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Abstract: In order to meet the efficiency and smooth trajectory requirements of the casting sorting 
robotic arm, we propose a time-optimal trajectory planning method that combines a heuristic algorithm 
inspired by the behavior of the Genghis Khan shark (GKS) and segmented interpolation polynomials. 
First, the basic model of the robotic arm was constructed based on the arm parameters, and the 
workspace is analyzed. A matrix was formed by combining cubic and quintic polynomials using a 
segmented approach to solve for 14 unknown parameters and plan the trajectory. To enhance the 
smoothness and efficiency of the trajectory in the joint space, a dynamic nonlinear learning factor was 
introduced based on the traditional Particle Swarm Optimization (PSO) algorithm. Four different 
biological behaviors, inspired by GKS, were simulated. Within the premise of time optimality, a target 
function was set to effectively optimize within the feasible space. Simulation and verification were 
performed after determining the working tasks of the casting sorting robotic arm. The results 
demonstrated that the optimized robotic arm achieved a smooth and continuous trajectory velocity, 
while also optimizing the overall runtime within the given constraints. A comparison was made 
between the traditional PSO algorithm and an improved PSO algorithm, revealing that the improved 
algorithm exhibited better convergence. Moreover, the planning approach based on GKS behavior 
showed a decreased likelihood of getting trapped in local optima, thereby confirming the effectiveness 
of the proposed algorithm. 
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1. Introduction 

With the continuous development of modern industry and the improvement of automation level, 
more and more industrial robots are applied in modern manufacturing. In order to pursue a more 
efficient and stable robot arm, trajectory planning is one of the important parameters to evaluate the 
motion of the robot arm. At present, a lot of research has been carried out for the smooth trajectory, 
optimal time, shortest path and lowest energy consumption of robotic arms. There are different 
constraints for different task requirements. In the casting sorting industry, for the handling and sorting 
of small castings with a large number of sand falls, there are certain requirements for the handling 
speed and smoothness of the mechanical arm, and time is an important factor to be considered to ensure 
that the execution efficiency of the casting sorting robot is maximized within the allowed range. 

Generally, the motion path points used for trajectory planning are given in Cartesian space or joint 
space, thus ensuring that all target positions are reachable during the robotic arm is functioning. Under 
the constraint condition, it is the main goal to find a trajectory line with the shortest time between 
multi-segment waypoints. In recent years, a plethora of methods have been studied to optimize 
trajectories. Smooth trajectories can be constructed using interpolation functions, such as spline 
functions and polynomial functions [1–6]. In existing studies, it has been proposed to use 3rd-degree 
polynomial and Bessel curve to compound smooth trajectories [7], and effectively reduced the speed 
and acceleration. However, compared with B-spline curves, Bessel curve lacks local modification, and 
the trajectory optimized by non-uniform B-spline curves can adjust the curvature of local curves [8]. 
To ensure acceleration continuity, a method of generating trajectories involves segmenting and 
discretizing the joint angle sequence using fifth-order polynomial interpolation [9]. Zhao et al. 
conducted kinematic analysis and simulation comparisons of 5th order and 3rd order polynomials to 
validate the planning effectiveness of the 5th order polynomial through five iterations of verification. 
This approach was then applied to six types of industrial robotic arms [10]. Smooth trajectories for the 
robotic arm can also be achieved through the combination of traditional interpolation functions. By 
utilizing segment-wise cubic interpolation functions, such as Hermite-type functions, that also can 
be generated smooth trajectories [11,12]. Alternatively, a novel interpolation planning technique 
called “5-4-5” or “5-4-5-5” can be employed. By arranging different segments of polynomial 
interpolation function sequences, the smoothness and stability of the trajectories can be significantly 
improved [13]. 

These methods improve the motion performance of the robot through interpolation or curvature 
calculations. However, to ensure both smooth trajectories and minimal execution time, adjustments 
need to be made to the motion parameters and the methods employed for generating smooth trajectories. 
Generally, the trajectory planning problem is transformed into nonlinear function optimization 
problem by intelligent optimization algorithm. In the realm of optimization, there are two major 
directions: Deterministic and non-deterministic. Deterministic algorithms, often gradient-based, have 
some optimization effectiveness for linear or nonlinear function problems. Traditional heuristic 
algorithms also fall into this category. However, due to their fixed inputs and outputs, as well as 
repetitive computations, they are prone to becoming trapped in local optima [14]. On the other hand, 
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non-deterministic methods rely on a combination of randomization and heuristic solutions, such as 
genetic algorithms and particle swarm optimization (PSO). These methods leverage their inherent 
randomness, diversity, and independence to break free from the vicious cycle of local optima and 
effectively solve and optimize problems. In recent years, many scholars have adopted these methods 
to optimize trajectory planning problems. Using a genetic algorithm, Zhang et al. conducted a global 
optimization of fifth-order interpolation joint nodes and computed the optimal time intervals between 
the interpolation points of each joint [15]. Shi et al. proposed an improved simulated annealing 
algorithm to overcome challenges associated with high computational complexity and local minima. 
This algorithm was designed for dynamic path planning, aiming to provide time-optimal solutions for 
the robotic arm in both static and dynamic environments [16]. Zhang et al. adopted Sparrow Search 
Algorithm (SSA) based on Tent Chaos mapping to achieve real-time optimization of robot arm 
trajectory [17]. Wang et al. introduced an enhanced Whale Optimization Algorithm to optimize the 
objective function defined by time and pulses. This approach ensures the smooth continuity and 
operational efficiency of the robot [18]. Ivan Carvajal et al. optimized the path length of a 6-axis robot 
based on nonlinear regression of cubic polynomial combinations to represent trajectories. They 
validated the feasibility of this approach through simulation [19]. Özge and Bekir utilized the Particle 
Swarm Optimization (PSO) algorithm to optimize fifth-order polynomial interpolation functions. Their 
approach specifically aimed to determine the shortest path for point-to-point tasks and achieve time 
optimization [20]. There are many other optimization algorithms and joint trajectory planning methods 
for different types of robots, not limited to a single algorithm or approach. For different robots and 
different optimization goals, there has been considerable relevant research [21–23]. In terms of bio-
inspired optimization algorithms, with the continuous emergence of non-deterministic intelligent 
optimization algorithms, such as genetic algorithms, particle swarm algorithms, or fish swarm 
algorithms, the field has embarked on analyzing the behaviors of various organisms and deriving 
relevant mathematical models. This has resulted in a diverse range of bio-inspired optimization 
algorithms, including the whale algorithm, zebra algorithm, and social spider algorithm. These 
algorithms have shown promise in addressing conventional engineering application problems, but they 
also come with their own strengths and weaknesses. Some intelligent optimization algorithms may 
suffer from premature convergence, lack of robust global search capabilities, or a tendency to become 
trapped in local optima. However, a novel nature-inspired heuristic algorithm proposed by Gang Hu 
and colleagues, based on the behavior of Genghis Khan sharks, offers a unique approach [24]. By 
emulating the hunting, movement, foraging, and self-protection behaviors of GKS, this algorithm 
effectively executes optimization tasks for intelligent agents and accomplishes desired optimization 
objectives. While there are numerous case studies analyzing specific mathematical problems related 
to this method, there is limited research on its application in practical robotic arm trajectory planning. 
Hence, this article holds significant research value in exploring the potential of this approach in such 
real-world applications. 

