a number of computa-
tional tasks effectively. This method ensures that results are based on uncertainties in input data by
representing numerical values as intervals, making it particularly useful for applications that require
accurate predictions and reliable results. By representing numerical values as intervals, it provides
a realistic and conservative approach to computations. Through Moore’s [13] contributions, interval
analysis has developed a wide range of applications that span many fields, including math, computer
science, engineering, and natural science; see Refs [14,15]. As a result of precise results in a variety of
disciplines, mathematicians are motivated to extend integral inequalities to interval-valued mappings.

Initially, authors in [16] used h-convex mappings to link Jensen type and Hadamard type results in
the setup of set-valued functions. By combining the concepts of set-valued analysis and h-convex map-
pings authors in [17] developed three well-known inequalities that shed light on the characteristics and
behaviour of stochastic processes within a probability space. In [18], authors used the notion of prein-
vex functions to create double inequality for set-valued mappings. In [19] authors utilize the notion of
preinvex functions on coordinates and developed various results of the double inequality on rectangular
plane. Zhou, Saleem, Nazeer, Shah [20] developed an improved form of the double inequalities by us-
ing pre-invex exponential type functions via fractional integrals in the context of set-valued mappings.
Khan, Catas, Aloraini, Soliman [21] used up-down preinvex mappings in a fuzzy setup to get Fejér and
Hermite-type findings. Using the concept of (h;, h;)-preinvex mappings, Aslam, Khalida, Saima [22]
created a number of Hermite-Hadamard type results related to special functions using power mean in-
tegral inequalities. Employing the concept of harmonical (h;, h;)-Godunova-Levin functions through
centre and radius interval order relation, the authors in [23] produced Hermite-Hadamard and Jensen
type results, which expand upon a number of earlier discoveries. Using local fractional integrals,
Sun [24] created a various new form of double inequalities for h-preinvex functions with applica-
tions. For generalized preinvex mappings, authors in [25] developed various novel variants of double
inequalities with some interesting properties using the notion of (s,m,p) type functions. Using par-
tial order relations, Ali et al. [26] developed different new variants of Hermite-Hadamard type results
based on Godunova-Levin preinvex mappings. By combining fractional operators and generalized
preinvex mappings, Tariq et al. [27] developed various new Hermite-Hadamard and Fejér type re-
sults. Sitho et al. [28] used the idea of quantum integrals to demonstrate midpoint and trapezoidal
inequalities for differentiable preinvex functions. Latif, Kashuri, Hussain, Delayer [29] investigated
Trapezium-type inequalities for h-preinvex functions, as well as their applications to special means.
Delavar [30] used fractional integrals to find new bounds for Hermite-Hadamard’s trapezoid and mid-
point type inequalities. Stojiljkovi¢ et al. [31] developed some new bounds for Hermite-Hadamard
type inequalities involving various types of convex functions using fractional operators. Afzal, Eldin,
Nazeer, Galal [32] created several novel Hermite-Hadamard type results by employing the harmon-
ical Godunova-levin function in a stochastic sense with centre and radius order. Tariq, Ahmad, Bu-
dak, Sahoo, Sitthiwirattham [33] conducted a thorough analysis using generalized preinvex functions
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of Hermite-Hadamard type inequalities. Afzal, Botmart [34] used the notion of h-Godunova-Levin
stochastic process and developed some new bounds of Hermite-Hadamard and Jensen type inclusions.
Kalsoom, Latif, Idrees, Arif, Salleh [35] created Hermite-Hadamard type inequalities for generalized
strongly preinvex functions using the idea of quantum calculus. Duo, Zhou [36] created some new
bounds by using fractional double integral inclusion relations having exponential kernels via interval-
valued coordinated convex mappings. Furthermore, comparable outcomes applying a variety of alter-
native fractional operators that we refer to [37—40].

This work is novel and noteworthy since it introduces a more generalized class, referred to as
(h;, hy)-Godunova-Levin preinvex functions that unify different previously reported findings by em-
ploying different choices of bifunction ¢. Since convexity and preinvexity are two different concepts,
and preinvexity enjoys more nice properties than classical convex mappings, a more generalized form
of inequalities is deduced with this class. Furthermore, this is the first time in literature that we have
identified error bounds for quadrature type formula via this class of generalized convexity furthermore
we also discuss some applications for random variables within context of error bounds that also gener-
alize different results. The majority of literature is based on partial order or pseudo order relationships
which have significant flaws in some of the inequalities results since we are not able to compare two
intervals. This order relationship offers the advantage of conveniently comparing intervals and, more
importantly, the endpoints of interval difference is much smaller, so a more precise result can be ob-
tained. Recently, various authors utilized Bhunias Samanata order relation to formulate various results
using different classes of convexities; see Refs. [41,42]. Stojiljkovi¢, Mirkov, Radenovi¢ [43] created a
number of novel tensorial trapezoid-type inequalities for convex functions of self-ddjoint operators in
Hilbert spaces. Liu, Shi, Ye, Zhao [44] employed the idea of harmonically convex functions to estab-
lish new bounds for Hermite-Hadamard type inequalities by using centre and radius orders. Regarding
other recent advancements employing distinct categories of convex mappings under centre and radius
order, please see [45—47].