We present a method for optimizing the trajectory of a casting sorting robotic arm using a nature-
inspired heuristic algorithm based on the behavior of Genghis Khan sharks. Calculating the basic 
parameters of the robotic arm for casting sorting through robot kinematics. With the constraints of task 
path angles, velocity, and acceleration in mind, a segmented polynomial interpolation method called 
“3-5-3” is utilized for joint trajectory planning. Objective functions are then constructed, and the 
optimization problem is solved using an equivalent mathematical model that mimics the four behaviors 
of GKS. The algorithm seeks to find the optimal time solution for the trajectory problem. The obtained 
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results are compared with those from particle swarm optimization and improved particle swarm 
optimization algorithms. To validate the effectiveness of the algorithm, experimental simulations are 
conducted. 

2. Robot kinematics 

2.1. Kinematic calculations 
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Figure 1. Six-axis robotic arm coordinate system. 

The robotic arm consists of a series of rotating or translating joints combined with multiple 
linkages. By manipulating the angles between the joints, the desired pose of the end effector can be 
determined. Kinematic calculations involve transforming between joint angle space and Cartesian 
space to establish the relationship between angles and positions. The coordinate system of the 
mechanical arm is established with the rotating joint of the mechanical arm as the Z axis. Figure 1 
shows the relationship between the coordinate systems on the six-axis mechanical arm. Through the 
Angle and displacement parameters of each connecting rod, the position and attitude of the end can be 
described by the transformation matrix. 

Table 1. Denavit-Hartenberg table of 6-DOF robotic arm. 

Link number Link twist angle 
αi-1 (rad) 

Link length 
ai-1 (mm) 

Joint distance 
di (mm) 

Joint angle 
θi-1 (rad) 

1 -pi/2 32 80 0 
2 0 108 0 - pi/2 
3 -pi/2 20 0 0 
4 pi/2 0 175 0 
5 -pi/2 0 0 0 
6 0 0 20 0 

Through forward kinematics, joint angles and distances can be converted into an end effector pose 
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transformation matrix. Inverse kinematics calculations can transfer the joint angles, based on this 
matrix. By utilizing the provided parameters, the kinematic equations for the robot can be established 

1) Inter-bar transformation matrix 
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2) The kinematic equation is established by multiplying multiple transformation matrices to 
obtain the transformation matrix of the angle and displacement of the end effector. 
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where ri,j (i = 1, 2, 3, j = 1, 2, 3) is the rotation Angle transformation matrix and Px, Py, Pz is the 
displacement transformation matrix. When the end attitude is given, the joint Angle is inversely solved 
using the inverse transformation of the connecting rod matrix. The inverse solution obtained is 
typically not unique. By comparing the motion parameters of each joint and sequentially eliminating 
possibilities, the correct angles can be determined. Axes 1, 2, and 3 are responsible for determining the 
precise positioning of the robot hand within the operational area, while axes 4, 5, and 6 play a crucial 
role in establishing the desired orientation of the end effector. Algebraic methods are employed to solve 
for the first three axes. By left-multiplying the equation i

i-1T with the inverse transformation matrix, 
the joint variables are separated, enabling their determination. By gradually solving for θ1 to θ2 using 
element-wise comparisons, there can be up to 8 possible solutions. However, due to structural 
limitations and constraints on joint angles, some solutions can be ruled out. In situations with multiple 
solutions, a suitable set of solutions can be selected based on specific criteria, such as minimizing joint 
motion or ensuring motion accuracy [25–28]. This selection process aims to fulfill the operational 
requirements of the robotic arm. 

2.2. Robotic workspace 

The dimensions of a small-scale casting sorting robotic arm are determined based on the desired 
working space required for factory tasks. This workspace includes the region where the robotic arm 
can effectively grip and place small castings. The working space of the robotic arm is defined by 
considering the limitations on joint angles, as well as the constraints on velocity and acceleration. 
These limitations and constraints are outlined in Table 2. 
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Table 2. Robotic arm parameter limits. 

Joint 1 2 3 4 5 6 
Working range (rad) -1.92~2.79 -1.75~1.75 -2.09~1.05 -3.14~3.14 -3.49~2.09 -6.28~6.28 
Maximum speed 
(rad/s) 1.48 1.05 1.13 3.49 3.49 7.85 

Maximum 
Acceleration (rad2/s) 0.87 0.78 0.78 1.31 1.31 1.40 

Traditional graphical methods and numerical methods have limitations in accurately describing 
the working space of a mechanical system. Numerical methods often involve excessive computational 
complexity, and their results may not be sufficiently reliable for regions near the boundaries. Therefore, 
a statistical simulation method called the Monte Carlo method is utilized to construct the 
comprehensive working space of the robotic arm as accurately as possible [29]. This approach relies 
on the joint angle limitations for solving the problem. 

The fundamental principle of this solution is to randomly sample angles within the range of joint 
angles for the robotic arm and use the accumulation of these random points to construct the overall 
working space. This method is applicable to the calculation of the working space for robotic arms with 
various joint configurations. In this study, a total of 30,000 random points is generated. Figure 2 depicts 
the working space of the small-scale casting sorting robotic arm. 

 

Figure 2. Casting sorting robotic arm workspace. 

3. Trajectory planning 

3.1. Cubic polynomial interpolation function 

The point-to-point motion mode (PTP) of a small casting sorting robot can utilize various 
common polynomial interpolation functions, such as cubic polynomials, fifth-degree polynomials, 
seventh-degree polynomials, etc. In situations where the initial and end points have zero velocity, the 
third-order polynomial enables interpolation between two points to create intermediate points while 
also defining the joint angle and time. Therefore, we adopt third-order polynomials. By sequentially 
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processing these intermediate points, the following expression is obtained: 

 2 3
0 1 0 2 0 3 0( ) ( ) ( ) ( )q t a a t t a t t a t t        (3) 

In this equation, ai (where i = 0, 1, 2, 3) represents the coefficients of the polynomial. Taking the 
derivative of the polynomial allows us to derive the expressions for the joint velocity and angular 
acceleration of the robotic arm: 
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To meet the constraints of joint angle limitations and angular velocity restrictions at the initial 
and final time instants, it is possible to set constraints and solve for the four unknown coefficients in 
the cubic polynomial. 
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where t0 and tf represent the initial and final times for each segment, q0 and qf represent the initial and 

final angles, 0q   and fq   represent the initial and final velocities, respectively. By obtaining the 

analytical expression for ai, it can be substituted into the trajectory, velocity, and acceleration 
expressions for further calculation. 
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3.2. Quintic polynomial interpolation function 

In certain specific working scenarios, there are requirements for the robot’s motion trajectory to 
have constraints on acceleration. In these cases, the acceleration function of the cubic polynomial can 
change only at a fixed rate, following a first-order form. However, the cubic polynomial may not satisfy 
the requirement of continuous acceleration. To address this, a higher-order quintic polynomial 
interpolation method can be employed for trajectory planning. The expression for quintic polynomial 
interpolation is defined, and by taking derivatives, expressions for trajectory position, velocity, and 
acceleration can be obtained. 
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where q(t) represents the joint angle trajectory, and ai (i = 0, 1, …, 5) are the coefficients of the quintic 
polynomial. Similar to the cubic polynomial, the quintic polynomial takes into account the initial and final 
joint angle positions and the constraints on joint angle velocities. However, it also includes an additional 

equation to ensure continuous acceleration, denoted by 0 0( )q t q   , ( )f fq t q   . By considering the 
constraint conditions, the expression for the polynomial coefficient parameters can be derived. 

 

0 0

1 1

0
2

2
0 0 0 0 0

3 3
0

2
0 0 0 0 0

4 4
0

2
0 0 0 0 0

5

2
20( ) (8 12 )( ) 3( )( )

2( )

30( ) (14 16 )( ) (3 2 )( )
2( )

12( ) 6( )( ) ( )( )
2(

f f f f f

f

f f f f f

f

f f f f f

f

a q
a q

qa

q q q q t t q q t t
a

t t

q q q q t t q q t t
a

t t

q q q q t t q q t t
a

t






      




       




      





   

   

   
5

0 )t
















 

 (8) 

3.3. Piecewise polynomial interpolation 

In the case of multi-node trajectory interpolation, the constraints of continuous position, velocity, 
and acceleration can only be satisfied when at least five polynomials are used for cubic polynomial 
interpolation. When interpolating multi-segment trajectory points using quintic polynomials, each 
segment requires more constraints due to its higher order [30–33]. This results in a large amount of 
calculations and high time cost, making it unsuitable for tasks with fewer path points for small castings 
sorting robot arm. Therefore, a “3-5-3” mixed piecewise polynomial interpolation function is proposed 
by combining cubic and quintic polynomials. This approach not only addresses the issue of angle 
mutation in cubic polynomial interpolation programming but also solves the problem of excessive 
angular velocity in quintic polynomial interpolation programming while reducing calculation 
complexity and saving time. The work task of the sorting robot arm for small castings is simplified by 
converting it into four path points in Cartesian space. These path points are then converted into joint 
angles through inverse kinematics calculations (Section 2.1). The entire path is divided into three 
sections, each consisting of two adjacent path points. A general formula describing how joint angles 
vary with time under certain constraints is derived. 
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In this context, qi1(t), qi2(t) and qi3(t) represent the trajectories of the “3-5-3” segmented 
polynomial interpolation. The coefficients of each segment function are denoted by ai, where i = 0, 
1, …, n and n represent the number of joints. 
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The joint angles of the four intermediate points, as well as the velocity and acceleration of both 
the initial and end points, are all known to be zero. Additionally, there is continuity in velocity and 
acceleration between adjacent path points. To find the 14 unknown coefficients, a combination of cubic 
polynomials and quintic polynomials is used to derive polynomial coefficients. M represents a 
polynomial matrix, where t1, t2, t3 denote the time used by three respective polynomials. q0, q1, q2, q3 
represent trajectory joint angles for each of the four waypoints, respectively. A denotes a matrix 
composed of unknown parameter ai. By multiplying matrix M with matrix Q, we obtain a matrix 
equation that can solve for the coefficient ai. 

  3 0 2 10 0 0 0 0 0 0 0 0 0 TQ q q q q  (11) 

 1 *A M Q  (12) 

4. Genghis Khan shark optimizer (GKSO) 

4.1. GKSO background 

The Genghis Khan shark optimization algorithm is a population-based optimization algorithm 
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that takes inspiration from the individual and collective behaviors of Genghis Khan sharks in their 
oceanic habitat. It is designed to emulate their hunting, movement, foraging, and self-protective escape 
behaviors, which collectively form the basis of a comprehensive mathematical model for optimization. 
These four biological behaviors provide mathematical expressions for the four stages of the algorithm. 
The diagram below illustrates the four behaviors of Genghis Khan sharks [24]. 