The literature related to developed inequalities and specifically these articles; [9,25,41] is leading
us to define a new class of preinvexity for the first time and utilizing these notions, we are developing
various novel variants of the famous double and Trapezoid type inequalities and their relation to Fejér’s
work. The arrangement of the article is designed as: following the preliminary work in Sect. 2, we
present a new class of preinvexity and talk about some of its intriguing properties in Sect. 3. The main
results of this paper are presented in Sect. 4, where we developed different forms of famous double
type inequalities, and in Sect. 5, where we created modified Hermite-Hadamard-Fejér type results.
Section 6, focuses on error bounds of numerical integration with applications to random variable via
trapezoidal type inequality. Section 7, closes with a summary of some final thoughts and suggestions
for additional study.

2. Preliminaries

In this section, we discuss some current definitions and results that may provide support for the
primary conclusions stated in the study. Furthermore, certain ideas are used in papers without being
defined; see Ref. [9].
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Definition 2.1. [9] Suppose Q be a subset of R, then it is called to be invex with respect to to the
bifunction ¢(-,-) : QxQ — R", if
89 + 105(Tg, 89) € Q

forall g,,7, € Qand n, € [0, 1].
Example 2.1. Suppose Q = [-4, -3] U [-2, 3] is called to be invex with respect to s(-,-) and mappings
is defined as:

pr—m f-2<p<3,-1<m <3

pr—m if —4<p<-3,-4<n <=3

—4-m if-2<p;<3,-4<n <2

=2-m if -4<p £-3,-2<n <3

slpr,m) =

In that situation, Q is definitely invex with respect to ¢(-, ), but it is clearly not a convex set.

Definition 2.2. [50] Suppose Q is a invex with respect to the §(-,-). A function B : Q — R is called to
be preinvex with respect to (-, ) if

B (g5 + 1705 (Fg» 84)) < 10B() + (1 = 1) Bgy)
forall g,,7, € Qandn, € [0,1].

Definition 2.3. [50] Suppose Q is a invex with respect to the g(-,-). A function B : Q — R is called to
be GL preinvex with respect to ¢ if

B (g, + 705 (Ty- 8)) <

forallg,,f, € Qandn, € (0,1).

B(T,) N B(g,)
Mo (1 - 770)

Definition 2.4. [50] Suppose Q is a invex with respect to the ¢(-,-). A function B : Q — R is called to
be h-preinvex with respect to ¢ if

B (g, + 705 (Ty- 84)) < h()B(,) + h(1 = n,) B(a,)
forallg,,f, € Qandn, € (0,1).

Definition 2.5. [50] Suppose Q is a invex with respect to the (-, -). A Function B : Q — R is called to
be h-GL preinvex with respect to g if

B(F,) V(g
B (gg + nog(fg’ gg)) = h(ﬂj) " h(1 —gno)

forallg,,7,€Qandn, € (0,1).

Definition 2.6. [50] Suppose Q is a invex with respect to s(-,-). If for all g,,f, € Qand 1, € [0, 1],
S‘(Tga fg + 1 g(gga Tg)) =1 g(gg, fg) (2.1)

and

g(gg, fg + 1, g(gga fg)) = (1 - 770) g(gg’ fg) . (22)
forall g,,7, € Qand n,1,1,2 € [0, 1], and this is said to be Condition C, if one has

g(fg + 702 s*(gg, Tg) g+ 7701§(gg, fg)) = (1102 = 1o1) g(gg, Tg) .

Mathematical Biosciences and Engineering Volume 21, Issue 2, 3422-3447.



3427

2.1. Some Basic Notions of Set-Valued Functions

As we proceed through the article, we will cover a few basic information regarding interval analysis.

[e]=[o,¢] (e<v<9o;veER),
[c1=1[s.¢] (c<v<g¢ veR),
[e]l+[s]l =[e, 0] +[s.¢]=[o+¢,0+7]

and
[Ao,AS], if A>0;
Ao = Alo, o] =1{0}, if A =0;
[AS,Ao], ifA <O,
where A € R.

Let R, be the pack of all intervals and R} be the collection of all positive intervals of set of real
number R. As a next step, we define how we calculate the relation we use throughout the article. It is
called midpoint and radii of interval order relation.

More precisely ¢ can be represented as follows:

<>:<<>c’<>r>:< )

o+ 0 3—3>

Accordingly, we can describe the CR order relation for intervals in this manner:
Definition 2.7. [45] The Bhunia and Samanta interval order relation for ¢ = [¢,0] = (o, 0,) and

s =[s.61 =<sc, 6/) € Ry is defined as:

O < Gey  If 00 #E 645

O X § = i
or 2 6r, lfoc = Ge-
For the intervals ¢, ¢ € Ry, then this relation hold ¢ <., ¢ or ¢ <., ¢.

Definition 2.8. [46]_Let B : [y, T4] be an LV.F where T = [T, ﬁ], then B is Riemann integrable (IR)
on gy, 1,1 iff B and B are (IR) on [g,, 1,1, that is,
1 1g fg __
IR) | B(o)do = [(R) B(o) do, (R) f B(o) dQ] :
99

4y 4y

The pack of all LV.F.S for Riemann integrable on [g,,,] is denoted by IR, j,))-

Theorem 2.1. [47] Let B,n, : [g4,7,] be an LV.F.S defined as T = [B, @] and n, = [@, ol If

B(0) Zer No(@) Y 0 € [84,T4], then
i) Ty
f B(o) do <cr f 1n.(0) do.
9 g,

g g

With the help of an example, we show that the preceding Theorem holds true.
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Example 2.2. Let B = [0,20] and 1, = [0%, 0> +2]. Then, foro € [0, 1], 8¢ = 37", Br = 2,00 = 0"+ 1
and n,g = 1. As a result, by utilizing the Definition 2.7, one has B(0) <cr 1,(0) for o € [0, 1]. Since,

! 1
fO[Q,2Q]dQ=[§,1]
fl[z > 42 do = |1
| 05,0 =133

1 1
fo B(o) do <cr f(; 1.(0) do.