 

Figure 3. Diagram of the four biological behaviors of the Genghis Khan shark. 

4.2. Mathematical model 

4.2.1. Hunting stage 

In order to ensure their safety and effectively search for food in unfamiliar marine 
environments, Genghis Khan sharks tend to linger near the seabed, conducting broad spatial 
searches. During the initial phase, the school of sharks patrols in different directions until they 
locate the optimal position for their target prey. This space is bounded by upper and lower limits, 
within which random positions are marked as optimal. The mathematical formula for initializing 
and updating these positions is as follows: 
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Where Xi
j(t + 1) represents the position of the i-th individual in the j-th dimension at time t + 1, ubj 

and lbj are the upper and lower bounds in the j-th dimension, rand is a random number in the range 
of [0,1], N represents the total population size, D represents the problem dimension, iter denotes the 
current iteration number, and T is the maximum number of iterations. 
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4.2.2. Moving stage 

After identifying the initial optimal position, Genghis Khan sharks rely on their exceptional 
olfactory senses to progressively close in on the prey’s location. The mathematical formula for their 
movement towards the target position is as follows: 

  ( 1) *( ( ) ( ))
j j j
i best iX t s X t X t    (14) 

In the equation, s represents the olfactory influence factor during the movement towards the target, 
Xj

best represents the optimal target position at time t, and s is determined by the concentration of odor 
emitted by the target prey. The mathematical model associated with this is as follows: 

 rs mI  (15) 

Among these parameters, m is a non-negative constant that holds special significance as its value 
directly affects the overall convergence speed of the GKSO algorithm. After thorough comparison, it 
has been determined that setting m to 1.5 yields optimal algorithm performance. Another parameter, I, 
represents the attribute intensity, which is contingent upon the individual’s capabilities. Additionally, 
r is a random number within the range of [0,1] and reflects the individual’s degree of absorption 
towards odor information. The value of r directly influences the behavior of GKSO. When r = 0, it 
signifies that the algorithm has not detected the target prey and should continue exploring outward. 
Conversely, when r = 1, it indicates complete absorption of the odor, prompting the algorithm to move 
directly towards the target prey. At this point, the algorithm is likely to converge to the optimal solution. 
However, it is noteworthy that when r = 1, the value of s may also be relatively high. While this brings 
the algorithm closer to the optimal solution, it simultaneously reduces the overall exploration capacity. 
Furthermore, there is a possibility that a newly discovered optimal solution may surpass the current 
global optimum, limiting the algorithm’s ability to further evolve. Hence, the choice of r holds 
significant importance. 

To better approach the optimal solution, the algorithm retains the position of the previous best 
solution during the optimization process and updates the positions of other best solutions based on it. 
The position update formula is as follows: 

 


1( 1) ( )( 1)
2

j j
ij i

i
X t X tX t  

   (16) 

4.2.3. Foraging stage 

During the foraging process, Genghis Khan sharks adopt a parabolic-shaped attack strategy for 
cooperative hunting, as shown in the diagram. The position update formula for this strategy is as follows: 

 2( 1) ( ) *( ( ) ( )) * *( ( ) ( ))j j j j j j
i best best i best iX t X t rand X t X t p X t X t       (17) 

Among them, the value of λ is a random number that can take either 1 or -1. The parameter p 
controls the step size of Genghis Khan sharks during the foraging phase. A larger value of p tends to 
favor global exploration, while gradually reducing the value of p shifts the focus towards local 
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exploitation. The calculation formula for p is as follows: 

 
1

14 342* 1 ( 1) *[( ) ( ) ]t t tp t
T T T


         

   
 (18) 

The weight coefficient |ω(t + 1)| at time t + 1 is calculated using the following formula: 

 4( 1) 1 2 ( )t t     (19) 

The initial value of ω(0) is typically set to 0.1. 

4.2.4. Self-protection stage 

During foraging, Genghis Khan sharks may encounter factors that pose a threat to their safety. In 
such situations, they exhibit a behavior of lightening their body color and swiftly escaping. The 
mathematical model for this behavior is as follows: 
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 (20) 

Among them, k1 is a random number between -1 and 1, and k2 follows a normal distribution with 
a mean of 0 and a standard deviation of 1. z1, z2, and z3 are three random numbers. The calculation 
formula is as follows: 

 
1 1 1

2 1 1

3 1 1

*2* (1 )
* (1 )
* (1 )

z l rand l
z l rand l
z l rand l

  
   
   

 (21) 

The value of l1 is a binary random number that can take either 0 or 1. ρ is an adaptive coefficient, 
and its calculation formula is as follows, which is related to the calculation of α and β: 

 3 3*sin( sin( ))
2 2
     (22) 

 3 2
min max min( )*(1 ( ) )iter

T
        (23) 

 * (2* 1)rand    (24) 

βmin is 0.2 and βmax is 1. The formulas for calculating X1i
j and X2i

j in the equation are as follows: 

 1 ( ) *( )j
i j j jX t lb rand ub lb    (25) 
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 2 ( ) *( )j
i j j jX t lb rand ub lb    (26) 

The formula for calculating Xk
j(t) is as follows: 

 2( ) *( ( ) ( )) ( )j j j j
k p r rX t l X t X t X t    (27) 

Among them, Xp
j(t) represents the randomly selected solution at time t (p ∈  1, 2, ..., N). 

Similarly, l2 and l1 are binary random numbers that can take either 0 or 1. Xr
j(t) is a set of randomly 

generated initial solutions at time t. Xu1
j and Xu2

j are two randomly selected solutions. By decomposing 
the position update expression, we can see that the self-defense phase actually involves searching the 
space near the optimal solution using multiple solutions. This can be considered as a form of 
neighborhood search. This self-defense mechanism helps to prevent the GKSO algorithm from getting 
trapped in local optima and improves exploration efficiency. 