3. Some Novel Definitions and its Special Cases

and

From Theorem 2.1, one has

The purpose of this section is to introduce a new type of preinvexity called Godunova-Levin prein-
vex functions of the (h;, hy) type, based on total order relations, that generalizes several existing defi-
nitions.

Definition 3.1. Suppose B : [g,, ;] be an set-valued function given by ¥ = [T, ﬁ]. Leth;,h, : (0,1) —
(0, 00) where hy,h; # 0, then B is called to be CR-(hy, h;)-GL-preinvex with respect to ¢ if

B(T,) N B(g,)
H(I],,, 1 - no) H(l — No» 770),

Qg(gg + 1S (Tg, gg)) SCR

forallg,,7,€Qandn, € (0,1).
Remark 3.1. Choosing hy(n,) = nio,hz(no) = 1, in Definition 3.1, the CR-(hy, h,)-GL-preinvex func-
tion reduces to the CR-preinvex function.

B (g, + 105 (1> 85)) <er 1B(p) + (1 = 7,) B(gy)-

Remark 3.2. Choosing hi(n,) = #,hz(ﬂo) = 1, in Definition 3.1, the CR-(hy, h;)-GL-preinvex func-
tion reduces to the CR-s-preinvex function.

B gy + 705 (T 99)) <cr 15B(0) + (1= 1,)" B(gy)-

Remark 3.3. Choosing hi(n,) = 1,,h;(n,) = 1, in Definition 3.1, the CR-(hy, h,)-GL-preinvex func-
tion reduces to the CR-GL-preinvex function.

B(f,) N B(g,)
o (l - 770).

Remark 3.4. Choosing hi(n,) = m,hz(n,,) = 1, in Definition 3.1, the CR-(h, h;)-GL-preinvex

function reduces to the tgs CR preinvex function [52].

B (gq /S (fg’ gg)) =cRr

B (85 + 705 (7> 84)) Zcr M0(1 = 1)[B(Fy) + B(gy)].
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Remark 3.5. Choosing ¢(i,,8,) = f,—9, and hi(n,) = nio,hz(no) = 1, in Definition 3.1, the
CR-(hy, hy)-GL-preinvex function reduces to the CR-convex function [52].

B (101, + (1= 00)ay) <cr 7.B(,) + (1 = 17,) B(ay)-

Remark 3.6. Choosing 8 = B, in Definition 3.1, the CR-(hy, h,)-GL-preinvex function reduces to the
h-GL-preinvex function [48].

B(G,)  B(gy)
B (gg + 1,6 (fga gg)) < h(ﬂj) * h(1 _gn()).

Proposition 3.1. Let B : [g,,7,] — R; be an set-valued function given by B = [, %] = (B, Br). If
B and Vg are (hy, hy)-GL-preinvex functions, then B is a CR-(hy, h;)-GL-preinvex mapping.

Proof. Since ¥ and Vg are (h;, hy)-GL-preinvex functions, and V 1, € (0, 1), one has

Be(f,) Be(gy)
%C (gg + oS (T(J’ g(/)) < H(no, 1 - 770) * H(l — 1o 770)

and

B(fy) Br(gy)
Bg (Qg + 1,6 (fg’ 9{/)) < H(1,, 1 —1,) - H(1 —1,,1,)

Be(fy) Be(gy)
If Be (gg 1.8 (Tg’ 99)) i H(170,1-17,) + H(1-70,10) " then

%C(Tg) " %C(gg)
H(nm 1 - 770) H(l — Nos 770).

%C (gg R/l (Tga gg)) <

This implies
%C(fg) iBC(gg)
CR + .
H(?](), 1- 770) H(l — o> 770)

Be (94 + 105 (T 89)) <

: Br(Ty) Br(8y) P .
Otherwise, Bg (gg + 1,6 (fg, gg)) < H(n(flfw + H(lfm:]’]o) this implies

Bg(Fy) N Br(9,)
H(noa I - 770) H(l — o> 770).

%R (gg + 1,6 (Tg’ gg)) <cr

From Definition 3.1, we have

B(T,) N B(a,)
H(?](,, 1- no) H(l — No» 770)

Qs(gg + 1,6 (fg’ gg)) 5(37{

This demonstrate that, if B and Vg are (hy, h,)-GL-preinvex functions, then B is a CR-(h;, hy)-GL-
preinvex function. O
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4. Hermite-Hadamard Type Inequalities for CR-(hy, h;)-Godunova-Levin preinvex functions

As part of this section, we present several new Hermite-Hadamard and Fejér type inequalities for
Godunova-Levin-preinvex functions of the (hy, h;) type.

Theorem 4.1. Let B : [g,,9, + 5(fy.8,)] — Ry be an set-valued function defined as B (o) =
[§ () ,%(g)], If B : [a4,0, + 50489 — Ris a CR-(hy, hy)-GL-preinvex mapping and satisfies
the Condition C, then the following relation holds:

H(,1 o +6(1g:89)
[ ( 2)] B (299 +¢(fy, 99)) <o 1 fg V(o) do
s(fg»89)

N NI'—'

2

<cr [B(gy) + %(fg)]f m

Proof. By definition of CR-(h;, h,)-GL-preinvex function, one has

2vi +6(v2,v1) 1
o)

Choosing vi = g, + 17,6(fy, 85) and v2 = g, + (1 = 1,)5(7y, 94), we have

[B) +B(vo)].

1
B (gg + 1005092 89) + 56 (89 + (1= 1)y 8). 85 + 105y gg>))

<or [H(+[% (80 + 105iys80)) + B (8 + (1 = 7,)607, 891
2

3))

09 | —

This implies

11 2g, + 6(fgs
[H (5, 5)]% (W) <or [B (8 + 150 8)) + B (3, + (1 = 1)6Gpng))l. @1

Integrating aforementioned inequality (4.1), we obtain

[H(l, l)]% (M) <o

1 1
23 > ﬁ B (gg + nog‘(fg, gg)) dﬂg + j(: B (gg + (1 - UO)g(fg, gg)) dno]

1
= fo‘ (% (gg + T]{,S'(fg, gg)) (gg + (1 UO)g(TW gg))) dno,

1
jo‘ (Q} (gg + nog(fg’ gg)) (Qg + (1 - n”)g(fg’ gg))) dno

2 gg+§(fgsgg) 2 gg‘*’S‘(fgan) _
(o) do. f o) do
$(fys gg)fgg - §(fg: 89) Jg,

2 Qy+§(fgsgg)
= B(o) do.
5, gg)f Qe

Mathematical Biosciences and Engineering Volume 21, Issue 2, 3422-3447.
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From the previous developments, we can infer that

[8(z2)],, (20, + 5 0) w5t
o= 99 f B(o) do. 4.2
> ( > ) g(fg,gg) (0) do 4.2)

From Definition 3.1, we have

B(f,) N B(g,)

B (gg + 1,6 (fg’ gg)) =cr H(n,,1 -1, H( —n,, no).

Integrating the above result, we get

1
B(g, + 1705 (7,0 0,)) drgo < %(f)f— (g)f—
f (3 + 105 (1o 8)) dto <o 30, Bl 1= 10) 7 Jo H(L = 10, 710)

This implies

dn,
H(no’ 1 - T’o) ‘

gngS'(fg’gg) 1
[ v@do <o tv@ + 261 [ (4.3)
0

s(fg» 89)

By combining (4.2) and (4.3), we get required result.
]

Note: Based on our newly developed results, several previously published results have been unified.

Remark 4.1. e Choosing hi(n,) = h(,),h,(n,) = 1 and ¢(i,,9,) = T, — g4, then Theorem 4.1
generates outcomes for CR-h-GL functions [41].
e Choosing hi(n,) = ﬁno),hz(n(,) = 1 and ¢(i,, 84) = 4 — 84, then Theorem 4.1 generates outcomes
for CR-h-convex functions [51].
e Choosing hi(n,) = }ﬁ%),hz(no) = #}w and §(f4,08,) = T, — 94, then Theorem 4.1 generates
outcomes for CR-(hy, hy)-convex functions [49].

Example 4.1. Let B(o) = [1 — 02,9 — 307)], s(f, 0y) = T, — 8y T, = 2 and g, = 0, then for hy(,) =
nia,hz(no) =1, we have

[

=

)| " (2gg + 6(Tyr 8y)

> ) ~ [0,5.999],

il \]

35 +6(g,84)
B(o) do ~ [0.057,6.171],
5y gg>f e

[B(g,) + B(F,)] f m ~ [0.585,13.757].

As a result, Theorem 4.1 is validated as accurate.

[0,5.999] <¢& [0.057,6.171] <cx [0.585, 13.757].
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Theorem 4.2. Let B, : [g,,9, + (s, 89)] — R; be an set-valued functions, which are given by

V() = (9.9 ()] and B (o) = [B (). B (@)|. I B9 : [a.95 + iy 85)] = R are CR-(hy, hy)-
GL-preinvex functions, then the following double inequality applies:

1 ay+6(fg.99) 1 d’]o
) 2OV d <o M) fo s
1 dn,
+ Ny To) fo H(1 - 7,, 1 _'7 No)H(0, 110)” )
where
Mgy, i) = B(8,)D(g,) + B(T,)V({,y)
and

N(gy, fg) = B(a,)V(y) + B(F,)D(ay)
Proof. Since ¥, %) are CR-(h;, hy)-GL-preinvex functions, we have

B(y) B(a,)
B (o 06 () <o 5 TS T

and

9(,) N 9(a,)
H(n()’ I- n()) H(l — o, 77()) ‘
The product of the two aforementioned results gives us

B (gg + ng(fg, gg))‘D (gg + ng(fg, g_,,))
Bh) By H V) V)

9 (gg + r)g(fg gg)) =cr

~FEGoy 1 =10)  HA = 100,70) | | BG1os L = 1)~ B = 11,77,
_ [B(EHD ()] N [B(a,)V(g,)] %(fg)i)(gg)] + [B(gy)V(iy)]
Hz(no’ 1- no) H2(1 — Mo no) H(l — o> 1 - 770)H(770’ 770) .