4.2.5. Summary of the algorithm 

The complexity of this algorithm primarily depends on the initialization of random solutions, 
position updates, and fitness evaluation. In GKSO, there are stages where new initialization updates 
occur, which enhance global search capability by introducing random solutions for position updates. 
The position update formula at each step is subject to upper and lower bounds, and the generation of 
certain solutions relies on constraints. The specific constraints are tailored to the characteristics of the 
function problem. In this study, we optimize and impose constraints on the position, velocity, and 
acceleration. The specific constraint conditions are designed based on the fitness function, but they 
will not be discussed in detail here. 

To better illustrate the structure of the GKSO algorithm, a flowchart has been created, as shown 
in Figure 4. 

Start

Initialize the population

Calculate the optimal 
solution with the best fitness 

If iter<T

Update step p by eq(18)

Calculate olfactory intensity 
s by eq(15)

If z1<0.5

Update Parameter z1,z2,z3,r 
by eq(15)and(24)

Calculate Two Randomly 
solutions by eq(25) (26) 

Calculate Randomly create 
solutions by eq(27)

Update Position by first 
eq(20)

Update Position by second 
eq(20)

Output the optimal solution

end

Hunt

Update newposition by 
eq(13)

Calculate the fitness value 
and update if better

Update position by eq(14) Update position by eq(14)

Update position by eq(16) Calculate the fitness value 
and update if better

Moving

Update position by eq(17)

Calculate the fitness value 
and update if better

Foraging
Calculate the fitness value 

and update if better

Self defense mechanism

No

Yes

Yes

No

 

Figure 4. GKSO algorithm flow chart. 
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5. Experiment 

5.1. Objective function 

Based on Chapter 3, an interpolation function for the robotic arm’s trajectory can be derived. 
However, in practical trajectory planning, explicit time intervals are not provided, making it 
challenging to determine the unknown coefficients for each interpolation segment. To address this 
issue, the GKSO algorithm is employed in this study to determine the optimal interpolation times that 
satisfy velocity and acceleration constraints. 

During the trajectory optimization process, an effective approach is to directly optimize the time 
variable, t. This reduces the dimensionality of the objective function, significantly reducing the 
computational complexity of the GKSO algorithm. The fitness function and boundary constraints 
established for the optimization process are as follows: 
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 (28) 

Tall represents the total operation time of the robotic arm, while t1, t2, and t3 denote the running 
times of the three interpolation functions. The objective function is designed to comply with boundary 
constraints. By utilizing the “3-5-3” interpolation function described in Chapter 3, we derive the 
problem matrix and simultaneously optimize the position, velocity, and acceleration. During the 
experimental process, specific constraint conditions are set, and adjustments can be made to 
accommodate portions that exceed the boundaries in the calculation of the relevant fitness function. 

In this study, our main goal is to minimize the total time, with shorter durations considered more 
optimal. For portions that exceed the boundaries, the GKSO algorithm replaces them with boundary 
values during the hunting phase. Subsequent position updates depend on the design of the fitness 
function. In this study, we handle portions that exceed the boundaries by replacing their fitness values 
with infinity, ensuring that they are not included in the point position list during subsequent updates. 
This approach allows for the overall optimization calculation to proceed without interference. 

5.2. Work task 

In order meet the requirements of a small-scale casting sorting robotic arm, specific motion 
trajectories need to be defined. The current robotic arm used in casting production factories primarily 
focuses on the task of transporting and sorting castings that have been piled up on a conveyor belt. It 
operates within the workspaces of machine tools, conveyor belts, and processing areas. The workspace 
is determined based on known joint parameters, and relative task objectives have been established, as 
depicted in Figure 5. The end effector is required to move sequentially through four designated 
waypoints, labeled A, B, C, and D, and place the items in the adjacent processing area. It then follows 
the same path back for sorting purposes. Point A is located on the conveyor belt. Points B and C are 
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located closer to the robotic arm, about 400 mm apart from each other with some height difference 
between the two points. Point D is located at the target position. As shown in Figure 5, the total shortest 
linear distance is about 2736 mm. The expected target is to make the trajectory as close to the shortest 
path as possible while keeping the trajectory smooth without shock or vibration during operation. 

 

Figure 5. Work task path. 

The coordinates of these four waypoints are calculated using the robot kinematics principles 
outlined in Chapter 2, converting them from Cartesian coordinates to joint angle space. The resulting 
joint angles are as follows. 

Table 3. Joint angular path points. 

Number of joints 
Number of points 1 2 3 4 5 6 

A -1.57 -0.79 0.17 0.35 0.52 0.70 
B -0.79 -1.05 -0.34 0 0.17 -0.35 
C 0.61 -0.52 -0.61 -0.35 0.35° 0.17 
D 1.40 0.17 -1.05 0.26 0.52 0.52 

5.3. Experimental simulation 

Based on the given DH parameters, a model of the casting sorting robotic arm was constructed. 
Four provided waypoints were used as reference points, and Table 1 specifies the angle, angular 
velocity, and angular acceleration constraints for each joint. To facilitate the experiment, the average 
values were used. Considering time optimization, a “3-5-3” polynomial interpolation with significant 
fluctuations in the acceleration at the transition points was selected to avoid detrimental vibrations to 
the robotic arm. The maximum allowable joint velocity was set at 1.5 rad/s, and the maximum 
allowable joint acceleration was set at 2 rad/s2. The population size was set to 50, and the maximum 
number of iterations was set to 50. 