For integrating (4.5), we have

4.5)

1
f B(a, + v (fy» 94) V(g + I)s“(fg, 8,)) dno
<C‘R %(fg)q)(fg)]f [%(gg)@(gg)]f

dn,
B L '
+[ (fg)‘z)(gg) + (gg)@(fg)] L H(1 — n,, 1 = n,)H",,1,)

Hz( Nos 1_ 0) H2(1 — Mo 770)

From Definition 2.8, we obtain

1 Qg"’g(fgagg)

dn,
H2(1 = 175, 17,)

1
B(0)V(0) do <cr [B(8,)D(8y) + B(HV(Fy)] f
S‘(Tga gq) 9y 0

1 dno
+ [%(Qg)@(fg) + %(fg)gy(gg)] j(: H(1 — n,, 1 — n,)H",,1,)
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1 1

dna f dno
= M(q,, ——————— + N(g,, '
(gg fg) L H2(1 — o, 770) (gg Tg) 0 H(l — Nos 1- U(J)H(Uo, 770)

O

Remark 4.2. Choosing h,(n,) = h(n,),h,(n,) = 1 and ¢(§,, 9,) = T4, — 8,4, then Theorem 4.2 generates
outcomes for CR-h-GL functions [41].

Remark 4.3. Choosing h,(n,) = ﬁm),hz (n,) = 1 and ¢(i,, 84) = T4 — 8, then Theorem 4.2 generates
outcomes for CR-h-convex functions [51].

Ty 1
f B@V(0) do <ox M(a,.T,) fo hno )2,
g

fg— 99 J,

1
+N(gga Jrg)‘fov h(l - no)h(no)dno

Remark 4.4. Choosing h;(n,) = #’]0)’ h,(n,) = #’]0) and (T4, 8,) = T,—8,, then Theorem 4.2 generates

outcomes for CR-(hy, hy)-convex functions [49].

Ty 1
f B(0)(0) do <cx M(gy, f,) fo H2(1,, 1 = 1,)dn,
g

fg - gg g
1
#N@efy) [ B =1 = 0 HOp )
0
Remark 4.5. Choosing h,(n,) = %, hy(n,) = 1, then Theorem 4.2 generates outcomes for CR-preinvex

functions, i.e.,

1
s(g»89)

ay+6(Tg.99) M(g,, N(a,,
f BV (o) do <ox ol | NGooTy)
99

3 6

Remark 4.6. Choosing h(n,) = %,hz(n(,) = 1 and ¢(i4,84) = Ty — 84 then Theorem 4.2 generates
outcomes for CR-convex functions, i.e.,

1y M(gg, fg) N(gg’ fg)
o 0 do <o T - T

Example 4.2. Let B(0) = [2-0,(6 —30%)|,9(0) = [¢? — 0, ¢? + 0], §(iy9y) = Ty — 84,9, = 0 and
fy = 2. Then, for hi(n,) = ﬁ,hz(m) =1, we have

1
s(g» 89)

gg‘*’S‘(fngy)
f B(0)V(0) do ~ [1.95,10.9]
99

and

boodn, ! dn,
M(q,. Tl N(g,, dn, ~ [4.32,15.96].
(0 fg)fo H2(175, 1 = 17,) (9 fg)fo B = 170, 1 — 7)o, 110) " [ ]

Thus, we have

[1.95,10.9] ¢ [4.32,15.96] .

Theorem’s 4.2 validity is therefore confirmed.
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Theorem 4.3. Following the same hypothesis as Theorem 4.2, the following relationship holds:

[HED (20, + 6o (20, + sCiyray)
2 %( g 2(1 9)2)( g 2,(/ .(/)

05 +6(g,94)
B d,
0 o0) f ©)(e) do

1 dno dno
" M(gg’ fg) j(: H(l — Mo 1- 770)H(770, 770) (gg, fg) f H2(7]0, 770)

Proof. The proof is completed by taking into account Definition 3.1 and using the same technique as
[An et al. [53], Theorem 5].

=cr

O

Remark 4.7. Choosing h,(n,) = ﬁm),hz (n,) = 1 and ¢(i,, 84) = T4 — 84, then Theorem 4.3 generates
outcomes for CR-h-convex functions [51].

Remark 4.8. Choosing hi(,) = ﬁno)’hZ(n”)
outcomes for CR-(hy, h,)-convex functions [49].

e (n 5 and §(fg, 89) = Tg—34, then Theorem 4.3 generates

Remark 4.9. Choosing h,(n,) = h(n,),h,(n,) = 1 and ¢(i,, 9,) = T4, — 8, then Theorem 4.3 generates
outcomes for CR-h-GL functions [41].

Example 4.3. Suppose B(0) = [-%.20% + 1|.9(0) = [-0.0l.5(fy.8,) = Ty — 84,0, = 1 and i, = 3.
Then, for hi(n,) = %, ha(n,) = i, we have

H(L [ 1 1
[ (222)] %(gg + Eg(fg,gg))s;) (gg + Eg(fg, gg)) ~ [-1.031,1.031]

and

05+6(g,94) 1 d
f B(0)V(0) do + M(g,.7,) f o

g(fg’ gg) 0 H(nu’ I](,)H(l — No» 1- 770)

dn,
__ Y [—132.25,45].
I - 770)

1
N s
+ (gg TQ)L Hz(ﬂo,

[-1.031,1.031] <¢r [—132.25,45].
Theorem’s 4.3 validity is therefore confirmed.

Thus, we have

5. Hermite-Hadamard-Fejér Type Inequality For CR-(hi, h;)-GL-Preinvex Functions

Theorem 5.1. Let B : [g4,0, + (T4, 95)] — R; be an set-valued function is defined as B (o) =
[§ ©) ,%(Q)] forall o € [Qg,fg]- If 9 : [g40, + (g, 8] = Ris an CR-(hy, h,)-GL-preinvex and
W : [g4, 85 + s(iy, 8.1 — R is symmetric with respect to g, + %g‘(fg, y), then the following outcome
holds:
Hi(g, + vs(iy- 8,)) dito

H(no, 1 —15)

a5 +6(T4.94)
B(o)W(o) do <cr [B B
o) f (0W(o) do =cr [B(gy) + B(iy] fo
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Proof. As B is an CR-(h;, h,)-GL-preinvex function and W is symmetric function, we have

B (gg + 95 (Tg, gg)) W (gg + 95 (fg, gg))

B(i,) B(g,)
<% g1 ) - ni,no)} W3 + 5 1o 0)

and
B (55 + (1= 15 (1 80)) W (8, + (1 = 10)s (7o )

B(g,) B(,)
—CR H(n,, 1 —n,) + H(1 - 1,, 770)] W (Qg + (I =155 (fg, Qg)) .

Including the two aforementioned results and then integrating, we have

1
j; B (g5 + 96 (T 8)) W (9 + 05 (5> 85)) o (.1

1
+ fo B (g, + (1= 120)5 (0 8)) W (85 + (1 = 10)5 (7o 8,)) o

! (W (gg + ng(fg, gg)) W(gg + (1 =n.)¢ (fg, gg))
=cRr L‘ %(gg){ H(l — 7]0) + H(I]U, 1 7]0) ]
+%(fg){

(W (gg + )¢ (fg’ gg)) W (Qg + (1 =15 (fg’ gg)) )]]
" dn,
= 2%(9{]) fl W Qg + (1 =1, (fg’ gg) dn, + Zﬁ(fg) fl W gg + g fg, gg)) ,

o

H( Nos 1- 770) H(l — Mo, no)
H(175, 1 — 1) H(10, 1 = 1,)

L (g + 96 (Ty- 0))
H(10, 1 = 170)

_ 2[B(a,) + B, f dn,. (52)

Since
1
[0 96 (1)) (3 + 5 (108,)) i (53)

1
+ fo B (g, + (1 = 1) (T 9)) W (59 + (1 = 1) (T 8)) o

ag+6(Tg.94)
= B(o)(o) do, 5.4
o o0) f (0)W(p) do (5.4)

We achieve the desired outcome by accounting results (5.1) and (5.3). O

Remark 5.1. If h;(n,) = RO, ),hz(m) = 1with3 = B, then Theorem 5.1 generates outcomes for

h-GL-preinvex functions, i.e.,

9g+5(7g.89) Ly ,
[ v do < (9 + 96,0 [ T gy,
L » B

s(fg» 9y)
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Remark 5.2. Ifh;(n,) = %,hz (1n,) = 1, then Theorem 5.1 generates outcomes for CR-preinvex func-
tions, i.e.,

1
s(fg»84)

ay+5(fg.99) 1
f B(e)W(e) do =Zcr [B(g,) + B(fy)] f V(g + 15y 94)) dno.
g 0

Remark 5.3. Ifh;(,) = ﬁn),hz (n,) = 1 and ¢(i,4,8,) = T, — 94, then Theorem 5.1 generates outcomes
for CR-h-GL functions, i.e.,

To (O
f B(OW(0) do <cx [B(,) + B, f (A =18+ 9%)
0 h(no)

fg— 99 J,

Example 5.1. Suppose B(0) = [3 - 2.8 = vo)|. sy 89) = Ty = 8.0, = 0 and i, = 2. Then, for
hy(17,) = 1. 12(17,) = 1, W(o) = o for ¢ € [0, 1] and W(o) = —0 + 3 for ¢ € [1,2], one has

1 0g+6(fg.89)
f B(o)W(o) do
89

s(fy>99)

1 2
=5 f B(p)W(p) do
0

_ %f [(3-0%)0.0(8-0%)] do

0

2
+%f1 [(3-0!) (-0 +3).(~0+3)(8 — 40*)] do

~ [1.9029,3.6117]

and

W(g, + v5(iy, 94))
H(noa 1 - 770)

1
= (13.8]+[3-2%,(8-4 ﬁ)])fo DW(2v) dn,
=[6-2.(16-4V2)] [fo 202dt+ f n(-2y + 3) dno]

~ [2.8661, 6.4646] .

o

1
[B(g,) + B(f,)] fo

Thus, we have
[1.9029,3.6117] <cx [2.8661, 6.4646] .

Theorem’s 5.1 validity is therefore confirmed.