Assuming initial times t1, t2, and t3 are 3 seconds, 8 seconds and 3 seconds respectively, a 
comparative analysis was conducted between the results obtained from the “3-5-3” configuration 
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without PSO planning, the traditional PSO method, the improved PSO algorithm (referred to as I-PSO), 
and the GKSO algorithm. The PSO algorithm parameters were set as follows: the inertial influence 
factor was set to 0.9, and the individual and social learning factors were both set to 2. In the I-PSO 
algorithm, a linearly decreasing inertia weight and dynamic learning factor improvement were 
implemented [34–43]. Since the interpolation coefficients of the polynomial segments are time-
dependent, each optimization may yield different combinations. Therefore, after conducting multiple 
experiments, an optimal time solution graph was obtained. The total time obtained from multiple 
iterations was compared in Table 4 for a comprehensive evaluation. 

 

a) “3-5-3” polynomial interpolation                   b) PSO algorithm 

 

c) I-PSO algorithm                        d) GKSO algorithm 

Figure 6. Comparison of trajectory and time change. 
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a) “3-5-3” polynomial interpolation                     b) PSO algorithm 

 
c) I-PSO algorithm                         d) GKSO algorithm 

Figure 7. Velocity versus time change. 

In Figures 6–8, a) represents trajectory planning using only the “3-5-3” segmented interpolation, 
b) represents the traditional PSO algorithm, c) represents the I-PSO algorithm, and d) represents the 
GKSO algorithm. From the trajectory, velocity, and acceleration, it is evident that the GKSO algorithm 
significantly shortens the time required to reach the target waypoints. The original total running time 
for a single joint is 18 seconds, but the optimized total running time can be reduced to a minimum of 4.109 
seconds, which represents an optimization rate of approximately 77.2% compared to the unoptimized 
case. When compared to the PSO algorithm, the GKSO algorithm shows superior optimization results. 
Analyzing multiple joints, apart from joint 3 where the I-PSO algorithm outperforms, the difference 
between the GKSO algorithm and the I-PSO algorithm is relatively small for the other joints. However, 
specific numerical comparisons show that the GKSO algorithm exhibits slightly better optimization 
results. The trajectory and velocity obtained from the “3-5-3” interpolation planning demonstrate 
excellent continuity overall. Although the optimized positions show slight variations compared to the 
original positions, the velocities and accelerations remain within acceptable ranges, closely 
approaching Vmax and amax, with minimal fluctuations. The trajectory appears smooth overall, satisfying 
the constraints of each joint, and confirming the feasibility and effectiveness of the algorithm in 
enhancing the efficiency of the robotic arm. 

Here is a smoothed version: 
Based on comparisons of the trajectory data, in the PSO algorithm joint 3 reaches the target 
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position first, followed by joints 5, 1, 2, 4, and 6, with a final time of 7.45 seconds. The reaching order 
is the same for the I-PSO algorithm. The running time for joint 5 is optimized to approximately 4.49 
seconds in the PSO algorithm and 4.48 seconds in the I-PSO algorithm. In the GKSO algorithm, the 
running time is around 4.44 seconds, showing little difference. The optimization of joints 3 and 6 
results in more noticeable changes to running time. Joint 6 has the longest running time of 7.28 seconds. 
With the GKSO algorithm, joint 5 is the first to complete its motion, followed by joints 1, 2, 5, 3, and 6, 
with an overall running time for joint 6 of 7.10 seconds - shorter than the optimization times of the 
other two algorithms. 

Each joint reduces a certain amount of running time. For example, joints 1, 2, 4 and 5 reach their 
positions ahead of the equivalent interpolation points for the other joints during runtime. After arriving 
at the position, they no longer change and maintain the joint angle, waiting for the next interpolation 
point to arrive. Finally, the remaining time is spent waiting for the last joint to complete its motion and 
finish rotating the joint angle. 

In the velocity comparison graph, between 1.75 s and 3.00 s, joint 1 exhibits more noticeable 
changes. Under algorithm optimization, the difference between other joints except for joints 1 and 3 
was not significant. However, the optimization time of the GKSO algorithm was slightly better. The 
GKSO algorithm displays smaller fluctuations and a smaller maximum amplitude in comparison to 
the other two algorithms. After optimization using the GKSO algorithm, the maximum speed was 
reached at 1.97 s and 2.97 s, approximately 1.47 rad/s. For the PSO algorithm, the maximum speed 
of 1.4 rad/s was reached at 2.24 s. As for the I-PSO algorithm, the maximum speeds of approximately 1.77 
rad/s were reached around 1.85 s and 2.74 s. In terms of velocity fluctuation, the GKSO algorithm and 
the optimized PSO algorithm exhibit a bimodal pattern, while the IPSO algorithm follows a unimodal 
pattern. The PSO and IPSO algorithms demonstrate larger variations, whereas the GKSO algorithm 
shows smaller variations. The optimization objective of the employed algorithm is the total running 
time of each joint. Thus, while shortening the time and adhering to velocity and acceleration constraints, 
the inherent nature of the “3-5-3” polynomial interpolation function may lead to noticeable fluctuations 
at the connection points. Nevertheless, by setting lower acceleration constraint values, the vibrations 
caused by fluctuations in the robotic arm are reduced, and even the maximum vibration does not 
impede the arm’s operation. To mitigate unnecessary vibrations, non-uniform B-spline optimization is 
applied at the connection points. As illustrated in the Figure 8, the unoptimized acceleration graph 
demonstrates desirable continuity, with minimal numerical fluctuations within an acceptable range. 
Building upon optimized time, the PSO and IPSO algorithms exhibit substantial variations in each 
joint, particularly joint 3, during velocity analysis. While the GKSO algorithm performs comparatively 
worse in terms of optimized time, it showcases superior stability and smaller fluctuation amplitudes. 
Considering each joint, the GKSO algorithm yields more stable acceleration variations, characterized 
by smooth curves devoid of inflection points. When completing the same route task, the GKSO 
algorithm attains shorter time durations, more stable velocities, and reduced vibrations, thereby 
exemplifying superior algorithmic performance. Similarly, after the trajectory is completed within the 
optimized runtime, the angular position is not changed. The subsequent velocity and acceleration are 
both zero.  
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a) “3-5-3” polynomial interpolation                  b) PSO algorithm 

 
c) I-PSO algorithm                        d) GKSO algorithm 

Figure 8. Acceleration and time change. 