Theorem 5.2. Following the same hypothesis as Theorem 5.1, the following relationship holds true

B 29g + g(fga gg) < 2 99+6(7g.99) %( )W( ) J
2 —CR 11 9g+6(g:84) Q)W) do.
(3. 3)] W() do Vs
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Proof. As B is an CR-(h;, h,)-GL-preinvex function, one has

1

B (M —)] [% (99 +5(f,, 99)) +3 (gg (4 =m0)s (o, gg))] '

Multiplying aforementioned inequality by W (gg + 165 (Tg, gg)) =W (gg + (1 -7n,)¢ (Tg, gg)) and integrat-
ing, we have

1
%(M) f W (8 + v (T4 85)) o

SeR T [H B )] f | (ag + 05 (fg» 99)) W (8 + 05 (1 05)) dno

1
f g + (1 =1,)5 (Fy- 8,)) W (a5 + (1 = 0,)5 (5 0)) dnv]. (5.5)

NI»—' —
I\)I'—'

Since

1
L B (gg + ¢ (Tg’ gg)) W <9g + ¢ (fg, Qg)) dn,

1
_ fo B (g + (1 = 15 (70 8,)) W (8, + (1 = 105 (7, 8,)) dm,

ay+5(T4.84)
= f B()(0) do (5.6)
s(fy>99)

and

1 1 99+5(Tg:84)
fo W8y + 96 (i 0s)) . = s f (o) do. (5.7)

Using (5.6) and (5.7) in (5.5), we have

B ZQg + g(fg’ gg) < 2 9g+6(fg-09) SB( )W( ) 4
2 —CR 11 9g+6(fg:84) Q)W) do.
[B(2.4)] [ o) do

O

Remark 5.4. If8 = B, then Theorem 5.2 generates outcomes for (hy, hy)-GL-preinvex function, i.e.,

% 20, + (00 8\ _ 2 gg+c<fg,g,,)%( o) d
2 - 11 8g+5(g.89) O)W() do.
[(3.4)] [ W) do

222

Remark 5.5. Ifh;(n,) = %,hz (n,) = 1, then Theorem 5.2 generates outcomes for CR-preinvex func-

tions, i.e.,
29, + 6(ig. 89) 1 95+6(1g-34)
* (% —OR s (ignay) f B(e)W(o) do.
JEuce) do
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Remark 5.6. If ¢(7,, 9,) = T, — g, then Theorem 5.2 generates outcomes for CR-(hy, h,)-GL function,
ie.,

g, + T 2 To
ﬂs( ] g)ﬁcﬂ . f B0 (o) do.
=) ] e b

Remark 5.7. Ifhi(n,) = %, h,(n,) = 1 and (74, 84) = T4 — a4, then Theorem 5.2 generates outcomes
for CR-convex functions, i.e.,

1 fo
B (gg ; Tg) <cr P f B(o)W(o) do.
Sy, W) do

Example 5.2. Following the same hypothesis as Example 5.1, we have

1
B (gg + 550, gg)) =B (1) =[2,7]

and

2 fﬂg"’gag’gg)

B(o)W(o) do
ay+5(T4.84)

H(35) [ W) do Ve

1 2
:mfo 3 = Vo, (8 — 4 v0)] W(o) do
[, W(o) do

~ [3.80588,7.22354] .

Thus, we have
[2,7] <cr [3.80588,7.22354].

Theorem’s 5.2 validity is therefore confirmed.
6. Applications of the Numerical Quadrature Formula based on Generalized Convexity
This section aims to develop several applications of the numerical quadrature rule, specifically the

trapezoid type rule, using the standard order relation (<) via generalised convexity defined in [53].

Theorem 6.1. Consider?) : 7 CR — Rbea diﬁ”erentiablefgmction onI°, 9,1, € 1°withg, <f,and
B : [g,, 4] = R7be a differentiable function symmetric to @ If1Y’| is an (hy, hy)-convex function on
[g4, Ty, then

BW)dyv — DWV)BW)dv

99

V(gy) + 9(y) f T T
2 .

fg+ag 1

f Bv) [H,, 1 —1,) + H( =175, 1,)] dnodv.
0

< (ig = 9) (|9 (a9)| + |‘D’(fg)|)f

2
8y
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where
2 [7 B(sg, + (1 = 9))ds 0

<
=2 [ B(sg, + (1 - 9)f)ds 1<

—_ I

n <
Y <

Zy (770) = {

Proof. From the definition of Zy(1,) and (h;, h;)- convexity of |2)’| we have

T
‘*D(g@;%)(fg) f Sy -
99

1

_ 2 3
<o 29”) { f \Za(r0)
0

a2 (
= (f‘q 29(/) {f Z%(n())
0
N S
U 299) {2 f f B(sgy + (1= 9)fy) (HG 1 = 7o)
0 )

1 )
+2 f f B(s, + (1 = 9)y) (H@o 1 = 170)

fg i )
‘D(V)%(V)dv‘ = 7 299)

89

1
V(g + (1 = n,)iy)| dy + f 1 Za ()]

1
2

1
fo Za)Y (v, + (1 - m)@)dn‘

V' (g, + (1 = 7)) dl)}

1
V' (g, + (1 —1,)fy)| dv — f Za() [V (g, + (1 —no)fg)|dn}

V'(ap)] + ha(1 = 7.)ho(7,)|9(,)|) dsdn,

9'(a,)| + ha(1 = 7,)ha(7,)|9' ()] dsdno} :

Modify the integration order,

Ty fg
|w Bdv— | D0)B)dv

8y

99
< (fy — 80’ { fo 2 fo B(sgy + (1 = 9)y) (H1o 1 = 10)[D"(89)] + HA = 00, )|V (Gy)]) diodds

1 1
+ f f B(sg, + (1 = 9)y) (H1o, 1 = 10)[" ()] + H( = 5,71, @'(fg)l)dnods} :
Using the variable change v = sg, + (1 — $)f,, one has
g i

|w BW)dv — DWV)BW)dv

2 8y ag

Wi
< (fy — 8) { f fo B) (H07o» 1 = 16)|9"(89)| + ha(1 = 7)ha ()| (Fy)|) dodv
AR
+ f BO) (H7o» 1 = 70)]D (89)] + H(1 = 70, 70) @'(fg)l)dnodv} : (6.1)
99 =
Tg+ay

As U is symmetric to , then one has

2
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v
ﬁ . f " B) (KO, 1 =m0 ()] + HO = 1, 1[G oy
e Jo
= [ f 00 (801, 1 =m0 @) + HOL =m0 1Y) oy, (2
9 0

Replacing (6.2) in (6.1) it follows that

BW)dv — D»)BW)dv

99

Y(g,) + D(iy) f fo fo
2 o

fgtag 1

f BW) [H(po, 1 = 10) + H( = 175, 1,)] diodv. (6.3)
0

< (fy —9y) ( @'(gg)| + |‘D,(fg)|)f

2
8y

O

6.1. Quadrature formula

Consider p be a partition of [gg,fg], ie,p:g, =09 <v <--- <D,y <D, = f,, of this quadrature

formula

g
YOMBMdv =T (D, B,p) + S5, B, p),

8

where

n-1 €it]
T, 8. p) = Z Y (¢;) +2‘D (eir1) f B,
i=0 G

is called to be trapezoidal formula. Consider a subinterval [e;, ¢;;;] while using Theorem 6.1. This
gives the following as:

BW)dv — DWV)BW)dv

i

sD (ei) + 2) (ei+1) fe"“ €t
2 y

¢

i

< =) I @+ 10 Cal] [ [ 0O O =)+ B =], (64

Using the inequality (6.4) and the triangular inequality, we obtain

fy
| 70,8, p)— | DMBW)dv |
99
n—1 €it1 Cirl
_ Z[‘D(ei) +2‘D (ei+1)f By — ‘D(v)%(v)dv]
i=0 ¢ G
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9 (e;) + ‘D (eir1) felﬂ BO)dv — " DWV)BW)dv

-1
<>

i=0

-1 eirl t+lleV
SZ(%H D[V €] + 1V (einn)] f [ w0

[H(noa - 770) + H(l — No» no)] dnodv.

This provides us with the error bound:

n—1

1S (D, B, p)l <Z(el+1 =) [19" (el + 19" (enn)l]

Cit] 7Y

€it1 1-¢
ﬁ f BO) [H07os 1 = 10) + H = 10, 70)] dnod.

+°l+l

Remark 6.1. Ifh;(17,) = v*,h,(1,) = 1 with k = 1 in (6.4), then we reiterate the disparity revealed
in [54].

n-1

[19” (el + 19" (eI (eir =€)

1
IS, Pl < 3 2,

Applications to Random Variable

Consider a probability density function. B : [g,, f,] = R* with 0 < g, < f,, then

fy
f BWw)dv =1,
g,

g

Tg+ag 99

which is symmetric to and let u be a moment where u € R then, we have

fg
8u(X):f VB (v)dy,
g

g

is finite. From Theorem (6.1) and the fact that for any g, < v < f“’;q“’ we have 0 < fv__gg” <
following result holds.

Ty fg
‘w f By — [ VB

99

< (g — a9) ( +19°Gy))

fg+ag 1

x f 2 f B (B0 1 = 1)+ H(L = 7,0m) iy = 227 gg) (19| +

8y 0

)

1

2
X f [H(?](,, 1 - 770) + H(l — No, 770)] dI),
0

Ty‘rqg

since B is symmetric and f B(v)dv = 1, we have f B(v)dv = %
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Example 6.1. If we take into account

V() = L, y > 0,u € (—00,0) U (0,2] U [3, +00);
hi(7,) = 0", hy(,) = 3 k€ (—c0,—1) U (=1,1];
B(v) = 1.

Since |Y’| is (hy, hy)-convex and so from Theorem 6.1 we have

gg" + 1" u(f, -9, , " 3
gz—ug—au(X)|S g2 ‘ (Qg 1+fg l)j(;

_ u(fq 89) [ ui u-1
) (8" +1,7).

k k
vt (I-n,)
—+— " |4
4 4 )

As a result, the required bound is

s U(fg =89) / uy | 2w
T _8“(X)“ Heen &R,

Remark 6.2. Ifu = 1,h,(n,) = 1,k = 1, then we can get the following known bound as follows:

fot 8 _
2

8(X)‘ %

7. Conclusion

In this work, Godunova-Levin type mappings via set-valued functions are used to study a variety of
inequalities associated with a new class of preinvexity. To start, we define the Godunova-Levin prein-
vex mappings under the full-order relation and examine some of its induced properties. We generalize
many previously reported results and build novel forms by using arbitrary non-negative functions and
related bifunctions of Hermite, Hadamard, and Fejér-type inequalities. We also discuss some special
cases of these inequalities. To further illustrate the accuracy of the obtained results, a few numerical
examples are given. In the subsequent, we concentrate on numerical integration error bounds and their
applications to random variables through trapezoidal type inequality, utilising standard order via gen-
eralized convexity. Further research into other kinds of convex inequalities is feasible using the idea
and concepts established in this work, with potential applications to issues like differential equations
with convex shapes attached and optimisation problems.
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