 

Figure 9. Variations in partial joint runtime with iteration number. 

The convergence graphs in Figure 9, a) and b) represent the convergence of time and iteration for 
different joints. The graphs show the convergence of GKSO, traditional PSO, and I-PSO algorithms in 
optimizing time. From the graphs, it is evident that the GKSO algorithm converges the fastest, followed 
by the I-PSO algorithm. The GKSO algorithm demonstrates excellent overall convergence, almost 
reaching the optimal solution, indicating a significant improvement in convergence compared to the 
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other algorithms. Furthermore, the improved algorithm outperforms the traditional PSO algorithm by 
achieving smaller optimal time solutions and avoiding the trap of local optima. Moreover, the GKSO 
algorithm shows better optimization than the I-PSO algorithm. After 50 iterations, the convergence is 
already close to the optimal solution, and the GKSO algorithm converges faster. Compared to the 
traditional PSO and I-PSO algorithms, the GKSO algorithm achieves smaller optimal time solutions, 
making it a superior algorithm. 

To validate the GKSO algorithm’s capability in seeking initial optimal solutions, 8 groups of 
experiments were conducted as shown in Table 4. Under equal population sizes and iteration counts, 
the solutions were obtained and the times of the initial solutions from the first calculation were 
recorded for comparison. As shown, the GKSO algorithm generated initial calculation times that were 
mostly better than PSO and I-POS, with a small minority slightly lower possibly due to random 
numbers coincidentally being selected close to optimal. The results not only demonstrate GKSO’s 
advantage in the early stage but also validate the algorithm’s robustness. 

Table 4. Comparison of initial solution computation. 

Joint 
Algorithm 

Experiment number Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 

PSO algorithm 
Initial time 
solution (s) 

1 8.4098 7.1704 8.9544 8.1209 7.8547 8.8324 
2 7.9198 6.6726 8.2748 7.9653 7.7378 8.6228 
3 8.7916 7.6681 7.5922 9.0822 6.5264 9.1036 
4 8.1696 6.1719 7.6175 8.4861 7.6593 9.8066 
5 7.5208 6.9103 8.8100 7.1629 6.1390 9.7259 
6 6.9100 8.1284 8.0368 6.8938 7.0409 9.2878 
7 7.7727 7.2811 7.5904 9.0667 6.1309 10.1242 
8 7.9547 7.1014 7.3895 7.2746 6.9102 9.0220 

IPSO algorithm 
Initial time 
solution (s) 

1 6.5781 6.6019 8.2768 9.0012 5.8138 10.0710 
2 7.5423 6.4004 7.4877 7.1267 7.1999 8.8870 
3 6.7233 6.5709 7.9847 8.6081 5.4322 7.5025 
4 8.3360 6.2058 7.2968 8.2743 5.5754 9.3354 
5 6.2108 6.8971 7.8647 7.0906 6.0873 8.9467 
6 6.3753 7.3511 7.8584 7.5814 4.9933 8.7924 
7 8.1775 7.2881 6.4751 6.8552 5.6674 9.4112 
8 8.2808 6.6139 6.1443 7.2670 7.6661 7.9648 

GKSO algorithm 
Initial time 
solution (s) 

1 5.5387 6.1930 7.5979 6.3257 4.8661 7.9096 
2 5.1007 6.9222 7.2373 7.0316 4.9755 7.4689 
3 4.9898 6.4846 7.4874 6.1898 5.4697 8.0156 
4 6.1106 6.0770 7.3171 6.6270 4.8989 7.3879 
5 4.7932 7.0215 7.1610 7.5530 4.9587 7.7137 
6 4.9024 6.5184 7.1402 6.0367 5.5395 7.8925 
7 5.9273 6.6714 7.2846 7.1147 5.3979 8.0432 
8 5.2854 6.6528 7.1431 6.8349 4.7269 7.8857 

It is challenging to discern the time differences between the traditional PSO algorithm and the 
improved algorithm from the trajectory, velocity, and acceleration graphs. To compare the differences 
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between the two algorithms, the initial times for the cubic polynomial interpolation are adjusted to 5 s, 
while the initial times for the quintic polynomial interpolation are set to 8 s. Table 5 provides a separate 
breakdown of the running times for each joint to facilitate comparison. Additionally, multiple 
experiments are conducted to compare the results for different iteration numbers and population sizes. 
Based on multiple comparisons, the GKSO algorithm and the I-PSO algorithm show minimal 
differences. The optimal solutions for joints 1, 2, 4, and 6 differ by no more than 0.6 s. However, 
overall, the GKSO algorithm achieves slightly better optimization objectives. For joint 3, the GKSO 
algorithm successfully avoid local optima through its defensive measures, resulting in an optimal time 
solution with minimal fluctuations and demonstrating good performance in terms of acceleration. 
Furthermore, as the iteration numbers and population sizes increase, the optimal solutions show a 
decreasing trend, further enhancing the effectiveness of the optimization algorithm. 

Table 5. Iterative optimization time comparison. 

Number of joint 
Condition 

Algorithm 1 2 3 4 5 6 

Population size 50, 
iterations 50 

Basical PSO (time/s) 4.72 5.91 5.10 6.39 4.70 7.35 
Improved PSO (time/s) 4.61 5.73 4.75 6.21 4.42 7.38 
GKSO (time/s) 4.53 5.68 5.81 6.01 4.41 7.29 

Population size 50, 
iterations 100 

Basical PSO (time/s) 4.69 5.79 5.20 6.31 4.83 7.31 
Improved PSO (time/s) 4.39 5.71 4.74 5.98 4.36 7.23 
GKSO (time/s) 4.33 5.70 5.42 5.72 4.22 7.16 

Population size 70, 
iterations 50 

Basical PSO (time/s) 4.65 5.81 5.06 6.29 4.71 7.29 
Improved PSO (time/s) 4.31 5.66 4.75 6.03 4.43 7.25 
GKSO (time/s) 4.27 5.32 5.41 5.98 4.39 7.11 

5.4. Experiment 

To validate the practical applicability of the optimization algorithm in real-world scenarios for 
the robotic arm, the algorithm’s pre- and post-optimized trajectory points are implemented in the 
casting sorting robotic arm. The trajectory plot depicted in the figure illustrates the simulated 
trajectories in MATLAB before and after optimization using the GKSO and PSO algorithms. The blue 
line represents the trajectory obtained from the GKSO algorithm, the black line represents the 
trajectory obtained from the I-PSO algorithm, and the red line represents the trajectory obtained from 
the traditional PSO optimization. 
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Figure 10. Trajectory simulation after algorithm optimization. 

 

Figure 11. Trajectory length comparison data graph. 

It is evident that, in the case of the I-PSO algorithm and PSO optimization, the middle section of 
the trajectory is longer. The trajectory lines are divided into multiple points and fed into the robotic 
arm for actual operation. The trajectory lengths optimized by different algorithms through 30, 50, 100, 150, 
and 200 iterations of optimized runtime were respectively calculated, as shown in Figure 11. All 
algorithms exhibited rapid convergence behavior with increasing iterations. Among them, the initial 
solution of the GKSO algorithm was better in the first 150 iterations, with convergence closer to the 
optimal solution. After 200 iterations, there was little difference in the overall optimization effect of 
the algorithms on this robotic arm trajectory planning problem. At this point, they all approached the 
shortest trajectory length, which to some extent validated the certain advantages of the GKSO 
algorithm in trajectory planning. To account for the challenge of real-time adjustment of acceleration 
in the control segment, linear averaging is applied between each acceleration and deceleration segment. 
Three experiments were conducted without specifying interpolation time, prioritizing safety by setting 
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the extremum at 30% of the robotic arm’s maximum speed and acceleration. The trajectories obtained 
after 30, 60, and 100 iterations are imported into the robotic arm for sorting, as shown in Figure 12. 
The results are documented in Table 6. The overall operation unfolds smoothly without significant 
fluctuations, and there are no instances of jamming at the transition points of the trajectory, which 
further solidifies the reliability of the desired trajectory. 

 

Figure 12. Experiment of robotic arm trajectory operation. 

Table 6. Trajectory running time comparison. 

Iterations 30 60 100 
GKSO 39.87 s 36.57 s 33.05 s 
Improved PSO 43.08 s 38.85 s 33.59 s 
PSO 54.72 s 48.89 s 38.46 s 

In order to consider the runtime of the algorithm itself, a timing function is implemented to 
measure the computation time for obtaining the optimal solution. With 50 iterations and a population 
size of 50, multiple optimizations are performed, and the average runtime is calculated as shown in the 
Table 7. The overall difference in runtime is within 2 seconds. Furthermore, after incorporating 
dynamic learning factors and adaptive inertia weights, the difference in runtime for the I-PSO 
algorithm is within 1 second. Although there is a slight disparity, the time saved from multiple 
repetitions of optimization can offset this relatively small difference in industrial production settings. 

It is important to note that we did not focus on optimizing and simplifying the GKSO algorithm 
itself, resulting in the use of code that may not be the most concise. Additionally, in cases where 
multiple nested formulas are present, parallel computing cannot be utilized to reduce runtime. 

Table 7. The running time of the algorithm for each joint. 

Algorithm 
Number of joint 

GKSO algorithm runtime 
(s) 

PSO algorithm 
runtime (s) 

I-PSO algorithm 
runtime (s) 

Joint 1 7.939962 5.004269 6.093648 
Joint 2 7.777234 5.16282 6.37203 
Joint 3 7.768724 5.100063 6.552508 
Joint 4 7.774511 6.36556 6.872196 
Joint 5 7.958547 5.187522 6.685268 
Joint 6 8.028946 6.087946 6.443644 
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6. Conclusions 

We present a time-optimized trajectory planning method for the casting sorting robotic arm using 
the GKSO (Genghis Khan Shark Optimization) algorithm. We utilize the Monte Carlo method to 
compute the robotic arm’s workspace and employ a “3-5-3” segmented polynomial interpolation 
technique for end-effector trajectory planning. Furthermore, we compare and analyze the simulated 
position, velocity, and acceleration profiles of the trajectories optimized using the GKSO algorithm, 
the traditional PSO (Particle Swarm Optimization) algorithm, and the I-PSO (Improved Particle 
Swarm Optimization) algorithm. The results confirm that the GKSO algorithm outperforms the other 
two algorithms, yielding the best time optimization results. 

Moreover, the GKSO algorithm exhibits remarkable continuity in the optimized trajectories, 
adhering to the robotic arm’s kinematic constraints. Compared to the other algorithms, the GKSO 
algorithm demonstrates lower fluctuations, higher stability, and enhanced reliability. Finally, when the 
calculated trajectory points are implemented in the actual operation of the robotic arm, minimal 
fluctuations are observed. In conclusion, qw successfully achieve the objective of optimizing the time-
optimal trajectories for the casting sorting robotic arm. 

In terms of future research directions, there are several potential areas to explore. First, as the 
algorithm is in the early stages of research, there may be a tendency for the generation of initial 
solutions to be concentrated, thereby limiting the algorithm’s global search capability in the initial 
phase. To address this, one possible direction is to consider the integration of chaotic mapping 
techniques. This could help improve the generation of initial solutions and enhance the algorithm’s 
ability to explore the global solution space. 

Second, further studies can be conducted to investigate and optimize the parameters associated 
with the four stages of the algorithm. By refining and fine-tuning these parameters, it is possible to 
improve the overall performance and efficiency of the algorithm. 

Additionally, there is research value in exploring strategies to optimize and simplify the algorithm itself. 
By streamlining the algorithm, it can become more efficient and easier to implement in practical applications. 

Furthermore, in real-world industrial production scenarios, there may be situations that involve 
multiple points and requirements beyond the scope of this study. Therefore, it is worth exploring how 
the algorithm can be further optimized to handle such multi-point scenarios and provide accurate and 
effective solutions. 
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